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Membrane systems (also called P systems) refer to the computing models abstracted from the structure and 
the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other 
populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing 
models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization 
problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are 
named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design 
a P system for directly obtaining the approximate solutions of combinatorial optimization problems 
without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural 
P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and 
multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are 
further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve 
combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to 
experimentally prove the viability and effectiveness of the proposed neural system.

Keywords: Membrane computing; spiking neural P system; extended spiking neural P system; 
optimiza-tion spiking neural P system; knapsack problem.

1. Introduction

Inspired by the central nervous systems of ani-
mals, artificial neural networks (ANNs) in computer
science and related fields refer to a class of com-
putational models consisting of interconnected neu-
rons.15,18 ANNs are capable of machine learning and
pattern recognition through computing values from

inputs by feeding information through the network.
In the past three decades, ANNs have been widely
used in various fields, such as classification,9 earth-
quake prediction,6,53,54 epilepsy and seizure detec-
tion,29,30 and optimization,1–5,7,8,55,56,67,73 due to
their outstanding characteristics of self-adaptability,
self-organization and real-time learning capability.
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ANNs can be classified into three different genera-
tions in terms of their computational units.48

The first generation is characterized by 
McCulloch–Pitts neurons, which are also referred 
to perceptrons or threshold gates, as computational 
units. Several typical examples are multilayer percep-
trons (also called threshold circuits), Hopfield nets, 
and Boltzmann machines. The main limitation of the 
first generation ANNs is that they can only out-
put digital results and therefore can process only 
Boolean functions.12,48,68 The computational units 
in the second generation ANNs use an activation 
function with a continuous set of possible output val-
ues to a weighted sum (or polynomial) of the inputs. 
This kind of neural networks support learning algo-
rithms based on gradient descent such as backpropa-
gation. Feedforward, recurrent sigmoidal neural nets 
and radial basis function neural networks are repre-
sentative paradigms. The second generation ANNs 
are able to deal with analog input and output and 
compute arbitrary boolean functions with the help 
of thresholding at the network output. The main 
problem of the second generation is that the firing 
rate biological interpretation, i.e. the output of a 
sigmoidal unit as a representation of the current fir-
ing rate of a biological neuron, is questionable, see 
Refs. 12, 48 and 68.

The experimental evidence, accumulated during 
the last few years, that many biological neural sys-
tems use the timing of single action potentials (or 
“spikes”) to encode information have lead to the 
third generation of neural networks, which apply 
spiking neurons (or “integrate-and-fire neurons”) 
as computational units, called spiking neural net-
works (SNNs).48 SNNs, which were introduced in 
Refs. 46 and 47 and are composed of spiking neu-
rons communicating by sequences of spikes, use 
time differences between pulses to encode informa-
tion and are able to process substantial amount 
of information with a relatively small number of 
spikes.28,60 As both computationally powerful and 
biologically more plausible models of neuronal pro-
cessing, SNNs are increasingly receiving renewed 
attention, due to the incorporation of the con-
cept of time into their operating model in addi-
tion to neuronal and synaptic states.12,68 Typical 
SNN models found in the literature are Hodgkin and 
Huxley (HH), FitzHugh–Nagumo (FHN), integrate-
and-fire (IF), leaky integrate-and-fire (LIF), Spike

Response Model (SRM), Izhikevich model (IM) and
Morris–Lecar (ML), see Ref. 68. To date, SNNs have
been widely investigated in various aspects, such as
fundamental issues like biologically plausible mod-
els10,39,49,50,64,66,74,75 and training algorithms,26,72,79

hardware/software implementation,41,65 and wide
applications.11,27,45,69

The most attractive feature that SNNs use time
to encode information is very useful to develop
a novel type of membrane systems (also called
P systems), which refer to the computing models
abstracted from the structure and the functioning
of the living cell as well as from the cooperation of
cells in tissues, organs, and other populations of cells.
This area of membrane computing was initiated by
Păun57 and listed by Thompson Institute for Scien-
tific Information (ISI) as an emerging research front
in computer science in 2003. Since then, membrane
computing becomes a branch of natural computing
and has developed very fast into a vigorous scientific
discipline. P systems use “symbol” to encode infor-
mation, except for spiking neural P systems (SNPS),
which was introduced by Ionescu et al.40 in 2006 and
is the incorporation of the idea of spiking neurons
into the area of membrane computing. SNPS can be
also considered as the inspiration of the combination
of SNNs and membrane computing models. Nowa-
days, much attention is paid to SNPS from the per-
spectives of theory and applications because they are
the newest and promising type of membrane systems
except for cell- and tissue-like P systems.

Among the various investigations on membrane
computing, the attempt to extend a P system to
approximately solve an optimization problem is one
of the most promising and important research direc-
tions, see Refs. 58 and 87, as it would allow a fur-
ther automatism of machines, see Refs. 13, 14, 37
and 38. The combination of a P system framework
with meta-heuristic algorithms42 dates back to the
year of 2004, when Nishida combined a nested mem-
brane structure with a tabu search to solve travel-
ing salesman problems.51 Subsequently, this kind of
approaches, called membrane-inspired evolutionary
algorithms (MIEAs),84,87 has gone through a fast
development. In Ref. 35, a hybrid algorithm com-
bining P systems and genetic algorithms (GAs) was
presented to solve multi-objective numerical opti-
mization problems. In Ref. 81, an MIEA integrat-
ing a one-level membrane structure (OLMS) with
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a quantum-inspired evolutionary algorithm (QIEA),
called QEPS, was proposed to solve knapsack prob-
lems. This membrane structure was also combined
with a QIEA and tabu search,88 differential evo-
lution (DE),17 ant colony optimization,83 particle
swarm optimization (PSO)89 and multiple QIEA
components86 to solve the time–frequency atom
decomposition problem of radar emitter signals,
numerical optimization problems, traveling salesman
problems, broadcasting problems in P systems and
image processing problems, respectively. In Refs. 76
and 77, DNA sequences design was optimized by
designing an MIEA based on crossover and mutation
rules and a dynamic MIEA combining the fusion and
division rules of P systems with active membranes
and search strategies of DE and PSO, respectively.
In Refs. 36, 78 and 80, hybrid MIEAs were presented
to solve constrained optimization problems, the pro-
ton exchange membrane fuel cell model parameter
estimation problems and a controller design prob-
lem of a time-varying unstable plant, respectively. In
Ref. 85, a tissue membrane system with a network
structure was used to appropriately organize five rep-
resentative DE variants for solving constrained man-
ufacturing parameter optimization problems. These
investigations clearly indicate the necessity and feasi-
bility of the use of P systems for various engineering
optimization problems. In Ref. 58, an argument that
MIEAs could be used in practice to tackle real-world
optimization problems has been made.

On the other hand, all the MIEAs currently
present in the literature make use of hierarchical
or network membrane structures of P systems to
properly organize evolutionary operators of heuristic
approaches in order to attain the solution of opti-
mization problems. In other words, the current state-
of-the-art considers MIEAs as hybrid methods that,
when evolutionary operators are integrated within
them, can be used for solving optimization problems.

A SNPS consists of a set of neurons placed in
the nodes of a directed graph and with the ability
of sending spikes along the arcs of the graph (called
synapses). In SNPS, the objects, i.e. spikes, evolve by
means of spiking and forgetting rules. Subsequently,
many variants of SNPS were investigated and shortly
they become a very attractive and promising branch
in the area of membrane computing.70,71 Among the
various SNPS, several language generators were stud-
ied in Refs. 16, 19, 62, 63 and 91. The results show

that SNPS can generate various languages such as
binary strings.

Inspired by the language generative capacity of
SNPS, this paper proposes a way to design SNPS for
directly solving a combinatorial optimization prob-
lem. Unlike all the past studies that combine P
systems with evolutionary algorithms, this study is
the first attempt to directly derive an optimization
algorithm from membrane computing models. More
specifically, this paper introduces an extended SNPS
(ESNPS), by introducing the probabilistic selection
of evolution rules and the output collection from
multiple neurons, and further designing a family of
ESNPS, called optimization spiking neural P sys-
tem (OSNPS), through introducing a guider to adap-
tively adjust rule probabilities. Knapsack problems, a
class of well-known NP-complete combinatorial opti-
mization problems, are used as an example to test
the optimization capability of OSNPS. A large num-
ber of experimental results show that OSNPS has
competitive optimization performance with six algo-
rithms reported in recent years.

This paper proposes a design strategy of a neu-
ral system that is capable of solving optimization
problems. The proposed neural system is a P system
that, unlike in MIEAs,84,87 achieves the optimization
results without the aid (in the optimization phase)
of a metaheuristic. An ESNPS is developed by intro-
ducing the probabilistic selection of evolution rules
and multi-neurons outputs and further a family of
ESNPS are designed through introducing a guider to
adaptively adjust rule probabilities to show how to
use ESNPS to approximately solve a single objective
and unconstrained combinatorial optimization prob-
lems. In other words, an optimization metaheuristic
is used only to process the chromosomes by com-
paring their fitness values and consequently updat-
ing the probability values of the SNN and not to
generate trial solutions in the optimization phase. In
this sense, the optimization is entirely carried out by
the spiking neural network. To our knowledge, this is
the first study that proposes the use of stand-alone
SNPS to tackle optimization problems. The viabil-
ity of the proposed neural system approach has been
tested on knapsack problems, a class of well-known
NP-complete combinatorial optimization problems.
The choice of this class of problems, at the cur-
rent prototypical stage, has been carried out since
it allows an easy implementation. Furthermore, since
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the problem has been intensively studied in the liter-
ature, performance comparisons can be straightfor-
wardly done.

The remainder of this paper is organized in the 
following way. Section 2 briefly introduces SNPS. 
Section 3 presents the proposed OSNPS in detail. 
Experiments and results are described in Sec. 4. Con-
cluding remarks are given in Sec. 5 while a short 
description of the future developments of this work 
is given in Sec. 6.

2. Spiking Neural P Systems

This section briefly reviews the definition of SNPS as 
presented in Refs. 40, 52, 70 and 71. In Ref. 61, Păun 
and Pérez–Jiménez made the description for SNPS. 
“SNPS were introduced in Ref. 40 in the precise (and 
modest : trying to learn a new “mathematical game” 
from neurology, not to provide models to it) aim of 
incorporating in membrane computing ideas specific 
to spiking neurons ; the intuitive goal was to have 
(1) a tissue-like P system with (2) only one (type of ) 
object(s) in the cells — the spike, with (3) specific 
rules for evolving populations of spikes, and (4) mak-
ing use of the time as a support of information.”

A SNPS of degree m ≥ 1 is a tuple Π = 
(O, σ1, . . . , σm, syn, i0), where:

(1) O = {a} is the singleton alphabet (a is called
spike);

(2) σ1, . . . , σm are neurons, identified by pairs

σi = (ni, Ri), 1 ≤ i ≤ m, (1)

where:

(a) ni ≥ 0 is the initial number of spikes contained
in σi;

(b) Ri is a finite set of rules of the following two
forms:

(1) E/ac → a; d, where E is a regular expression
over O, and c ≥ 1, d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction
that for each rule E/ac → a; d of type (1)
from Ri, we have as �∈ L(E);

(3) syn ⊆ {1, . . . , m} × {1, . . . , m} with (i, i) /∈ syn
for i ∈ {1, . . . , m} (synapses between neurons);

(4) i0 ∈ {1, . . . , m} indicates the output neuron (i.e.
σi0 is the output neuron).

The rules of type (1) are firing or spiking rules
and are used in the following manner: if neuron σi

contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The use of this rule
means consuming (removing) c spikes (thus only (k−
c) spikes remain in neuron σi), the neuron is fired,
sending a spike out along all outgoing synapses after
d time units (in synchronous mode). If d = 0, the
spike is emitted immediately; if d = 1, the spike will
be emitted in the next step, etc. If the rule is used at
step t and d ≥ 1, then at steps t, t+1, . . . , t+d−1 the
neuron is closed, so that it cannot receive new spikes
(if a neuron has a synapse to a closed neuron and
tries to send a spike along it, then the particular spike
is lost). In the step t + d, the neuron spikes becomes
open again, so that it can receive spikes (which can
be used in step t + d + 1). If a rule E/ac → a; d has
E = ac, it can be simplified in the form ac → a; d.
If a rule E/ac → a; d has d = 0, it can be written as
E/ac → a.

The rules of type (2) are forgetting rules and they
are applied as follows: if neuron σi contains exactly
s spikes, the rule as → λ from Ri can be applied,
indicating that all s spikes are removed from σi.

In each time unit, if one of the rules within a neu-
ron σi is applicable, a rule from Ri must be applied.
If two or more rules are available in a neuron, only
one of them is chosen in a nondeterministic way. The
firing rule and forgetting rule in a neuron are not
applicable simultaneously. Thus, the rules are used
in the sequential manner in each neuron, but neurons
function in parallel with each other.

A configuration of Π at any instant t is a tuple
(n1, d1), . . . , (nm, dm), where ni describes the num-
ber of spikes present in the neuron σi at the instant
t and di represents the number of steps to count down
until it becomes open. The initial configuration of Π
is (n1, 0), . . . , (nm, 0), that is, all neurons are open
initially. Using the rules of the system in the way
described above, a configuration C′ can be reached
from another configuration C; such a step is called a
transition step.

A computation of Π is a (finite or infinite)
sequence of configurations such that: (a) the first
term of the sequence is the initial configuration of
the system and each of the remaining configura-
tions are obtained from the previous one by applying
rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and (b) if
the sequence is finite (called halting computation)
then the last term of the sequence is a halting
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configuration, that is a configuration where all neu-
rons are open and no rule can be applied to it.
With any computation (C0, C1, C2, . . .) we associate
a spike train: the sequence of steps i such that Ci

sends a spike out, that is, the sequence of zeros and
ones describing the behavior of the output neuron: if
the output neuron spikes, we write 1, otherwise we
write 0.

3. Optimization Spiking Neural
P System

Inspired by the fact that an SNPS is able to generate
string languages or spike trains,16,63 an ESNPS has
been designed to produce a binary string, which is
used to represent a chromosome or an individual in
the description of optimization procedure. The pro-
posed ESNPS introduces the probabilistic selection
of evolution rules and collects the output from mul-
tiple neurons. Moreover, a novel family of ESNPS
obtained by introducing a guider, which is respon-
sible for dealing with a population of chromosomes,
to guide the evolution of ESNPS toward the desired
output is introduced here.

An ESNPS of degree m ≥ 1, as shown in Fig. 1,
is described as the following construct

Π = (O, σ1, . . . , σm+2, syn, I0), (2)

where:

(1) O = {a} is the singleton alphabet (a is called
spike);

(2) σ1, . . . , σm are neurons of the form σi =
(1, Ri, Pi), 1 ≤ i ≤ m, and r1

i = {a → a} and
r2
i = {a → λ}, σm+1 = σm+2 = (1, {a → a}),

where Ri = {r1
i , r

2
i } is a set of rules of the type

and Pi = {p1
i , p

2
i } is a finite set of probabili-

ties, where p1
i and p2

i are the selection probabil-
ities of rules r1

i and r2
i , respectively, and satisfy

p1
i +p2

i =1.

Fig. 1. An example of ESNPS structure.

(3) syn = {(i, j)|(1 ≤ i ≤ m + 1 ∧ j = m + 2) ∨ (i =
m + 2 ∧ j = m + 1)}.

(4) I0 = {1, 2, . . . , m} is a finite set of output neu-
rons, i.e. the output is a spike train formed by
concatenating the outputs of σ1, σ2, . . . , σm.

This system contains the subsystem consisting
of neurons σm+1 and σm+2, which was described in
Ref. 63, as a step by step supplier of spikes to neurons
σ1, . . . , σm. In this subsystem, there are two identical
neurons, each of which fires at each moment of time
and sends a spike to each of neurons σ1, . . . , σm, and
reloads each other continuously. At each time unit,
each of neurons σ1, . . . , σm performs the firing rule r1

i

by probability p1
i and the forgetting rule r2

i by prob-
ability p2

i , i = 1, 2, . . . , m. If the ith neuron spikes,
we obtain its output 1, i.e. we obtain 1 by probability
p1

i , otherwise, we obtain its output 0, i.e. we obtain 0
by probability p2

i , i = 1, 2, . . . , m. Thus, this system
outputs a spike train consisting of 0 and 1 at each
moment of time. If we can adjust the probabilities
p1
1, . . . , p

1
m, we can control the outputted spike train.

In the following paragraphs, a method to adjust the
probabilities p1

i , . . . , p
1
m by introducing a family of

ESNPS is presented.
A certain number of ESNPS can be organized

into a family of ESNPS (called OSNPS) by introduc-
ing a guider to adjust the selection probabilities of
rules inside each neuron of each ESNPS. The struc-
ture of OSNPS is shown in Fig. 2, where OSNPS con-
sists of H ESNPS, ESNPS1, ESNPS2, . . . , ESNPSH .
Each ESNPS is identical with the one in Fig. 1 and
the pseudocode algorithm of the guider algorithm is
illustrated in Fig. 3.

The input of the guider is a spike train Ts with
H × m bits and the output is the rule probability
matrix PR = [p1

ij ]H×m, which is composed of the
rule probabilities of H ESNPS, i.e.

PR =




p1
11 p1

12 . . . p1
1m

p1
21 p1

22 . . . p1
2m

...
...

. . .
...

p1
H1 p1

H2 . . . p1
Hm




. (3)

Fig. 2. The proposed OSNPS.
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Input: Spike train Ts, pa
j , ∆, H and m

1: Rearrange Ts as matrix PR

2: i = 1
3: while (i ≤ H) do
4: j=1
5: while (j ≤ m) do
6: if (rand < pa

j ) then

7: k1, k2 = ceil(rand ∗ H), k1 �= k2 �= i
8: if (f(Ck1 ) > f(Ck2 )) then

9: bj = bk1
10: else
11: bj = bk2
12: end if
13: if (bj > 0.5) then

14: p1
ij = p1

ij + ∆

15: else
16: p1

ij = p1
ij − ∆

17: end if
18: else
19: if (bmax

j > 0.5) then

20: p1
ij = p1

ij + ∆

21: else
22: p1

ij = p1
ij − ∆

23: end if
24: end if
25: if (p1

ij > 1) then

26: p1
ij = p1

ij − ∆

27: else
28: if (p1

ij < 0) then

29: p1
ij = p1

ij + ∆

30: end if
31: end if
32: j = j + 1
33: end while
34: i = i + 1
35: end while
Output: Rule probability matrix PR

Fig. 3. Guider algorithm.

The guider algorithm in this study is designed
for solving a (specific) single objective and uncon-
strained combinatorial optimization problems. In
principle, the guider can also be modified in order to
be suitable for other types of optimization problems,
such as constrained, multi-objective, numeric opti-
mization problems. However, more work is required
in this regard especially to have an efficient coordi-
nation between guider and ESNPS.

To clearly understand the guider, we describe its
details step by step as follows:

Step 1: Input the learning probabilities pa
j , 1 ≤ j ≤

m and the learning rate ∆. Rearrange the input spike
train Ts as the rule probability matrix PR, where
each row comes from the identical ESNPS and can
be used to represent a chromosome or an individual
in an optimization application.

Step 2: Assign the row indicator the initial value
i = 1.

Step 3: If the row indicator is greater than its max-
imum H , i.e. i > H , the algorithm goes to Step 11.

Step 4: Assign the column indicator the initial value
j = 1.

Step 5: If the column indicator is greater than its
maximum m, i.e. j > m, the algorithm goes to Step
10.

Step 6: If a random number rand is less than the
prescribed learning probability pa

j , the guider per-
forms the following two steps, otherwise, it goes to
Step 7.

(i) Choose two distinct chromosomes k1 and k2 that
differs from the ith individual among the H chro-
mosomes, i.e. k1 �= k2 �= i. If f(Ck1 ) > f(Ck2)
(f(·) is an evaluation function to an optimiza-
tion problem; Ck1 and Ck2 denote the k1th
and k2th chromosomes, respectively), i.e. the
k1th chromosome is better than the k2th one
in terms of their fitness values (here we con-
sider a maximization problem), the current indi-
vidual learns from the k1th chromosome, i.e.
bj = bk1 , otherwise, the current individual learns
from the k2th chromosome, i.e. bj = bk2 , where
bj, bk1 and bk2 are intermediate variables, the
jth bits of the k1th and k2th chromosomes,
respectively.

(ii) If bj > 0.5, we increase the current rule proba-
bility p1

ij to p1
ij + ∆, otherwise, we decrease p1

ij

to p1
ij − ∆, where ∆ is a learning rate.

Step 7: If bmax
j > 0.5, the current rule probability

p1
ij is increased to p1

ij +∆, otherwise, p1
ij is decreased

to p1
ij − ∆, where bmax

j is the jth bit of the best
chromosome found.

Step 8: If the processed probability p1
ij goes beyond

the upper bound 1, we adjust it to p1
ij−∆, otherwise,

if the processed probability p1
ij goes beyond the lower

bound 0, we adjust it to p1
ij + ∆.

Step 9: The column indicator j increases 1 and the
guider goes to Step 5.

Step 10: The row indicator i increases 1 and the
guider goes to Step 3.

Step 11: The guider outputs the modified rule prob-
ability matrix PR to adjust each probability value of
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each evolution rule inside each of neurons 1, . . . , m

in each ESNPS.

4. Experimentation and Analysis
of Results

To test the feasibility of OSNPS for solving com-
binatorial optimization problems, this section uses
knapsack problems as an application example to con-
duct experiments. To test the effectiveness of OSNPS
for knapsack problems, we consider genetic quantum
algorithm (GQA),31 quantum-inspired evolutionary
algorithm (QIEA),32 novel quantum evolutionary
algorithm (NQEA),20 quantum-inspired evolution-
ary algorithm (QIEA) based on P systems (QEPS)81

and two MIEAs with quantum-inspired subalgo-
rithms (MAQIS1 and MAQIS2)86 as benchmark
algorithms to carry out comparative experiments and
to draw a comparative analysis.

GQA and QIEA are two versions of QIEAs based
on the concepts and principles of quantum comput-
ing such as quantum-inspired bit, probabilistic obser-
vation and quantum-inspired gate.82 NQEA is an
improved QIEA version by modifying the quantum-
inspired gate update process. QEPS, MAQIS1 and
MAQIS2 are three versions of MIEAs. QEPS is
based on the use of a P system to properly orga-
nize a population of quantum-inspired bit individu-
als. MAQIS1 was constructed by using a P system
to properly organize five variants of QIEAs based
on the consideration that we have no prior knowl-
edge about the performance of the five QIEA vari-
ants. MAQIS2 was designed by using a P system to
properly organize QIEA and NQEA based on the
investigation in Ref. 90. These approaches represent
somehow the state-of-the-art for solving knapsack
problems. In order to make the comparison fair, we
used both advanced optimization algorithms with a
classical approach and modern membrane computing
approach. It is a well-known fact, for example, that
GQA and QIEA perform better than a classical GA
on combinatorial problems of this kind.

4.1. Knapsack problems

The knapsack problem, a well-known NP-complete
combinatorial optimization problem, can be
described as selecting from among various items that
are most profitable, given that the knapsack has lim-
ited capacity.25,32 The knapsack problem is to select

a subset from the given number of items so as to
maximize the profit f(x):

f(x) =
K∑

i=1

pixi (4)

subject to
K∑

i=1

ωixi ≤ C, (5)

where K is the number of items; pi is the profit of
the ith item; ωi is the weight of the ith item; C is
the capacity of the given knapsack; and xi is 0 or 1.

This study uses strongly correlated sets of
unsorted data, i.e. the knapsack problem with a lin-
ear relationship between the weights and profit val-
ues of unsorted items, which were used in Refs. 31–
33, 81, 82 and 86 to test the algorithm performance.

ωi = uniformly random[1, Ω], (6)

pi = ωi +
1
2
Ω, (7)

where Ω is the upper bound of ωi, i = 1, . . . , K, and
the average knapsack capacity C is applied.

C =
1
2

K∑
i=1

ωi. (8)

4.2. Analysis of results

In this subsection, an OSNPS consisting of H = 50
ESNPS, each of which has a certain number of neu-
rons such as 1002 for the knapsack problem with 1000
items, is used to solve 11 knapsack problems with
respective 1000, 1200, 1400, 1600, 1800, 2000, 2200,
2400, 2600, 2800 and 3000 items. In these problems,
Ω = 50 is considered. All the experiments are imple-
mented on the platform MATLAB and on a HP work
station with Intel Xeon 2.93 GHz processor, 12GB
RAM and Windows 7 OS.

In OSNPS, the learning probability pa
j (j =

1, . . . , m) and the learning rate ∆ are prescribed
as a random number in the range [0.05, 0.20] and
a random number between 0.005 and 0.02, respec-
tively. In the first three algorithms, GQA, QIEA and
NQEA, only one parameter, population size, needs
to be set. In the experiments, we set the popula-
tion size to 50. According to the investigation of
QEPS,81 the population size, the number of elemen-
tary membranes and the number of evolutionary gen-
erations for the communication of each elementary
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membrane are set to 50, 25 and a uniformly ran-
dom integer ranging from 1 to 10, respectively. The 
population size and the number of elementary mem-
branes for MAQIS1 are assigned as 50 and 5, respec-
tively. MAQIS2 uses 50 and 2 as the population size 
and the number of elementary membranes. In the 
experiments of each algorithm, 30 independent runs 
are performed for each of the 11 knapsack problems. 
The stopping condition is prescribed as the num-
ber of consecutive generations within which the best 
solution kept unchanged goes beyond 500, which is 
useful to exhibit the optimization capability of each 
algorithm.

In order to handle the case when the total weight 
of all selected items (fired neurons) exceeds the 
capacity, we implemented the random chromosome 
repair technique suggested in Refs. 32, 33 and 82.

The best, worst and average results in terms of 
maximization of the profit f(x) as in Eq. (4), aver-
age generations required for fulfilling an optimiza-
tion process, and average computing time per gen-
eration over 30 independent runs are displayed and 
listed in Table 1, where the bold style highlights the 
best result for each problem. More specifically, the 
BS and WS values (standing for Best Solution and 
Worst Solution), represent the final objective func-
tion values in Eq. (4) of the best and worst run, 
respectively. The AS value (standing for Average 
Solution) is the average final objective function val-
ues computed over the 30 independent runs avail-
able. The values AG and ET (standing for Average 
Generation and Elapsed Time) represent the aver-
age number of evolutionary generations required for 
fulfilling an optimization process and the average 
elapsed time per generation (second), respectively; 
the symbols + and – represent statistical significant 
difference and no statistical significant difference, 
respectively.

It is  shown in Table  1 that GQA obtains the worst 
performance among the seven algorithms, in terms of 
the mean of best, average, worst solutions and aver-
age generations. To easily and intuitively show the 
differences between the seven algorithms, it is appro-
priate that we choose GQA as a benchmark to draw 
figures to clearly show how the improvement of each 
of the other six algorithms is as compared with GQA. 
Thus, we use the solutions and average generations 
of GQA as benchmarks to illustrate the percent-
age of the improvements of QIEA, NQEA, QEPS,

OSNPS, MAQIS1 and MAQIS2 in Figs. 4–7. The
elapsed time per run of the seven algorithms is shown
in Fig. 8.

According to the experimental results, we employ
statistical techniques to analyze the behavior of
the seven algorithms over the 11 knapsack prob-
lems. There are two statistical methods: parametric
and nonparametric.22 The former, also called single-
problem analysis, uses a parametric statistical analy-
sis t -test to analyze whether there is a significant dif-
ference over one optimization problem between two
algorithms. The latter, also called multiple-problem
analysis, applies nonparametric statistical tests such
as Wilcoxon’s and Friedman’s tests, to compare dif-
ferent algorithms whose results represent average
values for each problem, regardless of the inexis-
tence of relationships among them. Therefore, a 95%
confidence Student t -test is first applied to check
whether the solutions of the six pairs of algorithms,
OSNPS versus GQA, OSNPS versus QIEA, OSNPS
versus NQEA, OSNPS versus QEPS, OSNPS ver-
sus MAQIS1 and OSNPS versus MAQIS2, are sig-
nificantly different or not. The results of t -test are
also shown in Table 1, where the symbols + and
– represent significant difference and no significant
difference, respectively. Then two nonparametric
tests, Wilcoxon’s and Friedman’s tests, are employed
to check whether there are significant differences
between the six pairs of algorithms, OSNPS versus
GQA, OSNPS versus QIEA, OSNPS versus NQEA,
OSNPS versus QEPS, OSNPS versus MAQIS1 and
OSNPS versus MAQIS2. The level of significance
considered is 0.05. The results of Wilcoxon’s and
Friedman’s tests are shown in Table 2, where the
symbols + and – represent significant difference and
no significant difference, respectively.

The experimental results shown in Tables 1 and
2 and Figs. 4–8 indicate the following conclusions:

• OSNPS is superior or competitive to the other
six optimization approaches, GQA, QIEA, NQEA,
QEPS, MAQIS1 and MAQIS2, with respect to the
best, average and worst solutions over 11 problems
and 30 independent runs.

• According to the stopping criterion, the more the
average generations are, the better balance capa-
bility between exploration and exploitation the
algorithm has, and as a result the stronger opti-
mization capability the algorithm has. It is shown
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Fig. 4. Maximum profit improvement percentage
achieved over the various problems under consideration
(best run).
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Fig. 5. Average profit improvement percentage achieved
over the various problems under consideration.

in Fig. 7 that OSNPS is better than the other six
optimization approaches in this aspect.

• The three algorithms, QEPS, OSNPS and
MAQIS2, consume more time than the other four
approaches, NQEA, MAQIS1, QIEA and GQA.
The elapsed time of QEPS, OSNPS and MAQIS2

is similar amount. GQA consumes the smallest
amount of time.

• The t -test results in Table 1 show that OSNP
really outperforms GQA, QIEA, NQEA, QEPS
and MAQIS1 due to 11 significant differences
between each of the five pair algorithms, OSNPS
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Fig. 6. Minimum profit improvement percentage
achieved over the various problems under consideration
(worst run).
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Fig. 7. Average number of generations (ANoG) for an
optimization process.

versus GQA, OSNPS versus QIEA, OSNPS versus
NQEA, OSNPS versus QEPS and OSNPS versus
MAQIS1. OSNPS is really better than MAQIS2 in
8 out of 11 problems due to eight significant differ-
ences and three no significant differences between
them.

• The p-values of the two nonparametric tests in
Table 2 for the five pair approaches, OSNPS ver-
sus GQA, OSNPS versus QIEA, OSNPS versus
NQEA, OSNPS versus QEPS and OSNPS ver-
sus MAQIS1, are far smaller than the level of
significance 0.05, which indicates that OSNPS
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Fig. 8. Elapsed time per run (s) of seven algorithms.

really outperforms GQA, QIEA, NQEA, QEPS
and MAQIS1 over all the 11 problems. The results
of Wilcoxon’s and Friedman’s tests in Table 2
demonstrate that OSNPS is statistically equiva-
lent to MAQIS2 over the 11 problems because the
p-values are greater than 0.05.

4.3. Statistical ranking by means of
Holm–Bonferroni procedure

In addition to the results presented above, the
ranking among all the algorithms considered in
this article has been performed by means of the
Holm–Bonferroni procedure, see Refs. 21 and 34,
for the seven algorithms under study and the 11
problems under consideration. The Holm–Bonferroni
procedure consists of the following. Considering
the results in the tables above, the seven algo-
rithms under analysis have been ranked on the
basis of their average performance calculated over
the 11 test problems. More specifically, a score Ri

Table 2. Results of nonparametric statistical tests, Wilcoxon’s and Friedman’s tests (WT and FT, for short), for the six
pairs of algorithms, OSNPS versus GQA, OSNPS versus QIEA, OSNPS versus NQEA, OSNPS versus QEPS, OSNPS
versus MAQIS1 and OSNPS versus MAQIS2, in Table 1. The symbols + and – represent significant difference and no
significant difference, respectively.

OSNPS versus OSNPS versus OSNPS versus OSNPS versus OSNPS versus OSNPS versus
GQA QIEA NQEA QEPS MAQIS1 MAQIS2

WT 9.7656e-4 (+) 9.7656e-4 (+) 9.7656e-4 (+) 9.7656e-4 (+) 9.7656e-4 (+) 0.7630 (–)
FT 9.1112e-4 (+) 9.1112e-4 (+) 9.1112e-4 (+) 9.1112e-4 (+) 9.1112e-4 (+) 0.8311 (–)

for i = 1, . . . , NA (where NA is the number of
algorithms under analysis, NA = 7 in our case) has
been assigned. The score has been assigned in the
following way: for each problem, a score of 7 is
assigned to the algorithm displaying the best per-
formance, 6 is assigned to the second best, 5 to
the third and so on. The algorithm displaying the
worst performance scores 1. For each algorithm, the
scores obtained on each problem are summed up
averaged over the amount of test problems (11 in
our case). On the basis of these scores, the algorithms
are sorted (ranked). With the calculated Ri values,
PMS has been taken as a reference algorithm. Indi-
cating with R0 the rank of PMS, and with Rj for
j = 1, . . . , NA − 1 the rank of one of the remaining
11 algorithms, the values zj have been calculated as

zj =
Rj − R0√
NA(NA+1)

6NTP

, (9)

where NTP is the number of test problems in consid-
eration (NTP = 11 in our case). By means of the zj

values, the corresponding cumulative normal distri-
bution values pj have been calculated. These pj val-
ues have then been compared with the corresponding
δ/j where δ is the level of confidence, set to 0.05 in
our case. Table 3 displays the ranks, zj values, pj

values, and corresponding δ/j obtained in this way.
The rank of PMS is shown in parenthesis. Moreover,
it is indicated whether the null-hypothesis (that the
two algorithms have indistinguishable performances)
is “Rejected”, i.e. PMS statistically outperforms the
algorithm under consideration, or “Accepted” if the
distribution of values can be considered the same
(there is no out-performance).

The Holm–Bonferroni procedure show that the
proposed OSNPS displays the highest ranking and
that is capable to statistically outperform five of the
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Table 3. Holm test on the fitness, reference algorithm = OSNPS (Rank = 6.54).

j Optimizer Rank zj pj δ/j Hypothesis

1 MAQIS2 6.45 –0.09 4.64e-01 5.00e-02 Accepted
2 QIEA 4.81 –1.87 3.01e-02 2.50e-02 Rejected
3 QEPS 4.09 –2.66 3.09e-03 1.67e-02 Rejected
4 NQEA 2.72 –4.14 1.70e-05 1.25e-02 Rejected
5 MAQIS1 2.36 –4.53 1e-06 1.00e-02 Rejected
6 GQA 1 –6.02 1e-06 8.33e-03 Rejected

competitors. Only the MAQIS2 appears to have a
performance comparable with that of OSNPS. This
result appears very promising considering that in the
case of the proposed neural system, the optimization
algorithm is designed by a machine and not by a
human.

5. Concluding Remarks

This article proposes an effective SNPS design to
tackle combinatorial optimization problems. In this
study, we proposed a feasible way about how to
use SNPS to design an optimization approach for
obtaining the approximate solutions of a combinato-
rial optimization problem. We presented the moti-
vation, algorithmic elaboration and experimental
results for verifying the algorithm effectiveness. This
work is inspired from language generative SNPS,16,63

QIEAs,82 comprehensive learning approaches44 and
estimation of distribution algorithms.43 Notwith-
standing the fact that this work is the first attempt
in this direction, the results appear promising and
competitive when compared with ad hoc optimiza-
tion algorithms. It must be remarked that this paper
starts a new research approach for solving opti-
mization problems. Although more work is required
to be competitive with existing optimization algo-
rithms, the clear advantage of the proposed OSNPS
is that the optimization algorithm is done by a
machine (by a neural system) not by a human
designer.

6. Future Work

Future work will attempt to improve upon the
optimization performance of the current OSNPS
prototype. Other optimization P systems and var-
ious applications will also be taken into account.
More specific future directions of this research are

listed here. Optimization performance improvement :
on one hand, the performance of OSNPS could be
improved by adjusting the parameters such as the
learning probability pj

a and the learning rate ∆. On
the other hand, better guiders, to be specific, how
to update the rule probabilities, may be devised to
enhance the optimization performance of OSNPS.
More combinatorial optimization P systems: this
work presents one way to design a combinatorial
optimization P system, so more methods and more P
systems could be explored. For instance, inspired by
language generative capabilities of numerous P sys-
tem variants, more variants of OSNPS, optimization
cell- and tissue-like P systems might be worthy to be
discussed. Applications : in this study, knapsack prob-
lems were used as examples to test the feasibility and
effectiveness of OSNPS, so it is obvious that we can
use them to solve various application problems, such
as fault diagnosis of electric power systems, robot
path planning problems, image segmentation prob-
lems, signal and image analysis, power system state
estimation including renewable energies, optimiza-
tion design of controllers for control systems and dig-
ital filters, and so on. Numerical optimization SNPS :
following this work, is it possible to design an opti-
mization SNPS for solving numerical optimization
problems by modifying the ingredients of the SNPS?
OSNPS solver : the OSNPS can be implemented on
the platform P-Lingua23,24 or MeCoSim59 and can
be developed as an automatic solver for various com-
binatorial optimization problems.
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43. P. Larrañaga and J. A. Lozano (eds.), Estimation of
Distribution Algorithms: A New Tool for Evolution-
ary Computation (Kluwer, Boston, MA, 2002).

44. J. J. Liang, A. K. Qin, P. N. Suganthan and S.
Baskar, Comprehensive learning particle swarm opti-
mizer for global optimization of multimodal func-
tions, IEEE Trans. Evol. Comput. 10(3) (2006)
281–295.

45. N. R. Luque, J. A. Garrido, J. Ralli, J. J. Laredo
and E. Ros, From sensors to spikes: Evolving recep-
tive fields to enhance sensorimotor information in
a robot-arm, Int. J. Neural Syst. 22(4) (2012)
1250013.

46. W. Maass, On the computational complexity of net-
works of spiking neurons, in NIPS , eds. G. Tesauro,

D. S. Touretzky and T. K. Leen (MIT Press, 1994),
pp. 183–190.

47. W. Maass, Lower bounds for the computational
power of networks of spiking neurons, Neural Com-
put. 8(1) (1996) 1–40.

48. W. Maass, Networks of spiking neurons: The third
generation of neural network models, Neural Netw.
10(9) (1997) 1659–1671.

49. A. Mohemmed, S. Schliebs, S. Matsuda and N.
Kasabov, Span: Spike pattern association neuron for
learning spatio-temporal spike patterns, Int. J. Neu-
ral Syst. 22(4) (2012) 1250012.

50. E. Nichols, L. J. McDaid and M. N. H. Siddique,
Case study on a self-organizing spiking neural net-
work for robot navigation, Int. J. Neural Syst. 20(6)
(2010) 501–508.

51. T. Y. Nishida, An application of P systems: A new
algorithm for NP-complete optimization problems,
in Proc. 8th World Multi-Conf. Systems, Cybernetics
and Informatics (2004), pp. 109–112.

52. L. Pan and X. Zeng, Small universal spiking neural
P systems working in exhaustive mode, IEEE Trans.
Nanobiosci. 10(2) (2011) 99–105.

53. A. Panakkat and H. Adeli, Neural network mod-
els for earthquake magnitude prediction using mul-
tiple seismicity indicators, Int. J. Neural Syst. 17(1)
(2007) 13–33.

54. A. Panakkat and H. Adeli, Recurrent neural net-
work for approximate earthquake time and loca-
tion prediction using multiple seismicity indicators,
Comput.-Aided Civil Infrastruct. Eng. 24(4) (2009)
280–292.

55. H. S. Park and H. Adeli, A neural dynamics model
for structural optimization–application to plastic
design of structures, Comput. Struct. 57(3) (1995)
391–399.

56. H. S. Park and H. Adeli, Distributed neural dynam-
ics algorithms for optimization of large steel struc-
tures, J. Struct. Eng. 123(7) (1997) 880–888.
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65. J. L. Rosselló, V. Canals, A. Morro and A. Oliver,
Hardware implementation of stochastic spiking neu-
ral networks, Int. J. Neural Syst. 22(4) (2012)
1250014.

66. S. Schliebs, N. Kasabov and M. Defoin-Platel, On
the probabilistic optimization of spiking neural net-
works, Int. J. Neural Syst. 20(6) (2010) 481–500.

67. A. B. Senouci and H. Adeli, Resource scheduling
using neural dynamics model of adeli and park, J.
Construct. Manag. Eng. 127(1) (1997) 28–34.

68. N. Siddique, L. McDaid, N. Kasabov and B. Widrow,
Special issue: Spiking neural networks introduction,
Int. J. Neural Syst. 20(6) (2010) v–vii.

69. S. Soltic and N. K. Kasabov, Knowledge extrac-
tion from evolving spiking neural networks with rank
order population coding, Int. J. Neural Syst. 20(6)
(2010) 437–445.

70. T. Song, L. Pan and G. Păun, Asynchronous spiking
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