
https://doi.org/10.1007/s11036-022-01974-y

An Optimized Collaborative Scheduling Algorithm for Prioritized Tasks
with Shared Resources in Mobile‑Edge and Cloud Computing Systems

Amira A. Amer1,2 · Ihab E. Talkhan2 · Reem Ahmed3 · Tawfik Ismail1,4 

Accepted: 13 December 2021
© The Author(s) 2022

Abstract
Mobile edge computing (MEC) is a promising technology that has the potential to meet the latency requirements of next-
generation mobile networks. Since MEC servers have limited resources, an orchestrator utilizes a scheduling algorithm to
decide where and when each task should execute so that the quality of service (QoS) of each task is achieved. The scheduling
algorithm should use the least possible resources required to meet the service demands. In this paper, we develop a two-
level cooperative scheduling algorithm with a centralized orchestrator layer. The first scheduling level is used to schedule
tasks locally on MEC servers. In contrast, the second level resides at the orchestrator and assigns tasks to a neighboring
base station or the cloud. The tasks serve in accordance with their priority, which is determined by the latency and required
throughput. We also present a resource optimization algorithm for determining resource distribution in the system in order
to ensure satisfactory service availability at the minimum cost. The resource optimization algorithm contains two variations
that can be employed depending on the traffic model. One variant is used when the traffic is uniformly distributed, and the
other is used when the traffic load is unbalanced among base stations. Numerical results show that the cooperative model
of task scheduling outperforms the non-cooperative model. Furthermore, the results show that the suggested scheduling
algorithm performs better than other well-known scheduling algorithms, such as shortest job first scheduling and earliest
deadline first scheduling.

Keywords  Mobile edge computing · Scheduling algorithms · Quality of service · Power consumption · Optimization ·
Cloud computing

1  Introduction

Internet of things (IoT) applications have grown rapidly
in recent years, and as digital transformation accelerates,
more smart devices are projected to be connected to next-
generation networks. Furthermore, the growth of IoT devices
has resulted in significant advances in industrial processes,
transforming how people interact with and govern the physi-
cal environment [1] . However, these smart devices have
computational and energy limitations, preventing them from
executing computationally intensive operations required by
current applications such as augmented reality (AR) and
artificial intelligence (AI) [2]. Therefore, IoT devices send
the data collected to processing centers via the internet [3].
Cloud computing offers powerful servers that can be used for
offloading IoT tasks. However, due to the extreme remote-
ness of cloud servers, cloud computing has high latency
responses, which might not fulfill the requirements of
upcoming low latency applications [4]. Furthermore, due to

 *	 Tawfik Ismail
	 tismail@cu.edu.eg

	 Amira A. Amer
	 amira.Amer@nu.edu.eg

	 Ihab E. Talkhan
	 italkhan@aucegypt.edu

	 Reem Ahmed
	 reem@sci.cu.edu.eg

1	 Wireless Intelligent Networks Center (WINC), Nile
University, Giza 12677, Egypt

2	 Department of Computer Engineering, Faculty
of Engineering, Cairo University, Giza 12613, Egypt

3	 Department of Mathematics, Faculty of Science, Cairo
University, Giza 12613, Egypt

4	 National Institute of Laser Enhanced Sciences, Cairo
University, Giza 12613, Egypt

/ Published online: 20 April 2022

Mobile Networks and Applications (2022) 27:1444–1460

1 3

http://orcid.org/0000-0002-0109-5545
http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-022-01974-y&domain=pdf

bandwidth limitations, the high traffic load predicted in next-
generation network applications cannot be fully offloaded
to the cloud.

Mobile edge computing (MEC) is seen as a feasible alter-
native approach in order to solve the challenges that cloud
computing might have. MEC moves computing and stor-
age resources from a centralized cloud to the edge of the
network, where they are closer to end devices. Because of
its closeness to the task origin, the MEC can significantly
reduce latency, making it the key to offering delay-sensi-
tive services. Serving tasks at edge devices also reduces
the amount of data transferred through the network back-
bone, decreasing the probability of network congestion and
preserving data privacy. However, the MEC resources are
much more constrained than cloud resources, which limits
the number of tasks that could be served on the MEC layer.

A hybrid edge-cloud architecture can take advantage of
low latency in MEC and powerful cloud resources. MEC
will complement the cloud by serving low latency tasks
while the cloud serves the rest tasks. For example, the MEC
can aggregate and preprocess data before sending it to the
cloud servers, which decreases the workload and traffic des-
tined to the cloud [5]. Furthermore, the hybrid architecture
can be used to optimize the number of completed tasks in the
system which meet the requirements [6]. The performance
of the overall system could be further enhanced by shar-
ing resources between edge nodes within the same cluster
which increases the utilization and capacity of the system.
To enable this hybrid architecture, the ITU recommends
having a system responsible for orchestrating resources in
the network [7].

The orchestrator manages the computation resources and
network resources by scheduling when and where each task
should be served. The orchestrator considers the computa-
tional requirements, latency, and task priority when building
a scheduling strategy. The scheduling strategy should focus
on maximizing the number of completed tasks and minimiz-
ing the average waiting time of tasks, the system’s energy
consumption, and the monetary cost. Another issue facing
the task scheduling problem is user mobility. For example,
a user placing a request to one MEC server might move
away from this server, making the estimated communication
delay change. A policy for handling tasks during handover
is needed so that user mobility does not affect the system’s
reliability.

Various works were directed to solve the task sched-
uling problem in edge computing, however a large por-
tion of these works considered task scheduling only in
an offline setting making them impractical for real-time
systems. Recent works introduced online scheduling solu-
tions that can be deployed in a real-time edge environ-
ment [8]. Nevertheless, current online scheduling solu-
tions ignore some system constraints, such as network link

capacity, and are also tested for tasks with deadlines much
more relaxed compared to 5G specifications. Moreover,
no research was directed towards designing the resource
distribution across edge nodes in the network. All works
assume the available resources arbitrary without consid-
ering the consequences of having these resources on the
system cost and energy consumption. Increasing the num-
ber of resources in a system can help satisfy the QoS of
more tasks but will increase the initial system cost and the
energy consumption of the MEC layer. In order to satisfy
the goal of energy minimization in next-generation net-
works, the resource design optimization problem should
not be ignored. This paper introduces an online sched-
uling algorithm in a cooperative edge environment. The
scheduling algorithm considers network link constraints
as well as computation resource constraints and task QoS
constraints. The paper also introduces a resource design
optimization algorithm that can operate on different net-
work traffic models These algorithms aim to a) maximize
the system availability while maintaining a reasonable
quality of service (QoS) satisfaction rate for all tasks. b)
minimize the total system cost. c) decrease the average
waiting time of tasks.

The rest of the paper is organized as follows. Section 2
discusses the previous work done on task scheduling.
Section 3 introduces the system architecture on which the
scheduling algorithm is based. In Section 5, the details
of the cooperative scheduling algorithm are explained.
Section 4 formulates the resource optimization problem
and explains how particle swarm optimization was used
to solve this problem. In Section 6, the cooperative sched-
uling algorithm is implemented and compared to other
scheduling techniques. Finally, we conclude and discuss
future research directions in Section 7.

2 � Literature Survey

This section presents alternative orchestrator designs dis-
covered in literature and previous studies on task schedul-
ing. Additionally, we also discuss the benefits and chal-
lenges associated with various approaches.

2.1 � Orchestrator Architecture

The orchestrator is the system that allocates and schedules
the resources and tasks. In many cases, the orchestrator
can be used as a standalone system, or its functionality
can be distributed among edge nodes. Both centralized and
decentralized approaches were described in the literature.

1445Mobile Networks and Applications (2022) 27:1444–1460

1 3

2.1.1 � Decentralized Orchestration

A decentralized approach for orchestration was presented
in [9] to mitigate the single point of failure problem found
in centralized systems. The disadvantage of decentraliza-
tion is overloading the MEC servers due to the additional
orchestration function and reducing the system security by
sharing more data amongst edge nodes. The system also
needs additional links between the edge nodes to facilitate
data exchange. Blockchain technology was suggested by
Tuli et al. [10] to reduce the security risk associated with
decentralization, however no solutions were suggested for
data exchange overheads. To avoid using a massive number
of control and reduce security vulnerabilities, a centralized
orchestration approach can be adopted instead.

2.1.2 � Centralized Orchestration

Fadahunsi and Maheswaran [11] suggested a centralized
resource management system placed in the cloud for opti-
mizing the load balance across edge nodes. The disadvan-
tage of placing the orchestration function at the cloud is the
latency introduced by transmitting each task arriving to the
cloud and waiting for the allocation response. Alternatively,
the orchestration function can be placed at an edge cluster
controller as proposed in [12, 13], and [14]. The system uses
clusters close to the edge nodes to reduce the latency com-
pared to cloud orchestration since the cluster controller is
geographically near the edge nodes. Our work uses an edge
cluster orchestration similar to [12, 13], and [14] to reduce
the orchestration latency. The main challenge with employ-
ing an orchestration layer in a centralized manner is intro-
ducing a single point of failure yo the system. This could
be resolved using a cloud controller that assigns one of the
edge nodes as the cluster head and provides it with the most
current state of the previous cluster head in case of failure.

2.2 � Resource Allocation and Task Scheduling
Algorithms

Many efforts have been made to develop and realize efficient
resource allocation and scheduling algorithms. Each algo-
rithm aims to meet the quality of service (QoS) requirements
of the tasks in the system. Furthermore, these algorithms
may also seek to optimize additional aspects of the system,
such as response time, energy consumption, utilization rate,
and monetary cost.

2.2.1 � Offline Task Allocation Algorithms

Chen et al. [15] used a concave-convex procedure (CCCP)
based algorithm to choose the device that minimizes the
energy consumed constrained by the maximum acceptable

delay, minimum SINR, computing capacity, and energy.
Zhang et al. [16] use an iterative search algorithm that com-
bines interior penalty function with D.C. programming
(IPDC) to minimize the weighted sum of both latency and
power consumption. To reduce the number of parameters used
in optimization, the problem was divided into four subprob-
lems. First, the algorithm allocates the optimum CPU cycle
frequency of the mobile device that optimizes the energy-time
tradeoff in the local computation case. Second, the channel
that minimizes the interference is allocated for the request-
ing device. Third, the optimum transmission power is cho-
sen. Finally, the offloading device that minimizes the weighted
cost function is chosen. The disadvantage of the two previous
methods is that devices burden the orchestrator with their local
scheduling and more information needs to be collected from
each connected device. Wang et al. [17] suggested calculat-
ing the cost based on future requests rather than consider-
ing just the current state of the system. The goal is to choose
an assignment that minimizes the delay cost of the current
request and future requests within a defined look-ahead win-
dow constrained by the resource capacity. Bahreini et al. [18]
proposed a solution for resource allocation in edge-cloud envi-
ronments that uses an auction-based technique. Users request
several resources from the different VM types available in the
system. The value gained by a user is affected by the request
importance and the allocation decision. The resource allo-
cation problem formulated aims to maximize the total value
gained by all users and solved using a proposed linear program
based approximation technique and a greedy technique. The
proposed techniques showed near-optimum performance at
a much lower execution time. Huang et al. [19] suggested a
heuristic for allocating virtual machines (VMs) on physical
machines in a cloud environment, which closely resembles
allocating tasks on edge resources. Their heuristic aims to
decrease the energy consumption in the system while increas-
ing the CPU utilization rates. The heuristic successfully bal-
anced energy consumption, CPU utilization, and service-level
agreement violations compared to other algorithms.

Wang et al. [14] used a deep reinforcement learning
(DRL) resource allocation scheme that aims to balance
allocated resources and minimize the average service
time. Resource balancing is achieved by minimizing the
variance in loads on network resources and computational
resources. They built a deep Q network, where states rep-
resent incoming requests. Actions represent the resource
assignment given to the requests and rewards depending
on the average service time and resource balancing of the
chosen action. Zhao et al. [20] used a multi-agent DRL
technique based on double-Q strategy and dueling archi-
tecture to solve the joint problem of user association and
resource allocation.

Although offline task allocation algorithms found in lit-
erature consider various system constraints, however these

1446 Mobile Networks and Applications (2022) 27:1444–1460

1 3

algorithms assume that all tasks arrive together and opti-
mized in one go. This assumption does not hold in a real-
time environment where tasks arrive asynchronously. There-
fore, an online scheduling technique is needed to solve the
scheduling problem for real-time systems.

2.2.2 � Online Scheduling Algorithms

Lin et al. [21] presented Petrel, an application aware dis-
tributed scheduling technique for edge nodes that aims to
provide load balancing and improve the system performance.
The algorithm serves tasks on each node in a first come first
serve manner. To decrease the latency, the algorithm checks
if the edge node has idle virtual machines (VMs) to assign
the task to. If the edge node has no idle VMs, then the algo-
rithm chooses two random neighbour nodes and selects the
node with the lower load as a candidate node. According to
the application type, the scheduling policy is determined.
For latency-sensitive applications, a greedy approach is taken
where the task is assigned to either the local edge or the
candidate neighbour edge according to which has an earlier
expected finish time. For latency-tolerant tasks, a best effort
approach is taken where the task is assigned to the candidate
neighbour if it has idle VMs otherwise the scheduling of
the task is delayed within the latency bound to be scheduled
later. Results showed that their proposed approach increased
the average task speedup and the edge node throughput com-
pared to other scheduling techniques. Unlike our work, the
effect of network link constraints was not taken into consid-
eration while assigning the tasks. The authors also stated that
the cloud acts only as a backup for task execution and did not
exploit the added advantage of scheduling tasks on the cloud.

Chunlin et al. [22] used a scheduling algorithm that aims
to improve the utilization of resources and minimize the
response latency. First, they classify the tasks arriving and
resources available in each edge cluster. When assigned to
a cluster, the tasks are placed in the queue corresponding
to their type and are scheduled in a first in, first out fashion
within the chosen cluster. Next, they use a neural network to
predict the expected task execution time for each task type
on each edge cluster. Using genetic algorithms, the tasks are
assigned to an edge cluster or the cloud, where the deadline
is not exceeded. Thus, the latency of all tasks and resource
utilization is optimized in the system. Although the utilization
and execution time are improved, the QoS satisfaction rates
are relatively low for tasks with short deadlines. They also
considers a non-cooperative scenario only and do not explore
the advantages of sharing resources between different edge
nodes. In contrast, our work explores a cooperative edge sce-
nario and provides a balance in QoS satisfaction rates between
tasks with short deadlines and tasks with long deadlines.
Xiang et al. [23] suggested a Lyapunov optimization frame-
work to minimize the average response time of requests at a

reasonable cost in an edge-cloud environment. The optimiza-
tion problem is solved at each time slot to decide where the
tasks found in the current time slot should be allocated. Their
algorithm showed a good balance between response time and
monetary cost. Ma et al. [24] used a centralized orchestrator to
decide which queue should a task be admitted to in a coopera-
tive edge-cloud setting. The task scheduling decision aimed
to minimize the average task response time while keeping the
cost of cloud resources used within budget. The decision is
also constrained by the stability of the edge and cloud queues.
A Lyapunov optimization framework is used to transform the
problem into subproblems solved at each time slot. A water
filling-based algorithm is used to solve the scheduling sub-
problem dynamically at each time slot. The water-filling based
dynamic task scheduling algorithm achieved near-optimum
results in much less time than optimal solving techniques.
In both [23] and [24] the deadline of tasks are not taken into
consideration, making it hard to assess the QoS offered by this
algorithm. Our proposed algorithm considers the deadlines of
tasks while allocating the appropriate resources to ensure QoS
satisfaction of different services.

Adhikari et al. [25] proposed a scheduling algorithm
dependent on multilevel feedback queues. Arriving tasks are
assigned a priority according to their deadline and resource
requirement. Tasks are then placed in the queue correspond-
ing to their priority. Tasks in the highest priority queue are
served first, followed by those in the lower priorities. Tasks
are served within each queue on a first-come, first-serve
basis and are assigned to the first device to fulfill its require-
ments. Tasks at lower priority queues are raised to a higher
priority level after a given time to avoid starvation. Results
showed the effectiveness of this method. However, the effect
of network bandwidth and receiving a large number of tasks
was not explored. The model proposed in this paper accounts
for the network bandwidth constraints and the system was
tested for a larger scale of users compared to [25].

2.3 � Mobility Management

Bao et al. [26] suggested a handover protocol for tasks in an
edge network. When a connection is redirected to another
edge node, the old edge node forwards all processed tasks to
the new node. If the old edge node receives a request before
the handover is completed, the old node processes the task
and sends the final result to the new node. When the user re-
requests the tasks from the new edge node, the data is sent to
the user without further processing. The protocol did not sup-
port the migration of unprocessed tasks to avoid unnecessary
communication overhead in false handover alarms. Ouyang
et al. [12] used a system where different edge nodes support
different services. They discuss a method to decide the migra-
tion of services during user mobility. They try to minimize the
communication and computing delays for mobile users while

1447Mobile Networks and Applications (2022) 27:1444–1460

1 3

keeping the long-term total cost of service migrations below
a certain threshold. The optimization algorithm decides which
server a task should be assigned and if a service should be
transferred to each server. Zhu et al. [27] proposed a network
selection scheme for mobile users using multi-attribute deci-
sion theory and the fuzzy logic theory. The network selection
decision is made based on the user’s requirement for QoS, the
cost of network association, and the network’s load.

3 � System Model and Constraints

This section introduces the proposed system model and the
constraints that rule the task scheduling problem. The key
notations used in the system and their descriptions are sum-
marized in Table 1.

3.1 � System Model

We consider a hierarchical system with four layers (end
users, base stations (BS) equipped with CPUs, an orches-
trator, and the cloud). Figure 1 illustrates the architecture
of the hierarchical system used. The end user layer con-
sists of N users, each of whom is associated with the BS
with the most robust signal strength. Due to the limitation
of computation resources in the end user layer, tasks are
offloaded by users to their associated BS in the BS layer.
The BS layer consists of M base stations, each BS sched-
ules the received tasks individually on its available com-
putation resources. Tasks that fail to be scheduled by the

BS are sent to the orchestrator layer for global scheduling.
An orchestrator is connected to all base stations in the BS
layer in a tree topology. The orchestrator is also connected
to the cloud layer, which is assumed to provide unlimited
computation resources that can be used for task execution.
Tasks are categorized into service types which reflect the
priority and requirements of the task. Task categorization
could be done using techniques such as that proposed in
[28]. The orchestrator schedules a task to a neighbour BS
with free computational resources or to the cloud according
to the task deadlines, service type and the network condi-
tions. Figure 2 illustrates the service-based system used
and shows the interactions between the system entities and
the order of scheduling events. The system operates in a
discrete-time framework, with requests being planned at
the beginning of each time slot. The system updates user-
BS associations every crucial cycle, which consists of m
time slots to capture user mobility. It is assumed that each
user would only send one service request at a time. The
user is free to request a new service once a request has
been fulfilled or blocked. A task is assumed to be non-
preemptive and to occupy only one CPU at a time similar to
[29], but it may hold the CPU for more than one time slot.

3.2 � System Constraints

A base station i has a set number of CPUs (CPUi), rep-
resenting the number of concurrent tasks that the BS can
perform each time slot rather than the number of cores
or servers employed. The total of available and occupied
CPUs at every time slot in BSi should be equal to CPUi.
The link between a BS and the orchestrator has a limited
capacity of CBS. The entire amount of incoming and out-
going traffic on the base station link should less than CBS.
The amount of traffic that can be offloaded to the cloud is
limited by the capacity link between the orchestrator and
the cloud. The capacity of the cloud link is equal to Ccloud.

A task j is defined with maximum allowed waiting time
( twait
j

 ), a required throughput (Cj), a priority, and a CPU
serving time ( tservingj ). The serving time tservingj is assumed
to be the same in all CPUs whether located at base sta-
tions or at the cloud. Therefore, the processing time is not
considered during task delay minimization. The task
delay is calculated as the sum of queuing time ( Tqueuej ) and
communication delay ( Tcommj

 ). The communication delay
of a task j at BS i can be calculated as follows:

(1)

Tcommj
=

⎧
⎪⎨⎪⎩

0 if scheduled at BS i

2 ∗ (Tpropk + Tpropi) if offloaded to BS k ≠ i

2 ∗ (Tpropi + Tpropcloud) if offloaded to cloud

Table 1   Notations used in system

Notation Definition

M Number of base station in the system
N Number of users in the system
Ccloud Link capacity between orchestrator and cloud
CBS Link capacity between orchestrator and base station
Lcloud Length of cable between orchestrator and cloud
LBS Length of cable between orchestrator and base station
CPUi Number of CPUs on base station i
Cj Throughput required by task j
tservingj CPU holding time needed by task j
twait
j

 Maximum waiting time allowed for task j
Tpropi Propagation delay from base station i to orchestrator
Tpropcloud Propagation delay from orchestrator to cloud
Tcommj

 Communication delay of task j
Tqueuej Queuing time taken by task j
tslot Duration of one time slot
m Number of time slots in a crucial cycle

1448 Mobile Networks and Applications (2022) 27:1444–1460

1 3

where Tpropi is the propagation delay on link from BS i to the
orchestrator. Tpropcloud is the propagation delay on link from
orchestrator to the cloud. Since both links are assumed to
be fiber optic links, the propagation delay per kilometer is
approximately 5 μ s [30]. Thus, propagation delay on any
link in ms can be calculated as L × 5 × 0.001 where L is the
length of the link in km. The task delay is constrained by the
maximum allowed waiting time, which can be formulated as:

A task that fails the constraint in Eq. 2 gets blocked.

3.3 � Mobility Management

Due to the mobility of users, a task can be placed inside
the queue of one base station while the user moves to the
coverage area of another base station. All user data is
passed to the target base station during handover, includ-
ing task results and unscheduled tasks. If a task j was
scheduled before the user moves from BS i to BS m, the

(2)Tqueuej + Tcommj
≤ twait

j

results will be forwarded to the orchestrator to route it
to the base station where the user is located. The expres-
sion for communication delay stays the same as defined
in Eq. 1 if task j was offloaded to BS m, but in case the
task was offloaded elsewhere the communication delay
will be:

The change in communication delay might cause a task fail-
ure if the actual delay was higher than the expected delay.
However, the probability that a handover is performed near
a task deadline is low since the deadline is in order of mil-
liseconds, so even a high-speed vehicle is unlikely to cover
enough distance that causes a handover.

(3)Tcommj
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Tpropi + Tpropm if scheduled at

BS i

Tpropi + 2 ∗ Tpropk + Tpropm if offloaded to

BS k ≠ i

Tpropi + 2 ∗ Tpropcloud + Tpropm if offloaded to

cloud

Fig. 1   Generic network archi-
tecture and topology

1449Mobile Networks and Applications (2022) 27:1444–1460

1 3

4 � Resource Optimization

The distribution of CPUs across base stations is one factor
that impacts the number of blocked requests in a network.
Works in literature either distribute CPUs randomly while
ignoring task blocking rates or assign a high number of
CPUs to provide a non-blocking system. However, ignor-
ing the task blocking rate can cause the user experience
to drop and using a high number of CPUs increases the
system’s cost and energy consumption. Therefore, both
aspects should be considered while designing the CPU
distribution. Since there is no reference method to obtain
CPU distribution considering both the blocking rate and
the system cost, we proposed to model the CPU distribu-
tion as an optimization problem. Particle swarm optimiza-
tion was a fast, practical solution to find the optimum CPU
distribution instead of the impractical exhaustive search
method.

The amount of resources necessary to provide accept-
able blocking rates might be used to evaluate scheduling

algorithms as well. An efficient algorithm should use
fewer resources to provide the desired level of service
availability.

4.1 � Optimization Problem

The amount of resources needed in the system can be mod-
eled as an optimization problem. The optimization problem
aims to minimize the number of CPUs installed per BS (R)
and have an acceptable blocking rate for incoming requests.
The optimization problem can be formalized as:

where pblocking is the blocking probability of each service in
the system under the current number of CPUs, and thblocking
is a defined blocking threshold for each service. If the block-
ing probability exceeds the threshold, the availability of the
service will fall below the required QoS. The key terms used
in describing and solving the optimization problem are sum-
marized in Table 2.

(4)min(R)subject to: pblocking < thblocking

Fig. 2   Case example of services-based segmentation

1450 Mobile Networks and Applications (2022) 27:1444–1460

1 3

4.2 � Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based
stochastic optimization technique first proposed in 1995 by
Kenndy and Eberhart [31], inspired by the social behav-
iour of bird flocking or fish schooling. The basic idea of
the PSO is to simulate the hunting behaviour of a swarm
of birds looking for a food source. The PSO considers
each bird as a particle, and the food source as the solution
of an optimization problem [32]. In PSO, the potential

solutions are proposed by the different particles. Two main
values indicate each particle; its position and its velocity.
Initially, all the positions and velocities of the particles
are initialized randomly. Furthermore. all particles have
fitness values obtained from the evaluation of the optimi-
zation problem. The particles explore the searching space
of the optimization problem, hopefully, to find the optimal
solution. Each particle updates its information based on
two main position values, the own best position (pbest)
and the global best position (gbest). Moreover, each par-
ticle keeps updating its position and velocity by following
its own best solution until the current iteration and the best
solution found by the whole swarm. Figure 3 illustrates the
basic format for each iteration. The algorithm finishes it
task after it satisfies the termination conditions.

In a D dimensional search space, the position and veloc-
ity of particle i are represented as xi = [xi1,… , xiD]

T and
vi = [vi1,… , viD]

T  , respectively. The best position previ-
ously reached by the particle is referred to as the particle’s
local best and is denoted by xbest

i
 . The best position among

all particles is called the global best and is denoted by B.
At each iteration, the position and velocity of particles are
updated using the following equation [33]:

where ω, c1 and c2 are constants, and r1 and r2 are random
numbers uniformly distributed in the interval [0,1]. PSO was
chosen for its robustness, quick convergence [34] and easy
implementation [35].

In this problem, a particle represents the CPU distribu-
tion among base stations. Since the number of CPUs has to
be within the positive range of numbers, the boundary mode

(5)
vi+1 = �.vi + c1r1

(
xbest
i

− xi
)
+ c2r2(B − xi)

xi+1 = xi + vi+1

Table 2   Notations used in optimization

Notation Definition

pblocking Blocking probability for each service
thblocking Blocking threshold for each service
R CPUs per base station
Rmax Maximum allowed number of CPUs per base station
nmin Minimum number of active users per base station
nmax Maximum number of active users per base station
w1 Cost weight of one CPU per base station
w2 Cost weight of exceeding the blocking threshold by one

service
I Number of simulation iterations
xi Position of particle i
vi Velocity of particle i
xbest
i

 Local best position of particle i
B Global best position in the swarm
ω Particles’ inertia weight
c1 Cognitive weight parameter
c2 Social weight parameter
IPSO Number of particle swarm iterations
nparticles Number of particles used in the swarm

Fig. 3   Basic PSO algorithm
flowchart

1451Mobile Networks and Applications (2022) 27:1444–1460

1 3

proposed in [36] can be used to keep the position of the
particle between an upper boundary u and lower boundary
l. The following check is applied after each update for each
element xid in the position vector of particle i:

According to Eq. 4, the objective function should mini-
mize the number of CPUs while having a blocking prob-
ability below the determined threshold. The cost of CPUs is
represented as w1R where R is the average number of CPUs
per BS, and w1 is the cost of one CPU. In order to include
the cost of blocking, the number of services with block-
ing probability higher the threshold are counted and mul-
tiplied by w2. w2 represents the cost of having one service
with a high blocking probability. The values of w1 and w2
are chosen such that w2 > w1Rmax . This condition gives a
higher priority to finding a solution that fulfills the condition
pblocking < thblocking for all services rather than focusing on
CPU minimization.

The outcome of PSO is the minimum number of CPUs
per BS needed to achieve acceptable blocking rates for the
system under study. Algorithm 1 shows the steps of the
PSO algorithm done to get R.

(6)xid =

⎧
⎪⎨⎪⎩

l if xid < l

u if xid > u

xid o.w

4.3 � Optimization with Grouping

The PSO output in Algorithm 1 assumes an equal traffic
load across all base stations, and therefore, the number
of CPUs per BS is the same. In a real-life scenario,
base stations within the same system may have unbal-
anced traffic loads and may need a different number of
CPUs to cope with their load. In order to calculate the
number of CPUs needed by each BS, the system can be
divided into many subsystems. Each subsystem groups
base stations that have similar traffic loads. Algorithm 1
runs for each subsystem independently. The total num-
ber of users in a subsystem is a percentage of the total
number of users in the system N. For a system with
G subsystems, this percentage should be estimated
and given as an array � = [�1,… , �G] . The number of
users in group g can be calculated as N × β[g]. The
upper and lower boundaries of users in each of the G
subsystems are represented as nmax = [nmax1

,… , nmaxG
]

and nmin = [nmin1
,… , nminG

] respectively. The number of
base stations in each subsystem is also given as an array
M = [M1,… ,MG] . Algorithm 2 shows the steps to obtain
the number of CPUs needed by each group of base sta-
tions within the same subsystem.

1452 Mobile Networks and Applications (2022) 27:1444–1460

1 3

5 � Cooperative Scheduling Algorithm

A task j arrives at BS i is placed in a priority queue which
sorts requests according to their priority number. If two
requests are of the same priority, then the tasks are placed
in a first-come, first-serve manner. Priority queues are
implemented using binary heaps instead of sorted arrays to
decrease the complexity of insertion from O(n) to O(log n) .
At the beginning of the time slot, each base station dequeues
all requests from the queue and schedules them on the avail-
able local CPUs. If requests in the queue exceed the num-
ber of available CPUs, the remaining requests are sent for
scheduling at the orchestrator. A BS periodically updates
the orchestrator with the number of available CPUs and link
capacity available at each time slot. A request is blocked if
its deadline was exceeded while waiting for resources or
during propagation. Algorithm 3 shows the scheduling part
done by the BS. Requests sent to the orchestrator are also
placed in a priority queue similar to that found on the base
stations. Requests are assigned to the device which will give
the least delay time. Therefore, the orchestrator first attempts
to schedule a request on a neighboring base station and then
the cloud. If the request cannot be scheduled in the current
time slot, it is placed in the queue to be scheduled in the next
time slot. Algorithm 4 shows the global scheduling algo-
rithm that runs on the orchestrator.

In both local and global scheduling steps, the priority of
a service depends on both the allowed waiting time for the
task ( twait

j
 ) and the throughput required by the task (Cj). A

higher priority is given to tasks with smaller twait
j

 . If two
tasks have the same twait

j
 , the task with a smaller Cj is given

a higher priority. If two requests have the same twait
j

 and Cj,
then the task that has the closest deadline is assigned with
higher priority.

5.1 � Complexity Analysis

The time complexity of Algorithms 3 and 4 are discussed
below.

5.1.1 � BS Scheduling

The complexity of line 1 is O(n), assuming the length of the
task queue is n. Lines 2 − 7 are O(1) each. The complexity
of line 8 is O(log n) because priority queues are implemented
using binary heaps. The complexity of Algorithm 3 is hence
O(n log(n)).

1453Mobile Networks and Applications (2022) 27:1444–1460

1 3

5.1.2 � Orchestrator Scheduling

The complexity of line 1 is O(k), where k is assumed to be
the length of the orchestrator queue. Both lines 2 and 3 are
O(1). Line 4 is O(M), where M is the number of base sta-
tions connected to the orchestrator. Each line between 5 and
11 is O(1) as each needs a constant execution time. Finally,
line 12 is O(log(n)) as line 8 in Algorithm 3. Therefore, the
complexity of Algorithm 4 is O(kM + k log(n)).

6 � Simulation Results and Discussions

In this section, we perform a simulation to evaluate the per-
formance of the proposed scheduling algorithms under dif-
ferent system conditions.

Table 3   Simulation parameters

Parameter Value Parameter Value

M 20 Lcloud 200 km
LBS 20 km tslot 2.5 ms
m 20 Rmax 175
nmin 5 nmax 100
w1 1 w2 200
I 1500 ω 0.9
c1 1.49 c2 1.49
IPSO 200 nparticles 200

Table 4   Service types used

Service # Wait Time(ms) Throughput(Mbps) Holding
Time(ms)

1 2.5 10 2.5
2 2.5 100 25
3 25 10 2.5
4 25 100 25

6.1 � Simulation Setup

Simulations use an architecture with 20 base stations,
where each base station is linked to the orchestrator with
a fiber link of LBS = 20 km cable, and the orchestrator is
linked to the cloud with a fiber link of Lcloud = 200 km
cable. The slot duration tslot is determined as the great-
est common divisor of holding times of all services.
The crucial cycle is set as the maximum time a task can
be present in the system. The number of time slots per
crucial cycle m can be calculated as crucial cycle time
divided by tslot. The PSO algorithm is implemented with
java based on the pseudocode in Algorithm 1. The posi-
tion and velocity vectors are modified to take integer
values only. The particle positions were initialized using
a discrete uniform distribution that follows the bounding
range of CPUs. The velocity vector for all particles is
initialized by 0. By running various PSO simulations,
best results were achieved with 200 particle, 200 PSO
iterations, c1 = c2 = 1.49 and ω = 0.9. The bounding
range for the number of CPUs was set to [0,175]. The
value of Rmax in the bounding range was also obtained

1454 Mobile Networks and Applications (2022) 27:1444–1460

1 3

through simulation. The values of w1 and w2 were set
to 1 and 200 respectively in order to follow the con-
dition w2 > w1Rmax discussed in Section 4. Algorithm 1
runs using each scheduling algorithm to get R needed
by each algorithm. The scheduling algorithm runs for
1500 simulation iteration before calculating the blocking
probability for each service. Simulation parameters are
summarized in Table 3.

We assume that all requests in the system fall under one
of four types of services. Each service type has a differ-
ent combination of allowed waiting time and throughput.
Table 4 describes the waiting time allowed and through-
put needed by each service. These services are inspired by
some services described by the 3GPP standards [37, 38].
The 3GPP specifications defined the services applications
are fully described with Enhanced mobile broadband
(eMBB), Ultra-reliable and low latency communications
(URLLC) and Massive machine-type communications
(mMTC). Based on these classifications, we listed the
services into four categories [39]. Service 1 represents
services characterized by having a low required waiting
time and low required throughput. High voltage electric-
ity distribution and V2X messaging for advanced driving
are examples of service 1, as they require 3 ms maximum
packet delay and maximum user experienced data rate
of 10 Mbps. Service 2 is based on low latency enhanced
Mobile Broadband applications and augmented reality,
requiring low latency and high user experienced through-
put rates (about 100 Mbps). Monitoring applications (e.g.,
health monitoring) require low data rates (around 1 Mbps)
and a high end-to-end latency (around 50 ms), which is
captured by service 3 requirements. Real-time gaming is
an example of service 4 where it requires 30 ms maximum
packet delay and high data rates. Live streaming can also
be categorized under service 4, but it has a more relaxed
maximum packet delay (80 ms).

Users are distributed on base stations using a discrete uni-
form distribution within the range [nmin,nmax], such that the
total number of users in the system is equal to N. The schedul-
ing algorithms were tested under four different traffic loads N
= [500,1000,1500,2000]. To generate traffic at each time slot,
a service number is given to each free user. The service num-
ber is drawn from a discrete uniform distribution in the range
[0,4], where 0 means that the user does not have a request in
the current time slot and numbers from 1 to 4 represent the
service type requested by the user.

Two different combinations of CBS and Ccloud were used
in the simulation. CBS was chosen based on CPRI options 2
and 3 [40]. Table 5 shows the values of CBS and Ccloud in each
setting.

6.2 � Scheduling Algorithms

The simulation is applied to five scheduling algorithms to
compare their efficiencies. The baseline is the non-coopera-
tive scheduling (NCS) technique. Three algorithms are based
on the algorithm described in Section 5, namely cooperative
scheduling (CS), earliest deadline first scheduling (EDFS), and
shortest job first scheduling (SJFS). CS is the implementation
of the technique described in Algorithms 3 and 4. EDFS and
SJFS are variants of CS that use a different priority system.
The last algorithm is the cooperative online scheduling algo-
rithm (Petrel) proposed in [41].

6.2.1 � Non‑Cooperative Scheduling (NCS)

Non-cooperative scheduling is based on an architecture where
the orchestrator is only used for routing and does not partici-
pate in the scheduling process. Requests arriving at base sta-
tions are placed in a priority queue that uses the same prior-
ity system as the one described in Section 5 for cooperative
scheduling. Each BS assigns tasks on its local CPUs till no
more CPUs are available. The remaining tasks are scheduled
to the cloud. If the outgoing link from the BS to the orchestra-
tor or the outgoing link to the cloud cannot carry the task, the
task waits till the next slot to be scheduled. If a task exceeds
the maximum allowed waiting time, then the task is blocked.

6.2.2 � Earliest Deadline First Scheduling (EDFS)

The earliest deadline first scheduling (EDFS) is a dynamic
scheduling algorithm for real-time systems introduced in [41],
that assigns higher priority to tasks with the nearer deadline.
In our simulation, EDFS uses Algorithms 3 and 4 but assigns
priorities to tasks according to their deadlines despite the ser-
vice type of the task. In case two tasks have the same deadline,
the system will go back to the priority system used in Section 5
for cooperative scheduling.

6.2.3 � Shortest Job First Scheduling (SJFS)

Shortest job first scheduling (SJFS) is a scheduling algo-
rithm that prioritizes tasks with low CPU times to minimize
their average waiting time [42]. SJFS also uses Algorithms 3

Table 5   Link capacity settings

Setting Number CBS (Gbps) Ccloud (Gbps)

1 1 10
2 2.5 40

1455Mobile Networks and Applications (2022) 27:1444–1460

1 3

and 4 but assigns priorities to tasks according to their CPU
holding times. In case of two tasks have the same holding
time, the task with the nearer deadline is given a higher
priority.

6.2.4 � Petrel

Petrel is our implementation of the cooperative algorithm
described in [21]. To accommodate the algorithm to our sys-
tem a few modifications were done to the greedy and the best
effort policies. In the greedy assignment policy, we assigned
the task to the node with the lower expected finish time as
stated but if the links are occupied, the task waits more time
slots till the links are freed before occupying the CPU. In the
best effort policy, the task is assigned to the neighbour node
if the neighbour has idle CPUs and the links have enough
capacity. The method to calculate the expected finish time
after delay was not clearly stated, therefore we delay tasks
instead if there are more than one CPU that will be free
before the maximum waiting time of the task is reached.
We also assign the task to the local node if the result of task
delaying is not guaranteed.

6.3 � Simulation Results

To check that the PSO algorithm described by Algorithm 1
works correctly, we run a sensibility test on the effect of
varying the blocking threshold thblocking. thblocking sets a
minimum threshold for QoS satisfaction rate that each
service should achieve. When thblocking is lowered, more
computation resources will be needed to reach the required
QoS satisfaction rate. To check that the algorithm results
conform to the theoretical analysis, we run the PSO algo-
rithm using three different blocking threshold (thblocking =
[10− 2,0.5 ∗ 10− 2,0.25 ∗ 10− 2]) on a system with link capaci-
ties described in setting 1. The simulations were done at
different traffic loads. Figure 4 shows the number of CPUs
needed at each thblocking for different traffic loads. The results
show that more CPUs are needed at lower thblocking values as
stated by the theoretical analysis.

Since the scheduling algorithm proposed runs at the start
of each time slot, the running time needs to be shorter than
the duration of the time. The algorithm running time should
also be as negligible as possible to minimize the delay expe-
rienced by tasks. We measured the average running time of
the scheduling algorithm at a high traffic density (100 users
per BS) using setting 1. The average running time obtained
was 0.058044 ms, which is a negligible time compared to
the time slot duration of 2.5 ms.

To compare the five algorithms discussed, we run PSO
using each algorithm under different traffic loads. The
blocking threshold (thblocking) was set to 10− 2 for all algo-
rithms to guarantee a fair comparison. We compare the

algorithms under link capacities described by setting 1 and
setting 2. Theoretically, the system should need less num-
ber of CPUs per BS at setting 2 because more tasks could
be offloaded to the cloud since both CBS and Ccloud were
increased. Figures 5 and 6 show the number of CPUs per
BS (R) needed at different traffic loads obtained by running
PSO algorithm using setting 1 and setting 2 respectively.
Comparing the two figures, it can be observed that the
values of R are indeed less in setting 2 as stated by the
theoretical analysis, which serves as another sensibility
test for varying CBS and Ccloud. The value of R reflects the
system cost when using a given algorithm since installing
more CPUs increases the system’s initial cost and run-
ning cost. Therefore, the lower the value of R the more
the algorithm is successful at minimizing the system cost.

Results in Figs. 5 and 6 show that CS have the lowest
values of R compared to the other four algorithms making

Fig. 4   CPUs needed at different blocking thresholds

Fig. 5   Simulation results for setting 1

1456 Mobile Networks and Applications (2022) 27:1444–1460

1 3

it the best at minimizing the system cost. The CS priority
system combines the advantages of both shortest job first
and earliest deadline first priority systems. CS gives a high
priority to tasks with low allowed waiting time, so they have
a higher probability of being scheduled before their dead-
lines. Also, it schedules tasks with low holding time first,
which frees up the CPU and links for other tasks. It can be
observed that Petrel has the worst performance between the
cooperative techniques because it does not offload any traffic
to the cloud, therefore it needs more computing resources
at the edge. As the traffic load increases the performance of
Petrel degrades more making it worse than the non-cooper-
ative technique. At high traffic loads links are more occu-
pied, exposing the negative effects of ignoring link capaci-
ties while assigning tasks. NCS has a higher CPU demand
compared to CS, EDFS and SJFS because it does not benefit
from idle CPUs found on neighbouring nodes. The results
also show that the performance of SFJS degrades as the
number of users in the system increases. The performance
of SFJS does not scale well because higher priority is given
to short tasks while long tasks are kept waiting regardless
of their deadline. As the number of users increases, more
tasks of types 2 and 4 are kept waiting till they are blocked.
Therefore, more CPUs are needed to maintain the task
blocking probabilities below the threshold.

We further compare the performance of the five algo-
rithms at minimizing the average waiting time of tasks and
maximizing the system availability. This comparison shows
how well each algorithm balances the trade-off between per-
formance and user experience. For a fair comparison, we
get the results for each algorithm using an identical system
setup. For all algorithms link capacities followed setting 1, R
was set to 68 and N was set to 2000. The value of R was cho-
sen as the smallest value shown in the results in Fig. 5 at N
= 2000. Table 6 shows the average waiting time of tasks and

the average blocking percentage (percentage of failed tasks)
obtained by simulating each algorithm. NCS has the lowest
average waiting time between all five algorithms, however
the average blocking percentage indicates that almost half
of the tasks are blocked. Therefore, NCS fails to balance
between the two goals of minimizing the average waiting
time of tasks and maximizing the system availability. Coop-
erative techniques show a better balance between the two
goals. CS achieves the lowest average waiting time and aver-
age blocking percentage compared to the other cooperative
techniques, showing that CS is the best at balancing between
the performance and user experience.

To test the tolerance of CS algorithm to mobility, we
chose a percentage of tasks at the end of each crucial cycle
randomly and simulated their handover. The tasks can either
be unscheduled tasks or the final result of a task that need
to be moved from one base station to another. If the task
deadline cannot tolerate the communication delay of mov-
ing the task or the results, then the task is blocked. It was
found that our system can handle a handover rate of 5% of
the total number of users without exceeding thblocking and
without needing additional CPUs.

The CS algorithm is further tested under a system with
unbalanced traffic load. We divided the system into four
groups of base stations with similar traffic load. Each group
contains 5 base stations. The percentage of traffic allo-
cated for each group of base stations is assumed to be β
= [0.1,0.2,0.3,0.4]. The maximum number of users per BS
(nmax[g]) for a group g is calculated as N ∗ β[g] ∗ 0.21.
The minimum number of users per BS for the first group
(nmin[0]) is set to 1. For other groups nmin[g] = nmax[g − 1].
Algorithm 2 ran using N = [500,1000,1500,2000] and the
system links follow setting 1. Each subsystem runs with a
cloud link proportional to its traffic (i.e cloud link capacity
is equal to 10 × β[g] Gbps). The number of CPUs needed
by each group at different N is shown in Fig. 7. Another
uniform distribution run was done to compare the output of
the grouping method with the uniform distribution method.
For uniform traffic load, we assume M = 20, nmin = 5, and
nmax = 0.055 × N, where N takes the same values as the
groups. The number of CPUs needed by each group versus

Fig. 6   Simulation results for setting 2

Table 6   Average delay and blocking(%) per algorithm

Algorithm Average Waiting(ms) Average
Blocking
%

NCS 0.14 47.65
CS 2.37 0.4
SJFS 2.47 0.66
EDFS 2.67 0.52
Petrel [21] 3.53 6.35

1457Mobile Networks and Applications (2022) 27:1444–1460

1 3

the uniform distribution at different N is shown in Fig. 7.
Results show that groups 1 and 2 are below the uniform
CPU distribution, while groups 3 and 4 always exceed the
number of CPUs per BS needed in a uniformly distributed
system. This can be explained by investigating the average
number of users per BS. In the uniform distribution case, the
average number of users per BS is N/20 = 0.05N. For the
groups, the average number of users per BS is N ∗ β/5, which
corresponds to 0.02N, 0.04N, 0.06N, and 0.08N for groups
1,2,3, and 4 respectively. It can be seen that groups 1 and
2 have average users per BS less than the uniform case and
therefore need less number of CPUs per BS, while groups 3
and 4 have more average users per BS than the uniform case,
so they needed more CPUs per BS.

Comparing the output of each group with the uniform
distribution output gives no indication on the performance
of these algorithms versus one another. Alternatively, we

compared the total number of CPUs resulting from each
algorithm to give an indication about the total cost of the
systems designed using each algorithm. The total number
of CPUs needed by each algorithm at different N is shown
in Fig. 8. The results show that Algorithms 1 and 2 give
systems with similar costs. Therefore, both algorithms have
the same performance, but should be used according to the
use case. If a system has a uniform or unknown load, Algo-
rithm 1 can be used to get the number of needed CPUs per
BS. If the system has a known unbalanced traffic, Algo-
rithm 2 should be used to get the optimum CPU distribution.

7 � Conclusion and Future Work

In this paper, we introduced a scheduling algorithm for a
four-tier architecture system with a centralized orchestrator.
Our system used a two-level cooperative technique of sched-
uling. Tasks are first scheduled on their local base stations
until no resources are available. Unscheduled tasks are sent
to the orchestrator, assigning the task to a neighbour base
station or the cloud. The scheduling algorithm relies on pri-
ority queues, prioritizing tasks according to their allowed
waiting times and their required throughputs in this order.
The system was assessed based on the number of resources
needed to reach the required service availability and the
average waiting time of tasks. We suggested using a particle
swarm optimization-based algorithm to determine the mini-
mum resources needed by a given system to give acceptable
performance. Results showed that the cooperative technique
outperformed the non-cooperative counterpart. Moreover,
the introduced scheduling algorithm minimizes the system
cost and the average task waiting time compared to the short-
est job first, earliest deadline first, and Petrel cooperative
scheduling algorithms. We also suggested a variant of the
particle swarm optimization-based algorithm to determine
the ideal distribution of resources across base stations in
case of an unbalanced traffic model.

In the future, a system that considers which services
should be deployed on the MEC server and where to offload
requests based on the cost should be explored. The current
work considers a system where all services are deployed
on the MEC servers. If the number of services required by
the users is large, then the MEC server cannot support all
services simultaneously due to its limited storage. Moreo-
ver, the specifications and offloading cost were considered
to be similar for all MEC servers. However, offloading to
a MEC server owned by another provider can be of higher
cost than the local MEC server, and different servers can
have different processing times for the same task. There-
fore, the orchestrator might need a different scheduling
approach to minimise offloading cost and average task delay.
Another aspect to consider is the system utilization when

Fig. 7   Distribution of CPUs per Group

Fig. 8   Total CPUs in Grouped versus Uniform CPU Distribution

1458 Mobile Networks and Applications (2022) 27:1444–1460

1 3

the system is under-loaded. In under-loaded systems, a por-
tion of the computing resources remains idle and consumes
energy unnecessarily. A mechanism to utilize idle CPUs and
decrease the power consumption of the system should be
investigated.

Funding  Open access funding provided by The Science, Technology &
Innovation Funding Authority (STDF) in cooperation with The Egyp-
tian Knowledge Bank (EKB).

Declarations 

We are enclosing herewith a manuscript entitled “An Optimized Col-
laborative Scheduling Algorithm for Prioritized Tasks with Shared
Resources in Mobile-Edge and Cloud Computing Systems” for publi-
cation in Mobile Networks and Applications Journal.
With the submission of this manuscript I would like to undertake that:
∙ All authors of this research paper have directly participated in the
planning, execution, or analysis of this study;
∙ All authors of this paper have read and approved the final version
submitted;
∙ The contents of this manuscript have not been copyrighted or pub-
lished previously;
∙ The contents of this manuscript are not now under consideration for
publication elsewhere;
∙ The contents of this manuscript will not be copyrighted, submit-
ted, or published elsewhere, while acceptance by the Journal is under
consideration;
∙ There are no directly related manuscripts or abstracts, published or
unpublished, by any authors of this paper.

Conflict of Interests  Manuscript title: An Optimized Collabora-
tive Scheduling Algorithm for Prioritized Tasks with Shared Re-
sources in Mobile-Edge and Cloud Computing Systems. The au-
thors whose names are listed immediately below certify that they
have NO affiliations with or involvement in any organization or
entity with any financial interest (such as honor-aria; educational
grants; participation in speakers’ bureaus; membership, employ-
ment, consultancies, stock ownership, or other equity interest;
and expert testimony or patent-licensing arrangements), or non-
financial interest (such as personal or professional relationships,
affiliations, knowledge or beliefs) in the subject matter or materi-
als discussed in this manuscript.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Gao H, Qin X, Barroso RJD, Hussain W, Xu Y, Yin Y (2020)
Collaborative learning-based industrial iot api recommendation

for software-defined devices: The implicit knowledge discovery
perspective. IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, 1–11. https://​doi.​org/​10.​1109/​TETCI.​2020.​
30231​55

	 2.	 Li R, Zhou Z, Chen X, Ling Q (2019) Resource price-aware off-
loading for edge-cloud collaboration: A two-timescale online
control approach. IEEE Transactions on Cloud Computing, 1–1.
https://​doi.​org/​10.​1109/​TCC.​2019.​29379​28

	 3.	 Gao H, Zhang Y, Miao H, Barroso RJD, Yang X (2021) Sdtioa:
Modeling the timed privacy requirements of iot service composi-
tion: A user interaction perspective for automatic transformation
from bpel to timed automata. Mobile Networks and Applications,
1–26

	 4.	 Lakhan A, Ahmad M, Bilal M, Jolfaei A, Mehmood RM (2021)
Mobility aware blockchain enabled offloading and scheduling in
vehicular fog cloud computing. IEEE Transactions on Intelligent
Transportation Systems

	 5.	 Mach P, Becvar Z (2017) Mobile edge computing: A survey on
architecture and computation offloading. IEEE Commun Surv
Tutorials 19(3):1628–1656

	 6.	 Sun H, Yu H, Fan G (2020) Contract-based resource sharing for
time effective task scheduling in fog-cloud environment. IEEE
Trans Netw Serv Manag 17(2):1040–1053. https://​doi.​org/​10.​
1109/​TNSM.​2020.​29778​43

	 7.	 FG-NET2030 (2020) Network 2030 architecture framework.
Technical specification, ITU-T

	 8.	 Lin T, Qiu J, Fu L (2021) Online learning and resource allocation
for user experience improvement in mobile edge clouds. In: ICC
2021 - IEEE international conference on communications. https://​
doi.​org/​10.​1109/​ICC42​927.​2021.​95009​05, pp 1–6

	 9.	 Mahmud R, Srirama SN, Ramamohanarao K, Buyya R (2019)
Quality of experience (qoe)-aware placement of applications
in fog computing environments. J Parallel Distrib Comput
132:190–203

	10.	 Tuli S, Mahmud R, Tuli S, Buyya R (2019) Fogbus: A blockchain-
based lightweight framework for edge and fog computing. J Syst
Softw 154:22–36

	11.	 Fadahunsi O, Maheswaran M (2019) Locality sensitive request
distribution for fog and cloud servers. Serv Oriented Comput Appl
13(2):127–140

	12.	 Ouyang T, Zhou Z, Chen X (2018) Follow me at the edge: Mobil-
ity-aware dynamic service placement for mobile edge computing.
IEEE J Sel Areas Commun 36(10):2333–2345

	13.	 Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P (2017)
Optimized IoT service placement in the fog. Serv Oriented Com-
put Appl 11(4):427–443

	14.	 Wang J, Zhao L, Liu J, Kato N (2019) Smart resource alloca-
tion for mobile edge computing: A deep reinforcement learning
approach. IEEE Transactions on Emerging Topics in Computing

	15.	 Chen X, Cai Y, Li L, Zhao M, Champagne B, Hanzo L (2020)
Energy-efficient resource allocation for latency-sensitive mobile
edge computing. IEEE Trans Veh Technol 69(2):2246–2262.
https://​doi.​org/​10.​1109/​TVT.​2019.​29625​42

	16.	 Zhang J, Hu X, Ning Z, Ngai EC, Zhou L, Wei J, Cheng J, Hu
B (2018) Energy-latency tradeoff for energy-aware offloading
in mobile edge computing networks. IEEE Internet Things J 5
(4):2633–2645. https://​doi.​org/​10.​1109/​JIOT.​2017.​27863​43

	17.	 Wang S, Urgaonkar R, He T, Chan K, Zafer M, Leung KK
(2016) Dynamic service placement for mobile micro-clouds
with predicted future costs. IEEE Trans Parallel Distrib Syst
28(4):1002–1016

	18.	 Bahreini T, Badri H, Grosu D (2022) Mechanisms for resource
allocation and pricing in mobile edge computing systems. IEEE
Trans Parallel Distrib Syst 33(3):667–682. https://​doi.​org/​10.​
1109/​TPDS.​2021.​30997​31

1459Mobile Networks and Applications (2022) 27:1444–1460

1 3

http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.1109/TETCI.2020.3023155
https://doi.org/10.1109/TETCI.2020.3023155
https://doi.org/10.1109/TCC.2019.2937928
https://doi.org/10.1109/TNSM.2020.2977843
https://doi.org/10.1109/TNSM.2020.2977843
https://doi.org/10.1109/ICC42927.2021.9500905
https://doi.org/10.1109/ICC42927.2021.9500905
https://doi.org/10.1109/TVT.2019.2962542
https://doi.org/10.1109/JIOT.2017.2786343
https://doi.org/10.1109/TPDS.2021.3099731
https://doi.org/10.1109/TPDS.2021.3099731

	19.	 Huang Y, Xu H, Gao H, Ma X, Hussain W (2021) Ssur: An
approach to optimizing virtual machine allocation strategy based
on user requirements for cloud data center. IEEE Trans Green
Commun Netw 5(2):670–681. https://​doi.​org/​10.​1109/​TGCN.​
2021.​30673​74

	20.	 Zhao N, Liang Y, Niyato D, Pei Y, Wu M, Jiang Y (2019) Deep
reinforcement learning for user association and resource allocation
in heterogeneous cellular networks. IEEE Trans Wirel Commun
18 (11):5141–5152. https://​doi.​org/​10.​1109/​TWC.​2019.​29334​17

	21.	 Lin L, Li P, Xiong J, Lin M (2018) Distributed and application-
aware task scheduling in edge-clouds. In: 2018 14th interna-
tional conference on mobile ad-hoc and sensor networks (MSN).
IEEE, pp 165–170

	22.	 Chunlin L, Jianhang T, Youlong L (2019) Hybrid cloud adap-
tive scheduling strategy for heterogeneous workloads. J Grid
Comput 17(3):419–446

	23.	 Xiang Z, Deng S, Jiang F, Gao H, Tehari J, Yin J (2020) Com-
puting power allocation and traffic scheduling for edge service
provisioning. In: 2020 IEEE international conference on Web
services (ICWS). https://​doi.​org/​10.​1109/​ICWS4​9710.​2020.​
00058, pp 394–403

	24.	 Ma X, Zhou A, Zhang S, Li Q, Liu AX, Wang S (2021) Dynamic
task scheduling in cloud-assisted mobile edge computing. IEEE
Transactions on Mobile Computing, 1–1. https://​doi.​org/​10.​
1109/​TMC.​2021.​31152​62

	25.	 Adhikari M, Mukherjee M, Srirama SN (2019) Dpto: A deadline
and priority-aware task offloading in fog computing framework
leveraging multilevel feedback queueing. IEEE Internet Things
J 7(7):5773–5782

	26.	 Bao W, Yuan D, Yang Z, Wang S, Li W, Zhou BB, Zomaya
AY (2017) Follow me fog: Toward seamless handover timing
schemes in a fog computing environment. IEEE Commun Mag
55(11):72–78. https://​doi.​org/​10.​1109/​MCOM.​2017.​17003​63

	27.	 Zhu A, Guo S, Liu B, Ma M, Yao J, Su X (2019) Adaptive
multiservice heterogeneous network selection scheme in mobile
edge computing. IEEE Internet Things J 6 (4):6862–6875.
https://​doi.​org/​10.​1109/​JIOT.​2019.​29121​55

	28.	 Yin Y, Cao Z, Xu Y, Gao H, Li R, Mai Z (2020) Qos prediction
for service recommendation with features learning in mobile
edge computing environment. IEEE Trans Cogn Commun Netw
6 (4):1136–1145. https://​doi.​org/​10.​1109/​TCCN.​2020.​30276​81

	29.	 Ma X, Xu H, Gao H, Bian M (2021) Real-time multiple work-
flow scheduling in cloud environments. IEEE Transactions on
Network and Service Management, 1–1. https://​doi.​org/​10.​
1109/​TNSM.​2021.​31253​95

	30.	 Wang X, Ji Y, Zhang J, Bai L, Zhang M (2020) Joint optimiza-
tion of latency and deployment cost over tdm-pon based mec-
enabled cloud radio access networks. IEEE Access 8:681–696.
https://​doi.​org/​10.​1109/​ACCESS.​2019.​29591​19

	31.	 Kennedy J, Eberhart RC (1995) Particle swarm optimization.
In: Perth A (ed) Proc. IEEE international conference on neural
networks, pp 1942–1948

	32.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN’95 - International conference on neural
networks. https://​doi.​org/​10.​1109/​ICNN.​1995.​488968, vol 4, pp
1942–19484

	33.	 Chopard B, Tomassini M (2018) Particle swarm optimiza-
tion. Springer, Cham, pp 97–102. https://​doi.​org/​10.​1007/​
978-3-​319-​93073-2_6

	34.	 Wang D, Tan D, Liu L (2018) Particle swarm optimization algo-
rithm: An overview. Soft Comput 22(2):387–408

	35.	 Sahu A, Panigrahi SK, Pattnaik S (2012) Fast convergence par-
ticle swarm optimization for functions optimization. Procedia
Technol 4:319–324

	36.	 Zhang W-J, Xie X-F, Bi D-C (2004) Handling boundary con-
straints for numerical optimization by particle swarm flying in
periodic search space. In: Proceedings of the 2004 congress on
evolutionary computation (IEEE Cat. No.04TH8753). https://​
doi.​org/​10.​1109/​CEC.​2004.​13311​85, vol 2, pp 2307–23112

	37.	 (2020) 3GPP: System architecture for the 5G System (5GS).
Technical Specification (TS) 23.501, 3rd Generation Partner-
ship Project (3GPP). Version 16.6.0. https://​www.​etsi.​org/​deliv​
er/​etsi_​ts/​123500_​123599/​123501/​16.​06.​0060/​ts_​12350​1v160​
600p.​pdf

	38.	 (2021) 3GPp: Service requirements for the 5G system. Techni-
cal Specification (TS) 22.261, 3rd Generation Partnership Project
(3GPP). Version 18.1.1

	39.	 Mahmoud HHM, Amer A, Ismail T (2021) 6g: A comprehensive
survey on technologies, applications, challenges, and research
problems. Trans Emerging Telecommun Technol e4233:1–14.
https://​doi.​org/​10.​1002/​ett.​4233

	40.	 (2015) Common Public Radio Interface: Interface Specification
v7.0. http://​www.​cpri.​info/​downl​oads/​CPRI_v_​7_​02015-​10-​09.​
pdf

	41.	 Liu CL, Layland JW (1973) Scheduling algorithms for multi-
programming in a hard-real-time environment. J ACM (JACM)
20(1):46–61

	42.	 Shah SNM, Mahmood AKB, Oxley A (2009) Hybrid scheduling
and dual queue scheduling. In: 2009 2nd IEEE international con-
ference on computer science and information technology. https://​
doi.​org/​10.​1109/​ICCSIT.​2009.​52344​80, pp 539–543

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1460 Mobile Networks and Applications (2022) 27:1444–1460

1 3

https://doi.org/10.1109/TGCN.2021.3067374
https://doi.org/10.1109/TGCN.2021.3067374
https://doi.org/10.1109/TWC.2019.2933417
https://doi.org/10.1109/ICWS49710.2020.00058
https://doi.org/10.1109/ICWS49710.2020.00058
https://doi.org/10.1109/TMC.2021.3115262
https://doi.org/10.1109/TMC.2021.3115262
https://doi.org/10.1109/MCOM.2017.1700363
https://doi.org/10.1109/JIOT.2019.2912155
https://doi.org/10.1109/TCCN.2020.3027681
https://doi.org/10.1109/TNSM.2021.3125395
https://doi.org/10.1109/TNSM.2021.3125395
https://doi.org/10.1109/ACCESS.2019.2959119
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-3-319-93073-2_6
https://doi.org/10.1007/978-3-319-93073-2_6
https://doi.org/10.1109/CEC.2004.1331185
https://doi.org/10.1109/CEC.2004.1331185
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://doi.org/10.1002/ett.4233
http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf
http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf
https://doi.org/10.1109/ICCSIT.2009.5234480
https://doi.org/10.1109/ICCSIT.2009.5234480

	An Optimized Collaborative Scheduling Algorithm for Prioritized Tasks with Shared Resources in Mobile-Edge and Cloud Computing Systems
	Abstract
	1 Introduction
	2 Literature Survey
	2.1 Orchestrator Architecture
	2.1.1 Decentralized Orchestration
	2.1.2 Centralized Orchestration

	2.2 Resource Allocation and Task Scheduling Algorithms
	2.2.1 Offline Task Allocation Algorithms
	2.2.2 Online Scheduling Algorithms

	2.3 Mobility Management

	3 System Model and Constraints
	3.1 System Model
	3.2 System Constraints
	3.3 Mobility Management

	4 Resource Optimization
	4.1 Optimization Problem
	4.2 Particle Swarm Optimization
	4.3 Optimization with Grouping

	5 Cooperative Scheduling Algorithm
	5.1 Complexity Analysis
	5.1.1 BS Scheduling
	5.1.2 Orchestrator Scheduling

	6 Simulation Results and Discussions
	6.1 Simulation Setup
	6.2 Scheduling Algorithms
	6.2.1 Non-Cooperative Scheduling (NCS)
	6.2.2 Earliest Deadline First Scheduling (EDFS)
	6.2.3 Shortest Job First Scheduling (SJFS)
	6.2.4 Petrel

	6.3 Simulation Results

	7 Conclusion and Future Work
	References

