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ABSTRACT Tacholess order tracking techniques based on time-frequency (TF) ridge detection have been

extensively used in bearing fault diagnosis under varying speed conditions for decades. However, the signal

components of a fault bearing related to shaft rotational frequency (SRF) is difficult to be accurately extracted

by these methods because of TF resolution limitation and strong noise interference. A new TF decomposing

algorithm, that is, variational nonlinear chirp mode decomposition (VNCMD) is effective to extract the time-

varying feature under limited TF resolution. However, its performance is influenced by prior knowledge

of initial parameters. Besides, ridge information hidden in noise is difficult to be mined effectively, which

increases the difficulty of ridge extraction. In this study, a feature isolation technology is proposed to enhance

fault-related features and reduce the interference of noise and irrelevant components. Then inspired by the

decomposing properties research on the convergence characteristics of VNCMD, an optimization tendency

guiding mode decomposition (OTGMD) method is proposed to track the instantaneous frequency (IF) of

fault-related mode, which can alleviate the personnel experience requirement and is not affected by the set

of TF resolution. The proposed method mainly consists of three steps. First, SRF-related information is

highlighted through low-pass filtering, and the dominant IF is achieved through ridge detection method.

Subsequently, for the convenience of mode extraction, the fault characteristic is augmented through iterative

envelope analysis. Then, the OTGMD optimization strategy is developed to gradually decompose the target

mode on the basis of the above process. Finally, a stopping criterion based on characteristic frequency

ratios (CFRs) is constructed to adaptively terminate the iteration process. Simulation and experiments

demonstrate that the proposed method is effective and suitable for bearing fault diagnosis under varying

speed conditions.

INDEX TERMS Bearing fault diagnosis, adaptive decomposition strategy, instantaneous frequency estima-

tion, varying speed condition.

I. INTRODUCTION

Rolling bearings are extensively used components in rotating

machines, including wind turbines and electric motors

[1]–[4]. They are prone to failures under harsh working envi-

ronments, such as high rotating speed, heavy load and con-

tamination, thereby leading to machine breakdowns or even

fatal accidents [5], [6]. Therefore, fault detection of rolling
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bearings has been widely conducted to prevent accidents and

reduce economic losses [7].

When a local defect is generated in bearings, the impacts

between the defect and the mating surface will stimulate

an impulsive signature in the vibration signal. Usually,

the impulses appear periodically or quasi-periodically at a

certain frequency called fault characteristic frequency (FCF)

under constant speed conditions. For a fault bearing, FCF

is related to shaft rotational frequency (SRF) and bearing

parameters, that is, the characteristic frequency ratio (CFR)
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of FCF to SRF is constant and only determined by geometric

parameters. Many vibration-based techniques, such as time-

domain methods [8], [9], frequency-domain methods [10],

[11], deep neural networks [12], and time-frequency mode

decomposition [13], [14], have been constructed to detect

bearing faults for the accurate extraction of FCF. However,

most of these methods only show their effectiveness for

fault diagnosis under constant speed conditions. When bear-

ings operate at varying speeds, FCF also varies with time

and the signal shows non-stationary characteristics. This

change will lead to an unsatisfactory result that FCF will be

hardly observable and detected from the frequency spectrum,

thereby resulting in spectral smearing. Thus, advanced fault

diagnosis methods for varying speed conditions have been

widely investigated in the past few years.

Order analysis has become the focus in fault diagnosis of

rolling bearings subjected to varying speed conditions [15].

Its core idea is to perform resampling of raw vibration

signals with a constant angle increment to eliminate the

nonstationary effects of speed fluctuation. On this basis,

spectral smearing can be solved, and conventional Fourier

transform-based techniques still be applicable. Although

order analysis is theoretically concise and practicable,

it cannot be performed without the phase reference, which

is usually acquired using tachometers. The application of

auxiliary devices inevitably increases the facility costs and

installation complexity. To address such problems, some tac-

holess approaches based on time–frequency (TF) representa-

tion (TFR) of vibration signals have been developed to extract

the SRF-related features recently [16]–[19]. For instance,

Zhao et al. [20] combined adaptive short-time Fourier trans-

form (STFT) and generalized demodulation (GD) method

for variable-speed bearing fault diagnosis. Huang et al.[21]

employed a fast path optimization approach to estimate mul-

tiple instantaneous frequency (IF) ridges for bearing fault

diagnosis under varying rotational speeds. Jiang and Li [22]

and Jiang et al. [23] exploited a ridge fusion strategy and a

dual path optimization ridge estimation method to estimate

robust IF ridges for detecting the fault of planetary gearbox.

Most of the above methods indicate that the corresponding

IF extraction is a crucial problem in fault type identifica-

tion under varying speed conditions. The results of TF ridge

extraction, which are influenced by TFR resolution, may be

unsatisfactory for the identification of fault types because

Heisenberg’s uncertainty principle inevitably exists in con-

ventional TF analysis methods. Therefore, a method that is

independent from TFR should be developed to accurately

estimate IFs.

To address these issues, the adaptive signal process

methods have attracted wide attentions recently [24]–[26],

among which a reliable and efficient approach called vari-

ational nonlinear chirp mode decomposition (VNCMD) is

explored for adaptive decomposition of multicomponent sig-

nals. It was proved that the VNCMD can be ameliorated

to iteratively optimize the coarse pre-IF for bearing fault

diagnosis under varying speed conditions [27]. However,

the choice of initial parameters (e.g. initial IFs and decom-

position number) considerably influences the decomposi-

tion results of VNCMD. Thus, an adaptive chirp mode

pursuit algorithm is proposed to initialize the IF based on

Hilbert transform and design an adaptive bandwidth param-

eter [28]. However, this method is limited because of poor

initial IF caused by strong noise, which can be further

improved by using ridge extraction approaches. Besides, the

stopping criterion according to residual energy may result

in decomposing unexpected modes. Aiming at solving the

drawbacks of the aforementioned methods, a new decom-

position strategy called optimization tendency guiding mode

decomposition (OTGMD) method is proposed in this study

to adaptively and accurately extract IFs of all meaning-

ful modes. It minimizes the influence of initial parame-

ters of VNCMD and interference from human experience.

Concretely, the SRF-related information is first highlighted

through low-pass filtering and then an iterative envelope

analysis procedure is applied to enhance the fault features

for more reliable identification of IF ridges information from

the TFR. It can efficiently eliminate the interference of irrel-

evant components and demodulate the impulse response to

the low-frequency band [5], [29]. Therefore, the accuracy of

ridge detection methods used to extract the IF curves from

the enhanced TFR is increased. Subsequently, the OTGMD

method adopts a recursive decomposition scheme to extract

the fault-related features. Finally, considering the interference

of SRF and FCF harmonics, a novel stopping criterion is

constructed to adaptively terminate decomposition on the

basis of CFRs repository. Consequently, the proposedmethod

presents the following advantages. (1) The algorithm do not

require the input of the number of modes and adaptively

selects the optimal initial IFs. (2) The OTGMD method is

independent of TFR and resampling, thereby the accuracy

of IF estimation is not influenced by the limitation of TF

resolution and interpolation error. (3) The proposed method

avoids specifying initial IFs for the remaining target ridges,

that is, it adaptively selects the initial IFs of meaningful

modes in the entire frequency band.

The rest of this paper is arranged as follows. Section II

presents the brief descriptions of VNCMD method and its

characteristic analysis. Then, the proposed OTGMD for bear-

ing fault diagnosis procedure is introduced in Section III.

Simulations and experimental cases are discussed in Sec-

tions IV and V for the validation. Finally, Section VI provides

the conclusions.

II. THEORETICAL FRAMEWORK

A. BRIEF INTRODUCTION OF VNCMD

VNCMD is designed for wide-band signal analysis, thereby

avoiding the limitation of narrow-band property in variational

mode decomposition (VMD). Coincidentally, the meaningful

mode buried in the vibration data measured from rolling

bearings under varying speed conditions is presented as

a wide-band feature in which its IF varies over a wide

range of time. Therefore, the VNCMD method has been
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introduced for bearing fault diagnosis under varying speed

conditions.

In general, For a wide-band signal

x(t) =

K
∑

m=1

Am(t) cos

(

2π

∫ t

0

fm(τ )dτ + θm

)

+ n(t),

it consists of several modes and can be transformed into a

narrow-band signal by demodulation techniques as follow:

x(t) =

K
∑

m=1

{

rm(t) cos

(

2π

∫ t

0

f̃m(τ )dτ

)

+ sm(t) sin

(

2π

∫ t

0

f̃m(τ )dτ

)}

+ n(t) (1)

where f̃m(t) and fm(t) denote the estimated and true IFs for

each mode. Concretely, rm(t) and sm(t) represent two demod-

ulated modes, which are expressed as:

rm(t) = Am(t) cos

(

2π

∫ t

0

(

fm(τ ) − f̃m(τ )
)

dτ + θm

)

(2)

sm(t) = −Am(t) sin

(

2π

∫ t

0

(

fm(τ ) − f̃m(τ )
)

dτ + θm

)

(3)

It can be inferred that the demodulated signals rm(t) and

sm(t) will have the narrowest bandwidth in the case of f̃i(t) =

fi(t). Then a constrained model is used to evaluate the signal

bandwidth which is defined as

min
{rm},{sm f̃m}

{

∑

m

(

||r ′′
m(t)||

2
2 + ||s′′m(t)||

2
2

)
}

s.t.x(t) =
∑

m

(

rm(t) cos(2π

∫ t

0

f̃m(τ )dτ )

+ sm(t) sin(2π

∫ t

0

f̃m(τ )dτ )

)

(4)

Subsequently, in order to solve the reconstruction problem,

the augmented Lagrangian multiplier is used as

L
(

{rm} , {sm} ,

{

f̃m

}

, η

)

=
∑

m

(

||r ′′
m(t)||

2
2 + ||s′′m(t)||

2
2

)

+ 〈η(t),w(t)〉+β ‖w(t)‖22 (5)

w(t) = x(t) −
∑

m

(

rm(t) cos(2π

∫ t

0

f̃m(τ )dτ )

+ sm(t) sin(2π

∫ t

0

f̃m(τ )dτ )

)

(6)

where η(t) and β denote the Lagrangian multiplier and

quadratic penalty term parameter, respectively. 〈•, •〉 rep-

resents the inner product function, and w(t) represents the

residual error term.

The solution to problem (4) is typically achieved using

the alternate direction method of multipliers (ADMM) opti-

mization algorithm [30]. Its main idea is to search the saddle

point of the augmented Lagrangian L
(

{rm} , {sm} ,

{

f̃m

}

, η

)

FIGURE 1. Illustration of the optimization tendency with different initial
IFs.

by alternately solving a series of sub-problems. Finally, the

signal modes and IFs can be optimized with the specified

initial IFs. Additional details of optimization algorithm can

be found in [26].

B. CHARACTERISTIC ANALYSIS OF VNCMD

The decomposition performance of the VNCMD algorithm

mainly depends on the selection of initial parameters. Apart

from the decomposition number K and balance parameter β,

the method of initializing IFs is also crucial for obtaining

the target modes. However, few studies have been conducted

to improve the performance of VNCMD in fault diagnosis.

In the original VNCMD, a constant IF is only selected based

on the spectral peak in different applications without distinc-

tion, which is unsuitable for the time-varying IF extraction

of the target component in the entire time domain in some

complicated cases. Then the fact may be that in some local

time periods, constant initial IFs are good enough for opti-

mization to the true IFs by the constraint; but in most time

periods where the constant initial IFs are excessively rough

compared with the true IFs, the algorithm will converge to

erroneous results, and the estimated results are inevitably

affected by adjacent components. Hence, a method to initial-

ize IFs should be developed to obtain the expected modes.

Inspired by our previous study on the convergence char-

acteristics of VMD in [31], a diagrammatic sketch is con-

structed to elaborate the convergence characteristics between

the initialization of IFs and the decomposition results of

VNCMD as shown in Fig. 1. If the initial IF locates above the

IF1 in the yellow region, it will reveal a declining convergence

trend associatedwith IF1. Contrarily, if the initial IF distribute

below the IF2 in the green region, it shows an increasing

convergence trend until converging to IF2. As a result, there

will be a dividing line between the two modes that exhibit

a different convergence trend on two sides. Based on the

tendency property, the analysis signal will be adaptively

decomposed in the entire frequency band provided that the

initial IFs are given in a right way: (1) The initial IFs should be

adjusted based on the optimal reference IF consistent with the

target mode; (2) The declining trend regions can be skipped
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through judgment of optimization tendency. As indicated by

the arrows in the yellow region of Fig. 1, the initial IF needs

to be continuously updated until it converges to IF2.

III. THE PROPOSED OTGMD METHOD FOR BEARING

FAULT DIAGNOSIS UNDER VARYING SPEED CONDITIONS

A. FEATURE ISOLATION THROUGH ITERATIVE ENVELOPE

ANALYSIS AND LOW-PASS FILTERING

The involved components for the diagnosis of rolling bear-

ings are mainly related to the fault-related feature embedded

in the resonance band and the fundamental SRF and its

harmonics in the low-frequency band [32]. Thus, the fault-

related feature can be enhanced and the interference of noise

and irrelevant components can be mitigated through feature

isolation for accurate bearing fault diagnosis under varying

speed conditions.

In particular, a low-pass filter is initially used to extract

the SRF-related information because it mainly focuses on the

low-frequency band of the vibration signal. Considering that

the conventional SRF and its harmonics should be observable,

the range of low-frequency band is set to [0, 200 Hz] in our

varying speed applications. Given that the fault characteris-

tics are modulated into the resonance band, some demodula-

tion methods have been explored for the extraction of fault

features in recent years, among which spectral kurtosis (SK)

is an effective method that discovers the presence of transient

components and adaptively indicates in which frequency

band the transient components occur [33]. However, it is

susceptible to interference from abnormal impact and strong

noise, making the location of resonance frequency inaccurate.

Therefore, an iterative envelope analysis method [5], [29] is

introduced for the demodulation and enhancement of fault

features.

The collected vibration signal of bearing fault is composed

of multiple components, including deterministic components

and fault impulses. Deterministic components should be

eliminated to simplify the diagnosis for enhancing the fault

features. Hence, an adaptive cancellation method comprising

iterative envelope and filtering is used for the demodulation

and extraction of fault features. The fault enhancement for a

signal x(t) is described as follows:

(1) Calculate the envelope of raw signal x(t) using Hilbert

transform and represent it as yk (t), k = 1, 2, ... denotes the

iteration number.

(2) Subtract the direct current offset and trend term ỹk (t)

from the envelope signal yk (t), which can be calculated as

yk (t) = yk (t) − ỹk (t) (7)

(3) Calculate the correlation of adjacent envelope signals

by:

γk =

∣
∣2

〈

yk−1(t) , yk (t)
〉 ∣
∣

〈

yk−1(t) , yk−1(t)
〉

+
〈

yk (t) , yk (t)
〉 (8)

where 〈, 〉 represents the inner product operator, y0(t)

represents the raw signal x(t). It is easy to infer that the range

of γk is [0, 1]. A larger correlation coefficient γk means that

there is less difference between the adjacent envelope signals.

Therefore, with the iterations of fault enhancement process,

the correlation coefficient γk is gradually increased.

(4) Compare the correlation coefficient γk with a specified

threshold τ , and determine the termination of iteration. When

γk > τ , the iteration process is terminated and the final

envelope signal yk (t) is achieved, otherwise, let x(t) = yk (t)

and repeat step 1 until the preset threshold τ is reached.

(5) Enhance final envelope signal yk (t) using a low-pass

filter. After iterative envelope analysis, the fault features are

demodulated to the low-frequency band. Another low-pass

filter is applied to alleviate the noise interference and enhance

the fault features. The cutoff frequency is selected based on

the harmonics of FCF, which is set to [0, 500 Hz] in our

applications.

In summary, the iterative envelope procedure mainly

consists of two parts, namely, the removal of deterministic

components from steps 1 to 4 and the enhancement of fault

features in step 5. Moreover, considering the correlation coef-

ficient is affected by the noise and interference components,

the threshold τ is set to [0.9, 0.95].

B. DOMINANT IF RIDGE DETECTION

Note that the core of tacholess methods is to extract the IF

ridges from the TFR of vibration signal, an effective tool

named short time Fourier transform (STFT) is used for TF

analysis in this paper. For a signal X (T ), its STFT is formed

as [34]:

TFR (t, f ) =

∫ +∞

−∞

x (τ )w (t − τ) e−2jπ f τdτ (9)

where w ( ) represents the window function; t and f denote

the time and frequency, respectively. Then, the IFs curves

can be roughly observed in the TFRs. Usually, the peak

search algorithm is used for the extraction of IF ridges. It is

susceptible to the influence of noise and non-uniform energy

distribution, thereby resulting in heavy ridge fluctuations.

As a result, a handy ridge detection algorithm [26] is con-

structed to extract the dominant IF from the TFR in a local

range, which are described as follows:

IF(tn, fn) = arg max
t,f

|TFR(t, f )| (10)

fR = arg max
f ∈[fR−1f ,fR+1f ]

|TFR(tR, f )| (11)

fL = arg max
f ∈[fL−1f ,fL+1f ]

|TFR(tL , f )| (12)

where 1f is the maximum frequency interval between the

adjacent instants. FR and tR represent the frequency and

instant of the rightward propagation, respectively. Equally,

fL and tL represent the frequency and instant of the leftward

propagation, respectively.

The handy ridge detection algorithm is to extract

the dominant IF ridge in a local constraint range.

In this way, frequency hopping at some time instants

caused by the conventional peak search algorithm can be
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substantially alleviated. Besides, the initial location of the

highest amplitude of the TFR can also be artificially specified

according to actual applications.

C. CRITERION FOR THE JUDGEMENT OF

BEARING FAULT TYPE

Commonly, to ameliorate the disadvantages of traditional

methods designed for constant speeds when they are used

in fault detection under varying speed conditions, the order

analysis is performed to eliminate the non-stationary effects

of speed fluctuation by resampling method. This technique

will inevitably result in interpolation errors in resampling.

Hence, a non-resampling method named CFR is used to

improve the diagnostic results.

For identifying the fault features in bearing detection, the

FCF is usually utilized to judge different bearing components,

which is defined as follows [10].

FCFO =
N

2

(

1 −
d

D
cosϕ

)

• SRF = CFRO • SRF (13)

FCFI =
N

2

(

1 +
d

D
cosϕ

)

• SRF = CFRI • SRF (14)

FCFB =
D

2d

(

1 − (
d

D
cosϕ)2

)

• SRF = CFRB • SRF

(15)

where N is the number of rolling elements, ϕ represents the

contact angle, d andD denote the roller diameter and the pitch

diameter of the bearing respectively. As a result, the fault

frequency of outer-race FCFO, inner-race FCFI and rolling

element FCFB can be computed under the prior knowledge of

the SRF. The CFRs of different bearing faults are character-

ized as the ratio of the corresponding FCF to SRF, which are

constant and only determined by the geometric parameters.

Hence, they can be used to identify the fault typewith variable

SRF, thereby avoiding the drawbacks of traditional methods.

D. THE PROPOSED OTGMD METHOD

The performance of the VNCMD algorithm introduced

mostly depends on the decomposition number and the cor-

responding initial IFs. In particular, the VNCMD algorithm

may be incapable of achieving optimized results when the

initial IFs are excessively rough from the actual IFs. A handy

ridge detection method is first introduced to obtain the dom-

inant IF for the accurate input of VNCMD and alleviate

the impacts caused by the incorrect estimation of initial IFs.

Considering that the bearing fault signal frequently consists

of several modes, a novel optimization tendency guiding

strategy is constructed based on VNCMD for multicompo-

nent extraction. The key point of OTGMD is to iteratively

judge the increasing tendency of the IF in the optimization

procedure to avoid setting initial IFs for the remaining target

ridges.

The number of iterations cannot be determined in advance

because of the interference of harmonics of SRF and FCF.

A repository is constructed to store the nonstandard CFRs

of different fault bearings, such as the integer multiple or

fractional form of the theoretical CFR. The iteration can be

terminated when the computed CFR is similar to the value in

the CFRs repository. Thus, it is used as another stopping cri-

terion in the proposed procedure. The details of the proposed

OTGMD method are described as follows:

Step 1: Extract the dominant IF from the low frequency

band which mainly contains SRF and its harmonics using the

handy ridge detection method introduced in Section II.

Step 2: Initialize decomposition parameters: decomposi-

tion number K=1, computed CFR=1, balance parameter α

is adaptively adjusted with the iterative process.

Step 3: Input the extracted IF into the VNCMD to obtain

the optimal IF ω0 (i.e. IF1) by solving the variational con-

straint model.

Step 4: Use the optimal IF1 ω0 with the speci-

fied step size 1ω = l∗ω0 as the initial IF ω0 =

ω0 + (CFR − 1)∗ ω0
︸ ︷︷ ︸

obtained IF

+ l∗ω0
︸︷︷︸

stepsize

of the next target mode. The

IF is updated once times by optimizing the object function

in Eq. (5). If the updated ω1 is smaller than original ω0, go to

step 6, otherwise go to Step 5.

Step 5: Continue solving the constraint function until the

stopping criterion is reached and save the optimal IF (i.e. IF2)

of next target mode. Then, calculate the CFR via dividing

the new IF2 by the basic IF1 and compare it with the value

in the CFRs repository. The iteration is completed, and the

bearing fault type can be directly determined when a similar

number appears in the library. Otherwise, set the new CFR

and step size 1ω = l∗ω0 of obtained IF2 as the new initial

IF ω0 = ω0 + (CFR − 1)∗ ω0
︸ ︷︷ ︸

obtained IF

+ l∗ω0
︸︷︷︸

stepsize

. When the maximum

iteration number is reached, the iteration is completed, other-

wise return to Step 4.

Step 6: Update the initial IF ω0 + (CFR − 1) ∗ω0 + l∗ω0

with the increasing step size 1ω = l∗ω0, and return to Step

4.

The fault diagnosis procedure by the proposed OTGMD

method is illustrated in Fig. 2. Some descriptions of OTGMD

strategy are described as follows.

1. In step 4, the IF optimization tendency, that is, the

comparison of updated ω1 and original ω0 is introduced to

guide the decomposition strategy. We can directly terminate

the iterative optimization algorithm and update the initial IF

until the declining convergence trend region is skipped when

the initial IF is located in the declining trend regions, as shown

in Fig. 1. The artificial setting of decomposition number in

advance can be avoided through the guidance of optimization

tendency. This process enables the adaptive assignment of the

initial IF of concerned modes.

2. In the iterative decomposition process, some inter-

ference components with small energy may be extracted,

which are named intermediate components. These com-

ponents are unsuitable to be used as the initial value of
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FIGURE 2. Flowchart of proposed OTGMD method for bearing fault
detection with variable speed.

the next target mode because of energy dispersion and

noise interference. The optimal IF1 in step 3 is constant

and accurate, and we replace the initial value using the

computed CFR combined with the optimal IF1, that is,

ω0 = ω0 + (CFR − 1) ∗ω0
︸ ︷︷ ︸

obtained IF

+ l∗ω0
︸︷︷︸

stepsize

in our procedure. This

process ensures that the optimal initial IF is selected during

each iteration.

3. Step size 1ω = L∗ω0 of the initial IF can be adjusted

to several different values at different optimization stages. In

particular, step size l is appropriately reduced to ensure the

decomposition effect when the computed CFR is close to the

theoretical value. Otherwise, step size l can be set as relatively

large to quickly search for the target components.

4. Balance parameter α is adaptively adjusted with the opti-

mization. Given that the iterative screening process is adopted

in our method, that is, only one component is extracted in

each optimization process, balance parameter α can draw on

the experience of the adaptive bandwidth parameter updating

rule in [28] for better filtering and convergence.

IV. SIMULATIONS ANALYSIS

In order to test the performance of the proposed method for

bearing fault diagnosis under varying speed conditions, a sim-

ulated model with nonlinear SRF that mimics the vibrations

of a fault bearing is constructed as [35]:

x(t) =

N
∑

k=1

Uke
−β(t−tk ) sin (2π fr t)

+
∑

m

Rm cos (2πmfst + ϕm) + n (t) (16)

In Eq. (16), the first term of simulated model x(t) denotes

a series of impulses excited by a local defect of bearings,

where Uk and tk represent the time-varying amplitude and

TABLE 1. Parameters of simulated signal.

FIGURE 3. Waveforms of simulated signal: (a) repetitive impulses,
(b) harmonics of shaft speed, (c) noisy signal.

occurrence time of the kth impulse; β denotes the damping

parameter, and fr is the resonance frequency. The second term

stands for the vibration components from the shafts, where fs
is the rotating frequency of the shaft. Rm and ϕm represent the

amplitude and initial phase of themth harmonic, respectively.

The last term n(t) represents that the signal is contaminated

by strong white Gaussian noise with SNR = 0dB. Detailed

parameters are displayed in Table. 1. The waveforms of

noisy signal and its constituent components are sampled at

a frequency of 10 kHz, as shown in Fig. 3.

It can be seen from Fig. 3(c) that the simulated signal is

contaminated by strong noise, which increases the difficulty

of effective features extraction. Then the feature isolation

method is constructed on the noisy vibration signal. The

filtered signal after low-pass filtering and the envelope signal

after iterative envelope analysis can be observed in Fig. 4(a)

and (c) respectively. With the low-pass filtering technique,

the SRF and its harmonics are salient in the TFR of the filtered

signal as shown in Fig. 4(b). Meanwhile, through iterative

envelope demodulation technique, the algorithm undergoes

three iterations of iterative optimization, after which the cor-

relation coefficient γk is computed as 0.9552. As a result,

the FCF and its harmonics can be highlighted in its TFR as

described in Fig. 4(d), where the low-frequency interference

components are eliminated. Then, to show the superiority of

iterative envelope analysis, the conventional envelope analy-

sis is also used in Fig. 4(e) to process the signal for enhancing

the fault features. As demonstrated in Fig. 4(f), the TFR of

the demodulated signal is slightly blurred and contains inter-

ference components compared with the results in Fig. 4(d).
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FIGURE 4. Down-sampled results of the proposed feature isolation
method for simulated signal. (a) Filtered signal by low-pass filtering;
(b) TFR of filtered signal; (c) Envelope signal by iterative envelope
analysis; (d) TFR of iterative envelope signal; (e) Envelope signal by
conventional envelope analysis; (f) TFR of single envelope signal.

FIGURE 5. Extracted results of simulated signal. (a) Extracted IFs using
the proposed OTGMD method by iterative envelope analysis; (b) Extracted
IFs using the proposed OTGMD method by conventional envelope
analysis (black: true; red: estimated).

Actually, to improve the computational efficiency, the down-

sampling technique is applied here with the frequency of

1000Hz. Therefore, Fig. 4 reveals the down-sampled results

of proposed feature isolation method for simulated signal.

Next, the OTGMD method is utilized for dominant IF

extraction. Here, the first extracted IF in the low-frequency

band of Fig. 4(b) is SRF, and then is optimized byVNCMD as

the initial input of next mode of envelope signal in Fig. 4(d).

To accelerate the optimization process of the OTGMD algo-

rithm, the step size 1ω = l∗ω0 undergoes three stages: fac-

tors l is set to 0.4 when the computed CFR is less than 0.5, set

to 0.2 when the computed CFR is less than 0.8, and lastly set

to 0.15 until the stop condition is reached after each update.

Eventually, the extraction results are shown in Fig. 5. It can be

seen from Fig. 5(a) that the algorithm undergoes one iteration

of optimization, after which the estimated FCF is approx-

imately coincident with the true one. The ultimate CFR is

computed as 2.7050 with average relative error of 0.18%

compared with the theoretical value of 2.7000. Subsequently,

the same OTGMD method is applied in Fig. 4(e) and (f).

The results are displayed in Fig. 5(b), where two compo-

nents are adaptively extracted as 2SRF and FCF respectively.

FIGURE 6. Extracted results of other methods for simulated signal.
(a) Extracted IFs using the conventional peak search algorithm;
(b) Extracted IFs using the original VNCMD method with constant IFs;
(c) Extracted IFs using the ridge detection method; (d) Extracted IFs using
the improved VNCMD method with varying IFs (black: true; red:
estimated).

Besides, the extracted component of 2SRF displays

noticeable jumps and the boundaries are broken because of

noise. The ultimate CFR is calculated as 2.6820, which shows

slightly larger errors.

Therefore, we can certainly enhance the IF features (SRF

and FCF) and mitigate the interference of noise and irrelevant

components through feature isolation using iterative envelope

analysis. On another note, the proposed OTGMD method

can constantly converge to an appropriate result regardless of

the influence of interference components. Thus, the proposed

OTGMD method combined with iterative envelope demodu-

lation technology shows its potential in fault diagnosis. The

use of CFR as a new stopping criterion effectively avoids the

choice of initial decomposition number and adaptively selects

the meaningful components.

Further, to demonstrate the advantages of optimiza-

tion tendency guiding decomposition strategy in OTGMD,

the conventional peak search algorithm, the original VNCMD

method and improved VNCMD method are performed as

shown in Fig. 6. The result of peak search algorithm

in Fig. 6(a) presents severe hopping in the FCF ridge due to

that it only focuses on the highest energy point and ignores

smoothness. Therefore, it cannot reflect the actual IF curve

and is invalid for bearing fault diagnosis in our experiment.

Then, the extracted IFs using the original VNCMD method

are displayed in Fig. 6(b). The constant initial IFs are set

to 32 Hz and 86 Hz according to the average values of the

TF ridges, respectively. The results reveals that the bound-

ary of the extracted FCF displays large jumps because the

constant initial IF is far from the true value at the boundary.

Finally, the improved VNCMDmethod using ridge detection

is applied to mitigate the effect of initial IF. As demonstrated

in Fig. 6(c), although the FCF estimated by the tractable

ridge detection method exhibits some errors, it is remarkably

improved compared with the results of the peak search algo-

rithm and is optimized by the VNCMD method, as shown

in Fig. 6(d). The FCF shows some deviations at the bound-

ary, as indicated by the blue circle. The CFR with the SRF
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FIGURE 7. Experimental set-up.

and FCF is calculated as 2.6871, which is slightly worse

compared with the proposed method. Although the improved

VNCMD method uses a recursive framework to gradually

extract signal modes, it still needs to feed the corresponding

IFs of all modes using ridge detection. Hence, it has high

requirements for the accuracy of all extracted ridges. The

proposed method only needs to extract the dominant IF and

adaptively set the initial IFs of meaningful modes. Therefore,

the proposed method is suitable for signal extraction under

strong background noise.

In summary, the feature isolation method can generate a

clear and concentrated TFR for the extraction of SRF-related

and FCF-related ridges. The comparison results demonstrate

the effectiveness of OTGMD in accurately extracting FCF

features without setting the initial IFs in advance. The pro-

posed method successfully diagnoses the fault type under

varying speed conditions and is superior to the existing

methods.

V. EXPERIMENTAL VALIDATION

In this section, the performance of the proposedmethod is fur-

ther validated in practical applications, the OTGMD method

combined with feature isolation is used to analyze the experi-

mental bearing vibration data under varying speed conditions.

The overview of experimental setup for data acquisition is

shown in Fig. 7. Two bearings of type RE16K are mounted to

support the shaft which is driven by a motor. The rotational

speed can be controlled by an AC inverter and the fault

bearing is installed at the left side. An accelerometer is used

to collect the vibration signal and the rotational speed can

be roughly measured by a tachometer. Two experiments for

vibration data analysis with bearing inner and outer defects

are carried out, respectively.

A. BEARING OUTER RACE FAULT IDENTIFICATION

In this subsection, the vibration signal of bearing outer race

fault is collected from the rotating machine. During the oper-

ation of rotating machine, the vibration data are sampled

at a frequency of 20 kHz and the shaft rotational speed is

gradually increased. Other detailed structural parameters of

the test bearing are listed in Table. 2. The time waveform

of the raw vibration signal is shown in Fig. 8. Generally,

we barely see any useful information from the original signal,

thus hindering effective fault diagnosis.

TABLE 2. Parameters of outer race fault bearing.

FIGURE 8. Waveforms of outer race defect vibration signal.

FIGURE 9. Down-sampled results of the proposed feature isolation
method for outer race fault signal. (a) Filtered signal by low-pass filtering;
(b) TFR of filtered signal; (c) Envelope signal by iterative envelope
analysis; (d) TFR of iterative envelope signal; (e) Envelope signal by
conventional envelope analysis; (f) TFR of single envelope signal.

Similarly, the noisy vibration signal is first processed

through feature isolation to reveal the interested components.

The down-sampled results of filtered, iterative envelope, and

conventional envelope signals are illustrated in Fig. 9. In the

iterative analysis, the algorithm undergoes two iterations, and

correlation coefficient γk is calculated as 0.9325. Although

the fault characteristics are enhanced compared with the con-

ventional envelope analysis in Fig. 9(d) and (f), the iterative

envelope analysis eliminates the low-frequency interference

component and its harmonics because of one more iterative

process, as marked by the solid rectangle. Besides, due to

the interference of strong background noise, it is difficult to

identify the FCF directly.

First, the OTGMD method is performed on enhanced

signals in Fig. 9. As shown in the result of Fig. 10(a), we can

observe that the proposed method clearly tracks the dominant

IF exactly as the optimized SRF. The SRF is fed into the

iterative envelope signal to adaptively search the FCF under
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FIGURE 10. Extracted results of outer race fault signal. (a) Extracted IFs
using the proposed OTGMD method by iterative envelope analysis;
(b) Extracted IFs using the proposed OTGMD method by conventional
envelope analysis (black: true; red: estimated).

the guidance of convergence tendency. Similarly, the step size

is adjusted in three stages to accelerate the search process.

Factor l is set to 0.25, 0.2, and 0.15 when the computed CFR

is less than 0.5, 0.8 and meets the stop condition, respectively.

The extracted FCF is generally consistent with the actual one.

Although it extracts some false and irrelevant components

during optimization, it continuously searches until the stop

condition is met and the right component is located. The com-

puted CFR is 3.5107 after iterative searching. This finding

indicates that the computed CFR of 3.5005 is approximately

close to the theoretical value of 3.5000 with average relative

error is 0.31%. Therefore, the powerful performance of the

proposed OTGMDmethod is demonstrated in outer race fault

diagnosis.

The OTGMD method is combined with conventional

envelope signal in Fig. 9(e) and (f). As shown in the result

of Fig. 10(b), the CFR is calculated as 3.3832, and the aver-

age relative error is 3.33% compared with the theoretical

value of 3.5000. The result evidently deviates from the stan-

dard values and is disturbed by many irrelevant components,

thereby reducing the accuracy of diagnosis. This condition

confirms that feature isolation can effectively enhance the

characteristics of signals.

For comparison, the methods used in simulation analysis

are applied to extract and optimize the IFs. The results of

conventional peak search algorithm are shown in Fig. 11(a),

where the ridges show huge frequency jump patterns for the

signal components because of blurry TFR. Then, the original

VNCMD in which its constant initial IFs are specified as

107 and 375 Hz is applied to extract the SRF and FCF.

As shown in Fig. 11(b), the accuracy of SRF is improved,

but the boundary effect still exists. A serious error occurs

at the FCF because the actual IF has a large fluctuation

range. Hence, the computed CFR is incorrect and incapable of

effective fault diagnosis of outer race bearings under varying

speed conditions.

The extraction results of the improved VNCMD method

are exhibited in Fig. 11(c) and (d). In the low-frequency

band, the energy of SRF is dominant and can be accu-

rately extracted. However, the initial IF fails to be accurately

extracted because the fault feature component is submerged

by strong noise, thereby resulting in large errors of the sub-

sequent input. Hence, unexpected components are extracted

that hinder the judgment of fault type. The proposed method

needs to extract the dominant SRF component and adaptively

FIGURE 11. Extracted results of other methods for outer race fault signal.
(a) Extracted IFs using the conventional peak search algorithm;
(b) Extracted IFs using the original VNCMD method with constant IFs;
(c) Extracted IFs using the ridge detection method; (d) Extracted IFs using
the improved VNCMD method with varying IFs (black: true; red and blue:
estimated).

TABLE 3. Parameters of inner race fault bearing.

FIGURE 12. Waveforms of inner race defect vibration signal.

set the input of subsequent components to avoid the

problem.

The proposed feature isolation method can depict clear

TFR for the characteristic components, and the OTGMD

method can adaptively optimize each component. The

analysis results successfully validate that the proposed

method is superior to other methods.

B. BEARING INNER RACE FAULT IDENTIFICATION

In this subsection, the proposed method is further verified

using a bearing with the inner race fault under the process of

acceleration and deceleration. The experiment is carried out

in the device in Fig. 7 by replacing the left bearing with inner

race fault. Table. 3 displays other parameters of inner race

fault bearing and the vibration data are sampled at 12 kHz.

As shown in Fig. 12, the amplitude of the collected vibration

signal increases and decreases with the change of the SRF.

The feature isolation method is performed on the raw

signal to enhance the concerned features. Similar to the

above tests, the down-sampled signals and their TFRs are

illustrated in Fig. 13. The resolution of each TFR is suf-

ficient to clearly reveal the signal characteristics, espe-

cially at the low-frequency band. The results of iterative

envelope analysis in Fig. 13(d) show fewer low-frequency
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FIGURE 13. Down-sampled results of the proposed feature isolation
method for inner race fault signal. (a) Filtered signal by low-pass filtering;
(b) TFR of filtered signal; (c) Envelope signal by iterative envelope
analysis; (d) TFR of iterative envelope signal; (e) Envelope signal by
conventional envelope analysis; (f) TFR of single envelope signal.

interference components compared with the results of con-

ventional envelope analysis in Fig. 13(f). Hence, the fault

features are sufficiently enhanced for reliable identification of

IF ridge information from the TFR using the proposed feature

isolation method.

The extracted results are exhibited in Fig. 14(a) after two

iterations of the OTGMDmethod, and correlation coefficient

γk is computed as 0.9748. The dominant IF for input is

2SRF, and the last extracted component is the FCF. Hence,

the final calculated CFR is 2.7246 with average relative error

of 0.35%, which is approximately half of the theoretical

one in Table 3. In convergence trend optimization, step size

factor l is set to 0.3, 0.2, and 0.15 in three stages, respectively,

similar to the previous tests. This finding validates the effec-

tiveness of CFRs repository in avoiding the interference of

harmonics of SRF and FCF. The iteration is terminated after

two optimization extractions when the computed CFR is half

of the theoretical value. As shown in Fig. 14(b), the OTGMD

method combined with conventional envelope analysis tracks

some interference components, thereby increasing the con-

sumption of the algorithm and results in misjudgment. The

final CFR is computed as 2.9202, which is far from half of

the theoretical one in Table 3.

Furthermore, comparisons of the extracted IFs by some

common methods are shown in Fig. 15. As represented

in Fig. 15(a) and (b), due to the uneven distribution of energy,

the first two dominant components by the peak searchmethod

show large fluctuations between SRF and its harmonic.When

it comes to the original VNCMD method with the constant

initial IFs of 27 Hz and 144 Hz, the results of the first two

dominant components displays serious errors under the inter-

ference of irrelevant components. The terrible results lead to

FIGURE 14. Extracted results of inner race fault signal. (a) Extracted IFs
using the proposed OTGMD method by iterative envelope analysis;
(b) Extracted IFs using the proposed OTGMD method by conventional
envelope analysis (black: true; red: estimated).

FIGURE 15. Extracted results of other methods for inner race fault signal.
(a) Extracted IFs using the conventional peak search algorithm;
(b) Extracted IFs using the original VNCMD method with constant IFs;
(c) Extracted IFs using the ridge detection method; (d) Extracted IFs using
the improved VNCMD method with varying IFs (black: true; red and blue:
estimated).

the wrong CFR and fail to perform the accurate judgement of

fault type.

Finally, Fig. 15(c) and (d) reveal the extraction

results of improved VNCMD method. In low frequency

band, the energy of SRF is dominant and it can be

extracted accurately as noted by redline (component 1) in

Fig. 15(c) and (d). The initial IF cannot be accurately

extracted because the fault feature component is submerged

by several interference components and the first two domi-

nant components do not contain FCF, thereby leading to large

errors in subsequent optimization. Thus, some unexpected

components may be extracted, and the decomposition process

needs artificial analysis and judgment, which increase the dif-

ficulty of fault diagnosis. Therefore, these test results verify

the effectiveness and superiority of the proposed method for

detecting bearing faults under varying speed conditions.

VI. CONCLUSION

In this study, a feature isolation method and a novel decom-

posing strategy (i.e., OTGMD) are developed to enhance the

characteristics of concerned IFs and accurately feed initial IFs

of extracted components for the fault diagnosis of bearings

under varying speed conditions. First, the dominant IF is

estimated in the low-frequency band through ridge detec-

tion method and then refined via the raw VNCMD method.

Subsequently, in order to reduce the influence of noise and

facilitate the extraction of subsequent components, the fault
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characteristic is augmented with iterative envelope analysis.

Then, OTGMD initializes the IF of each component through

an iterative TFR-independent procedure. Finally, the itera-

tive extraction process will automatically terminate when the

stopping criterion are satisfied. It avoids the extraction of the

redundant feature components and is free of human participa-

tion. The proposed method can create a high-resolution TFR

for each concerned component and adaptively set the initial

IFs of the meaningful modes in the entire frequency band.

It effectively overcomes the poor TF resolution of traditional

envelope method and the difficulty of raw VNCMD parame-

ter selection.

Simulated and experimental tests clearly validate that

OTGMD can accurately extract SRF and FCF, thereby pro-

viding a promising solution for bearing fault diagnosis under

varying speed conditions. The comparisons also verify the

effectiveness and superiority of the proposed method for

target ridge extraction and fault discrimination.
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