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Summary

The theory and user instructions for an optimization code

based on the method of feasible directions are presented. The
code was written for wide distribution and ease of attachment

to other simulation software. Although the theory of the method

of feasible direction was developed in the 1960's, many consid-

erations are involved in its actual implementation as a computer

code. Included in the code are a number of features to improve

robustness in optimization. The search direction is obtained by

solving a quadratic program using an interior method based on

Karmarkar's algorithm. The theory is discussed, focusing on

the important and often overlooked role played by the various

parameters guiding the iterations within the program. Also

discussed is a robust approach for handling infeasible starting

points. The code was validated by solving a variety of structural

optimization test problems that have known solutions obtained

by other optimization codes. It has been observed that this code

is accurate and robust: it has solved a variety of problems from

different starting points. However, the code is inefficient in that

it takes considerable CPU time as compared with certain other

available codes. Further work is required to improve its effi-

ciency while retaining its robustness.

Introduction

The theoretical basis for the method of feasible directions

(MFD) was originally developed by Zoutendyk (ref. I). In

engineering, the text by Vanderplaats (ref. 2) contains details

on the actual implementation of the method. Vanderplaats'

algorithm, based on the method of feasible directions and

published in 1983 (ref. 3) has had a great impact on engineering

optimization. The program, as discussed here, is based on the

same basic theory as that cited in references 2

and 3 although the implementation aspects are different. A

major challenge in developing software for engineering opti-

mization is in implementing conceptual algorithms. The main

purpose of this report is to describe in detail various implemen-

tation aspects. It also serves as a users guide and describes the

role played by the various parameters guiding the iterations in

the program.

The basic steps in the method of feasible directions involve

solving a quadratic program (QP) to find the direction vector

and then to find the step size along this direction by performing

a constrained one-dimensional line search. In the implementa-

tion herein, an interior method based on Karmarkar's approach
(ref.4) is used to solve the QP problem for direction finding.

Interior methods have been found to be effective for problems

with a large number of variables. Also, special attention is

given to the treatment of infeasible starling designs, to the

dynamic adjustment of the constraint thickness parameter

during the iterations, and to line search strategies. The optimi-

zation problem follows:

Minimize F (DV) (1)

subject to Gj(DV) < 0 j = 1,...,NCON (2)

and DVL i < DV i < DVU i i = I, .... NDV (3)

where F is an objective function to be minimized subject to the

constraints Gj < 0, DV is an (NDVX1) vector of design
variables, NDV is the number of design variables, NCON is the
number of constraints, and DVL and DVU are the lower and

upper bounds of the design variables, respectively. Equality

constraints may be included by means of a penalty function
(ref. 2).

Here, the capital variable names DV, DVL, and DVU are

those that are actually used in the program. The default values

for the various parameters are given in appendix A.



Direction Finding and Line Search From

Feasible Design Points

Direction Vector

Let DV 0 be a current design point which satisfies con-

straints (2) and (3). The direction finding problem is to find a

search direction d that will (1) point into the feasible region, or

is "a feasible direction," and (2) reduce the objective function,

or is "usable." If VF. d < 0 and VGj • d < 0 for each active
constraint, then the direction vector d is usable-feasible. To find

a direction that is both feasible and usable, the following

subproblem is posed:

Minimize

subject to

0

VF. d <0

VGj . d < flj O,

1/2 d T d < 1

j in JEP (4)

In problem (4), JEP is an active set defined by the union of active
constraints and active bounds

,JEP = {J: Gj + EP > 0} u

{Active lower/upper bounds} (5)

where 0 is an artificial variable, /3: is the push-off factor
J

associated with the flh constraint, and EP is the constraint

thickness parameter. Again, see appendix A for the default
value of EP and the values of the other parameters. The

following notation is now introduced:

y = [d, O]T = an (NDV + 1x 1) vector

p = [0..... 0,1] T = an (NDV + 1x 1) vector

VGI, --ill

V G2, -f12A T- _ ......

/VGNAc ' -flNAC

L VF, -1

(6)

where A is a matrix of dimension (NAC+I × NDV+I), NAC

equals the total number of active constraints (including active
bounds). All gradient vectors in (6) have been normalized to be

unit vectors. The problem in (4) can now be written as follows:

Minimize pTy

subject to Ary <__0 (7)

and 1/2 yTy < 1

The dual formulation corresponding to problem (7) can be

written as (ref. 2)

Minimize 1/2 ]./T

subject to /z > 0

[ATA]+ T(ATp)
(8)

where/_ is an (NAC+I × 1) vector. Problem (8) is a QP

subproblem which can be solved in a number of ways. Once the

QP is solved, the solution to (6) is obtained from

y = -p -A/z (9)

which gives the search direction d.

Solution of the QP Using an Interior Approach

Interior methods gained greater acceptance after Karmarkar' s

paper in 1984. A variation of Karmarkar's approach, called the

"linear affine scaling" algorithm, has also been developed and

applied to linear programming problems (ref. 4). The approach

was extended here to solve the QP in (8). The algorithm begins

by first setting an initial estimate,/.t 0 > 0. The main steps are

(1) A transformation to a new set of variables/./new is defined

by

/.t = D /./new

where D is a diagonal matrix whose elements are equal to the

components of//0 = current value of//. Thus, the current value

of the new variables will always equal [1 ..... 1]T.

(2) The search direction s is defined to be the steepest descent

direction in the new space of variables

s=-D (A TA/.t + ATp)

(3) The step size p along s is obtained from

/9 = Minimum (/91, P2)



where Pl is 98 percent of the maximum step to the boundary (to

ensure that /x is positive), and P2 is the minimum of the

quadratic function along s. The variables at kth iteration are

updated from

II k+l =/.t k + p D s (10)

and we go back to step 1. These steps are repeated until changes

in the objective function of the QP are relatively small for three
consecutive iterations.

Step Size Determination

At a feasible point DV °, we have now found a search

direction d which is both usable and feasible. The step size a

along d is determined in the program as follows. First, an initial

step ainit > ami n > 0 is chosen based on the following criteria:

Otinit =Minimum (orB, CtF, aML ) (11)

where

a B maximum step based on lower and upper limits on DV

aF value of a that reduces the objective by 5 percent

aML value of a that results in a 15-percent maximum change

in a design variable

Once the initial step is determined, a move is initiated based on

the golden section ratio GR of 0.618. Thus, steps ainit, OqnitlGR,
ainitl(GR) 2.... are taken along d, with a < an. At every step in

this move, the design variables are updated as

DV(a) = DV°+ ct. d (12)

and the objective and constraints are evaluated. If at any stage

the constraints are violated, then the previous feasible point and

the current infeasible point define an interval containing the
zero of the constraint function. A bisection scheme is used to

determine this zero, which determines the maximum limit on

the step size. The bisection process is terminated when the

maximum constraint value Gmax satisfies

-Glo w < Gmax < Ghigh (13)

where Ghigh is set equal to zero and should not be changed; Glow
is set equal to 0.001 by default. If the objective function is

linear, then the root of the constraint function is the desired step

size a 0.

The other possibility is that the objective function is nonlin-

ear along d. Thus, we also monitor the directional derivative of

the objective function along d at every step during the move
from

F'(a) = VF[D V(OO]. d

Since d is a usable direction, F' < 0 at a = 0. If F' > 0 at any

feasible a during the move, then the previous point where P" is

negative and the current point where F' is positive defines an

interval containing the minimum of F. A bisection scheme is

used based on computing F'(a) to determine the minimum. The

bisection scheme is terminated when the interval length is less
than a small number (TOLINT).

Once the step size a 0 is determined, the new design variables
are obtained from

DV i = DV°+ a o d

We reset DV l to equal DV ° and repeat the process. That is, we

again find a new search direction and step size.

Selection and Adjustment of Push-Off Factors

The push-off factors flj entering into the direction finding
problem in (4) are determined from equation (2):

flj = flO .(1 + Gj/EP) 2 (14)

where/30 is equal to 1 by default. The push-off factors are set

equal to zero for bounds and linear constraints. Push-off factors

are also adjusted based on the following.

The solution of the QP in (8) and. in equation (9) gives us a

vector d. However, if VF.d < 0 but VGp.d> 0 for some active
p, then the search direction is usable but not feasible. In this

case, the corresponding push-off factor 13p is increased a little
and d recomputed. This increase is only attempted five times
after which EP is reduced as discussed in the following section.

In theory, the vector d from the QP solution should equal zero

in such situations where a usable-feasible vec.tor cannot be

determined. However, it should be noted that tht; interior
method yields solutions which are i_terior to the boundary.

Round-off errors may also lead to such situations.

Adjustment of Constraint ThiCkness Parameter EP

The constraint thickness parameter EP is used to determine

the active set as given in (5). The default value at the beginning

of each design iteration is EP -- EP 0 = 0.01. If at any stage, the

QP solution yields a search direction d that is not usable-
feasible, then EP is reduced. This happens particularly as the

optimum is approached. We iteratively reduce EP as

EP new = EP °ld/3 (15)



whichis doneatmostfive times after which the program
terminates with the final solution.

Stopping Criteria

The three stopping criteria used are as follows:

Kuhn-Tucker condition.--First, determine if Idl <

TOLKKT, where TOLKKT is a small number (=10 -4 by de-

fault) and d is the search direction. Usually, this stop criterion

is satisfied only for simple and small problems.

Changes in the objective function.--Once we have ob-

tained a usable-feasible direction, a line search is performed

to obtain a new point with a lower value for the objective

function. If either absolute changes in F or relative changes

in F are small for three consecutive iterations, then the pro-

gram terminates. Thus, we check

abs (change in F) < TOLABS

abs (change in F/F) TOLREL

(16)

Default values of TOLABS and TOLREL are 10 -6. Of

course, if F has a very large magnitude, then TOLREL can be

set equal to a smaller value.
Successive reductions in the constraint thickness param-

eter.--If, after successive reductions in EP, there is no usable-

feasible direction, then the program terminates with the final
solution.

Direction Finding and Line Search From

an Infeasible Starting Point

If the starting design DV ° is infeasible, with at least one

constraint Gj > O, the violations are corrected first. Then
proceed with the algorithm as described in the preceding

section. At an infeasible point, the dot products of the violated

constraint functions with the direction vector should be nega-

tive. Thus, we define the following subproblem for direction

finding:

Minimize 0

subject to VGj .d < flj O, j in JEP (! 7)

1/2dTd<l

In reference 2, the objective function also enters into the

subproblem. Herein, the goal is to exclusively correct con-

straint violations. As it turns out, the problem in (17) can be

expressed in the form of a QP as given in (8) with only one
difference: the last row in the A T matrix in (6) is deleted.

Line Search

Assume that the QP in (17) has been solved and a search

direction d has been obtained for constraint correction. First, otB

is determined along d so that lower and upper bounds on the

design variables are satisfied. Within the interval [0, OtB], a

move is initiated to determine the step size a o. At any point in

this move, if the maximum constraint value Gma x < 0, then the

constraint correction phase terminates and we switch over to

the algorithm in the section Direction Vector.

If the violation continues to reduce along d and ct = etB, then

we set a equal to etB and compute a new search direction for

constraint correction. On the other hand, if we notice the

violations to reduce and then increase, then the interval contain-

ing a0 can be bracketed. That is, if there are three points al, a2,

a3 for which Gmaxl > Gmax2 > Gmax3, then we have al < ao <
a3. A golden section search is then performed within this

interval to obtain the minimum ofGmax. A new search direction

is again computed at the new point and this process is repeated

until a feasible design is obtained.

Push-Off Factors and Constraint Thickness Parameter

For the constraint correction subproblem in equation (17),

push-off factors flj are computed from equation (14). However,

if any flj > POMAX, then flj is set equal to POMAX. The default
value of POMAX is 50.

Sometimes, it is not possible to find a direction vector that

makes negative dot products with all the active or violated

constraints. In this case, the constraint thickness parameter EP
is decreased in order to reduce the number of constraints in the

active set. For lower and upper bounds, EP is reduced as given

in equation (15). For the constraints Gj, EP is reduced by the
formula

EP new =EP-0.5 (EP+Gmax) (18)

Since Gmax > 0, EP can take on a negative value. Equation (18)

is applied a maximum of five times after which an error

message is printed out to the effect that no feasible design can
be found. The strategy in equation (18) is new and is quite
effective.

Users Guide

The program MFD has been written in QBASIC as well as in

Fortran. This section describes the user-supplied subroutine

with an example (source listing in appendixes B and C).

Appendix A contains a description of the main parameters used

by the program together with their default values which may be



changedintheuserroutine.

User-Supplied Subroutine

To run the program, three steps are involved:

FIRST.--Upon initiation, the program will ask for the val-
ues of NDV and NCON, which are the number of design
variables and the number of constraints.

SECOND.--In SUBROUTINE USER, there are four"CALL

XXXX" statements which call the user-supplied subroutine.

The user should give the appropriate name of the user-supplied
subroutine in these CALL statements.

T_RD._The user must supply a subroutine. This is now

explained.

The user routine will be called with INF equal to -1, 1, or 2.

INF--- 1.--This is the first call to the user routine. The initial

values of the variables together with their lower/upper bounds

have to be defined in arrays DV, DVL, DVU, respectively.

Also, the user may change the defaults of the parameters as

discussed subsequently in appendix A. For example, IGRAD = 1

may be set indicating that gradients will not be supplied, the

number of iterations ITLIM may be set, or LINEARF = 1may

be set if the objective function is linear. The general appearance
of statements will be

IGRAD

ITLIM

LINEARF

DV
DV

DVV

= See appendix B for explanations and
default values.

= Initial guess of the design variables
= Lower bounds

= Upper bounds

INF -- 1.--The objective and constraint functions have to be

defined for the given values of the variables contained in the

array DV. That is, we need to supply

F =

G(1) =

G(2) =

G(NCON) =

INF = 2.--If IGRAD = 0 (default), then gradients of the

objective function and of the active constraints have to be

supplied in the matrices DF and AA, respectively. The active
constraint numbers are supplied to the routine in the array

IACT(1) ..... IACT(NAC). If NAC = 0 at any iteration, then

there are no active constraints and only the objective function

gradient DF needs to be computed.
For example, let NDV = 3, NCON = 10, NAC = 2, LACT (1)

= 3, IACT(2) = 9. Then, we must supply

DF(I) = ,DF(2) = ,DF(3) =

AA(1,1) =, AA(2,1) =, AA(3,1) = ,- Gradient of third

constraint in first column of [AA]

AA(1,2) =, AA(2,2) =, AA(3,2) = ,- Gradient of ninth
constraint in second column

Example Problem

Consider the Rosen-Suzuki problem:

Minimize

subject to

F= Xl 2 +X22 +2X32 -X42 -5 X1

-5 X2-21 X3+7 X4+ 100

Xl 2+X22+X32+x42+xl-x2+x3 -X4-8_<0

Xl 2 +2 X2 2 +X3 2 +2 X4 2 -Xl-X4-10 < 0

2 Xl 2 +X2 +X3 2 +2 Xl-X2-X4-5 <0

The solution to this is (0.15, 1.0, 1.87, -1.14) with F opt equal

to 53.6. User routines for this problem with IGRAD = 1and also

a spring design problem with IGRAD = 0 are provided in

appendix B. Note that the common blocks are required in the
routine along with the double precision statement.

Test Problems

The program MFD has successfully solved a variety of test

problems. The results for only three truss optimization prob-

lems will be given here. The results tally with those obtained
from using other optimization codes from a test bed that was

developed at NASA Lewis Research Center (ref. 5).

Ten-Bar Truss

This problem, given in reference 6, is to minimize the weight

of the 10-bar truss shown in figure 1. The data are as follows:
Young's modulus E = 107 psi; p = 0.1 lb/in.3; allowable stress

CtalI = 25 000 psi for elements 1 to 8 and 10; O'alI -- 75 000 psi
for element 9; NDV = 10; NCON = 10; the lower bounds on

each area = 0.1 in.2; the upper limit = 20.0 in. 2. In figure 1, load
P = 100 000 lb. The initial design variables were 4.0 in. 2

(infeasible) with the initial weight F 0 = 1678.6 lb.
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Figure 1.--Ten-bar truss.

The optimum design is as follows:

F °pt = 1498.3 Ib

DV °pt ={7.92, 0.1, 8.10, 3.90, 0.1, 0.1, 5.80,

5.52, 3.67, 0.14} in. 2

(The cross-sectional areas given above are rounded to two

decimal places.)

Active set: stresses in elements 1,2,3,4,6,7,8,10

The results from other codes are given in table I. Program MFD

solved this problem in 127 iterations with 1007 function evalu-

ations. Because this number may seem large for a 10-bar truss,

detailed discussions on this aspect are presented in the next

section.

Tapered 10-Bar Truss

This problem is a variation of the previous problem (see

fig. 2). There are constraints on the stress in each of the 10

elements and also on the displacements in the Y-direction of

nodes 3 and 4. The constraints are to be satisfied under two

loading conditions (table II). Thus, NDV = l0 and NCON = 24;

E = 107; p = 0.1 lb/in.3; Gal I = 10 000 psi in each of the 10

elements; the lower bounds = 0.1 in.2; the upper bounds =

100 in. 2. The initial design is (1 ...... 1.) in. 2 with F 0 = 146 lb

(infeasible). The optimum solution is

F °pt = 3269.0 lb

DV °pt = {57.34, 18.66, 2.25, 7.41, 36.13, 3.44,

28,79, 19.69, 16.20, 8.94} in. 2

Active set for load case 1: stresses in elements 1,7,8 and

displacement at node 3

Active set for load case 2: stress in element 6

MFD took 121 iterations and 1091 function evaluations.Table I

compares the performance of other codes for this problem.

Sixty-Bar Trussed Ring

The trussed ring in figure 3 consists of 60 elements and is

subjected to 3 loading conditions (table HI). The data are

E = 107 psi; p = 0.1 lb/in.3; tYal 1 = 10 000 psi for each element;

node 4 has a displacement limit of 1.5 in. in the Y-direction; the

lower and upper limits on areas are 0.1 and 100.0 in. 2, respec-

tively. The 60 element areas are linked to the 25 design

variables given in table IV. Here, NDV = 25 and NCON = 183.

TABLE I.--OPTIMUM WEIGHTS FROM VARIOUS CODES

[Number of function evaluations shown in paretheses.]

Method

Method of feasible direction (MFD)

Sequential unconstrained

minimizational techinque (SUMT) a

Feasible direction (FD) a

Sequential quadratic programming (SQP) a

aReference 5.

bA different starting point was necessary.

Truss optimization problem

Ten-bar I Tapered ten-bar I

Optimum weight, F, lb

1500 3269

(1007) (1091)

1503 3270

(243) (667)

1498 3424 b

(73) (77)

(c) 3271

(187)

Ring

345

(1836)

345

(369)

343

(78)

344

(782)

CA feasible design using the default parameters in the code could not be obtained.



6

T
75 in._ -I-

Figure 2.--Tapered 1O-bar truss.

tively. The 60 element areas are linked to the 25 design

variables given in table IV. Here, NDV = 25 and NCON = 183.

The initial design is (1 ...... 1.) in. 2 with an associated weight of

250 lb. The optimum design is

F °pt = 345.0 lb

{1.19 2.17 0.14 2.18 2.13

0.68 2.20 2.20 1.08 2.26

DV °pt = 2.18 0.26 2.33 1.25 1.22

0.88 0.88 1.23 1.12 1.15

1.27 1.15 0.88 1.23 1.26}

Active set for load case 1: stresses in elements 25, 49, and

displacement at node 4

Active set for load case 2: stresses in elements 5, 14, 20

Active set for load case 3: stress in element 11

The optimum was obtained in 247 iterations with 1836 function

evaluations. Again, see table I for the performance of other

codes.

Discussion

Load

condition

TABLE II.--LOADING

SPECIFICATIONS FOR

TAPERED 10-BAR TRUSS

Node Load direction

x I Y
Load, P, Ib

Case !

Case 2

2 60 000 120 000

3 60 000 60 000
4 17 500 12 500

5 17 500 25000

2 0 -50 000

3 1 -25 000

4 _ -37 5005 -75 000

4

5

9 11

10

Figure 3.---Sixty-bar trussed ring,

In this report, the detailed implementation of a feasible

directions code was explained with particular emphasis on line

search, infeasible starting points, and the role of various param-

eters used in the algorithm.

The robustness of the program was very satisfactory for a

variety of test problems, both with regard to correcting an

infeasible starting point and to making subsequent progress

towards an optimum solution. Its robustness may be attributed

to the use of the interior method for direction finding and to the

use of a bisection scheme in the line search.

The following factors contribute to the inefficiency of the

code:

(I) A plot of truss volume (cost) versus the number of

iterations for the 10-bar truss problem is shown in figure 4. We

see that substantial reductions take place in the first 40 itera-

tions while the remaining 120 iterations are needed only to

achieve the convergence criterion of 10 -6. This asymptotical

characteristic is typical of most mathematical programming

codes. In an interactive setting, the user can terminate the

optimization run as soon as the cost-versus-iteration curve

flattens out.

(2) In the final design, there are no constraint violations

whatsoever because of the line search control described by

equation (13), which is in contrast to certain other programs that

yield final designs with small violations.

(3) Push-off factors are user-defined. Their default values

are unity. Their selections can be optimized for categories of

problems, truss being one. Such studies have not been carried

out here.

(4) Efficiency is sacrificed when pure bisection is used. In the



Load
condition

Case 1

Case 2

Case 3

TABLE IlL--LOADING

SPECIFICATIONS FOR

60-BAR TRUSSED RING

Node Load direction

x I Y

Load, P, lb

1 -10 000 0

7 9000 0

15 -8000 3000

18 -8 000 3 000

22 -20 000 10 000

TABLE IV.---GROUPING OF

ELEMENTS FOR 60-BAR

TRUSSED RING

Design Element Design Element

group group

1 49--60 13 12, 24
2 1, 13 14 25, 37

3 2, 14 15 26, 38

4 3, 15
5 4, 16 16 27, 39

17 28,40
6 5, 17 18 29, 41

7 6, 18 19 30, 42

8 7, 19 20 31, 43

9 8, 20
10 9, 21 21 32,44

22 33, 45
11 10, 22 23 34, 46

12 1!, 23 24 35, 47

25 36, 48

test problems, a line search within the feasible region has taken

between 5 and 10 function evaluations (analyses) as determined

by taking the ratio of the number of function evaluations to the

number of iterations. There is latitude here to improve the

efficiency of the algorithm by using hybrid approaches which

combine sectioning with polynomial interpolations for line

search.

Conclusions

The method of feasible directions incorporates Karmarkar's

algorithm for the generation of search directions and the bisec-

tion technique for improvements in one-dimensional search.

The algorithm provides a feasible optimum design for prob-

lems with complex constraint space even when the initial design

is infeasible.

For selected problems the computer code may require more

computations than those that may be needed by other nonlinear

programming software. However, there is latitude to improve

the computational efficiency of the algorithm.

The computer code successfully solved several structural

optimization problems.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, November 2, 1993
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I I
20O



Appendix A

Program Parameters and Their Default Values

This section describes various parameters used by the program and their default values. The user may change any of these values

in the user-supplied subroutine when INF = -1 as explained in the section User-Supplied Subroutine. (The important parameters

are indicated with an asterisk.)

ALPMIN / 0.001/--minimum step length used in line search procedures

ALPQP / 0.98/--a parameter used to come near the boundary in the interior approach to solve the QP

AMLIMIT, OBJFAC, ALPMIN/0.15, 0.05, 0.001/--used during line search

*EP/0.01/---constraint thickness parameter (base value)

*EPBD/0.01/---constraint thickness parameter for lower and upper bounds

*EPSPCT, EPSMIN/0.01,0.001/--parameters relevant only when IGRAD = 1 for divided-difference gradients (The gradient f' is

evaluated by {fix+e) -f(x)}/e, where e = maximum (EPSPCT x abs(x), EPSMIN).)

GLOW, GHIGH/0.001,0/--used during line search to determine the zero of a constraint function (GHIGH should not be changed

from its zero value.)

*IGRAD / 0/--IGRAD = 0 means that the user will provide gradients of objective and active constraint functions in the user-supplied

subroutine (see next section). IGRAD = 1 means that gradients will not be provided by the user; they will be internally calculated

in the program using divided differences. See EPSPCT and EPSMIN

ITEPMAX / 5/--maximum number of reductions in the constraint thickness parameter EP to obtain a usable-feasible direction or

to obtain a feasible direction during constraint correction

*ITLIM/150/--maximum number of iterations

ITLIMINF / 30/--maximum number of iterations to obtain a feasible design from an infeasible starting point

ITPUSHMAX / 5/--maximum number of iterations to increase the push-off factors to obtain a usable-feasible search direction

*LINEARF / 0/--LINEARF = 0 if objective function is nonlinear and = 1 if objective function is linear

LINEAR(J)/0 ..... 0/-- = 0 if constraint function is nonlinear and = 1 if constraint is linear

*MAXACT / 50/--maximum number of active constraints; used for dimensioning purposes

POMAX / 50./--maximum push-off factor used during constraint correction phase for infeasible starting designs

TOLINT / 0.001/--used as stopping criterion during line search (associated with nonlinear objective functions)

TOLKKT / 0.0001/--stopping criterion used for checking Kuhn-Tucker conditions

*TOLABS, TOLREL/1 .e-6, l.e-6/--absolute and relative tolerances used for stopping criteria (see (16))

TOLABS 1, TOLREL1, ITMAX / I.E-6, I.E-6, 100/--stopping parameters associated with the interior method for solving the QP
for the direction vector



Appendix B

Fortran User Subroutines with IGRAD = 1 and IGRAD = 0

ROSEN-SUZUKI PROBLEM : IGRAD = 1 (divided-difference gradients)

C

SUBROUTINE ROSEN

IMPLICIT REAL*8(A-H,O-Z)

COMMON/MFDI/INF, NDV, NCON, NFV, IGRAD, EP, NAC, EPSPCT, EPSMIN,

$ MAXACT, EPBD

COMMON/MFD2/DV(100), IACT(50), LINEAR(1000), F, G(1000),
$ DF(100), AA(101,51)

COMMON/MFD6/DV0(100), F1, FM, GI(1000), D(100), DVL(100),

$ DVU(100), BETA(10(30)

IF (INF .EQ.- 1) THEN
NDV = 4, NCON = 3

IGRAD = 1 ............. for divided-difference gradients
DV(1) = 1

DV(2) = 2

DV(3) = 3

DV(4) = 4 ................. DV contains initial values of design variables
DVL(1) = -10

DVL(2) = - 10
DVL(3) = - 10

DVL(4) = - 10 ........... lower bounds

DVU(1) = 10
DVU(2) = l0

DVU(3) = I0

DVU(4) = 10 ............ upper bounds
RETURN

END IF

B1 = DV(1)

B2 = DV(2)

B3 = DV(3)

B4 = DV(4)
NFV--NFV + 1

................................ Objective and constraint functions

F=B1 ** 2 +B2** 2 + 2 * B3 ** 2-B4"* 2-5 * B! -5*

$ B2- 21 * B3 + 7.*B4 + 100.

G(1) = B1 ** 2 +B2 ** 2 +B3 ** 2 + B4 ** 2 + B1- B2 + B3- B4-8

G(2) =B1 ** 2 +2" B2** 2 +B3** 2+2" B4** 2-B1-B4- 10

G(3) = 2" BI ** 2+B2"* 2 +B3** 2+2" B1-B2-B4-5
RETURN

END

10



Appendix C

A Spring Design Problem : IGRAD = 0 (User-Supplied Gradients)

SUBROUTINE SPRING

IMPLICIT REAL*8(A-H,O-Z)
COMMON/MFD1/INF, NDV, NCON, NFV, IGRAD, EP, NAC, EPSPCT, EPSMIN,

$ MAXACT, EPBD

COMMON/MFD2/DV(100), IACT(50), LINEAR(1000), F, G(1000),

$ DF(100), AA(101,51)

COMMON/MFD6/DV0(100), FI, FM, G 1(1000), D(100), DVL(100),

$ DVU(IO0), BETA(1000)

IF (INF .EQ. -1) THEN
C SPRING PROBLEM -- NDV = 3: NCON = 4

.................................. IGRAD = 0 by default

LINEAR(4) = 1 .......... Constraint #4 is linear

DV(I) = 1

DV(2) = 2

OV(3) = 3

DVL(1) = .05

DVL(2) =.1

DVL(3) = I

DVU(I) = 1
DVU(2) = 5

DVU(3) = 50
RETURN

END IF

BI = DV(1)

B2 = DV(2)

B3 = DV(3)

IF (INF .EQ. 2) GOTO 701

........................... INF = 1 ( supply F and Gj)
NFV = NFV + 1

F=(B3+2)*B1 ** 2" B2

G(I)=I-B2**3*B3/71875/BI**4

G(2)=(4*B2**2-BI*B2)/12566/(B2*Bl**3-Bl**4)
G(2) = G(2) + 1/5108/B1 **2- 1

G(3) = 1 - 140.45 / B2 ** 2 / B3

G(4)=(Bl+B2)/1.5-1

RETURN

............................... Objective gradient in DF
701 DF(1) = (B3 + 2) * 2 * B1 * B2

DF(2) = (B3 + 2) * B1 ** 2

DF(3) = B2 * B1 ** 2

IF (NAC .EQ. 0)RETURN ... NAC = number of active constraints

DO 100 II = 1, NAC

............................... Constraint gradients placed in columns of AA- matrix using active set IACT

IF (IACT(II) .EQ. 1) THEN

AA(I, II) = 4 * B2 ** 3 * B3 / 71875/B1 ** 5

AA(2, II) =-3 * B2** 2 * B3/71875 / BI ** 4

AA(3, II) =-B2 ** 3 / 71875 / BI ** 4
END IF

11



100

IF(IACT(II).EQ.2)THEN
C1= 12566" (B2 * BI ** 3- B1 ** 4)
C2=4" B2** 2-B1 * B2

C3 =5108" B1 ** 2

CC =-C1 * B2-C2" 12566 * (3 * B2* B1 ** 2-4" B1 **3)
CC =CC/C1 **2

CC =CC-2/5108/B1 ** 3

AA(1, II) = CC

CC=(Cl*(8*B2-BI)-C2*12566*BI**3)/Cl**2

AA(2, H) = CC
AA(3, H) =

END IF

IF (IACT(II)

AA(1, II) =

AA(2, II) =

AA(3, II) =
END IF

IF (IACT(II)

AA(I, II) =

AA(2, II) =

AA(3, II) =
END IF

CONTINUE

RETURN

END

.EQ. 3) THEN
-140.45 / B2 ** 2 / B3

2 * 140.45 * BI/B2 ** 3/B3

140.45" B1/B2** 2/B3"* 2

.EQ. 4) THEN
1/1.5

1/1.5

0
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