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Abstract

In this paper, by means of a proper orthogonal decomposition (POD) we mainly

reduce the order of the classical Crank–Nicolson finite difference (CCNFD) model for

the fractional-order parabolic-type sine-Gordon equations (FOPTSGEs). Toward this

end, we will first review the CCNFD model for FOPTSGEs and the theoretical results

(such as existence, stabilization, and convergence) of the CCNFD solutions. Then we

establish an optimized Crank–Nicolson finite difference extrapolating (OCNFDE)

model, including very few unknowns but holding the fully second-order accuracy for

FOPTSGEs via POD. Next, by a matrix analysis we will discuss the existence,

stabilization, and convergence of the OCNFDE solutions. Finally, we will use a

numerical example to validate the validity of theoretical conclusions. Moreover, we

show that the OCNFDE model is very valid for settling FOPTSGEs.
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1 Introduction

Though there are lots studies for fractional-order differential equations in recent years

(see, e.g., [1–4]), there are few reports about the reduced-order study for the fractional-

order differential equations except for Ref. [4]. In this paper, by means of proper orthogo-

nal decomposition (POD) we mainly reduce the order of the classical Crank–Nicolson fi-

nite difference (CCNFD)model for the fractional-order parabolic-type sine-Gordon equa-

tions (FOPTSGEs) as follows.

∂ϑ(t,x)

∂t
= K

∂νϑ(t,x)

∂|x|ν + sin
(

ϑ(t,x)
)

, (t,x) ∈ (0,T)× (0,L), (1)

ϑ(t, 0) = ϑ(t,L) = g(t), t ∈ (0,T), (2)

ϑ(0,x) = ϕ(x), x ∈ (0,L), (3)

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1939-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1939-6&domain=pdf
mailto:zhdluo@163.com


Zhou and Luo Advances in Difference Equations          ( 2019)  2019:1 Page 2 of 15

where K is the known coefficient of dispersion, 1 < ν ≤ 2, T is the total time, L is the

positive real number, g(t) is a known boundary value function, ϕ(x) is a known initial

function, and ∂νϑ(t,x)/∂|x|ν is the fractional-order derivative, defined by

∂νϑ(t,x)

∂|x|ν = S(ν)
∂2

∂x2

(∫ x

0

(x – y)1–νϑ(t, y) dy +

∫ L

x

(y – x)1–νϑ(t, y) dy

)

, (4)

where S(ν) = –[2 cos( νπ
2
)Γ (2 – ν)]–1 andΓ (·) is theGammadistribution function. For sim-

plicity we further suppose that g(t) = 0 in the following discussion.

The FOPTSGEs (1)–(3), which are substantially parabolic-type fraction-order par-

tial differential equations (PDEs) with the nonlinear term sin(ϑ), just as the standard

fractional-order PDEs in [5–7], also hold very important physical meanings, such as phe-

nomena in fluid dynamics in porous media, groundwater dynamics, and seepage hy-

draulics groundwater hydraulics (see, e.g., [2, 3, 5, 6]). Nevertheless, the FOPTSGEs (1)–

(3) usually have no analytic solution, so that we have to rely on numerical methods (see,

e.g., [6, 7]). Recently, a CCNFD model of the FOPTSGEs (1)–(3) has been established in

[8], but it contains a lot of unknowns (i.e., degrees of freedom). Therefore, because of the

accumulation of the round-off error in the numerical computations, there would appear

floating point overflow after a number of computing steps, so that we cannot obtain per-

fect conclusions. Thus, ensuring that the CCNFD solutions hold the desired accuracy,

how to reduce the unknowns of the CCNFD model so as to alleviate the calculated load

and the accumulation of the round-off errors in the numerical computations is an urgent

problem, which is the main mission in this paper.

POD is regarded as a valid method to reduce the order of numerical models (see [9–

12]). It substantially seeks an orthonormal basis from the given data. PODmay immensely

lessen the unknowns in the numerical formats and has been widely applied in many fields

including pattern and signal recognition (see [13]), statistics (see [14]), and hydrodynamics

(see [15]). Recently, it has been resoundingly used to the order reduction of the Galerkin,

finite element, FD, finite volume element, reduced basis, and meshless methods for PDEs

(see, e.g., [16–30]). Nevertheless, the existing most reduced-order models (see, e.g., [9–

30]) they are formed with the POD basis produced from the classical numerical solutions

at all nodes of time, before repetitively calculating the optimized solutions at the same

nodes of time, which are actually some repetitive computations. To eliminate the tauto-

logical computations, some optimized FD extrapolating models based on POD have been

proposed (see, e.g., [31–34]).

Nevertheless, as far as we know, there has not been any research on the optimized

Crank–Nicolson finite difference extrapolating (OCNFDE) scheme of FOPTSGEs con-

structed by POD. Therefore, in this paper, by POD we build the OCNFDE model only

including few unknowns for FOPTSGEs. Specially, we merely choose the CCNFD solu-

tions at the first several nodes of time to form the snapshots, and then use them to produce

a set of POD basis, finally use the POD basis to establish the OCNFDE model for finding

the OCNFDE solutions at total nodes of time. This is the same thing as utilizing the ex-

isting information (on the quite short time interval [0,T0], T0 ≪ T ) to forecast the future

physical law (on the time interval [T0,T]). Moreover, we will adopt the error estimates to

decide the numbers of POD bases. As the OCNFDE model concurrently includes both

virtues of POD and the CCNFD model, easily implementing and having the fully second-

order accuracy, which is a new development over the reduced-order models in being.
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The remaining contents of this paper are arranged as follows. In Sect. 2, we first recall

the CCNFD model for the FOPTSGEs (1)–(3) and extract the snapshots from the first

few CCNFD solutions. In Sect. 3, we produce a set of POD basis with the snapshots and

set up the OCNFDE model. Then, in Sect. 4, by the matrix analysis, we analyze the exis-

tence, stabilization, and convergence for the OCNFDE solutions and offer the flowchart

of settling the OCNFDEmodel. Next, in Sect. 5, we use two numerical examples to verify

that the conclusions of numerical calculations are accorded with the theory ones. It is also

shown that the OCNFDE model is very valid for settling the FOPTSGEs (1)–(3), since it

can vastly lessen the number of unknowns, alleviate the calculated load, and save the CPU

consumption time and thememory space in the numerical computations. Section 6 finally

summarizes the dominating conclusions.

2 The CCNFDmodel for FOPTSGEs

In this section, we review the CCNFD model for the FOPTSGEs (1)–(3), which has been

posed in [8].

LetM andN represent two positive integers, let h = L/M denote the spatial step, and let

τ = T/N denote the time step. The CCNFD model with the fully second-order accuracy

for the FOPTSGEs (1)–(3) is denoted as follows:

ϑ̄n–1
i = ϑn–1

i + γ

[

i+1
∑

k=0

ω
(ν)
k ϑn–1

i–k+1 +

M–i+1
∑

k=0

ω
(ν)
k ϑn–1

i+k–1

]

+ τ sin
(

ϑn–1
i

)

, (5)

ϑn
i = ϑn–1

i + γ

[

i+1
∑

k=0

ω
(ν)
k ϑn–1

i–k+1 +

M–i+1
∑

k=0

ω
(ν)
k ϑn–1

i+k–1

]

+
τ

2
sin

(

ϑn–1
i

)

+ γ

[

i+1
∑

k=0

ω
(ν)
k ϑ̄n–1

i–k+1 +

M–i+1
∑

k=0

ω
(ν)
k ϑ̄n–1

i+k–1

]

+
τ

2
sin

(

ϑ̄n–1
i

)

, (6)

where γ = –τK/[2hν cos(νπ/2)], the ϑn
i are approximate solutions of u(tn,xi) (i = 1, 2, . . . ,

M), ω
(ν)
0 = νg

(ν)
0 /2, ω

(ν)
k = νg

(ν)
k /2 + (2 – ν)g

(ν)
k–1/2, g

(ν)
0 = 1, g

(ν)
k = [1 – (1 + ν)/k]g

(ν)
k–1 (k =

1, 2, . . .).

The sequences {ω(ν)
k }∞k=0 and {g(ν)k }∞k=0 satisfy the following properties (see, e.g., [3, 35]).

Lemma 1 As 1 < ν ≤ 2, the sequences {ω(ν)
k }∞k=0 and {g(ν)k }∞k=0 satisfy

g
(ν)
0 = 1, g

(ν)
1 = –ν, g

(ν)
2 = ν(ν – 1)/2 > 0,

1≥ g
(ν)
2 ≥ g

(ν)
3 ≥ · · · ≥ 0,

∞
∑

k=0

g
(ν)
k = 0,

m
∑

k=0

g
(ν)
k < 0 (m≥ 1);

ω
(ν)
0 = ν/2, ω

(ν)
1 =

(

2 – ν – ν2
)

/2 < 0, ω
(ν)
2 = ν

(

ν2 + ν – 4
)

/4 > 0,

1≥ ω
(ν)
3 ≥ ω

(ν)
4 ≥ · · · ≥ 0,

∞
∑

k=0

ω
(ν)
k = 0,

m
∑

k=0

ω
(ν)
k < 0 (m ≥ 2).



Zhou and Luo Advances in Difference Equations          ( 2019)  2019:1 Page 4 of 15

Put

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ω
(ν)
1 ω

(ν)
0 0 · · · 0 0

ω
(ν)
2 ω

(ν)
1 ω

(ν)
0 · · · 0 0

ω
(ν)
3 ω

(ν)
2 ω

(ν)
1 · · · 0 0

...
...

...
. . .

...
...

ω
(ν)
M–2 ω

(ν)
M–3 ω

(ν)
M–4 · · · ω

(ν)
1 ω

(ν)
0

ω
(ν)
M–1 ω

(ν)
M–2 ω

(ν)
M–3 · · · ω

(ν)
2 ω

(ν)
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, G
(

V
n–1

)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sin(ϑn–1
1 )

sin(ϑn–1
2 )

sin(ϑn–1
3 )
...

sin(ϑn–1
M–2)

sin(ϑn–1
M–1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

V
n =

[

ϑn
1 ,ϑ

n
2 , . . . ,ϑ

n
M–2,ϑ

n
M–1

]T
, V̄

n
=

[

ϑ̄n
1 , ϑ̄

n
2 , . . . , ϑ̄

n
M–2, ϑ̄

n
M–1

]T
,

E = –γ
[

B + B
T
]

.

Therefore, the CCNFD model (5)–(6) can be presented in the following matrix format:

V̄
n–1

= V
n–1 + EV

n–1 + τG
(

V
n–1

)

, (7)

V
n = V

n–1 +
1

2
E
(

V
n–1 + V̄

n–1)
+

τ

2

[

G
(

V
n–1

)

+G
(

V̄
n–1)]

. (8)

Furthermore, the vector-format CCNFD model (7)–(8) can be reduced as follows:

V
n = V

n–1 +
1

2
E
(

2Vn–1 + EV
n–1 + τG

(

V
n–1

))

+
τ

2

[

G
(

V
n–1

)

+G
(

V
n–1 + EV

n–1 + τG
(

V
n–1

))]

, n = 1, 2, . . . ,N , (9)

satisfying the following initial values:

V
0 =

[

ϑ0
1 ,ϑ

0
2 , . . . ,ϑ

0
M–2,ϑ

0
M–1

]T
, ϑ0

i = ϕ(0, ih), i = 1, 2, . . . ,M – 1. (10)

Apparently, there is a unique set of the solution vector {Vn}Nn=1 for the vector-format

CCNFD model (9). The following stabilization and convergence of the set of the solution

{Vn}Nn=1 has been proved in [35, Theorem 2].

Theorem 2 As ‖I + E‖∞ ≤ 1, the set of solution {Vn}Nn=1 for the CCNFD model (9) is sta-

ble and convergent. Furthermore, the error estimates between the set of solution {Vn}Nn=1
for the CCNFD model (9) and Ṽ(tn) = [ϑ(tn,x1),ϑ(tn,x2), . . . ,ϑ(tn,xM–1)]

T (n = 1, 2, . . . ,N )

produced from the analytic solution of the FOPTSGEs (1)–(3) are denoted by

∥

∥Ṽ(tn) – V
n
∥

∥

∞ =O
(

τ 2,h2
)

, n = 1, 2, . . . ,N , (11)

the above I is the unit matrix, ‖B̃‖∞ = max1≤i≤m

∑m
j=1 |ai,j| (for any matrix B̃ = (ai,j)m×m),

and ‖V i‖∞ = max1≤j≤M–1 |ϑ i
j | (for any V i = (ϑ i

1,ϑ
i
2, . . . ,ϑ

i
M–1)

T ∈R
M–1).

Remark 3 We easily see from Lemma 1 that the assumption ‖I + E‖∞ ≤ 1 is reasonable.

Therefore, as long as we provide the spatial step h, the time step τ , the coefficient K , the

initial value ϕ, and parameters ν , by settling the vector-format CCNFD model (9) we can

obtain the set of the solution {Vn}Nn=1. We extract the first l solution vectors V1,V2, . . . ,V l
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(l ≪ N ) in the set of solution {Vn}Nn=1 for the CCNFD model (9) as a group of snap-

shots.

3 The OCNFDEmodel for FOPTSGEs

3.1 Production and results of POD basis

To the snapshots V1,V2, . . . ,V l (l ≪ N ) obtained in Sect. 2, let Bϑ = (V1,V2, . . . ,V l) (ap-

parently Bϑ ∈ R
(M–1)×l), let λj > 0 (j = 1, 2, . . . , r =: rank(Bϑ )) be the positive eigenvalues of

BϑB
T
ϑ arranged nonincreasingly, and let Vϑ = (φ1,φ2, . . . ,φr) ∈ R

(M–1)×r be the orthonor-

mal eigenvectors of BϑB
T
ϑ associated with the positive eigenvalues. Thus, a set of POD

basis Ψ =: (φ1,φ2, . . . ,φd) (d ≤ r) is obtained from the initial d eigenvectors in Vϑ and

holds the following result (see, e.g., [20, 21, 36]):

∥

∥Bϑ –Ψ Ψ T
Bϑ

∥

∥

2,2
=

√

λd+1, (12)

where ‖Bϑ‖2,2 = sup
x∈RM–1 ‖Bϑx‖2/‖x‖2, and ‖x‖2 is the l2 norm for the vector x ∈ R

M–1.

Furthermore, we have

∥

∥V
n –Ψ Ψ T

V
n
∥

∥

2
=

∥

∥

(

Bϑ –Ψ Ψ T
Bϑ

)

εn
∥

∥

2

≤
∥

∥Bϑ –Ψ Ψ T
Bϑ

∥

∥

2,2

∥

∥εn
∥

∥

2

≤
√

λd+1, n = 1, 2, . . . , l, (13)

where εn (n = 1, 2, . . . , l) represent a set of unit orthogonal vectors with nth component

being 1. Thus, Ψ = (φ1,φ2, . . . ,φd) forms a set of POD basis.

Remark 4 Because the order l of thematrix AT
ϑAϑ is far smaller than the orderM–1 of the

matrix AϑA
T
ϑ , that is, the number of the snapshots l is far smaller than that of the spatial

internal nodes M – 1, whereas both positive eigenvalues λi (i = 1, 2, . . . , r) are the same,

we may first find the eigenvectors ψ i and the eigenvalues λi (i = 1, 2, . . . , r) of AT
ϑAϑ , and

then compute the eigenvectors ϕi of AϑA
T
ϑ via the formula ϕi = Aϑψ i/

√
λi (i = 1, 2, . . . , r),

so that the POD basis can be obtained expediently.

3.2 The OCNFDEmodel of the FOPTSGEs

From Sect. 3.1 we have obtained the first l OCNFDE solutions Vn
d = Ψ Ψ T

V
n =: Ψ βn

d (n =

1, 2, . . . , l ≤ N ), where Vn
d = (und,1,u

n
d,2, . . . ,u

n
d,M–2,u

n
d,M–1)

T and βn
d = (βn

1 ,β
n
2 , . . . ,β

n
d )

T . At the

moment, replacing V
n in (9) with V

n
d = Ψ βn

d (n = l + 1, l + 2, . . . ,N ), we can obtain the

following OCNFDE model:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Ψ βn
d = Ψ Ψ T

V
n, n = 1, 2, . . . , l;

Ψ βn
d = Ψ βn–1

d + 1
2
E(2Ψ βn–1

d + EΨ βd
n–1 + τG(Ψ βn–1

d ))

+ τ
2
[G(Ψ βn–1

d ) +G(Ψ βd
n–1 + EΨ βd

n–1 + τG(Ψ βn–1
d ))], l + 1 ≤ n ≤ N ,

V
n
d = Ψ βn

d, n = 1, 2, . . . ,N ,

(14)
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where Vn (n = 1, 2, . . . , l) are the given CCNFD solution vectors for the CCNFDmodel (9).

The OCNFDE model (14) is reduced to the following model:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

βn
d = Ψ T

ϑV
n, 1≤ n≤ l;

βn
d = βn–1

d + 1
2
Ψ T

E[2Ψ βn–1
d + EΨ βd

n–1 + τG(Ψ βn–1
d )]

+ τ
2
Ψ T [G(Ψ βn–1

d ) +G(Ψ βd
n–1 + EΨ βd

n–1 + τG(Ψ βn–1
d ))], l + 1≤ n≤ N ,

V
n
d = Ψ βn

d, 1≤ n≤ N .

(15)

Remark 5 Since the CCNFD model (9) includes (M – 1) unknowns at each node of time,

but the OCNFDEmodel (15) at the same node of time has only d unknowns (d ≪ M – 1),

the OCNFDE model (15) is far superior to the CCNFD model (9).

4 The existence, stabilization, and convergence for the OCNFDE solutions and

the flowchart for settling the OCNFDEmodel

4.1 The existence, stabilization, and convergence for the OCNFDE solutions

Apparently, there is a unique set of the solution vector {Vn
d}Nn=1 for the OCNFDE model

(15). Further, the stabilization and convergence for the OCNFDE solutions have the fol-

lowing result.

Theorem 6 Under the same conditions of Theorem 2, the series of solutions {Vn
d}Nn=1 of the

OCNFDE model (15) is stable and convergent and has the following error estimates:

∥

∥V
n – V

n
d

∥

∥

∞ ≤ ρ(n)
√

λd+1, n = 1, 2, . . . ,N , (16)

the above V
i (i = 1, 2, . . . ,N ) represents the CCNFD solution vectors of the CCNFD

model (9), ρ(n) = 1 (1 ≤ n ≤ l), and ρ(n) = (1 + 2τ + τ 2)n–l (l + 1 ≤ n ≤ N ). Fur-

thermore, we have the error estimates between the analytic solution vectors Ṽ(tn) =

[u(tn,x1),u(tn,x2), . . . ,u(tn,xM–1)]
T (n = 1, 2, . . . ,N ) of the FOPTSGEs (1)–(3) and the OC-

NFDE solutions Vn
d of the OCNFDE model (15) as follows:

∥

∥Ṽ
n
– V

n
d

∥

∥

∞ ≤ C
[

τ 2 + h2 + ρ(n)
√

λd+1

]

, n = 1, 2, . . . ,N , (17)

where C is a generic positive constant.

Proof (1) The stabilization and convergence of the OCNFDE solutions

By Vn
d = Ψ βn

d (n = 1, 2, . . . ,N ) we can restore the OCNFDE model (14) as follows:

V
n
d = Ψ Ψ T

V
n, 1≤ n ≤ l; (18)

V
n
d = V

n–1
d +

1

2
E
(

2Vn–1
d + EV

n–1
d + τG

(

V
n–1
d

))

+
τ

2

[

G
(

V
n–1
d

)

+G
(

V
n–1
d + EV

n–1
d + τG

(

V
n–1
d

))]

, l + 1 ≤ n≤ N . (19)

As the CCNFD solutions Vn (n = 1, 2, . . . , l) are given and stable, the stabilization of Vn
d

(n = 1, 2, . . . , l) can obtained by Vn
d = Ψ Ψ T

V
n (n = 1, 2, . . . , l) of (18) and ‖Vn

d‖∞ ≤ ‖Vn‖∞

(n = 1, 2, . . . , l).
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As ‖I + E‖∞ ≤ 1, we obtain

∥

∥

∥

∥

I + E +
1

2
E
2

∥

∥

∥

∥

∞
=

∥

∥

∥

∥

1

2

[

I + (I + E)2
]

∥

∥

∥

∥

∞

≤ 1

2

(

1 + ‖I + E‖∞
)

≤ 1. (20)

Using the differential mean value theorem, we have

∥

∥G
(

V(ti)
)

–G
(

V
i
)
∥

∥

∞ ≤
∥

∥V(ti) – V
i
∥

∥

∞, (21)
∥

∥G
(

V
i
)
∥

∥

∞ ≤
∥

∥V
i
∥

∥

∞. (22)

Hence, by (20)–(22) from (9) we have

∥

∥V
n
d

∥

∥

∞ ≤
∥

∥

∥

∥

V
n–1
d +

1

2
E
(

2Vn–1
d + EV

n–1
d

)

∥

∥

∥

∥

∞
+

∥

∥

∥

∥

τ

2
EG

(

V
n–1
d

)

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

τ

2

[

G
(

V
n–1
d

)

+G
(

V
n–1
d + EV

n–1
d + τG

(

V
n–1
d

))]

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

I + E +
1

2
E
2

∥

∥

∥

∥

∞

∥

∥V
n–1
d

∥

∥

∞ +
τ

2
‖E‖∞

∥

∥G
(

V
n–1
d

)
∥

∥

∞

+
τ

2

[∥

∥G
(

V
n–1
d

)∥

∥

∞ +
∥

∥G
(

V
n–1
d + EV

n–1
d + τG

(

V
n–1
d

))∥

∥

∞
]

≤
∥

∥V
n–1
d

∥

∥

∞ +
τ

2
‖E‖∞

∥

∥V
n–1
d

∥

∥

∞ +
τ

2

∥

∥

∥

∥

V
n–1
d ‖∞

+
τ

2

∥

∥

∥

∥

(I + E)Vn–1
d + τG

(

V
n–1
d

)

‖∞

≤
∥

∥V
n–1
d

∥

∥

∞ +
τ

2
‖E‖∞

∥

∥V
n–1
d

∥

∥

∞ + τ
∥

∥V
n–1
d

∥

∥

∞ +
τ 2

2

∥

∥V
n–1
d

∥

∥

∞

= (1 + βτ )
∥

∥V
n–1
d

∥

∥

∞, n = l + 1, l + 2, . . . ,N , (23)

where β = τ /2 + 1 + ‖E‖∞/2. Because ‖E‖∞ = ‖ – I + I + E‖∞ ≤ ‖I‖∞ + ‖I + E‖∞ ≤ 2, we

have β ≤ τ /2+2 ≤ τ +2. Thus, by iterating (23) and fromTheorem 2 and ‖Vn
d‖∞ ≤ ‖Vn‖∞

(n = 1, 2, . . . , l) we have

∥

∥V
n
d

∥

∥

∞ ≤ (1 + βτ )n–l
∥

∥V
l
d

∥

∥

∞

≤ (1 + βτ )n
∥

∥V
0
∥

∥

∞

≤
∥

∥V
0
∥

∥

∞ exp
[

(2 + τ )nτ
]

≤
∥

∥V
0
∥

∥

∞ exp
[

(2 + τ )T
]

, n = l + 1, l + 2, . . . ,N , (24)

which shows that the OCNFDE solutions {Vn
d}Nn=l+1 are stable and convergent according to

the Lax stabilization theorem (see [10]). Therefore, the solutions {Vn
d}Nn=1 for the OCNFDE

model (15) is stable.Moreover, by Lax’s stabilization theorem (see. e.g., [37, 38]) we deduce

that the OCNFDE solutions {Vn
d}Nn=1 are convergent.
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(2) The error estimates (11) of the CCNFD solutions {Vn
d}Nn=1

As n = 1, 2, . . . , l, by the properties of norm and (13) we straight-away obtain the error

estimations:

∥

∥V
n – V

n
d

∥

∥

∞ ≤
∥

∥V
n – V

n
d

∥

∥

2
=

∥

∥V
n –Ψ Ψ T

V
n
∥

∥

2
≤

√

λd+1, 1≤ n ≤ l. (25)

Let en = V
n – V

n
d . By subtracting (19) from (9) we get

en = en–1 +
1

2
E
(

2en–1 + Een–1 + τG
(

V
n–1

)

– τG
(

V
n–1
d

))

+
τ

2

[

G
(

V
n–1

)

+G
(

V
n–1 + EV

n–1 + τG
(

V
n–1

))

–G
(

V
n–1
d

)

–G
(

V
n–1
d + EV

n–1
d + τG

(

V
n–1
d

))]

=
τ

2

[

G
(

V
n–1 + EV

n–1 + τG
(

V
n–1

))

–G
(

V
n–1
d + EV

n–1
d + τG

(

V
n–1
d

))]

+

(

I + E +
1

2
E
2

)

en–1

+
τ

2
(I + E)

[

G
(

V
n–1

)

–G
(

V
n–1
d

)]

, l + 1≤ n≤ N . (26)

Thus, by (20)–(22), from (26), we have

‖en‖∞ ≤
∥

∥

∥

∥

I + E +
1

2
E
2

∥

∥

∥

∥

∞
‖en–1‖∞ +

τ

2
‖E‖∞‖en–1‖∞

+
τ

2

[

‖en–1‖∞ + ‖I + E‖∞‖en–1‖∞ + τ‖en–1‖∞
]

≤ (1 + βτ )‖en–1‖∞

≤
(

1 + 2τ + τ 2
)

‖en–1‖∞, n = l + 1, l + 2, . . . ,N . (27)

Thus, by iterating (27), and using (25), we have

‖en‖∞ ≤
(

1 + 2τ + τ 2
)n–l‖el‖∞

≤
(

1 + 2τ + τ 2
)n–l√

λd+1, n = l + 1, l + 2, . . . ,N . (28)

Combining (25) with (28) yields (16), and combining Theorem 2with (16) yields (17). This

finishes the proof of Theorem 6. �

Remark 7 The error terms
√

λd+1 and ρ(n) = (1 + 2τ + τ 2)n–l (l+1≤ n≤ N ) in Theorem 6

are generated by the order reduction of the CCNFD model (9) and the extrapolating iter-

ation, respectively. They can, respectively, act as the judgment for choosing the number

d of POD bases and updating the POD basis in the numerical calculations. Although the

OCNFDE solutions slightly reduce little accuracy in comparison with the CCNFD ones,

they can immensely reduce the unknowns so that they can greatly lessen the accumula-

tion of the round-off error and enhance calculative efficiency, as stated in the numerical

example in Sect. 5. However, the lots numerical experiments base on POD have proven

that the eigenvalues λj (j = 1, 2, . . . , l) of the matrix BϑB
T
ϑ are generally decreasing quickly
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to zero. Thus, if we select d that satisfies (1 + 2τ + τ 2)N–l
√

λd+1 ≤ min{τ 2,h2}, then we

can ensure that the OCNFDE solutions reach the optimal convergence order, i.e., when

we select d that satisfies (1 + 2τ + τ 2)N–l
√

λd+1 ≤ min{τ 2,h2}, the OCNFDE solutions have

second-order accuracy.

4.2 Flowchart of settling the OCNFDEmodel

The flowchart for settling the ROESTCFEmodel of the FOPTSGEs (1)–(3) consists of the

following six steps.

Step 1 Extract the snapshots V i (i = 1, 2, . . . , l, usually l = 20) from the first l CCNFD

solutions of the CCNFD model:

V
n = V

n–1 +
1

2
E
(

2Vn–1 + EV
n–1 + τG

(

V
n–1

))

+
τ

2

[

G
(

V
n–1

)

+G
(

V
n–1 + EV

n–1 + τG
(

V
n–1

))]

, n = 1, 2, . . . , l,

satisfying the following initial value conditions:

V
0 =

[

ϑ0
1 ,ϑ

0
2 , . . . ,ϑ

0
M–2,ϑ

0
M–1

]T
, ϑ0

i = ϕ(0, ih), i = 1, 2, . . . ,M – 1.

Step 2 Form the snapshot matrix Aϑ = [V1,V2, . . . ,V l].

Step 3 Compute the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and the corresponding eigenvec-

tors ψ j (j = 1, 2, . . . , r =: dim{V1,V2, . . . ,V l}) of the matrix AT
ϑAϑ .

Step 4 For the given time step τ and spatial step h and the desired error bound δ =

O(τ 2,h2), choose the number d of the POD basis that satisfies λd+1 ≤ δ2.

Step 5 Formulate the POD basis Ψ = [ϕ1,ϕ2, . . . ,ϕd] by ϕi = Aϑψ i/
√

λi (i = 1, 2, . . . ,d)

and obtain the OCNFDE solutions by settling the OCNFDE model:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

βn
d = Ψ T

ϑV
n, 1≤ n≤ l;

βn
d = βn–1

d + 1
2
Ψ T

E(2Ψ βn–1
d + EΨ βd

n–1 + τG(Ψ βn–1
d ))

+ τ
2
Ψ T [G(Ψ βn–1

d ) +G(Ψ βd
n–1 + EΨ βd

n–1 + τG(Ψ βn–1
d ))], l + 1≤ n≤ N ,

V
n
d = Ψ βn

d, 1≤ n≤ N ,

which only contains d unknowns.

Step 6 On condition that (1 + 2τ + τ 2)n–l
√

λd+1 = O(τ 2,h2) (n = l + 1, l + 2, . . . ,N ), then

end; else, let V i = V
n–l–i
d (i = 1, 2, . . . , l), then return to Step 2.

5 Two numerical examples

In this following, we offer two numerical examples to explain that the advantage of the

OCNFDE model (15) of the FOPTSGEs (1)–(3).

5.1 The comparison between the OCNFDE and CCNFD solutions

In the FOPTSGEs (1)–(3), we choose T = 2000 (i.e., 0≤ t ≤ 2000), L = 16,000 (i.e., 0≤ x ≤
16,000), τ = h = 0.01,K = 1, ν = 1.5, the boundary value g(t) = 0.22, and the initial function

u(0,x) = ϕ(x) =

⎧

⎨

⎩

0.22 + sin(πx/2000), x ∈ [6000, 8000],

0.22, x ∈ [0, 6000]∪ [8000, 16,000].
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Under this case, it is not easy to seek the analytical solution of the FOPTSGEs (1)–(3), so

that we have to rely on the numerical solutions.

We first find the first l = 20 solution vectors Vn (n = 1, 2, . . . , 20) by the CCNFD model

(9) and form the snapshot matrix Bϑ = [V1,V2, . . . ,V20]. Then by Steps 3 and 5 in Sect. 4.2

we find the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ20 ≥ 0 and the corresponding eigenvectors ϕj

(j = 1, 2, . . . , 20). By estimating we gain that
√

λ7 ≤ 3.5 × 10–4. Thus, we choose the POD

basis Ψ = [ϕ1,ϕ2, . . . ,ϕ6] and compute the OCNFDE solutions ϑn
di (n = 1, 2, . . . , 200,000

and i = 1, 2, . . . , 1,600,000, i.e., 0 < t ≤ 2000 and 0 ≤ x ≤ 16,000) via the OCNFDE model

(15), and depict them graphically in Fig. 1. To compare with the OCNFDE solutions, we

also find the CCNFD solutions ϑn
i (n = 1, 2, . . . , 200,000 and i = 1, 2, . . . , 1,600,000, i.e., 0 <

t ≤ 2000 and 0 ≤ x ≤ 16,000) via the CCNFD model (9), and depict them graphically in

Fig. 2. Although Fig. 2 and Fig. 1 are almost the same, by carefully comparing we find that

the conclusions of the OCNFDE solutions in Fig. 1 are better than those of the CCNFD

solutions in Fig. 2.

Figure 1 The ROENBE solutions when 0≤ t ≤ 2000 and 0 ≤ x ≤ 16,000

Figure 2 The CCNFD solutions when 0≤ t ≤ 2000 and 0≤ x ≤ 16,000
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Figure 3 The error photo between the CCNFD solutions and the OCNFDE solutions on 0≤ t ≤ 2000

Table 1 Comparisons of errors and CPU time of the CCNFD and OCNFDE solutions

Real time CCNFD scheme OCNFDE scheme

Error ‖Ṽ(tn) – Vn‖2 CPU time Error ‖Ṽ(tn) – Vn

d
‖2 CPU time

n = 100,000 0.00046 381 s 0.00048 3.0 s

n = 150,000 0.00058 571 s 0.00063 4.5 s

n = 200,000 0.00076 762 s 0.00082 6.0 s

Figure 3 shows the error photo between the CCNFD solutions and the OCNFDE solu-

tions on 0 ≤ t ≤ 2000, which accords with the theoretical conclusion of (16) in Theorem 6,

since both the theoretical and the numerical errors are O(10–4) as τ = h = 0.01.

As the CCNFD model at each node of time includes 1,600,000 unknowns, but the OC-

NFDE model at the same node of time only contains six unknowns, the OCNFDE model

can immensely alleviate the accumulation of the round-off error in the numerical compu-

tation and enhance the accuracy of the OCNFDE numerical solutions. From the records

for settling the CCNFD model and the OCNFDE model in the same Laptop (iPone Mac

book: Int Core i5 Processor, 16 GB RAM) we find that the CPU consumption time for set-

tling the CCNFD model on 0≤ t ≤ 2000 is 762 min, whereas the CPU consumption time

for settling the OCNFDEmodel is less than 6 min, that is, the CPU consumption time for

settling the CCNFD model is 126 times more than that for settling the OCNFDE model.

More comparisons of errors and CPU time of the CCNFD and OCNFDE solutions are

listed in Table 1, where ‖Ṽ(tn) – V
n‖2 and ‖Ṽ(tn) – V

n
d‖2 are approximately estimated by

‖Vn+1 – V
n‖2 and ‖Vn+1

d – V
n
d‖2, respectively.

Table 1 further shows that the numerical computing conclusions accord with the theo-

retical ones. This implies that the OCNFDE model is effective for settling the FOPTSGEs

(1)–(3) and that the OCNFDE model is far superior to the CCNFD model.

5.2 The comparison between the OCNFDEmethod and OCNFDE/DEI method

When we solve the OCNFDE model (15), we need to compute the following nonlinear

terms:

G
POD

(

βn–1
d

)

=: Ψ T
G

(

Ψ βn–1
d

)

,

which includes some complex computations depending on the number of unknowns

M – 1, since Ψ βn–1
d has M – 1 rows. In order to reduce further the computational load
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for solving the OCNFDE model (15), we adopt a discrete-empirical-interpolation (EDI)

method for the nonlinear terms G(Ψ βn–1
d ), i.e., the nonlinear terms G(Ψ βn–1

d ) are approx-

imated with the EDI terms GEDI as follows:

G
POD

(

βn–1
d

)

≃ G
EDI

(

βn–1
d

)

=: Ψ T
Ĝ

(

P
T
Ĝ

)–1
PT

G
(

Ψ βn–1
d

)

,

where Ĝ ∈ R
(M–1)×d contains the first d POD bases produced by the snapshots G(Vn)

(n = 1, 2, . . . ,L) associated with the largest d eigenvalues, P = [eρ1 ,eρ2 , . . . ,eρd
] ∈ R

(M–1)×d

consists of the rows ofG corresponding to theDEIM indices ρ1,ρ2, . . . ,ρd that are obtained

by the greedy algorithm (see [29, 39]).

In the second example, we choose T = 2.5 (i.e., 0 ≤ t ≤ 2.5), L = 2.7 (i.e., 0 ≤ x ≤ 2.5),

τ = h = 0.01, K = 1, ν = 1.5, the boundary value g(t) = x(2.5 – x) sin(0.8πx) exp(–t), and the

initial function u(0,x) = ϕ(x) = x(2.5 – x) sin(0.8πx).

Similarly, we first find the first l = 20 solution vectors Vn (n = 1, 2, . . . , 20) by the CCNFD

model (9) and form the snapshot matrix Bϑ = [V1,V2, . . . ,V20]. Then by Steps 3 and 5 in

Sect. 4.2 we find the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ20 ≥ 0 and the corresponding eigenvec-

tors ϕj (j = 1, 2, . . . , 20). By estimating we achieve that
√

λ6 ≤ 2.4×10–4, which implies that

we only need to choose the POD basisΨ = [ϕ1,ϕ2, . . . ,ϕ5] and compute the OCNFDE and

OCNFDE/EDI solutions ϑn
di and ϑn

EDIi (n = 1, 2, . . . , 250 and i = 1, 2, . . . , 250, i.e., 0 < t ≤ 2.5

and 0 ≤ x ≤ 2.5) via the OCNFDE model (15) and the OCNFDE/EDI model (whose G

in (15) is replaced with G
EDI), and depict them graphically in Figs. 4 and 5, respectively.

Figures 4 and 5 are almost the same.

To quantify the efficiency of the OCNFDE and OCNFDE/DEI methods, we compare

the CPU time between the OCNFDE and OCNFDE/DEI methods, the root mean square

errors (RMSE) between the CCNFD and OCNFDE solutions and between the CCNFD

andOCNFDE/EDI solutions, and the correlation coefficients (CC) between the OCNFDE

and OCNFDE/EDI solutions. RMSE and CC are, respectively, obtained by means of the

following formulas:

RMSE
(

ϑn
r

)

=

√

√

√

√

1

M – 1

M–1
∑

i=1

∣

∣ϑn
i – ϑn

ri

∣

∣

2
, r = d or EDI,n = 1, 2, . . . , 250;

Figure 4 The OCNFDE solutions when 0≤ t ≤ 2.5 and 0≤ x ≤ 2.5
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Figure 5 The OCNFDE/DEI solutions when 0≤ t ≤ 2.5 and 0 ≤ x ≤ 2.5

Table 2 Comparisons of CC, RMSE, and CPU time of the OCNFDE and OCNFDE/EDI solutions

n CC(n)× 10–4 OCNFDE scheme OCNFDE/EDI scheme

RMSE CPU time RMSE CPU time

n = 150 1.6214 0.00032 2.88 seconds 0.00046 1.68 seconds

n = 200 1.6279 0.00042 3.84 seconds 0.00063 2.24 seconds

n = 250 1.6472 0.00068 4.80 seconds 0.00087 2.80 seconds

CC(n) =

∑250
i=1 (ϑ

n
di – ϑ̄n

di)(ϑ
n
EDIi – ϑ̄n

EDIi)
√

∑250
i=1 (ϑ

n
di – ϑ̄n

di)
2
∑250

i=1 (ϑ
n
EDIi – ϑ̄n

EDIi)
2

, n = 1, 2, . . . , 250,

where ϑ̄n
rj (r = d or EDI) are the expected values of ϑn

rj , respectively. Table 2 shows that

the CPU time between the OCNFDE and OCNFDE/DEI methods, RMSEs between the

CCNFD and OCNFDE solutions and between the CCNFD and OCNFDE/EDI solutions,

and CCs between the OCNFDE and OCNFDE/EDI solutions at t = 1.5, 2.0, and 2.5, re-

spectively.

Table 2 shows that the CPU time of the OCNFDE/EDI model is less than that of the

OCNFDE one due to adopting EDI method, but it is reasonable that RMSEs of the OC-

NFDE/EDI model is slightly larger than those of the OCNFDE model thanks to the non-

linear terms G being approximated with EDI. It shows that the OCNFDE/EDI methd is

better than the OCNFDE method.

6 Conclusions

In this paper, we have established the OCNFDE model including very few unknowns

but holding fully second-order accuracy for the FOPTSGEs (1)–(3), discussed the exis-

tence, stabilization, and convergence for the OCNFDE solutions. We have also utilized

twonumerical examples to verify the effectiveness and feasibility of theOCNFDE andOC-

NFDE/EDI models (but the OCNFDE/EDI method is better than the OCNFDE method)

and to validate that the numerical calculated conclusions coincide with the theoretical

results. Specially, the OCNFDEmodel is far superior to the CCNFDmodel, since the OC-

NFDEmodel can immensely spare the CPU consumption time and reduce the unknowns

in comparison with the CCNFDmodel. Moreover, the CCNFD and OCNFDEmodels are

denoted by the matrix forms and the stability and error estimates for the OCNFDE so-
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lutions are proved by using the matrix analysis, so that the theoretical analysis and the

numerical computations become more concise and convenient. In addition, as the OC-

NFDE model for the FOPTSGEs (1)–(3) is first established, it is an improvement of other

existing reduced-order models mentioned in Sect. 1.

Althoughweonly have studied the order reduction of theCCNFDmodel for the FOPTS-

GEs (1)–(3), because the CCNFD model can solve FOPTSGEs in a two- and three-

dimensional unbounded domain (see, e.g., [3]), the OCNFDE model can easily and ef-

fectively be applied to reduce the order for the FOPTSGEs (1)–(3) in two- and three-

dimensional domains.
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