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60455-760 Fortaleza, CE, Brazil

(Submitted by: Yanyan Li)

Abstract. In this paper we study the existence, regularity and geomet-
ric properties of an optimal configuration to a free boundary optimiza-
tion problem governed by the p-Laplacian operator.

1. Introduction

Let D be a bounded smooth domain in R
n and ϕ a positive function

defined on it (the temperature distribution of the body D). A classical
minimization problem in heat conduction asks for the best way of insulating
the body D, with a prescribed amount of insulating material in a stationary
situation. This model also designs problems in electrostatics, potential flow
in fluid mechanics among others.

The mathematical description of this problem is as follows: given a fixed
number γ > 0 (quantity of insulation material), for each domain Ω sur-
rounding D, such that |Ω \ D| = γ, we consider the potential u associated
to the configuration Ω, i.e., the harmonic function in Ω \ D, taking bound-
ary data equal to ϕ on ∂D and 0 on ∂Ω. The flow of heat (quantity to
be minimized), corresponding to the configuration Ω, is given by a nonlocal
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monotone operator, given by

J(Ω) :=
∫

∂D
Γ
(
x, uμ(x)

)
dS,

where μ is the inward normal vector defined on ∂D. The function Γ: ∂D ×
R → R is assumed to be convex and increasing on uμ and continuous on
x. Important examples are, Γ(t) = t (classical heat conduction problem),
Γ(t) = tp (optimal configurations in electrostatics), Γ(x, t) = max{t, C(x)}
(problems in the material sciences).

In [20], the second author studied the problem of minimizing J(Ω) among
all configurations Ω such that, say, |Ω\D| = 1, where |A| is the volume of the
set A. This optimization problem with linear heat flux, i.e., Γ(x, t) = t, was
studied in [1] and [4]. Qualitative geometric properties of the free boundary,
namely symmetry, uniqueness and full regularity of the free boundary, were
explored in [21].

In this present paper, we turn our attention to this problem when we allow
the temperature itself to deform the medium. We assume the influence of the
temperature distribution on the medium is proportional to the magnitude
of its gradient. These considerations lead us to study this optimization
problem when temperature distribution is governed by the p-Laplacian. In
other words, the variational problem we are interested in is, for 1 < p < ∞

Minimize

⎧⎨⎩ J(u) :=
∫

∂D
Γ(x, uμ)dS

∣∣∣ u : DC → R, u = ϕ on ∂D,

Δpu = 0 in {u > 0} and |{u > 0}| = 1.

⎫⎬⎭ (1.1)

Here, Δpu := div
(
|∇u|p−2∇u

)
. Several new difficulties appear when dealing

with the nonlinear operator Δp. One of its main difficulties lies in the fact
that the p-Laplacian is not uniformly elliptic.

In analogy with the linear case for the Laplacian operator, in this pa-
per we shall restrict ourselves to the heat flux given by Γ(x, t) = tp−1. In
our physical considerations, we will assume the body to be insulated has
much smaller volume than the quantity of insulation material. This leads
us to consider a constant temperature distribution, say, ϕ ≡ 1. With these
assumptions, problem (1.1) can be reformulated in terms of the following
equivalent version of it:

Minimize

⎧⎨⎩ J(u) :=
∫

DC

|∇u|pdx
∣∣∣ u : DC → R, u = ϕ on ∂D,

Δpu = 0 in {u > 0} and |{u > 0}| = 1.

⎫⎬⎭ (1.2)
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In problem (1.2), we shall assume ϕ to be positive and, say, in W 1,p(Dδ) ∩
C(Dδ), for some small tubular neighborhood of ∂D. Our computations
could be done assuming less but notice, however, that when ϕ ≡ 1, problem
(1.2), is equivalent to problem (1.1) with Γ(x, t) = tp−1: our initial physical
motivation. In this paper we will only deal with problem (1.2). We hope to
turn our attention to problem (1.1) in its full generality in future research.

From the mathematical point of view, our approach is motivated by recent
advances on the free boundary regularity theory for minimum problems with
a variable domain of integration involving degenerate quasilinear operators.
Namely, D. Danielli and A. Petrosyan, in [10], have recently extended the
celebrated work of H. Alt and L. Caffarelli [2], for the p-Laplacian operator.
Our regularity results will rely on suitable modifications of the arguments
in [10]. Furthermore, we shall establish a free boundary condition that will
relate our optimization problem with Bernoulli-type problems, similar to the
ones studied in [18], [12] and [10].

2. Mathematical fundamentals of the physical problem

In this section, we shall introduce the main mathematical tools we shall
use throughout the whole paper. Throughout the article, 1 < p < ∞ and
Δpu stands for the p-Laplacian operator

Δpu := div
(
|∇|p−2∇u

)
.

Let U be a domain in R
N . Let us recall that for any ξ ∈ W 1,p(U), Δpξ ∈[

W 1,p
0 (U)

]∗ and

〈Δpξ, υ〉 =
∫

U
|∇ξ|p−2∇ξ · ∇υdx.

Problem (1.2) presents several difficulties from the mathematical point of
view. Our strategy will be to study a penalized version of it, which is sort
of a weak formulation of the problem. The idea is to grapple with the
difficulty of volume constraint, which is very unstable under limits and makes
perturbation arguments quite hard.

From now on, we denote by V the following set

V :=
{
u ∈ W 1,p(DC) : u = ϕ on ∂D

}
.

The penalized problem is stated as follows: Let ε > 0 be fixed. We consider
the function

fε :=
{

1 + 1
ε (t − 1) if t ≥ 1

1 + ε(t − 1) otherwise.
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We then define the penalized functional as

Jε(u) :=
∫

DC

|∇u|pdx + fε

(
|{u > 0}|

)
. (2.1)

For the moment, we shall be interested in the following minimization problem

min
u∈V

Jε(u). (2.2)

For latter use, given a γ-bilipschitz function f we consider the similar pe-
nalized problem of (2.2) given by the functional:

Jf :=
∫

DC

|∇u|pdx + f
(
|{u > 0}|

)
. (2.3)

3. Properties of solutions of problem (2.2)

In this section we shall derive existence of a minimizer for the penalized
problem as well as some important nondegeneracy conditions, such as opti-
mal regularity and linear growth away from the free boundary. The proof
of Theorem 3.1 will be developed throughout this section. At the end, we
shall be able to state a representation theorem that will be crucial to study
further regularity properties of the free boundary.

Theorem 3.1. For each ε > 0 fixed, there exists a minimizer uε ∈ V for
the functional Jε. Furthermore

(1) uε ≥ 0.
(2) Δpuε is a nonnegative Radon measure supported on ∂{uε > 0}. In

particular,

Δpuε = 0 in {x ∈ DC : uε(x) > 0}.
(3) Any minimizer uε of problem (2.2) is Lipschitz continuous and for

any compact K ⊂ DC there exists a constant K = K(K, p, n, ε, D)
such that ‖uε‖Lip(K) ≤ K.

(4) The function uε grows linearly away from the free boundary; i.e., for
any compact K ⊂ DC , there exist positive constants c, C, depending
on dimension, K, p, D and ε, such that

cdist
(
x, ∂{uε > 0}

)
≤ uε(x) ≤ Cdist

(
x, ∂{uε > 0}

)
, ∀x ∈ K.

(5) The free boundary is uniformly dense; i.e., for any compact K ⊂
DC fixed, there exist a constant c = c(K, p, n, ε, D) such that c <
|Br∩{u>0}|

|Br| ≤ 1 − c, for any ball Br = Br(x) centered at some point
x ∈ ∂{uε > 0} ∩ K.
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Proof. The existence of a minimizer uε for problem (2.2) follows easily from
the fact that, for any minimizing sequence uk

ε , we may assume
• ∇uk

ε ⇀ ∇uε in Lp(DC)
• uk

ε → uε almost everywhere in DC ,
for some uε ∈ V . Thus,∫

DC

|∇uε|pdx ≤ lim inf
k→∞

∫
DC

|∇uk
ε |pdx and |{uε > 0}| ≤ lim inf

k→∞
|{uk

ε > 0}|.

Since fε is a continuous and increasing function, we obtain

Jε(uε) ≤ lim inf
k→∞

J(uk
ε).

Clearly, uε ≥ 0, otherwise, Jε

(
(uε)+

)
< Jε

(
uε

)
.

Observe that if uε is a minimizer, then J(uε) ≤ J(uε − εη), for every
ε > 0 and nonnegative η ∈ C∞

0 (Dc). Since {uε > εη} ⊂ {uε > 0} and f
is increasing, we have that f

(
{uε > εη}

)
≤ f

(
{uε > 0}

)
and consequently

Δpuε is a nonnegative Radon measure supported on ∂{uε > 0}.
Now, we explain the main track and the necessary changes in order to

obtain items (3), (4) and (5). We will follow the lines of [10] establishing a
sequence of lemmas that are analogous to those in this refereed work. Instead
of proving these lemmas with all the details, we shall restrict ourselves to
enunciating them and sketching their proofs by pointing out the necessary
modifications and referring to [10] for further details.

Up to the end of this section, we fix some γ-bilipschitz function f . Con-
sider u a minimizer of the Problem (2.3) in some ball B. Denote by v the
solution of the Dirichlet problem{

Δpv = 0 in B
v = u on ∂B.

(3.1)

Following the beginning of Section 3 in [10] we obtain:

Lemma 3.2. There exists a constant C = C(n, p, γ) such that

∫
B
|∇(u − v)|p ≤ C|{u > 0} ∩ B| for p ≥ 2 and∫

B
|∇(u − v)|p ≤ C|{u > 0} ∩ B| p

2
( ∫

B
|∇u|p

)1− p
2 for 1 < p ≤ 2.

(3.2)

Moreover, the constant C goes to zero when γ goes to zero.

The next lemma is the analog of Lemma 3.1 in [10], with a similar proof.
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Lemma 3.3. Let f be a given γ- Lipschitz function and u be a bounded
minimizer of Problem (2.3) in B1. Then, u ∈ Cα in B 7

8
for some α =

α(n, p) ∈ (0, 1) and ‖u‖Cα(B 7
8
) ≤ C(n, p, ‖u‖L∞(B1), γ).

Following Lemma 3.2 in [10], we obtain

Lemma 3.4. Let u be a bounded local minimizer of Problem (2.3) in B1

with u(0) = 0. Then, there exists a constant C = C(n, p, γ) such that

‖u‖L∞(B 1
4
) ≤ C.

Proof. Assume, by contradiction, there exists a sequence uk of bounded
local minimizers of Problem (2.3) in B1 with uk(0) = 0 and maxB 1

4

uk > k.

In this case, we define: dk(x) = d(x, ∂{uk > 0}) and Ok = {x ∈ B1; dk(x) ≤
1−‖x‖

3 }. Observe that, since uk(0) = 0, dk(x) < ‖x‖ for every x ∈ B1. On
the other hand, (1 − ‖x‖)/3 ≥ 1/4 for every x ∈ B1/4. From this inequality
we conclude that B1/4 ⊂ Ok. Now, define

mk := max
Ok

(1 − ‖x‖)uk(x) ≥ 3
4 max

B1/4

uk(x) > 3
4k.

Consider any maximum point xk ∈ Ok of the function (1 − ‖x‖)uk(x) and
observe that

uk(xk) =
mk

1 − ‖x‖ > 3
4k. (3.3)

Denote by yk any point in ∂{uk > 0} such that dk(xk) = ‖yk − xk‖ and
define δk := ‖xk − yk‖. Since xk ∈ Ok, we have that δk ≤ (1−‖x‖)

3 . Then, for
every z ∈ B2δk

(yk):

‖z‖ ≤ ‖yk‖ + 2δk ≤ ‖xk‖ + 3δk ≤ ‖xk‖ + (1 − ‖xk‖) ≤ 1.

From this inequality, we have that B2δk
(yk) ⊂ B1. Now, we claim that

Bδk/2(yk) ⊂ Ok. In fact, if z ∈ Bδk/2(yk) we have that:

dk(z) ≤ δk

2
≤ 1 − ‖yk‖ + δk

2

3
≤ (1 − ‖z‖)

3
,

where the second inequality is a consequence of ‖yk‖ + δk ≤ 1. Moreover,
for z ∈ Bδ/2(yk)

(1 − ‖z‖) ≥ (1 − ‖xk‖) − ‖xk − z‖ ≥ (1 − ‖xk‖) −
3
2
δk ≥ (1 − ‖xk‖)

2
.

As a consequence of this inequality,

max
Bδ/2(yk)

uk ≤ 2uk(xk). (3.4)
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By the definition of δk, we have that Bδk
(xk) ⊂ {uk > 0}. Recall from item

(2) of Theorem 3.1 that Δpuk = 0 in Bδk
(xk). By the Harnack inequality

for p-harmonic functions, we may conclude that there exists a constant c =
c(n, p) > 0 such that

min
B3δ/4(xk)

uk ≥ cuk(xk). (3.5)

In particular,
max

Bδ/4(yk)
uk ≥ cuk(xk). (3.6)

Consider the following scaling of uk

wk(x) =
uk(yk + δ

2x)
uk(xk)

, for x ∈ B1. (3.7)

Observe that since u is a local minimizer of Problem (2.3), wk is a minimizer
of the analogous problem replacing fε with fk = fε/uk(xk). In other words,
wk is a local minimizer of

Jk(w) =
∫

B3/4

|∇w|p + fk(|{w > 0}|).

Now, we denote by vk the solution of Δpvk = 0 in B3/4 and vk − wk ∈
W 1,p

0 (B3/4). Initially we observe that ‖fk‖Lip converges uniformly to zero,
as k → ∞. Since wk is a minimizer of Jk, by Lemma 3.2 we guarantee the
existence of a sequence of positive numbers Ck, that converges to zero as
k → ∞, such that ∫

B3/4

|∇(wk − vk)|p ≤ Ck. (3.8)

By estimates (3.4) and (3.6) we have that

max
B1

wk ≤ 2, max
B1/2

wk ≥ c and wk(0) = 0.

Now notice that wk is uniformly bounded, thus from Lemma 3.3 we conclude
wk and vk are uniformly Cα in B5/8. By compactness, we may assume
(passing to a subsequence, if necessary) wk → w0 and vk → v0 uniformly on
B5/8. Equation (3.8) implies that w0 = v0 + K in B5/8. Since vk → v0, we
have that Δpv0 = 0 and this implies that Δpw0 = 0. By the strong minimum
principle, we have that w0 = 0 in B5/8, because w0 ≥ 0 and w0(0) = 0. It is
a contradiction with maxB1/2

w0 > c > 0. This finishes the proof. �
Lipschitz continuity now follows as in the uniformly elliptic case, see for

instance, Theorem 2.3 in [3]. At this moment, the proofs of item (4) and (5)
are similar to the proofs of Corollary 4.3 and Theorem 4.4 in [10] respectively.
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The necessary minor modifications are similar to the ones treated in the proof
of Lemma 3.4 and therefore we will skip the details. �

In the same spirit as [2], D. Danielli and A. Petrosyan provided in [10]
a representation theorem which Theorem 3.1 puts our minimizers uε under
the hypotheses of Theorem 3.1. The next theorem will play an important
role in the investigation of fine regularity properties of the free boundary.

Theorem 3.5. Let uε be a minimizer of Problem (2.2). Then
(1) Hn−1

(
K ∩ ∂{uε > 0}

)
< ∞ for every compact set K ⊂ DC .

(2) There exists a Borel function qε such that

Δpuε = qεHn−1�∂{uε > 0};
that is, for any ψ ∈ C∞

0 (DC), there holds

−
∫

DC

|∇uε|p−2∇uε · ∇ψdx =
∫
{uε>0}

ψqεdHn−1.

(3) For any compact set K ⊂ DC , there exist positive constants c, C
such that c ≤ qε ≤ C and

crn−1 ≤ Hn−1
(
Br(x) ∩ ∂{uε > 0}

)
≤ Crn−1,

for every ball Bx(r) ⊂ K with x ∈ ∂{uε > 0}.
(4) For Hn−1 almost all points in ∂{uε > 0}, an outward normal ν =

ν(x) is defined and furthermore

uε(x + y) = qε(x)(y · ν)+ + o(y),

where o(y)
|y| → 0 as |y| → 0. This allows us to define qε(x) = (uε)ν(x)

at those points.
(5) Hn−1(∂{uε > 0} \ ∂red{uε > 0}) = 0.

4. A geometric-measure of Hadamard’s variational formula

and the free boundary condition

In this section we suggest a geometric-measure version of the well-known
Hadamard’s variational formula (see [15]) to deduce the free boundary con-
dition of Problem (2.2). Our approach is inspired by [1]. Roughly speaking,
given two points in the reduced free boundary, say x1 and x2, the idea is to
make an inward perturbation around x1, an outward perturbation around
x2 in such a way that we do not disturb very much the original volume and
then compare the optimal configuration to the perturbed one in terms of the
functional Jε. Here are the details.
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Let ρ : R → R be a nonnegative C∞ function supported in [0, 1], with,
say,

∫
ρ(t)dt = 1. Hereafter, we shall write u = uε and fix two points x1 and

x2 in the reduced free boundary ∂red{u > 0}. For any 0 < r < dist(x1,x2)
100 ,

and λ > 0, we consider the vector field

Pr(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x + λrρ

(
|x−x1|

r

)
ν(x1) x ∈ Br(x1)

x − λrρ
(
|x−x2|

r

)
ν(x2) x ∈ Br(x2)

x elsewhere.

(4.1)

If υ is any vector in R
n, from direct computation, we see that

DPr(x) ·υ = υ +(−1)i+1
{

λρ′
( |x − xi|

r

)〈x − xi, υ〉
|x − xi|

}
ν(xi) in Br(xi). (4.2)

Notice that, if λ is small enough, Pr is a diffeomorphism that maps Br(xi)
onto itself. Indeed, if λ sup[0,1] ρ

′(t) < 1, Pr is a local injective diffeomor-
phism. Now, if λρ(t) ≤ 1 − t, for 0 ≤ t ≤ 1,

|Pr(x) − xi| ≤ |x − xi| + λrρ
( |x − xi|

r

)
≤ r,

for any x ∈ Br(xi). Finally, notice that Pr

∣∣
∂Br(xi)

= Id, therefore Pr has to
be onto.

For each r > 0 small enough, we will consider the r-perturbed configura-
tion, vr implicitly defined by

vr(Pr(x)) = u(x). (4.3)

The idea is to compare our optimal configuration {u > 0} to its perturbation
{vr > 0} in terms of the penalized Problem (2.2). An important geometric
measure of information we shall use is the blow-up limit. For any r > 0
small enough and i = 1, 2, consider the blow-up sequence, ui

r : B1(0) → R,
given by

ui
r(y) := 1

ru
(
xi + ry

)
.

From the blow-up analysis, we know, the set B1 ∩ {ui
r > 0} approaches

{y ∈ B1 : 〈y, ν(xi)〉 < 0}, as r → 0. Let us compute the change on the
volume of the perturbation. More specifically, making use of the change of
variables theorem, we obtain

|(Br(xi) ∩ {vr > 0})|
rn

=
1
rn

∫
Br(xi)∩{vr>0}

dx =
∫

B1∩{vr(xi+ry)>0}
dy (4.4)

=
∫

B1∩{ui
r>0}

det (DPr(xi + ry)) dy
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−→
∫

B1∩{〈y,ν(xi)〉<0}
1 + (−1)i+1λρ′(|y|)

〈 y

|y| , ν(xi)
〉
dy,

as r → 0. Notice that there exists a constant C(ρ) so that, for any unit
vector ν ∈ S

n−1, there holds

C(ρ) ≡
∫

B1∩{〈y,ν〉<0}
ρ′(|y|)

〈 y

|y| , ν
〉
dy. (4.5)

A similar computation shows that

|(Br(xi) ∩ {u > 0})|
rn

−→
∫

B1∩{〈y,ν(xi)〉<0}
dy, (4.6)

as r → 0. Combining (4.4), (4.5) and (4.6), we conclude

(|{vr > 0}|) − (|{u > 0}|)
rn

−→ 0, (4.7)

as r → 0. From the Lipschitz continuity of the penalization fε, we obtain

fε

((
|{vr > 0}|

))
− fε

(
|
(
{u > 0}|

))
≤ 1

ε
o(rn). (4.8)

Now we shall turn our attention to the differential of the perturbation on
the p-Dirichlet integral. Initially we observe that

1
rn

∫
Br(xi)

|∇u(x)|pdx =
∫

B1

|∇ui
r(y)|pdy =

∫
B1∩{ui

r>0}
|∇ui

r(y)|pd. (4.9)

Now, applying twice the change of variables theorem, taking into account
that Pr maps Br(xi) diffeomorphically onto itself,

1
rn

∫
Br(xi)

|∇vr(x)|pdx =
1
rn

∫
Br(xi)

|DPr(P−1
r (x))−1 · ∇u(P−1

r (x))|pdx

=
1
rn

∫
Br(xi)

|DPr(y)−1 · ∇u(y)|p|det
(
DPr(y)

)
|dy (4.10)

=
∫

B1∩{ui
r>0}

|DPr(xi + rz)−1 · ∇ui
r(z)|p|det

(
DPr(xi + rz)

)
|dz.

Now, from (4.2), using the fact that for any matrix A, with |A| < 1, we have(
Id + A

)−1 = Id +
∑∞

i=1(−1)iAi, we have

DPr(xi + rz)−1 · ∇ui
r(z) = ∇ui

r(z) − (1)i+1λ
ρ′(|z|)
|z| 〈z,∇ui

r(z)〉ν(xi) + o(λ).

(4.11)
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On the other hand,

|det
(
DPr(xi + rz)

)
| = 1 + (−1)i+1λ

ρ′(|z|)
|z| 〈z, ν(xi)〉. (4.12)

Combining (4.9), (4.10), (4.11) and (4.12), we obtain

1
rn

∫
Br(xi)

|∇vr(x)|p − |∇u(x)|pdx (4.13)

= (−1)i+1λ

∫
B1∩{ui

r>0}
|∇ui

r(z)|p ρ′(|z|)
|z| 〈z, ν(xi)〉dz

+ (−1)iλ

∫
B1∩{ui

r>0}
p|∇ui

r(z)|p−2 ρ′(|z|)
|z| 〈z,∇ui

r(z)〉〈∇ui
r(z), ν(xi)〉dz + o(λ).

Again, from the blow-up analysis (see [10]), for each δ > 0, we know

∇ui
r → q(xi)ν(xi),

uniformly in B1 ∩ {〈y, ν(xi)〉 < −δ}. Therefore, by r-uniform Lipschitz
continuity of ui

r, we have

∇ui
r → −q(xi)ν(xi)χB1∩{〈y,ν(xi)〉<0}, (4.14)

in Lp(B1). Letting r → 0 in (4.13), we find

1
rn

∫
Br(xi)

|∇vr(x)|p − |∇u(x)|pdx −→

(−1)i+1(p − 1)λ
(
q(xi)

)p
∫

B1∩{ui
r>0}

ρ′(|z|)
|z| 〈z, ν(xi)〉dz + o(λ).

(4.15)

Notice that

div
(
ρ(|z|)

)
=

ρ′(|z|)
|z| 〈z, ν(xi)〉.

Thus, from the divergence theorem and the blow-up analysis,∫
B1∩{ui

r>0}

ρ′(|z|)
|z| 〈z, ν(xi)〉dz →

∫
B1∩{〈z,ν(xi)〉=0}

ρ(|z|)dHn−1(z) = c(ρ).

(4.16)
Putting (4.15) and (4.16) together, we obtain∫

DC

|∇vr(x)|p − |∇u(x)|pdx = rnλ(p − 1)c(ρ)
(
q(x1)p − q(x2)p

)
+ rno(λ).

(4.17)
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From the minimality property of u, (4.8) and (4.17),

0 ≤ Jε(vr) − Jε(u) ≤ rnλ(p − 1)c(ρ)
(
q(x1)p − q(x2)p

)
+ rno(λ) +

1
ε
o(rn).

(4.18)
Dividing (4.18) by rn and letting r → 0 we obtain

0 ≤ λ(p − 1)c(ρ)
(
q(x1)p − q(x2)p

)
+ o(λ). (4.19)

Now dividing (4.19) by λ, letting λ → 0, and afterwards reversing the places
of x1 and x2, we finally obtain

q(x1) = q(x2). (4.20)

Since x1 and x2 were taken arbitrarily in ∂red{u > 0}, we have proven

Theorem 4.1. There exists a positive constant λε such that

qε ≡ λε, ∀x ∈ ∂red{uε > 0}.
It now follows from [10] that for each ε > 0 fixed, the reduced free bound-

ary ∂red{uε > 0} is a C1,α smooth surface. Real analyticity of the reduced
free boundary is then a consequence of [19]. It is worthwhile to point out
that, for n = 2, a small variant of the main result in [11] assures full regular-
ity of the free boundary {uε > 0}, as long as p > 2 − σ, for some universal
constant σ.

In [6], [7] and [8], L. Caffarelli introduced and developed the, by now, well-
known notion of viscosity solution of a given free boundary problem (for the
Laplacian operator). It turns out that the notion of viscosity solution to a
free boundary problem is rather weaker than the one we obtained in Theorem
4.1. We shall use the interpretation of our free boundary condition as in the
viscosity sense as a geometric tool in the remaining sections.

Theorem 4.2 (Free boundary condition in the viscosity sense). Let x0 ∈
∂{uε > 0} be a free boundary point. Suppose there exists a ball B ⊂ {uε > 0}
touching the free boundary; i.e., ∂B ∩ ∂{uε > 0} = {x0}. Then in B u has
the asymptotic development

uε(x) = λε〈x − xo, ν〉+ + o(|x − x0|), (4.21)

where λε is the positive constant provided in Theorem 4.1 and ν is the unit
normal vector to ∂B, pointing inward to {uε > 0}.
Proof. Let B = Br(ξ) ⊂ {uε > 0} touch the free boundary at {x0}. If
follows by a small variant of Lemma A.1 in [12] (see also Lemma A1 in [8])
that, in B, u has the following asymptotic development

uε(x) = θ〈x − xo, ν〉 + o(|x − x0|), (4.22)
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for some θ > 0. It remains to show, θ = λε. With no loss of generality we
can assume x0 = 0 and ν = e1. Consider then any blow-up sequence

uk
ε(x) =

1
ρk

uε(ρkx), (4.23)

as ρk → 0. By Lipschitz continuity, we can assume uk
ε converges over com-

pact sets to a Lipschitz function u∞
ε defined on R

N . Clearly, u∞
ε ≥ 0 and

Δpu
∞
ε = 0 in {u∞

ε > 0}. From (4.22), u∞
ε (x) = θ〈x, e1〉, in {〈x, e1〉 ≥ 0}.

We want to show u∞
ε ≡ 0 in {〈x, e1〉 ≤ 0}.

By a small modification of classical arguments, see for instance [2] or [14],
we can show the limit of any blow-up sequence of uε is an absolute minimizer
of Jε in any ball. Thus any blow-up limit locally satisfies all the properties
listed in Theorem 3.5. In particular, blow-ups have uniform positive zero
sets; i.e., there exists a constant c > 0 such that

|{u∞
ε = 0} ∩ BR(0)| ≥ cRN ,∀R > 0. (4.24)

We claim that (4.24) implies

u∞
ε (x1, y) = o(x1), as x1 → 0−. (4.25)

Indeed, let � := lim sup{∂x1u
∞
ε (x1, y) : x1 → 0−, u∞

ε (x1, y) > 0}. Take
(an, yn) to be a sequence such that ∂x1u

∞
ε (an, yn) → � and suppose by con-

tradiction � > 0. Consider the blow-up sequence of u∞
ε with respect to

Ban(0, yn). Again by Lipschitz continuity, up to a subsequence, we can as-
sume the blow-up sequence converges to some function v. Arguing as in
[10], Lemma 5.4, we obtain v = −�x1 in {x1 < 0}. However, we know that
v = θx1 in {x1 > 0} for some θ = θv > 0. This contradicts the uniform
positive density of {v = 0}.

Our next step is to show that the error o(x1) in (4.24) depends only on
the constant c in (4.24) and the Lipschitz norm, say L. In other words we
will prove that if v is a Lipschitz nonnegative function on R

N satisfying
(4.24), Δpv = 0 in {v > 0} and {x1 > 0} ⊂ {v > 0}, then there exists a
universal o so that (4.25) holds. For that, fix a ς = μc < 1, for μ small.
From (4.24), there exists a Y ∈ B1 with 〈Y, e1〉 < −ς such that v(Y ) = 0.
By Lipschitz continuity, there is an r so that Br(Y ) ⊂ {x1 < − 1

10 ς} and
v(x) ≤ − L

10x1 in Br(Y ). Let B := B|Y |(0, Y ′)∩{x1 < 0}, where Y = (Y1, Y
′)

and consider an auxiliary function Θ satisfying⎧⎨⎩
ΔpΘ = 0 in B

Θ = −x1 on ∂B \ Br(Y )
Θ = −x1

10 on ∂B ∩ B r
2
(Y ).
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We choose Θ to satisfy −x1
10 ≤ Θ ≤ −x1 on ∂B ∩ Br(Y ). By the comparison

principle, v ≤ LΘ. Now, by the strong maximum principle (see for instance
Theorem 6.5 in [17]), we know 0 < Θ < −x1 in B. Since Θ ≡ 0 on B ∩
{x1 = 0} we must have ∂1Θ < 1 on B ∩ {x1 = 0}. In fact, if for some
χ ∈ B ∩ {x1 = 0} we had ∂1Θ(χ) = 1, around such a point, |∇Θ|p−2 is a
uniformly elliptic Cα matrix and we would reach a contradiction to the Hopf
maximum principle applied to Θ+x1 (see for instance [16], notes of chapter
3 or [13]). Applying again the C1,α regularity of Θ up to the boundary of B,
there exist κ > 0 and α < 1, depending only on dimension and p, such that
Θ(x) ≤ −αx1, in Bκ ∩ {x1 < 0}, and thus

v(x) ≤ −αLx1, in Bκ ∩ {x1 < 0}. (4.26)

Expression (4.26) implies that for any R > 0

v(Rx)
R

≤ −αLx1, in Bκ ∩ {x1 < 0}. (4.27)

If we now apply a scaling induction argument to (4.27) we obtain

v(x) ≤ −αjLx1 in BκjR ∩ {x1 < 0}. (4.28)

Since α < 1 and R > 0 is arbitrary, (4.28) implies the error o(x1) in (4.24) is
indeed uniform. Therefore, by rescaling u∞

ε as in (4.27), we finally conclude
u∞

ε (x) ≡ 0 in {x1 < 0}.
At this point we have proven u∞

ε (x) = θ〈x, ν〉+, for some θ > 0. However it
is possible to show that the crossing angle θ obtained by a blow-up sequence
does not depend upon the free boundary point. Indeed, suppose

1
ρk

uε(x0 + ρkx) → θ0〈x, ν0〉+ and
1
ρk

uε(x1 + ρkx) → θ1〈x, ν1〉+ (4.29)

with, say, θ0 < θ1. Then we can perform a corresponding perturbation argu-
ment as in (4.3) and obtain a function vρk

with less energy than the minimizer
uε which is a contradiction. Now, if we select a point x1 ∈ ∂red{uε > 0}, by
C1,α regularity of the free boundary around x1, clearly, any blow-up sequence
converges to λε〈x, ν〉+, thus θ = λε. �

5. Recovering the original problem

In this section we shall relate a solution to the penalized problem to a
(possible) solution to our original problem. Roughly speaking the idea is
that the function fε will charge a lot for those configurations that have a
volume bigger than 1. We hope if the charge is too big, i.e., if ε > 0 is
small enough, optimal configurations of Problem 2.2 will rather prefer to
have volume 1 than paying for the penalization.
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Lemma 5.1. There exists a positive number δ = δε, such that uε is positive
for all points within a distance less than δ to the fixed boundary; i.e., Dδ =
{x ∈ DC : dist(x, ∂D) < δ} ⊂ {uε > 0}. In particular uε is continuous up
to the fixed boundary ∂D.

Proof. Let X ∈ ∂D and consider Y := X + ρμ(X), where μ(X) stands for
the inward unit normal vector at X and ρ = ρ(∂D) is small enough so that
B := Bρ(Y ) touches ∂D at X. Consider vδ to be the function satisfying⎧⎪⎨⎪⎩

Δpvδ = 0 in Bρ+δ(Y ) \ Bρ(Y )
vδ = inf

∂D
ϕ on ∂Bρ(Y )

vδ = 0 in Bρ+δ(Y )C ,

(5.1)

where δ is a small positive number to be chosen later. Let us call C =
Bρ+δ(Y )∩DC and A := {vδ > uε}∩C. Our ultimate goal is to show that uε

is positive in C, for some δ small enough. To this end, consider the function
M(x) := max{uε(x), vδ(x)}. Clearly, M competes with uε in problem (2.2).
Thus, ∫

A
|∇vδ|pdx + fε

(
|C| + |{uε > 0}| − |{uε > 0} ∩ C|

)
(5.2)

≥
∫

A
|∇uε|pdx + fε

(
|{uε > 0}|

)
.

We now consider

m(x) :=

{
vδ(x) in

[
Bρ+δ(Y ) \ Bρ(Y )

]
∩ D

min{uε(x), vδ(x)} in
[[

Bρ+δ(Y ) \ Bρ(Y )
]
∩ D

]C
.

We shall compare m and vδ in terms of the functional

Gμ(φ) :=
∫

B2ρ(Y )\Bρ(Y )
μ|∇φ|p +

1
μ

χ{φ>0}dx. (5.3)

Given μ small enough, there exists a δ = δ(μ) such that vδ is a minimizer
of Gμ, among all functions taking zero boundary data, say, on ∂B2ρ(Y ) and
inf
∂D

ϕ on ∂Bρ(Y ). Therefore,∫
A

μ|∇uε|pdx +
1
μ

∣∣{uε > 0} ∩ A
∣∣ ≥ ∫

A
μ|∇vδ|pdx +

1
μ

∣∣A∣∣. (5.4)

Combining (5.2), (5.4) and the 1
ε -Lipschitz continuity of fε, we obtain

μ

ε

(
|C| − |{uε > 0} ∩ C|

)
(5.5)
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≥ μ
[
fε

(
|C| + |{uε > 0} − |{uε > 0} ∩ C|

)
− fε

(
|{uε > 0}|

)]
≥ 1

μ

[
|A| − |{uε > 0} ∩ A|

]
=

1
μ

[
|C| − |{uε > 0} ∩ C|

]
.

Thus, if μ is taken small enough, this forces uε to be positive almost every-
where in C. Actually, uε > 0 everywhere in C, because of the uniformly
density of the free boundary, Theorem 3.1, item (5). �
Lemma 5.2. There exist positive constants c and C, independent of ε, such
that c ≤ |{uε > 0}| ≤ 1 + Cε.

Proof. Let D� be any smooth domain containing D, so that |D� \ D| = 1.
From the minimality of uε, we have

Jε(uε) =
∫

DC

|∇uε(x)|p + fε

(
|{uε > 0}|

)
≤ Jε(u�) = C, (5.6)

where u� is the p-harmonic function in D� \ D taking boundary data equal
to ϕ on ∂D and 0 on ∂D�. Thus

1
ε

(
|{uε > 0}| − 1

)
≤ fε

(
|{uε > 0}|

)
≤ C.

This proves the estimate from above. Let us turn our attention to the
estimate from below. Expression (5.6), together with the Poincaré inequality,
provides ∫

DC

|∇uε(x)|p + |uε(x)|pdx ≤ C, (5.7)

for some C independent of ε. Let Dδ be a tubular neighborhood of ∂D as in
Lemma 5.1. From the mean value inequality, followed by Hölder’s inequality
and (5.7) we have

δϕ(x0) ≤
∫ δ

0
u
(
x0 + tμ(x0)

)
dt +

∫ δ

0
|∇u

(
x0 + tμ(x0)

)
|tdt

≤ CΘ1/q
x0 δ1/q (1 + δ) .

(5.8)

Now we integrate (5.8) over ∂D and obtain∫
∂D

ϕdS ≤ C(δ)|{uε > 0} ∩ Dδ|1/q. (5.9)

Finally, from (5.9), there must exist a constant, independent of ε, so that
|{uε > 0}| ≥ c, as claimed. Notice that an estimate like (5.9) can be obtained
by means of an integral argument. Indeed, from the fact that ϕ ∈ W 1,p

close to ∂D, we can apply the trace inequality and obtain 0 < ‖ϕ‖Lq(∂D) ≤
C|{uε > 0}|p−q‖u‖W 1,p(DC) ≤ C|{uε > 0}|p−q. �
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Lemma 5.3. There exists a positive constant C independent of ε, so that
λε ≤ C, where λε is the constant provided by Theorem 4.1.

Proof. Applying the divergence theorem to the field F1 = u|∇u|p−2∇u, we
have ∫

DC

|∇uε|pdx =
∫

∂D
ϕ|∇u|p−2∂μudS, (5.10)

where μ is the outward unit vector in ∂D. If we apply the divergence theorem
to the field F2 = |∇u|p−2∇u, we obtain

λp−1
ε Hn−1(∂{uε > 0}) =

∫
∂D

|∇u|p−2∂μudS. (5.11)

The isoperimetric inequality gives a universal bound from below to
Hn−1(∂{uε > 0}); i.e, Hn−1(∂{uε > 0}) ≥ c, for some c independent of
ε. Combining this with (5.10) and (5.11), we obtain λε ≤ C(D, ϕ), as
claimed. �
Lemma 5.4. There exists a universal positive constant c > 0, such that
λε ≥ c, for all ε > 0.

Proof. Fix a z0 ∈ ∂D and select z1 = z0 + δμ(z1), where δ > 0 is small
and μ(z1) denotes the outward normal vector on ∂D. Consider the smooth
family of domains Υt := Bδ+t(z1)

⋂
DC . Let tε denote the first t such that

Υt touches ∂{uε > 0}, say x0 = ∂Υtε

⋂
∂{uε > 0}. Define Ψε to be a

p-harmonic function in Υtε \ Υ0, with the following boundary value data:

Ψε

∣∣
∂Υ0

= min
∂D

ϕ and Ψε

∣∣
∂Υtε

= 0.

By the maximum principle we have uε ≥ Ψε in Υtε \Υ0. From Hopf’s lemma
(see for instance [22]) we also know there exists a constant c > 0 depending
on ∂D and inf ϕ, but independent of ε, such that

Ψ−ν(x0) ≥ c, (5.12)

where ν denotes the outward unit normal vector of Bδ+tε(z1), at x0. Re-
call that, from Theorem 4.2, we have the following asymptotic development
around x0

Ψ(x) ≤ u(x) = λε〈x − x0, ν〉+ + o(|x − x0|). (5.13)
Dividing (5.13) by |x − x0|, letting x → x0 and taking into account (5.12),
we finally obtain c ≤ λε, as desired. �

We are ready to show the main theorem of this section.

Theorem 5.5. If ε is small enough, then any solution of Problem (2.2) is
a solution of Problem (1.2).
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Proof. Let us initially suppose |{uε > 0}| > 1. In the same spirit as Section
4, consider an inward perturbation of the set {uε > 0} with volume change
V , in such a way that the set of positivity of the new function, ũε is still
bigger than 1. Thus,

fε(|{ũε > 0}|) − fε(|{uε > 0}|) = −1
ε
V. (5.14)

From (4.13) and Lemma 5.3, we have∫
DC

|∇ũε|p − |∇uε|p = λp
εV + o(V ) ≤ CpV + o(V ). (5.15)

Using the fact that Jε(uε) ≤ Jε(ũε), (5.14) and (5.15), we find

0 ≤ CpV + o(V ) − 1
ε
V. (5.16)

Finally, if we divide inequality (5.16) by V and let V → 0, we obtain ε > 1
Cp .

If |{uε > 0}| < 1, we argue similarly, making an outward perturbation and
using Lemma 5.4 to obtain another lower bound for ε. Thus, if ε is small
enough, |{uε > 0}| automatically adjusts to be equal to 1. �

6. Radial Symmetry

In this section we show a simple symmetry result of Problem (1.2). Indeed,
we shall show the best way of insulating a uniformly heated spherical body
is by a ball. Recall, when ϕ ≡ Constant, Problem (1.2) is equivalent to our
original physical optimization problem. Here is the theorem:

Theorem 6.1. Let D be the unit ball and ϕ ≡ 1. Then Problem (1.2) has a
unique solution and it is radially symmetric. In particular the free boundary
is a sphere.

Proof. Let u = uε be a solution to Problem (1.2), with D = B1 and ϕ ≡ 1.
Denote Ω = {u > 0}. Let Br1 and Br2 be the biggest ball inside Ω\D and the
smallest ball outside Ω, respectively. Let y1 ∈ ∂Br1∩∂Ω and y2 ∈ ∂Br2∩∂Ω.
Consider hi, i = 1, 2, solutions of⎧⎨⎩

Δphi = 0 in Bri \ B1

hi = 1 on ∂B1

hi = 0 on ∂Bri .
(6.1)

It is simple to show hi is radially symmetric. Indeed, hi is the unique mini-
mizer of

Ep(f) :=
∫

Bri\B1

|∇f(x)|pdx,
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among all functions f ∈ W 1,p satisfying the according boundary data. For
any orthonormal transformation O ∈ O(n), consider hO

i (x) := hi(Ox).
Clearly, hO

i has the same boundary data as hi and furthermore,

Ep(hO
i ) =

∫
Bri\B1

|OT∇hi(Ox)|pdx = Ep(hi).

Thus hO
i = hi. Since O ∈ O(n) was taken arbitrarily, hi has to be radial.

In particular, the inward normal derivative of hi over ∂Bri is a positive
constant λi. Since r1 ≤ r2, we have

λ1 ≥ λ2. (6.2)

Now, from the maximum principle, h1 ≤ u ≤ h2. Hence, from the free
boundary condition in the viscosity sense, Theorem 4.2, we obtain

λ2 = (h2)ν(y2) ≤ λε ≤ (h1)ν(y1) = λ1. (6.3)

Combining (6.2) and (6.3), we conclude λ1 = λ2, and therefore, r1 = r2.
This implies ∂Ω has to be a sphere of radius r1 = r2.

We have proven any solution to Problem (1.2), with D = B1 and ϕ ≡ 1 is
radially symmetric. Uniqueness now follows due to the volume constraint.

It is worthwhile to mention that this result can be obtained, as well, by
the Schwarz rearrangement technique, see [21]. �
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