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Abstract
Mobile edge computing (MEC) is a promising technology that has the potential to meet the latency requirements of next-
generation mobile networks. Since MEC servers have limited resources, an orchestrator utilizes a scheduling algorithm to 
decide where and when each task should execute so that the quality of service (QoS) of each task is achieved. The scheduling 
algorithm should use the least possible resources required to meet the service demands. In this paper, we develop a two-
level cooperative scheduling algorithm with a centralized orchestrator layer. The first scheduling level is used to schedule 
tasks locally on MEC servers. In contrast, the second level resides at the orchestrator and assigns tasks to a neighboring 
base station or the cloud. The tasks serve in accordance with their priority, which is determined by the latency and required 
throughput. We also present a resource optimization algorithm for determining resource distribution in the system in order 
to ensure satisfactory service availability at the minimum cost. The resource optimization algorithm contains two variations 
that can be employed depending on the traffic model. One variant is used when the traffic is uniformly distributed, and the 
other is used when the traffic load is unbalanced among base stations. Numerical results show that the cooperative model 
of task scheduling outperforms the non-cooperative model. Furthermore, the results show that the suggested scheduling 
algorithm performs better than other well-known scheduling algorithms, such as shortest job first scheduling and earliest 
deadline first scheduling.

Keywords  Mobile edge computing · Scheduling algorithms · Quality of service · Power consumption · Optimization · 
Cloud computing

1  Introduction

Internet of things (IoT) applications have grown rapidly 
in recent years, and as digital transformation accelerates, 
more smart devices are projected to be connected to next-
generation networks. Furthermore, the growth of IoT devices 
has resulted in significant advances in industrial processes, 
transforming how people interact with and govern the physi-
cal environment [1] . However, these smart devices have 
computational and energy limitations, preventing them from 
executing computationally intensive operations required by 
current applications such as augmented reality (AR) and 
artificial intelligence (AI) [2]. Therefore, IoT devices send 
the data collected to processing centers via the internet [3]. 
Cloud computing offers powerful servers that can be used for 
offloading IoT tasks. However, due to the extreme remote-
ness of cloud servers, cloud computing has high latency 
responses, which might not fulfill the requirements of 
upcoming low latency applications [4]. Furthermore, due to 
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bandwidth limitations, the high traffic load predicted in next-
generation network applications cannot be fully offloaded 
to the cloud.

Mobile edge computing (MEC) is seen as a feasible alter-
native approach in order to solve the challenges that cloud 
computing might have. MEC moves computing and stor-
age resources from a centralized cloud to the edge of the 
network, where they are closer to end devices. Because of 
its closeness to the task origin, the MEC can significantly 
reduce latency, making it the key to offering delay-sensi-
tive services. Serving tasks at edge devices also reduces 
the amount of data transferred through the network back-
bone, decreasing the probability of network congestion and 
preserving data privacy. However, the MEC resources are 
much more constrained than cloud resources, which limits 
the number of tasks that could be served on the MEC layer.

A hybrid edge-cloud architecture can take advantage of 
low latency in MEC and powerful cloud resources. MEC 
will complement the cloud by serving low latency tasks 
while the cloud serves the rest tasks. For example, the MEC 
can aggregate and preprocess data before sending it to the 
cloud servers, which decreases the workload and traffic des-
tined to the cloud [5]. Furthermore, the hybrid architecture 
can be used to optimize the number of completed tasks in the 
system which meet the requirements [6]. The performance 
of the overall system could be further enhanced by shar-
ing resources between edge nodes within the same cluster 
which increases the utilization and capacity of the system. 
To enable this hybrid architecture, the ITU recommends 
having a system responsible for orchestrating resources in 
the network [7].

The orchestrator manages the computation resources and 
network resources by scheduling when and where each task 
should be served. The orchestrator considers the computa-
tional requirements, latency, and task priority when building 
a scheduling strategy. The scheduling strategy should focus 
on maximizing the number of completed tasks and minimiz-
ing the average waiting time of tasks, the system’s energy 
consumption, and the monetary cost. Another issue facing 
the task scheduling problem is user mobility. For example, 
a user placing a request to one MEC server might move 
away from this server, making the estimated communication 
delay change. A policy for handling tasks during handover 
is needed so that user mobility does not affect the system’s 
reliability.

Various works were directed to solve the task sched-
uling problem in edge computing, however a large por-
tion of these works considered task scheduling only in 
an offline setting making them impractical for real-time 
systems. Recent works introduced online scheduling solu-
tions that can be deployed in a real-time edge environ-
ment [8]. Nevertheless, current online scheduling solu-
tions ignore some system constraints, such as network link 

capacity, and are also tested for tasks with deadlines much 
more relaxed compared to 5G specifications. Moreover, 
no research was directed towards designing the resource 
distribution across edge nodes in the network. All works 
assume the available resources arbitrary without consid-
ering the consequences of having these resources on the 
system cost and energy consumption. Increasing the num-
ber of resources in a system can help satisfy the QoS of 
more tasks but will increase the initial system cost and the 
energy consumption of the MEC layer. In order to satisfy 
the goal of energy minimization in next-generation net-
works, the resource design optimization problem should 
not be ignored. This paper introduces an online sched-
uling algorithm in a cooperative edge environment. The 
scheduling algorithm considers network link constraints 
as well as computation resource constraints and task QoS 
constraints. The paper also introduces a resource design 
optimization algorithm that can operate on different net-
work traffic models These algorithms aim to a) maximize 
the system availability while maintaining a reasonable 
quality of service (QoS) satisfaction rate for all tasks. b) 
minimize the total system cost. c) decrease the average 
waiting time of tasks.

The rest of the paper is organized as follows. Section 2 
discusses the previous work done on task scheduling. 
Section 3 introduces the system architecture on which the 
scheduling algorithm is based. In Section 5, the details 
of the cooperative scheduling algorithm are explained. 
Section 4 formulates the resource optimization problem 
and explains how particle swarm optimization was used 
to solve this problem. In Section 6, the cooperative sched-
uling algorithm is implemented and compared to other 
scheduling techniques. Finally, we conclude and discuss 
future research directions in Section 7.

2 � Literature Survey

This section presents alternative orchestrator designs dis-
covered in literature and previous studies on task schedul-
ing. Additionally, we also discuss the benefits and chal-
lenges associated with various approaches.

2.1 � Orchestrator Architecture

The orchestrator is the system that allocates and schedules 
the resources and tasks. In many cases, the orchestrator 
can be used as a standalone system, or its functionality 
can be distributed among edge nodes. Both centralized and 
decentralized approaches were described in the literature.
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2.1.1 � Decentralized Orchestration

A decentralized approach for orchestration was presented 
in [9] to mitigate the single point of failure problem found 
in centralized systems. The disadvantage of decentraliza-
tion is overloading the MEC servers due to the additional 
orchestration function and reducing the system security by 
sharing more data amongst edge nodes. The system also 
needs additional links between the edge nodes to facilitate 
data exchange. Blockchain technology was suggested by 
Tuli et al. [10] to reduce the security risk associated with 
decentralization, however no solutions were suggested for 
data exchange overheads. To avoid using a massive number 
of control and reduce security vulnerabilities, a centralized 
orchestration approach can be adopted instead.

2.1.2 � Centralized Orchestration

Fadahunsi and Maheswaran [11] suggested a centralized 
resource management system placed in the cloud for opti-
mizing the load balance across edge nodes. The disadvan-
tage of placing the orchestration function at the cloud is the 
latency introduced by transmitting each task arriving to the 
cloud and waiting for the allocation response. Alternatively, 
the orchestration function can be placed at an edge cluster 
controller as proposed in [12, 13], and [14]. The system uses 
clusters close to the edge nodes to reduce the latency com-
pared to cloud orchestration since the cluster controller is 
geographically near the edge nodes. Our work uses an edge 
cluster orchestration similar to [12, 13], and [14] to reduce 
the orchestration latency. The main challenge with employ-
ing an orchestration layer in a centralized manner is intro-
ducing a single point of failure yo the system. This could 
be resolved using a cloud controller that assigns one of the 
edge nodes as the cluster head and provides it with the most 
current state of the previous cluster head in case of failure.

2.2 � Resource Allocation and Task Scheduling 
Algorithms

Many efforts have been made to develop and realize efficient 
resource allocation and scheduling algorithms. Each algo-
rithm aims to meet the quality of service (QoS) requirements 
of the tasks in the system. Furthermore, these algorithms 
may also seek to optimize additional aspects of the system, 
such as response time, energy consumption, utilization rate, 
and monetary cost.

2.2.1 � Offline Task Allocation Algorithms

Chen et al. [15] used a concave-convex procedure (CCCP) 
based algorithm to choose the device that minimizes the 
energy consumed constrained by the maximum acceptable 

delay, minimum SINR, computing capacity, and energy. 
Zhang et al. [16] use an iterative search algorithm that com-
bines interior penalty function with D.C. programming 
(IPDC) to minimize the weighted sum of both latency and 
power consumption. To reduce the number of parameters used 
in optimization, the problem was divided into four subprob-
lems. First, the algorithm allocates the optimum CPU cycle 
frequency of the mobile device that optimizes the energy-time 
tradeoff in the local computation case. Second, the channel 
that minimizes the interference is allocated for the request-
ing device. Third, the optimum transmission power is cho-
sen. Finally, the offloading device that minimizes the weighted 
cost function is chosen. The disadvantage of the two previous 
methods is that devices burden the orchestrator with their local 
scheduling and more information needs to be collected from 
each connected device. Wang et al. [17] suggested calculat-
ing the cost based on future requests rather than consider-
ing just the current state of the system. The goal is to choose 
an assignment that minimizes the delay cost of the current 
request and future requests within a defined look-ahead win-
dow constrained by the resource capacity. Bahreini et al. [18] 
proposed a solution for resource allocation in edge-cloud envi-
ronments that uses an auction-based technique. Users request 
several resources from the different VM types available in the 
system. The value gained by a user is affected by the request 
importance and the allocation decision. The resource allo-
cation problem formulated aims to maximize the total value 
gained by all users and solved using a proposed linear program 
based approximation technique and a greedy technique. The 
proposed techniques showed near-optimum performance at 
a much lower execution time. Huang et al. [19] suggested a 
heuristic for allocating virtual machines (VMs) on physical 
machines in a cloud environment, which closely resembles 
allocating tasks on edge resources. Their heuristic aims to 
decrease the energy consumption in the system while increas-
ing the CPU utilization rates. The heuristic successfully bal-
anced energy consumption, CPU utilization, and service-level 
agreement violations compared to other algorithms.

Wang et al. [14] used a deep reinforcement learning 
(DRL) resource allocation scheme that aims to balance 
allocated resources and minimize the average service 
time. Resource balancing is achieved by minimizing the 
variance in loads on network resources and computational 
resources. They built a deep Q network, where states rep-
resent incoming requests. Actions represent the resource 
assignment given to the requests and rewards depending 
on the average service time and resource balancing of the 
chosen action. Zhao et al. [20] used a multi-agent DRL 
technique based on double-Q strategy and dueling archi-
tecture to solve the joint problem of user association and 
resource allocation.

Although offline task allocation algorithms found in lit-
erature consider various system constraints, however these 
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algorithms assume that all tasks arrive together and opti-
mized in one go. This assumption does not hold in a real-
time environment where tasks arrive asynchronously. There-
fore, an online scheduling technique is needed to solve the 
scheduling problem for real-time systems.

2.2.2 � Online Scheduling Algorithms

Lin et al. [21] presented Petrel, an application aware dis-
tributed scheduling technique for edge nodes that aims to 
provide load balancing and improve the system performance. 
The algorithm serves tasks on each node in a first come first 
serve manner. To decrease the latency, the algorithm checks 
if the edge node has idle virtual machines (VMs) to assign 
the task to. If the edge node has no idle VMs, then the algo-
rithm chooses two random neighbour nodes and selects the 
node with the lower load as a candidate node. According to 
the application type, the scheduling policy is determined. 
For latency-sensitive applications, a greedy approach is taken 
where the task is assigned to either the local edge or the 
candidate neighbour edge according to which has an earlier 
expected finish time. For latency-tolerant tasks, a best effort 
approach is taken where the task is assigned to the candidate 
neighbour if it has idle VMs otherwise the scheduling of 
the task is delayed within the latency bound to be scheduled 
later. Results showed that their proposed approach increased 
the average task speedup and the edge node throughput com-
pared to other scheduling techniques. Unlike our work, the 
effect of network link constraints was not taken into consid-
eration while assigning the tasks. The authors also stated that 
the cloud acts only as a backup for task execution and did not 
exploit the added advantage of scheduling tasks on the cloud.

Chunlin et al. [22] used a scheduling algorithm that aims 
to improve the utilization of resources and minimize the 
response latency. First, they classify the tasks arriving and 
resources available in each edge cluster. When assigned to 
a cluster, the tasks are placed in the queue corresponding 
to their type and are scheduled in a first in, first out fashion 
within the chosen cluster. Next, they use a neural network to 
predict the expected task execution time for each task type 
on each edge cluster. Using genetic algorithms, the tasks are 
assigned to an edge cluster or the cloud, where the deadline 
is not exceeded. Thus, the latency of all tasks and resource 
utilization is optimized in the system. Although the utilization 
and execution time are improved, the QoS satisfaction rates 
are relatively low for tasks with short deadlines. They also 
considers a non-cooperative scenario only and do not explore 
the advantages of sharing resources between different edge 
nodes. In contrast, our work explores a cooperative edge sce-
nario and provides a balance in QoS satisfaction rates between 
tasks with short deadlines and tasks with long deadlines. 
Xiang et al. [23] suggested a Lyapunov optimization frame-
work to minimize the average response time of requests at a 

reasonable cost in an edge-cloud environment. The optimiza-
tion problem is solved at each time slot to decide where the 
tasks found in the current time slot should be allocated. Their 
algorithm showed a good balance between response time and 
monetary cost. Ma et al. [24] used a centralized orchestrator to 
decide which queue should a task be admitted to in a coopera-
tive edge-cloud setting. The task scheduling decision aimed 
to minimize the average task response time while keeping the 
cost of cloud resources used within budget. The decision is 
also constrained by the stability of the edge and cloud queues. 
A Lyapunov optimization framework is used to transform the 
problem into subproblems solved at each time slot. A water 
filling-based algorithm is used to solve the scheduling sub-
problem dynamically at each time slot. The water-filling based 
dynamic task scheduling algorithm achieved near-optimum 
results in much less time than optimal solving techniques. 
In both [23] and [24] the deadline of tasks are not taken into 
consideration, making it hard to assess the QoS offered by this 
algorithm. Our proposed algorithm considers the deadlines of 
tasks while allocating the appropriate resources to ensure QoS 
satisfaction of different services.

Adhikari et al. [25] proposed a scheduling algorithm 
dependent on multilevel feedback queues. Arriving tasks are 
assigned a priority according to their deadline and resource 
requirement. Tasks are then placed in the queue correspond-
ing to their priority. Tasks in the highest priority queue are 
served first, followed by those in the lower priorities. Tasks 
are served within each queue on a first-come, first-serve 
basis and are assigned to the first device to fulfill its require-
ments. Tasks at lower priority queues are raised to a higher 
priority level after a given time to avoid starvation. Results 
showed the effectiveness of this method. However, the effect 
of network bandwidth and receiving a large number of tasks 
was not explored. The model proposed in this paper accounts 
for the network bandwidth constraints and the system was 
tested for a larger scale of users compared to [25].

2.3 � Mobility Management

Bao et al. [26] suggested a handover protocol for tasks in an 
edge network. When a connection is redirected to another 
edge node, the old edge node forwards all processed tasks to 
the new node. If the old edge node receives a request before 
the handover is completed, the old node processes the task 
and sends the final result to the new node. When the user re-
requests the tasks from the new edge node, the data is sent to 
the user without further processing. The protocol did not sup-
port the migration of unprocessed tasks to avoid unnecessary 
communication overhead in false handover alarms. Ouyang 
et al. [12] used a system where different edge nodes support 
different services. They discuss a method to decide the migra-
tion of services during user mobility. They try to minimize the 
communication and computing delays for mobile users while 
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keeping the long-term total cost of service migrations below 
a certain threshold. The optimization algorithm decides which 
server a task should be assigned and if a service should be 
transferred to each server. Zhu et al. [27] proposed a network 
selection scheme for mobile users using multi-attribute deci-
sion theory and the fuzzy logic theory. The network selection 
decision is made based on the user’s requirement for QoS, the 
cost of network association, and the network’s load.

3 � System Model and Constraints

This section introduces the proposed system model and the 
constraints that rule the task scheduling problem. The key 
notations used in the system and their descriptions are sum-
marized in Table 1.

3.1 � System Model

We consider a hierarchical system with four layers (end 
users, base stations (BS) equipped with CPUs, an orches-
trator, and the cloud). Figure 1 illustrates the architecture 
of the hierarchical system used. The end user layer con-
sists of N users, each of whom is associated with the BS 
with the most robust signal strength. Due to the limitation 
of computation resources in the end user layer, tasks are 
offloaded by users to their associated BS in the BS layer. 
The BS layer consists of M base stations, each BS sched-
ules the received tasks individually on its available com-
putation resources. Tasks that fail to be scheduled by the 

BS are sent to the orchestrator layer for global scheduling. 
An orchestrator is connected to all base stations in the BS 
layer in a tree topology. The orchestrator is also connected 
to the cloud layer, which is assumed to provide unlimited 
computation resources that can be used for task execution. 
Tasks are categorized into service types which reflect the 
priority and requirements of the task. Task categorization 
could be done using techniques such as that proposed in 
[28]. The orchestrator schedules a task to a neighbour BS 
with free computational resources or to the cloud according 
to the task deadlines, service type and the network condi-
tions. Figure 2 illustrates the service-based system used 
and shows the interactions between the system entities and 
the order of scheduling events. The system operates in a 
discrete-time framework, with requests being planned at 
the beginning of each time slot. The system updates user-
BS associations every crucial cycle, which consists of m 
time slots to capture user mobility. It is assumed that each 
user would only send one service request at a time. The 
user is free to request a new service once a request has 
been fulfilled or blocked. A task is assumed to be non-
preemptive and to occupy only one CPU at a time similar to 
[29], but it may hold the CPU for more than one time slot.

3.2 � System Constraints

A base station i has a set number of CPUs (CPUi), rep-
resenting the number of concurrent tasks that the BS can 
perform each time slot rather than the number of cores 
or servers employed. The total of available and occupied 
CPUs at every time slot in BSi should be equal to CPUi. 
The link between a BS and the orchestrator has a limited 
capacity of CBS. The entire amount of incoming and out-
going traffic on the base station link should less than CBS. 
The amount of traffic that can be offloaded to the cloud is 
limited by the capacity link between the orchestrator and 
the cloud. The capacity of the cloud link is equal to Ccloud.

A task j is defined with maximum allowed waiting time 
( twait
j

 ), a required throughput (Cj), a priority, and a CPU 
serving time ( tservingj ). The serving time tservingj is assumed 
to be the same in all CPUs whether located at base sta-
tions or at the cloud. Therefore, the processing time is not 
considered during task delay minimization. The task 
delay is calculated as the sum of queuing time ( Tqueuej ) and 
communication delay ( Tcommj

 ). The communication delay 
of a task j at BS i can be calculated as follows:

(1)

Tcommj
=

⎧
⎪⎨⎪⎩

0 if scheduled at BS i

2 ∗ (Tpropk + Tpropi) if offloaded to BS k ≠ i

2 ∗ (Tpropi + Tpropcloud ) if offloaded to cloud

Table 1   Notations used in system

Notation Definition

M Number of base station in the system
N Number of users in the system
Ccloud Link capacity between orchestrator and cloud
CBS Link capacity between orchestrator and base station
Lcloud Length of cable between orchestrator and cloud
LBS Length of cable between orchestrator and base station
CPUi Number of CPUs on base station i
Cj Throughput required by task j
tservingj CPU holding time needed by task j
twait
j

 Maximum waiting time allowed for task j
Tpropi Propagation delay from base station i to orchestrator
Tpropcloud Propagation delay from orchestrator to cloud
Tcommj

 Communication delay of task j
Tqueuej Queuing time taken by task j
tslot Duration of one time slot
m Number of time slots in a crucial cycle
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where Tpropi is the propagation delay on link from BS i to the 
orchestrator. Tpropcloud is the propagation delay on link from 
orchestrator to the cloud. Since both links are assumed to 
be fiber optic links, the propagation delay per kilometer is 
approximately 5 μ s [30]. Thus, propagation delay on any 
link in ms can be calculated as L × 5 × 0.001 where L is the 
length of the link in km. The task delay is constrained by the 
maximum allowed waiting time, which can be formulated as:

A task that fails the constraint in Eq. 2 gets blocked.

3.3 � Mobility Management

Due to the mobility of users, a task can be placed inside 
the queue of one base station while the user moves to the 
coverage area of another base station. All user data is 
passed to the target base station during handover, includ-
ing task results and unscheduled tasks. If a task j was 
scheduled before the user moves from BS i to BS m, the 

(2)Tqueuej + Tcommj
≤ twait

j

results will be forwarded to the orchestrator to route it 
to the base station where the user is located. The expres-
sion for communication delay stays the same as defined 
in Eq. 1 if task j was offloaded to BS m, but in case the 
task was offloaded elsewhere the communication delay 
will be:

The change in communication delay might cause a task fail-
ure if the actual delay was higher than the expected delay. 
However, the probability that a handover is performed near 
a task deadline is low since the deadline is in order of mil-
liseconds, so even a high-speed vehicle is unlikely to cover 
enough distance that causes a handover.

(3)Tcommj
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Tpropi + Tpropm if scheduled at

BS i

Tpropi + 2 ∗ Tpropk + Tpropm if offloaded to

BS k ≠ i

Tpropi + 2 ∗ Tpropcloud + Tpropm if offloaded to

cloud

Fig. 1   Generic network archi-
tecture and topology
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4 � Resource Optimization

The distribution of CPUs across base stations is one factor 
that impacts the number of blocked requests in a network. 
Works in literature either distribute CPUs randomly while 
ignoring task blocking rates or assign a high number of 
CPUs to provide a non-blocking system. However, ignor-
ing the task blocking rate can cause the user experience 
to drop and using a high number of CPUs increases the 
system’s cost and energy consumption. Therefore, both 
aspects should be considered while designing the CPU 
distribution. Since there is no reference method to obtain 
CPU distribution considering both the blocking rate and 
the system cost, we proposed to model the CPU distribu-
tion as an optimization problem. Particle swarm optimiza-
tion was a fast, practical solution to find the optimum CPU 
distribution instead of the impractical exhaustive search 
method.

The amount of resources necessary to provide accept-
able blocking rates might be used to evaluate scheduling 

algorithms as well. An efficient algorithm should use 
fewer resources to provide the desired level of service 
availability.

4.1 � Optimization Problem

The amount of resources needed in the system can be mod-
eled as an optimization problem. The optimization problem 
aims to minimize the number of CPUs installed per BS (R) 
and have an acceptable blocking rate for incoming requests. 
The optimization problem can be formalized as:

where pblocking is the blocking probability of each service in 
the system under the current number of CPUs, and thblocking 
is a defined blocking threshold for each service. If the block-
ing probability exceeds the threshold, the availability of the 
service will fall below the required QoS. The key terms used 
in describing and solving the optimization problem are sum-
marized in Table 2.

(4)min(R)subject to: pblocking < thblocking

Fig. 2   Case example of services-based segmentation
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4.2 � Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based 
stochastic optimization technique first proposed in 1995 by 
Kenndy and Eberhart [31], inspired by the social behav-
iour of bird flocking or fish schooling. The basic idea of 
the PSO is to simulate the hunting behaviour of a swarm 
of birds looking for a food source. The PSO considers 
each bird as a particle, and the food source as the solution 
of an optimization problem [32]. In PSO, the potential 

solutions are proposed by the different particles. Two main 
values indicate each particle; its position and its velocity. 
Initially, all the positions and velocities of the particles 
are initialized randomly. Furthermore. all particles have 
fitness values obtained from the evaluation of the optimi-
zation problem. The particles explore the searching space 
of the optimization problem, hopefully, to find the optimal 
solution. Each particle updates its information based on 
two main position values, the own best position (pbest) 
and the global best position (gbest). Moreover, each par-
ticle keeps updating its position and velocity by following 
its own best solution until the current iteration and the best 
solution found by the whole swarm. Figure 3 illustrates the 
basic format for each iteration. The algorithm finishes it 
task after it satisfies the termination conditions.

In a D dimensional search space, the position and veloc-
ity of particle i are represented as xi = [xi1,… , xiD]

T  and 
vi = [vi1,… , viD]

T  , respectively. The best position previ-
ously reached by the particle is referred to as the particle’s 
local best and is denoted by xbest

i
 . The best position among 

all particles is called the global best and is denoted by B. 
At each iteration, the position and velocity of particles are 
updated using the following equation [33]:

where ω, c1 and c2 are constants, and r1 and r2 are random 
numbers uniformly distributed in the interval [0,1]. PSO was 
chosen for its robustness, quick convergence [34] and easy 
implementation [35].

In this problem, a particle represents the CPU distribu-
tion among base stations. Since the number of CPUs has to 
be within the positive range of numbers, the boundary mode 

(5)
vi+1 = �.vi + c1r1

(
xbest
i

− xi
)
+ c2r2(B − xi)

xi+1 = xi + vi+1

Table 2   Notations used in optimization

Notation Definition

pblocking Blocking probability for each service
thblocking Blocking threshold for each service
R CPUs per base station
Rmax Maximum allowed number of CPUs per base station
nmin Minimum number of active users per base station
nmax Maximum number of active users per base station
w1 Cost weight of one CPU per base station
w2 Cost weight of exceeding the blocking threshold by one 

service
I Number of simulation iterations
xi Position of particle i
vi Velocity of particle i
xbest
i

 Local best position of particle i
B Global best position in the swarm
ω Particles’ inertia weight
c1 Cognitive weight parameter
c2 Social weight parameter
IPSO Number of particle swarm iterations
nparticles Number of particles used in the swarm

Fig. 3   Basic PSO algorithm 
flowchart
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proposed in [36] can be used to keep the position of the 
particle between an upper boundary u and lower boundary 
l. The following check is applied after each update for each 
element xid in the position vector of particle i:

According to Eq. 4, the objective function should mini-
mize the number of CPUs while having a blocking prob-
ability below the determined threshold. The cost of CPUs is 
represented as w1R where R is the average number of CPUs 
per BS, and w1 is the cost of one CPU. In order to include 
the cost of blocking, the number of services with block-
ing probability higher the threshold are counted and mul-
tiplied by w2. w2 represents the cost of having one service 
with a high blocking probability. The values of w1 and w2 
are chosen such that w2 > w1Rmax . This condition gives a 
higher priority to finding a solution that fulfills the condition 
pblocking < thblocking for all services rather than focusing on 
CPU minimization.

The outcome of PSO is the minimum number of CPUs 
per BS needed to achieve acceptable blocking rates for the 
system under study. Algorithm 1 shows the steps of the 
PSO algorithm done to get R.

(6)xid =

⎧
⎪⎨⎪⎩

l if xid < l

u if xid > u

xid o.w

4.3 � Optimization with Grouping

The PSO output in Algorithm 1 assumes an equal traffic 
load across all base stations, and therefore, the number 
of CPUs per BS is the same. In a real-life scenario, 
base stations within the same system may have unbal-
anced traffic loads and may need a different number of 
CPUs to cope with their load. In order to calculate the 
number of CPUs needed by each BS, the system can be 
divided into many subsystems. Each subsystem groups 
base stations that have similar traffic loads. Algorithm 1 
runs for each subsystem independently. The total num-
ber of users in a subsystem is a percentage of the total 
number of users in the system N. For a system with 
G subsystems, this percentage should be estimated 
and given as an array � = [�1,… , �G] . The number of 
users in group g can be calculated as N × β[g]. The 
upper and lower boundaries of users in each of the G 
subsystems are represented as nmax = [nmax1

,… , nmaxG
] 

and nmin = [nmin1
,… , nminG

] respectively. The number of 
base stations in each subsystem is also given as an array 
M = [M1,… ,MG] . Algorithm 2 shows the steps to obtain 
the number of CPUs needed by each group of base sta-
tions within the same subsystem.

1452 Mobile Networks and Applications  (2022) 27:1444–1460

1 3



5 � Cooperative Scheduling Algorithm

A task j arrives at BS i is placed in a priority queue which 
sorts requests according to their priority number. If two 
requests are of the same priority, then the tasks are placed 
in a first-come, first-serve manner. Priority queues are 
implemented using binary heaps instead of sorted arrays to 
decrease the complexity of insertion from O(n) to O(log n) . 
At the beginning of the time slot, each base station dequeues 
all requests from the queue and schedules them on the avail-
able local CPUs. If requests in the queue exceed the num-
ber of available CPUs, the remaining requests are sent for 
scheduling at the orchestrator. A BS periodically updates 
the orchestrator with the number of available CPUs and link 
capacity available at each time slot. A request is blocked if 
its deadline was exceeded while waiting for resources or 
during propagation. Algorithm 3 shows the scheduling part 
done by the BS. Requests sent to the orchestrator are also 
placed in a priority queue similar to that found on the base 
stations. Requests are assigned to the device which will give 
the least delay time. Therefore, the orchestrator first attempts 
to schedule a request on a neighboring base station and then 
the cloud. If the request cannot be scheduled in the current 
time slot, it is placed in the queue to be scheduled in the next 
time slot. Algorithm 4 shows the global scheduling algo-
rithm that runs on the orchestrator.

In both local and global scheduling steps, the priority of 
a service depends on both the allowed waiting time for the 
task ( twait

j
 ) and the throughput required by the task (Cj). A 

higher priority is given to tasks with smaller twait
j

 . If two 
tasks have the same twait

j
 , the task with a smaller Cj is given 

a higher priority. If two requests have the same twait
j

 and Cj, 
then the task that has the closest deadline is assigned with 
higher priority.

5.1 � Complexity Analysis

The time complexity of Algorithms 3 and 4 are discussed 
below.

5.1.1 � BS Scheduling

The complexity of line 1 is O(n), assuming the length of the 
task queue is n. Lines 2 − 7 are O(1) each. The complexity 
of line 8 is O(log n) because priority queues are implemented 
using binary heaps. The complexity of Algorithm 3 is hence 
O(n log(n)).

1453Mobile Networks and Applications  (2022) 27:1444–1460

1 3



5.1.2 � Orchestrator Scheduling

The complexity of line 1 is O(k), where k is assumed to be 
the length of the orchestrator queue. Both lines 2 and 3 are 
O(1). Line 4 is O(M), where M is the number of base sta-
tions connected to the orchestrator. Each line between 5 and 
11 is O(1) as each needs a constant execution time. Finally, 
line 12 is O(log(n)) as line 8 in Algorithm 3. Therefore, the 
complexity of Algorithm 4 is O(kM + k log(n)).

6 � Simulation Results and Discussions

In this section, we perform a simulation to evaluate the per-
formance of the proposed scheduling algorithms under dif-
ferent system conditions.

Table 3   Simulation parameters

Parameter Value Parameter Value

M 20 Lcloud 200 km
LBS 20 km tslot 2.5 ms
m 20  Rmax 175
nmin 5  nmax 100
w1 1 w2 200
I 1500 ω 0.9
c1 1.49 c2 1.49
IPSO 200 nparticles 200

Table 4   Service types used

Service # Wait Time(ms) Throughput(Mbps) Holding 
Time(ms)

1 2.5 10 2.5
2 2.5 100 25
3 25 10 2.5
4 25 100 25

6.1 � Simulation Setup

Simulations use an architecture with 20 base stations, 
where each base station is linked to the orchestrator with 
a fiber link of LBS = 20 km cable, and the orchestrator is 
linked to the cloud with a fiber link of Lcloud = 200 km 
cable. The slot duration tslot is determined as the great-
est common divisor of holding times of all services. 
The crucial cycle is set as the maximum time a task can 
be present in the system. The number of time slots per 
crucial cycle m can be calculated as crucial cycle time 
divided by tslot. The PSO algorithm is implemented with 
java based on the pseudocode in Algorithm 1. The posi-
tion and velocity vectors are modified to take integer 
values only. The particle positions were initialized using 
a discrete uniform distribution that follows the bounding 
range of CPUs. The velocity vector for all particles is 
initialized by 0. By running various PSO simulations, 
best results were achieved with 200 particle, 200 PSO 
iterations, c1 = c2 = 1.49 and ω = 0.9. The bounding 
range for the number of CPUs was set to [0,175]. The 
value of Rmax in the bounding range was also obtained 
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through simulation. The values of w1 and w2 were set 
to 1 and 200 respectively in order to follow the con-
dition w2 > w1Rmax discussed in Section 4. Algorithm 1 
runs using each scheduling algorithm to get R needed 
by each algorithm. The scheduling algorithm runs for 
1500 simulation iteration before calculating the blocking 
probability for each service. Simulation parameters are 
summarized in Table 3.

We assume that all requests in the system fall under one 
of four types of services. Each service type has a differ-
ent combination of allowed waiting time and throughput. 
Table 4 describes the waiting time allowed and through-
put needed by each service. These services are inspired by 
some services described by the 3GPP standards [37, 38]. 
The 3GPP specifications defined the services applications 
are fully described with Enhanced mobile broadband 
(eMBB), Ultra-reliable and low latency communications 
(URLLC) and Massive machine-type communications 
(mMTC). Based on these classifications, we listed the 
services into four categories [39]. Service 1 represents 
services characterized by having a low required waiting 
time and low required throughput. High voltage electric-
ity distribution and V2X messaging for advanced driving 
are examples of service 1, as they require 3 ms maximum 
packet delay and maximum user experienced data rate 
of 10 Mbps. Service 2 is based on low latency enhanced 
Mobile Broadband applications and augmented reality, 
requiring low latency and high user experienced through-
put rates (about 100 Mbps). Monitoring applications (e.g., 
health monitoring) require low data rates (around 1 Mbps) 
and a high end-to-end latency (around 50 ms), which is 
captured by service 3 requirements. Real-time gaming is 
an example of service 4 where it requires 30 ms maximum 
packet delay and high data rates. Live streaming can also 
be categorized under service 4, but it has a more relaxed 
maximum packet delay (80 ms).

Users are distributed on base stations using a discrete uni-
form distribution within the range [nmin,nmax], such that the 
total number of users in the system is equal to N. The schedul-
ing algorithms were tested under four different traffic loads N 
= [500,1000,1500,2000]. To generate traffic at each time slot, 
a service number is given to each free user. The service num-
ber is drawn from a discrete uniform distribution in the range 
[0,4], where 0 means that the user does not have a request in 
the current time slot and numbers from 1 to 4 represent the 
service type requested by the user.

Two different combinations of CBS and Ccloud were used 
in the simulation. CBS was chosen based on CPRI options 2 
and 3 [40]. Table 5 shows the values of CBS and Ccloud in each 
setting.

6.2 � Scheduling Algorithms

The simulation is applied to five scheduling algorithms to 
compare their efficiencies. The baseline is the non-coopera-
tive scheduling (NCS) technique. Three algorithms are based 
on the algorithm described in Section 5, namely cooperative 
scheduling (CS), earliest deadline first scheduling (EDFS), and 
shortest job first scheduling (SJFS). CS is the implementation 
of the technique described in Algorithms 3 and 4. EDFS and 
SJFS are variants of CS that use a different priority system. 
The last algorithm is the cooperative online scheduling algo-
rithm (Petrel) proposed in [41].

6.2.1 � Non‑Cooperative Scheduling (NCS)

Non-cooperative scheduling is based on an architecture where 
the orchestrator is only used for routing and does not partici-
pate in the scheduling process. Requests arriving at base sta-
tions are placed in a priority queue that uses the same prior-
ity system as the one described in Section 5 for cooperative 
scheduling. Each BS assigns tasks on its local CPUs till no 
more CPUs are available. The remaining tasks are scheduled 
to the cloud. If the outgoing link from the BS to the orchestra-
tor or the outgoing link to the cloud cannot carry the task, the 
task waits till the next slot to be scheduled. If a task exceeds 
the maximum allowed waiting time, then the task is blocked.

6.2.2 � Earliest Deadline First Scheduling (EDFS)

The earliest deadline first scheduling (EDFS) is a dynamic 
scheduling algorithm for real-time systems introduced in [41], 
that assigns higher priority to tasks with the nearer deadline. 
In our simulation, EDFS uses Algorithms 3 and 4 but assigns 
priorities to tasks according to their deadlines despite the ser-
vice type of the task. In case two tasks have the same deadline, 
the system will go back to the priority system used in Section 5 
for cooperative scheduling.

6.2.3 � Shortest Job First Scheduling (SJFS)

Shortest job first scheduling (SJFS) is a scheduling algo-
rithm that prioritizes tasks with low CPU times to minimize 
their average waiting time [42]. SJFS also uses Algorithms 3 

Table 5   Link capacity settings

Setting Number CBS (Gbps) Ccloud (Gbps)

1 1 10
2 2.5 40
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and 4 but assigns priorities to tasks according to their CPU 
holding times. In case of two tasks have the same holding 
time, the task with the nearer deadline is given a higher 
priority.

6.2.4 � Petrel

Petrel is our implementation of the cooperative algorithm 
described in [21]. To accommodate the algorithm to our sys-
tem a few modifications were done to the greedy and the best 
effort policies. In the greedy assignment policy, we assigned 
the task to the node with the lower expected finish time as 
stated but if the links are occupied, the task waits more time 
slots till the links are freed before occupying the CPU. In the 
best effort policy, the task is assigned to the neighbour node 
if the neighbour has idle CPUs and the links have enough 
capacity. The method to calculate the expected finish time 
after delay was not clearly stated, therefore we delay tasks 
instead if there are more than one CPU that will be free 
before the maximum waiting time of the task is reached. 
We also assign the task to the local node if the result of task 
delaying is not guaranteed.

6.3 � Simulation Results

To check that the PSO algorithm described by Algorithm 1 
works correctly, we run a sensibility test on the effect of 
varying the blocking threshold thblocking. thblocking sets a 
minimum threshold for QoS satisfaction rate that each 
service should achieve. When thblocking is lowered, more 
computation resources will be needed to reach the required 
QoS satisfaction rate. To check that the algorithm results 
conform to the theoretical analysis, we run the PSO algo-
rithm using three different blocking threshold (thblocking = 
[10− 2,0.5 ∗ 10− 2,0.25 ∗ 10− 2]) on a system with link capaci-
ties described in setting 1. The simulations were done at 
different traffic loads. Figure 4 shows the number of CPUs 
needed at each thblocking for different traffic loads. The results 
show that more CPUs are needed at lower thblocking values as 
stated by the theoretical analysis.

Since the scheduling algorithm proposed runs at the start 
of each time slot, the running time needs to be shorter than 
the duration of the time. The algorithm running time should 
also be as negligible as possible to minimize the delay expe-
rienced by tasks. We measured the average running time of 
the scheduling algorithm at a high traffic density (100 users 
per BS) using setting 1. The average running time obtained 
was 0.058044 ms, which is a negligible time compared to 
the time slot duration of 2.5 ms.

To compare the five algorithms discussed, we run PSO 
using each algorithm under different traffic loads. The 
blocking threshold (thblocking) was set to 10− 2 for all algo-
rithms to guarantee a fair comparison. We compare the 

algorithms under link capacities described by setting 1 and 
setting 2. Theoretically, the system should need less num-
ber of CPUs per BS at setting 2 because more tasks could 
be offloaded to the cloud since both CBS and Ccloud were 
increased. Figures 5 and 6 show the number of CPUs per 
BS (R) needed at different traffic loads obtained by running 
PSO algorithm using setting 1 and setting 2 respectively. 
Comparing the two figures, it can be observed that the 
values of R are indeed less in setting 2 as stated by the 
theoretical analysis, which serves as another sensibility 
test for varying CBS and Ccloud. The value of R reflects the 
system cost when using a given algorithm since installing 
more CPUs increases the system’s initial cost and run-
ning cost. Therefore, the lower the value of R the more 
the algorithm is successful at minimizing the system cost.

Results in Figs. 5 and 6 show that CS have the lowest 
values of R compared to the other four algorithms making 

Fig. 4   CPUs needed at different blocking thresholds

Fig. 5   Simulation results for setting 1

1456 Mobile Networks and Applications  (2022) 27:1444–1460

1 3



it the best at minimizing the system cost. The CS priority 
system combines the advantages of both shortest job first 
and earliest deadline first priority systems. CS gives a high 
priority to tasks with low allowed waiting time, so they have 
a higher probability of being scheduled before their dead-
lines. Also, it schedules tasks with low holding time first, 
which frees up the CPU and links for other tasks. It can be 
observed that Petrel has the worst performance between the 
cooperative techniques because it does not offload any traffic 
to the cloud, therefore it needs more computing resources 
at the edge. As the traffic load increases the performance of 
Petrel degrades more making it worse than the non-cooper-
ative technique. At high traffic loads links are more occu-
pied, exposing the negative effects of ignoring link capaci-
ties while assigning tasks. NCS has a higher CPU demand 
compared to CS, EDFS and SJFS because it does not benefit 
from idle CPUs found on neighbouring nodes. The results 
also show that the performance of SFJS degrades as the 
number of users in the system increases. The performance 
of SFJS does not scale well because higher priority is given 
to short tasks while long tasks are kept waiting regardless 
of their deadline. As the number of users increases, more 
tasks of types 2 and 4 are kept waiting till they are blocked. 
Therefore, more CPUs are needed to maintain the task 
blocking probabilities below the threshold.

We further compare the performance of the five algo-
rithms at minimizing the average waiting time of tasks and 
maximizing the system availability. This comparison shows 
how well each algorithm balances the trade-off between per-
formance and user experience. For a fair comparison, we 
get the results for each algorithm using an identical system 
setup. For all algorithms link capacities followed setting 1, R 
was set to 68 and N was set to 2000. The value of R was cho-
sen as the smallest value shown in the results in Fig. 5 at N 
= 2000. Table 6 shows the average waiting time of tasks and 

the average blocking percentage (percentage of failed tasks) 
obtained by simulating each algorithm. NCS has the lowest 
average waiting time between all five algorithms, however 
the average blocking percentage indicates that almost half 
of the tasks are blocked. Therefore, NCS fails to balance 
between the two goals of minimizing the average waiting 
time of tasks and maximizing the system availability. Coop-
erative techniques show a better balance between the two 
goals. CS achieves the lowest average waiting time and aver-
age blocking percentage compared to the other cooperative 
techniques, showing that CS is the best at balancing between 
the performance and user experience.

To test the tolerance of CS algorithm to mobility, we 
chose a percentage of tasks at the end of each crucial cycle 
randomly and simulated their handover. The tasks can either 
be unscheduled tasks or the final result of a task that need 
to be moved from one base station to another. If the task 
deadline cannot tolerate the communication delay of mov-
ing the task or the results, then the task is blocked. It was 
found that our system can handle a handover rate of 5% of 
the total number of users without exceeding thblocking and 
without needing additional CPUs.

The CS algorithm is further tested under a system with 
unbalanced traffic load. We divided the system into four 
groups of base stations with similar traffic load. Each group 
contains 5 base stations. The percentage of traffic allo-
cated for each group of base stations is assumed to be β 
= [0.1,0.2,0.3,0.4]. The maximum number of users per BS 
(nmax[g]) for a group g is calculated as N ∗ β[g] ∗ 0.21. 
The minimum number of users per BS for the first group 
(nmin[0]) is set to 1. For other groups nmin[g] = nmax[g − 1]. 
Algorithm 2 ran using N = [500,1000,1500,2000] and the 
system links follow setting 1. Each subsystem runs with a 
cloud link proportional to its traffic (i.e cloud link capacity 
is equal to 10 × β[g] Gbps). The number of CPUs needed 
by each group at different N is shown in Fig. 7. Another 
uniform distribution run was done to compare the output of 
the grouping method with the uniform distribution method. 
For uniform traffic load, we assume M = 20, nmin = 5, and 
nmax = 0.055 × N, where N takes the same values as the 
groups. The number of CPUs needed by each group versus 

Fig. 6   Simulation results for setting 2

Table 6   Average delay and blocking(%) per algorithm

Algorithm Average Waiting(ms) Average 
Blocking 
%

NCS 0.14 47.65
CS 2.37 0.4
SJFS 2.47 0.66
EDFS 2.67 0.52
Petrel [21] 3.53 6.35
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the uniform distribution at different N is shown in Fig. 7. 
Results show that groups 1 and 2 are below the uniform 
CPU distribution, while groups 3 and 4 always exceed the 
number of CPUs per BS needed in a uniformly distributed 
system. This can be explained by investigating the average 
number of users per BS. In the uniform distribution case, the 
average number of users per BS is N/20 = 0.05N. For the 
groups, the average number of users per BS is N ∗ β/5, which 
corresponds to 0.02N, 0.04N, 0.06N, and 0.08N for groups 
1,2,3, and 4 respectively. It can be seen that groups 1 and 
2 have average users per BS less than the uniform case and 
therefore need less number of CPUs per BS, while groups 3 
and 4 have more average users per BS than the uniform case, 
so they needed more CPUs per BS.

Comparing the output of each group with the uniform 
distribution output gives no indication on the performance 
of these algorithms versus one another. Alternatively, we 

compared the total number of CPUs resulting from each 
algorithm to give an indication about the total cost of the 
systems designed using each algorithm. The total number 
of CPUs needed by each algorithm at different N is shown 
in Fig. 8. The results show that Algorithms 1 and 2 give 
systems with similar costs. Therefore, both algorithms have 
the same performance, but should be used according to the 
use case. If a system has a uniform or unknown load, Algo-
rithm 1 can be used to get the number of needed CPUs per 
BS. If the system has a known unbalanced traffic, Algo-
rithm 2 should be used to get the optimum CPU distribution.

7 � Conclusion and Future Work

In this paper, we introduced a scheduling algorithm for a 
four-tier architecture system with a centralized orchestrator. 
Our system used a two-level cooperative technique of sched-
uling. Tasks are first scheduled on their local base stations 
until no resources are available. Unscheduled tasks are sent 
to the orchestrator, assigning the task to a neighbour base 
station or the cloud. The scheduling algorithm relies on pri-
ority queues, prioritizing tasks according to their allowed 
waiting times and their required throughputs in this order. 
The system was assessed based on the number of resources 
needed to reach the required service availability and the 
average waiting time of tasks. We suggested using a particle 
swarm optimization-based algorithm to determine the mini-
mum resources needed by a given system to give acceptable 
performance. Results showed that the cooperative technique 
outperformed the non-cooperative counterpart. Moreover, 
the introduced scheduling algorithm minimizes the system 
cost and the average task waiting time compared to the short-
est job first, earliest deadline first, and Petrel cooperative 
scheduling algorithms. We also suggested a variant of the 
particle swarm optimization-based algorithm to determine 
the ideal distribution of resources across base stations in 
case of an unbalanced traffic model.

In the future, a system that considers which services 
should be deployed on the MEC server and where to offload 
requests based on the cost should be explored. The current 
work considers a system where all services are deployed 
on the MEC servers. If the number of services required by 
the users is large, then the MEC server cannot support all 
services simultaneously due to its limited storage. Moreo-
ver, the specifications and offloading cost were considered 
to be similar for all MEC servers. However, offloading to 
a MEC server owned by another provider can be of higher 
cost than the local MEC server, and different servers can 
have different processing times for the same task. There-
fore, the orchestrator might need a different scheduling 
approach to minimise offloading cost and average task delay. 
Another aspect to consider is the system utilization when 

Fig. 7   Distribution of CPUs per Group

Fig. 8   Total CPUs in Grouped versus Uniform CPU Distribution
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the system is under-loaded. In under-loaded systems, a por-
tion of the computing resources remains idle and consumes 
energy unnecessarily. A mechanism to utilize idle CPUs and 
decrease the power consumption of the system should be 
investigated.
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