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Abstract
Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce

its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal

therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical

imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis

based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists

detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we

improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The

improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN archi-

tecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized

with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two

mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM

(CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results

showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classifi-

cation performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset

and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of

IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other opti-

mization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale opti-

mization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the

ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50,

respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other

counterparts.

Keywords Breast cancer classification � Deep learning � Transfer learning � Convolutional neural network �
Marine predators algorithm � Opposition-based learning � Hyperparameters optimization

1 Introduction

Breast cancer is a familiar frequent malignancy in females

and the second most common leading cause of death in

women. The global occurrence of breast cancer has

increased over time, and more cases have been reported

every year. In comparison to other malignancies, it is more

common in women. If this disease is not detected early, it

might lead to death [1]. Early diagnosis improves the

chances of successful therapy and survival, but its diag-

nosis is time-consuming and frequently results in an

& Essam H. Houssein

essam.halim@mu.edu.eg

Marwa M. Emam

marwa.khalef@mu.edu.eg

Abdelmgeid A. Ali

a.ali@mu.edu.eg

1 Faculty of Computers and Information, Minia University,

Minia, Egypt

123

Neural Computing and Applications (2022) 34:18015–18033
https://doi.org/10.1007/s00521-022-07445-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8127-7233
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07445-5&amp;domain=pdf
https://doi.org/10.1007/s00521-022-07445-5


agreement between pathologists. Computer-aided diagno-

sis (CAD) systems can improve diagnostic accuracy.

Breast cancer can be classified as benign (non-hazardous)

or malignant (threatening). Early detection of breast lesions

and the distinction of malignant from benign lesions is

critical for breast cancer prognosis [2]. Breast cancer

affects approximately a million women globally each year,

accounting for more than 25% of all female cancer

occurrences. There is a tremendous need for early-stage

development of new breast cancer methods with this

exponential expansion. This motivates researchers to

develop innovative methods for obtaining rapid and accu-

rate diagnoses, ultimately extending patients’ lives [1].

Reviewing preliminary diagnostic information and gather-

ing relevant data from previous information is key to

detecting this disease early and reliably. Medical imaging

and deep learning (DL) techniques will aid this procedure.

Medical imaging performs a significant part in clinical

illness diagnosis, therapy evaluation, and the detection of

anomalies in many body components, including eye [3],

lungs [3], brain [4], breast [5], and stomach [6]. Medical

image research aims to classify an organ’s location, size,

and characteristics in question, which is regarded as a

viable way to obtain usable information from vast amounts

of data. The most effective process to identify breast cancer

is through medical imaging, including mammography

images, histopathology images, magnetic resonance imag-

ing (MRI), ultrasound, and thermography images [7].

Thermography images, also known as thermal imaging,

have shown enormous promise in the early detection of

breast cancer over the previous decade. Thermography

images can help with other types of diagnosis by providing

information about physiological changes [8].

Ultrasound imaging is another method for breast cancer

detection that young women mostly use it. Noise levels

might cause the process to fail when it attempts to detect

microcalcifications and deeper breast tissue [9].

In addition to ultrasound and thermography screening,

MRI is another approach for detecting cancer cells early.

MRI uses magnetic instead of X-rays to produce extremely

accurate three-dimensional (3D) transverse imaging [7].

Another imaging modality is called mammography

images. Mammography is a very well and generally used

approach for breast cancer screening, and it is the only

image type that has been shown to decrease breast cancer

mortality significantly [10]. It is an x-ray test image

regarded as a reliable and accurate method for detecting

breast cancer. [11]. In this paper, we used mammography

images for breast cancer classification.

CAD systems have been used to aid clinicians in inter-

preting medical imaging to improve disease diagnosis. The

critical role of a CAD system is feature extraction. Tradi-

tional feature extraction techniques have disadvantages

because they lack flexibility [10]. Recently, DL approaches

have been presented for breast cancer diagnosis.

DL is a category of machine learning and artificial

intelligence that focuses on a complicated structure of

image features due to its capacity to learn autonomously.

DL approaches use various recently developed models to

improve feature extraction from data. These models have

been used in various medical fields [7, 12]. DL is com-

posed of multilayer neural networks (NNs) that use raw

input images to generate a hierarchical feature structure.

Stack autoencoders, deep-Boltzmann machines, and con-

volution NNs (CNNs) are examples of common DL algo-

rithms [13].

CNNs have had significant success in biomedical

imaging, such as mitosis cell detection from microscopic

images, tumor detection, segmentation of neural laminae,

skin disease, immune cell detection and classification, mass

detection, COVID-19 prediction [14] and classification in

mammograms [15]. CNNs are a popular technique for

object detection and image classification that involves

layer-wise automatic feature extraction. The preparation of

CNNs for classification objectives depends on the knowl-

edge of hyperparameter tuning. Hyperparameters for each

layer are different. Few studies, such as [16], have recog-

nized the importance of the hyperparameters in achieving

high performance with CNN architectures and the need to

consider them as an optimization problem. Because a CNN

model’s performance is determined by these hyperparam-

eters [17], they need to be fine-tuned to achieve great

results. The selection of hyperparameter values is fre-

quently based on a mix of human expertise, trial and error,

or a grid search method [18]. Training can take more days

because of the computationally expensive core of CNN

designs. Since the number of combinations grows expo-

nentially with the increase in hyperparameters, the grid

search method is usually not suited for CNN models.

Tuning hyperparameters is a time-consuming effort for

researchers; the number of layers of CNNs is increasing

daily to cope with vast and complex datasets. It is not

suitable to optimize hyperparameters manually at a rea-

sonable cost. To improve them, different researchers have

adopted different techniques. Some of them accepted their

outcome, whereas others did not [17].

Thus, automatic hyperparameter optimization for CNN

models is critical [19]. Meta-heuristic algorithms have

significantly influenced hyperparameter optimization in

several fields. They have been developed to address dif-

ferent real-world problems and have gained enormous

interest in classification problems. Because meta-heuristic

algorithms have great performance and are straightforward

to implement, researchers have widely proved their expe-

rience to handle many types of challenging optimization

issues in engineering, communications, industry, and social
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sciences [20]. In addition, they have been employed in

biological information [21], chemical information [22],

feature selection [23], task scheduling in cloud computing

[24], image segmentation [25], global optimization [26],

and as well as cost-effective emission dispatch [27]. There

are various meta-heuristic algorithms, of which the marine

predators algorithm (MPA) [28]. MPA is one of the most

recent algorithms, released in 2020 by Faramarzi et al.,

[28], showing more quality results than several classical

and the latest counterparts on various mathematical and

engineering benchmark problems. Faramarzi et al. applied

twenty-nine test functions to evaluate the MPA perfor-

mance, and it showed high performance in different opti-

mization problems. MPA has many advantages, including

requiring the fewest amount of adjustable parameters,

being simple to implement with powerful search capability,

and flexible in altering the basic MPA version [29].

However, all meta-heuristic algorithms should strike a

balance between exploration and exploitation; other solu-

tions can be stuck in optimal solutions or fail to converge

[30, 31]. Premature convergence is a problem for the MPA.

As it splits the optimization iterations into three parts, the

first part is only for exploration. The second part serves as a

means of transitioning from exploration to exploitation.

The third part is specified for the exploitation phase; this

could affect the search process by causing the population to

get stuck in local optimal. Accordingly, like other meta-

heuristic algorithms, the MPA has been improved. The no-

free-lunch theorem states that no single method can solve

all types of optimization problems. As a result of

hybridization, various features can be combined into a

single algorithm to address multiple challenges.

Thus, hybridization of many techniques from various

scientific domains is required. Hybridization merges the

benefits of various algorithms to create a more powerful,

high-performing version with a promise of higher accuracy

and performance. Notwithstanding MPA’s success in

search processes, it might be improved in various areas to

demonstrate its usefulness on more complex optimization

projects. To enhance the MPA, we hybrid it with the

opposition-based learning (OBL) strategy [32] to produce

solutions from probable regions to explore the search space

more thoroughly. OBL is one of the most efficient

approaches to improve meta-heuristic algorithms [33]. It is

merged with meta-heuristic algorithms in multiple ways to

improve explorative searchability. After that, the proposed

Improved Marine Predators Algorithm (IMPA) is used to

optimize the CNN’s hyperparameters. As a result, auto-

matic hyperparameter optimization for CNN architectures

is critical. This paper proposes an improved meta-heuristic

algorithm called IMPA using the OBL strategy to optimize

the hyperparameters of the CNN architecture used for

breast cancer classification. The proposed method is

IMPA-ResNet50, which depends on a pretrained CNN

model named ResNet50 to diagnose breast cancer from two

mammographic datasets, the mammographic image anal-

ysis society (MIAS) and curated breast imaging subset of

DDSM (CBIS-DDSM) datasets, using transfer learning

(TL). The main contributions of this paper are as follows:

• This paper proposes a diagnostic model for breast

cancer.

• The proposed model is IMPA-ResNet50, which is based

on TL and uses a pretrained CNN model called

ResNet50, along with an enhanced optimization algo-

rithm called IMPA.

• OBL has been used to improve the performance of the

MPA.

• IMPA, an improved version of the original MPA based

on OBL, is proposed to optimize the hyperparameters

of CNN architecture.

The remainder of this paper is structured as follows: Sect. 2

presents some literature reviews. Section 3 explains the

MPA, the OBL strategy, CNNs, and TL. Section 4 presents

the improved version of the MPA (the IMPA method).

Section 5 introduces details of the proposed model. The

experimental results and performance analysis including

the limitation of the proposed model are explained in Sect.

6. Finally, Sect. 7 concludes this paper and presents future

directions.

2 Literature review

This section provides a summary of previous work on

breast cancer diagnosis. In [34], the authors presented a

review of some works on breast cancer classification, and

from this review, they conclude that CNNs achieve higher

accuracy than multilayer perceptron (MLP) NNs. The

authors in [15] proposed a DL technique based on TL.

They used three pretrained models, namely GoogLeNet,

VGGNet, and ResNet, to classify malignant and benign

cells. They evaluate their approach on cytology images to

see how well it works. In addition, in [35], the authors

presented a deep-CNN model that incorporated TL to avoid

overfitting occurring when dealing with small datasets.

They evaluated the presented model’s performance using

four datasets: DDSM, INbreast, BCDR, and MIAS data-

sets. The DDSM dataset showed 97.35% accuracy and 0.98

area under the curve (AUC). The INbreast dataset yielded

95.5% accuracy and 0.97 AUC, whereas the BCDR data-

base yielded 96.67% accuracy and 0.96 AUC.

The researchers in [36] presented an approach called

BDR-CNN-GCN that combines a graph-convolutional

network (GCN) with a CNN. A basic eight-layer CNN was

used that was integrated with batch normalization and
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dropout layer. The final BDR-CNN-GCN model was

developed by combining this model with a two-layer GCN.

The performance of this model was tested on the MIAS

dataset, achieving 96.10% accuracy. Furthermore, in [37],

the researchers presented a CNN Inception-v3 model that

was trained on 316 images, yielding 0.946 AUC, 0.88

sensitivity, and 0.87 specificity. In addition, in [38], the

authors proposed a classification method using CNN and

TL. The purpose of the paper was to assess how eight fine-

tuned pretrained models performed. In [39], the authors

proposed a hybrid classification model: Alexnet, Mobile-

net, and Resnet50. They achieved 95.6% accuracy from

these hybridized models. In [40], the researchers used four

different CNN architectures, namely InceptionV3, VGG16,

ResNet50, and VGG19, including 5000 images, for model

training (benign: 2500 and malignant: 2500). In addition,

the prediction models were tested by 1007 images (benign:

788 and malignant: 219).

In the same context, in [41], the researchers proposed a

TL model for classifying histopathological breast cancer

images. The authors used the ResNet-18 model as a

backbone model with a block-wise fine-tuning method. The

performance of the model was improved using data aug-

mentation techniques and global contrast normalization. In

addition, in [42], the authors proposed a classification

method for thermal images, which combines thermal

images of different views using a CNN model. The method

achieved 97% accuracy and 0.99 AUC, with a 100%

specificity and 83% sensitivity. In [2], the authors pre-

sented a DL framework (DenseNet) that extracts image

features and feeds them into a fully connected (FC) layer to

classify cancerous and benign cells. The efficiency of the

technique was evaluated through hyperparameter adjust-

ment. In [43], the authors proposed a deep classification

algorithm for mammography imaging named CNNI-BCC

(CNN improvement for breast cancer). The CNNI-BCC

model classifies breast images into malignant, benign, and

healthy. They achieved 90.50% accuracy and 90.71%

specificity. In [44], the authors demonstrate that TL pro-

vides improved performance. They employed Inception-v4

[45] pretrained with the ImageNet and DDSM datasets.

Furthermore, in [46], the authors used AlexNet, along

with the support vector machine (SVM), to improve clas-

sification accuracy and using data augmentation techniques

to increase input images. Performance is evaluated on two

datasets: DDSM and CBIS-DDSM. The accuracy of the

method is 71.01%, and when using SVM, the accuracy

becomes 87.2%. In addition, in another work [47], a deep-

CNN was proposed in which an MLP was employed in the

FC layer to classify mammography images into benign,

malignant, and normal. The authors employed a bilateral

filter with vector grid computing to maintain edge infor-

mation in the preprocessing step. They also use

hyperparameter tuning to evaluate performance. The

results demonstrate that hyperparameter tuning of the final

layers produces 96.23% overall accuracy and 97.46%

average accuracy. In addition, in [48] used the CBIS-

DDSM dataset to develop an automatic mammogram

classification method based on TL and data augmentation.

ResNet was fine-tuned to produce good results, and

achieved accuracy was 93.15%.

To be specific, despite the encouraging results achieved

by the CNN architectures in detecting breast cancer, the

large number of hyperparameters is a barrier to attaining

improved results. Thus, the use of hyperparameter opti-

mization for CNN architecture is essential to enhance the

performance of CNNs. In this paper, an optimized CNN

model based on an improved MPA (IMPA) algorithm was

proposed for breast cancer classification, which may aid

health professionals in breast cancer diagnosis.

3 Preliminaries

This section explained the concept, the mathematical rep-

resentation of the marine predators algorithm (MPA), along

with the opposition-based learning (OBL) strategy, the

convolutional neural networks (CNNs) architecture, and

transfer learning (TL).

3.1 Marine predators algorithm

The motivation of MPA appears from the general foraging

operation in ocean predators as well as predator-prey

communications. In this scenario, a predator optimizes

encounter rates to increase the chances of surviving in

natural surroundings. MPA uses Lévy flight and Brownian

motion to do a search using two simple random walk

methods. The Lévy flight is usually performed in meta-

heuristic algorithms and is most effective to avoid solution

stagnation by executing a constructive search in local area

[49]. Also, Brownian motion is a well-known global search

instrument. The designers of MPA merged the search

effectiveness of Lévy and Brownian motion to increase the

trade-off scale through exploration and exploitation [50].

MPA initializes the search by randomly determining Nn

search agents using Eq. (1):

x0i ¼ lbi þ _q� ðubi � lbiÞ; i 2 f1; 2; . . .;Nng ð1Þ

where _q is a random number in [0,1], lbi and ubi are lower

and upper bounds. During initialization and the basic

population matrix, another Nn � Dim matrix is generated,

including search agents with best fitness values, Nn and

Dim indicate population size and dimensions. MPA refers

to it as Elite:
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Elite ¼

XI
1;1 XI

1;2 . . . XI
1;Dim

XI
2;1 XI

2;2 . . . XI
2;Dim

..

. ..
. ..

. ..
.

XI
Nn;1

XI
Nn;2

. . . XI
Nn;Dim

2
666664

3
777775
Nn�Dim

ð2Þ

where XI denotes a vector with the highest fitness.

Prey is similar to Elite. Predators utilize it to update

their positions. The initialization generates the initial prey,

from which the fittest one creates the Elite in a single term.

The Prey is depicted in the following way:

Prey ¼

X1;1 X1;2 . . . X1;Dim

X2;1 X2;2 . . . X2;Dim

..

. ..
. ..

. ..
.

XNn;1 XNn;2 . . . XNn;Dim

2
66664

3
77775
Nn�Dim

ð3Þ

Xi;j indicates the jth dimension of the ith prey. These two

matrices are crucial in the optimization process.

Following initialization, the primary iterative search

method begins, which is divided into 3 stages that simulate

various situations among predator and the prey while

devising different search techniques. The three stages are

based on iterations it 2 f1; 2; 3. . .itmaxg where itmax

denotes the maximum iterations. MPA refreshes potential

solutions during these stages.

Stage 1: High velocity (it\ itmax

3
) This simulates the situa-

tion in which the prey is outrunning the predator. This

approach reinforces exploration and consumes more of the

prior iterations. The mathematical representation of this

rule is carried out by Eq. (4):

stepsize
����!

j ¼ Rr � Elite
��!

j � Rr � preyj
��!� �

; j 2 f1; 2; . . .;Nng

Prey
���!

j ¼ Prey
���!

j þ P � R� stepsize
����!

j

ð4Þ

where Rr is a random number between [0,1] relies on

normal distribution identify the Brownian motion. P is a

constant equal to 0.5, and R is a vector of uniform random

numbers in [0, 1]. The speed of predators and prey is great

during this stage, which aids in the exploration of far-flung

areas of the search space.

Stage 2: Unit velocity (1
3
itmax\it\ 2

3
itmax) Prey and

predator move at equal speed. The transmission step is

transitioned from exploration to exploitation in this phase.

As a result, the population is separated into prey as

exploration utilizing Lévy motion and predator exploiting

Brownian motion. The first half of population identified by

Eq. (5) and the second half using Eq. (6).

stepsizej
�����! ¼ Rlevy � Elite

��!
j � Rlevy � preyj

��!� �
;

j 2 f1; 2; . . .;Nn=2g

prey��!
j ¼ prey��!

j þ P � R� stepsizej
�����!

ð5Þ

where Rlevy is a random number relies on the Lévy. The

multiplication of Rlevy, preyj imitates the predator motion

in Lévy, whereas adding the step size to prey position

affects prey movement.

stepsizej
�����! ¼ Rr � Rr � Elitej � Preyj

� �
; j 2 fNn=2; . . .;Nng

prey��!
j ¼ Elite

��!
j þ P � ĈF� stepsizej

�����!

ð6Þ

where ĈF is a parameter that control step size and is cal-

culated using Eq. (7):

ĈF ¼ 1� it

itmax

� � 2 t
itmax

ð Þ
ð7Þ

Stage 3: Low velocity (it[ 2
3
itmax): The population can be

modified by the Lévy flight using Eq. (8):

stepsizej
�����! ¼ Rlevy � Rlevy � Elite

��!
j � Preyj

� �
; j 2 f1; . . .;Nng

prey��!
j ¼ Elite

��!
j þ P � ĈF� stepsizej

�����!

ð8Þ

MPA also employs a theory in marine predators known as

eddy formation or Fish Aggregating Devices (FADs),

where the predators contemplate longer jumps in different

positions in quest of more food to infuse variation into

possible solutions using Eq. (9):

prey��!
j ¼

prey��!
j þ CF

	
lbi þ r � ðubi � lbiÞ



� ‘ r�FADs

prey��!
j þ ½FADsð1� rÞ þ r�ðprey��!

r1 � prey��!
r2Þ else

�

ð9Þ

where prey��!
j, prey��!

r1, and prey��!
r2 denotes vectors for jth

candidate solution, a random finding solution, and another

random finding solution, respectively; where, r indicates a

random number in [0,1], FADs is a constant equal to 0.2, ‘

a binary vector includes zero and one.

3.2 Opposition-based learning

OBL [32] is a helpful approach in avoiding staleness in

competitor solutions [51]. It is an essential concept, which

enhances search mechanism exploitation. In meta-heuristic

algorithms, convergence occurs almost rapidly when the

primary solutions are near the ideal position; otherwise,

late convergence is expected. By exploring opposite search

zones close to the global optimal, the OBL strategy
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produces better results. The OBL strategy operates by

searching the search space in two directions. These two

directions are defined by one solution, whereas the other

direction is defined by the opposite solution. The OBL

strategy then chooses the best direction from all solutions

[52].

• Opposition number The concept of opposite numbers

may be explained by describing OBL. It is defined by

considering Y0 as a real number 2 ½u; p�. The opposite

number of Y0 is denoted using Eq. (10) [52]:

Y0 ¼ uþ p� Y0: ð10Þ

The opposite number in dimensional (M) space is

calculated using Eq. 11 and Eq. 12:

Y ¼ Y1; Y2; Y3; . . .; YM ð11Þ

Y ¼ ½Y1;Y2;Y3; :::;YM� ð12Þ

The items in Y are represented by Eq. (13):

Yk ¼ uq þ pq � Yq where q ¼ 1; 2; 3; . . .;M ð13Þ

• Opposition-based optimizations The opposite item Y0 is

changed with the corresponding solution Y0 throughout

the fitness function. If ftðY0Þ is better than ftðY0Þ, Y0 is

constant; oppositely, Y0 = Y0. As a result, the solutions

have been modified in terms of the best value of Y and

Y [53].

3.3 Convolutional neural networks

The main structure of every CNN architecture will be

discussed in this subsection. They are a type of deep NNs

that is used to recognize and classify images. Recently,

CNNs have become an essential method in image analysis,

especially when recognizing or detecting faces, text, and

medical imaging [13]. CNNs have been successfully used

for image classification and segmentation since their initial

development in 1989 [54], and they are designed to work as

the human brain does in visual perception: they include

layers of ‘‘neurons’’ that only react to neurons in their

immediate environment. CNNs can extract the topological

aspects of an image by concatenating three types of lay-

ers[55]: convolutional layers, pooling layers, and and FC

layers. Figure 1, shows an example of CNN architecture

[7].

• Convolutional layers These layers are structured into

feature maps according to the local connection concept

and weight distribution concept. A weight group known

as a filter bank connects all neurons in a feature map to

local patches at the previous stage. All units share a

filter row on a feature map. For various feature maps,

different filter banks are used. The reason for local

connection and weight distribution is to reduce the

number of parameters by exploiting the highly linked

local pixel neighborhood, and local image characteris-

tics are location-independent. Then, the summation of

weights is passed on to an activation function such as

Sigmoid [56] and rectified linear unit (ReLU) [57]. The

activation function facilitates the nonlinear transfor-

mation of transmitted data to the following processing

phases [58].

• Pooling layer As shown in Fig. 1, the pooling layer

comes after the convolution layer. It employs a

subsampling technique to integrate convolutional layer

features comparable to a single layer (semantically).

The primary goal of this layer is to reduce an image’s

dimension (by close grouping pixels in a specific

portion of the image into a single value) while

highlighting its features. Some of the common popular

kinds of operation performed on this layer are max

pooling and main pooling [59].

• Fully connected layer The final layer of the CNN is a

classifier, which decide the class of the input data based

on CNN’s features discovered and extracted. The

number of units in the FC layer is equal to the number

of classes or classifications. [59].

A CNN model depends on its hyperparameters, so to

improve its accuracy, some researchers have proposed that

these hyperparameters must be fine-tuned to achieve great

results. Table 1 shows hyperparameters and their descrip-

tion related to CNN architecture. As mentioned before in

Sect. 1, the meta-heuristic algorithms are widely regarded

as excellent techniques to optimize the hyperparameters of

the CNN architecture to increase its performance. Figure 2

presents the process of using an optimization algorithm to

optimize a CNN’s hyperparameters.

As shown in Fig. 2, optimizing hyperparameters of a

CNN starts by initializing the meta-heuristic algorithm’s

population, and the number of hyperparameters determines

the number of dimensions to optimize. Following that,

images must be normalized before being fed to the CNN.

The suggested technique puts the CNN architecture in a

function so that it may be called later when the fitness

function is assessed; at this point, hyperparameters will be

optimized. Once the fitness function has been established,

the iterations of the meta-heuristic algorithm’s positions

are updated according to the algorithm employed. New

solutions are assessed, and the best one is selected. Finally,

the stop criterion is assessed; if not, the operation is con-

tinued to obtain new solutions.
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3.4 Transfer learning

TL is a key to improving the performance of a DL model

on a small dataset, such as medical images. DL models

need a lot of data, computing power, and time to train from

scratch. To tackle these issues, pretrained models and fine-

tuning (FT) are used. TL enables a DL architecture to learn

efficiently from a dataset with fewer samples by transfer-

ring learned features from other DL architectures that have

earlier learned from large datasets [60]. Using a pretrained

Input 
Layer

Convolutional
Convolutional

Pooling
Pooling

Fully Connected

Fig. 1 CNN standard architecture [7]

Table 1 Hyperparameter description of CNN

Hyperparameter-name Description

Learning rate The initial learning rate for the CNN architecture is one of the significant hyperparameters that affect output

performance. When the learning rate is low, the model requires more iterations

Number of hidden layer

units

Expanding the number of hidden layer units enhances the model and reduces computational efficiency

Batch size It refers to the number of sub-samples sent to the network for parameter updates

Dropout rate A dropout is a regularization approach that reduces overfitting by enhancing validation accuracy and consequently

generalizing power

Activation Function Activation functions allow DL techniques to learn nonlinear prediction limits

Number of epochs It is the number of times the entire training data is taken through the training process

Wrap CNN in
a function

Evaluate the
objective
function

Start IterationsOptimization
Algorithm Process

Evaluate the
objective function

Store the
best solution Stop Criterion ?

Yes

No

Population Initialization

End

Image
Normalization

Fig. 2 Block diagram of the

standard process for

hyperparameter optimization in

a CNN using meta-heuristic

algorithms
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network is one of the most well-known and frequently used

strategies to deal with small datasets, such as ImageNet

[61], used in the assigned tasks [62]. Several models have

been pretrained on the ImageNet, such as AlexNet [63],

VGG [64], ResNet [65], Inception [66], and DenseNet [67].

Feature extraction and Fine tuning (FT) are different

approaches that TL can use. The feature extraction

approach removes FL layers from an ImageNet-trained

network while maintaining the remaining network layers,

which comprise a sequence of convolution and pooling

layers and are known as the convolutional part, a fixed

feature extractor. Then, on top of the fixed feature extrac-

tor, any classifier can be added.

FT is to replace the FC layers of a pretrained model with

new ones and retrain them on the input dataset and fine-

tune the kernels in the pretrained model’s convolutional

part using backpropagation. It is the same as the feature

extraction method, except that the final layers of the frozen

convolutional part are unfrozen. These layers are then

retrained, along with the new classifier obtained via the

feature extraction procedure. FT seeks to make the most

abstract elements of the pretrained model more relevant to

the new goal [19]. The steps for implementing these

methods are as follows:

• The classifier of the pretrained model is removed.

• The pretrained model’s convolutional base is frozen.

• Add a new classifier and train it on the top of the

convolutional part. Then, some layers of the convolu-

tional part are unfreezing.

• Finally, the new classifier and the unfrozen layers are

jointly trained.

4 Improved marine predators algorithm

In this section, the proposed IMPA is explained. When

examining the performance of the original MPA, it is clear

that it does not adequately explore all search space solu-

tions. Furthermore, because it divides the optimization

phases into three discrete portions, it suffers from a con-

vergence rate. Thus, the original version of the MPA is

improved using the OBL strategy (IMPA) and used to

optimize the hyperparameters of the pretrained CNN

architecture. Algorithm 1 presents the pseudo-code for the

IMPA. The MPA’s diversity was improved in the search

process using the OBL strategy during the initialization

phase to improve the search operation as follows:

Opps ¼ lba þ uba � yb; b 2 1; 2; . . .;Nn ð14Þ

where Opps is a vector produced by applying OBL, lba, and

uba are lower and upper bounds of the ath component of Y,

respectively.

The phases of the proposed IMPA are described in the

next subsections:

4.1 Initialization steps in IMPA

The IMPA starts by initializing its parameters: maximum

iterations tmax, population size Nn, FADs, P, and dimen-

sions Dim. The MPA begins by initializing the first search

agent y0 and saving outputs. Then, the OBL strategy is

applied to determine the Opps of the initial population by

Eq. (14).

4.2 Optimization processes

The optimization operation is divided into three phases as

presented in Sect. 3.1. After completing these phases, the

OBL strategy is used to calculate the fitness function for

each solution in y and y, the proposed method updates the

global best solution by calculating and comparing the fit-

ness of yb and Opps.

4.3 Final steps in IMPA

After finishing the optimization process, saving the mem-

ory, and updating Elite, and the FADs are calculated by

Eq.(9). The proposed method selects the best solution.

4.4 IMPA computational complexity

The IMPA’s time and space expenses are explained in this

subsection as follows:

1. Time complexity The IMPA generates Nn search

agents with size Dim, and the initialization time

complexity was OðNn � DimÞ. In addition, the IMPA

computes the fitness of each search agent as

OðItmax � Nn � DimÞ, where Itmax determines the

maximum iterations. Furthermore, the IMPA requires

OðTtÞ to perform Tt number of its primary processes.

So, the time complexity of the IMPA is represented by

OðItmax � Tt � Nn � DimÞ.
2. Space complexity The IMPA space complexity is

OðNn � DimÞ.
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5 The proposed IMPA-ResNet50 classifica-
tion model

This section introduces the proposed IMPA-ResNet50

model based on TL from a pretrained CNN architecture.

The pretrained model employed in this proposed model is

ResNet50. The IMPA algorithm is used to optimize the

hyperparameters of the pretrained CNN model to get the

best performance of this model. The ResNet50 model was

trained using TL methods after determining the best values

for the parameters. After the model has been trained, it is

verified using a different test set. The test set is then used to

validate the fully trained model. The proposed model has

split into four main phases, as shown in Fig. 3. These

phases operate in this order:

1. Phase 1 Data preprocessing and data augmentation.

2. Phase 2 Hyperparameters optimization.

3. Phase 3 The learning phase.

4. Phase 4 The performance evaluation.

In the first phase, the datasets were enhanced and divi-

ded into two training and test sets. Also, multiple data

augmentation procedures have been applied to increase

training sets. The proposed model has been applied to two

datasets, namely CBIS-DDSM and MIAS. In the second

phase, the IMPA is used to optimize the hyperparameters in

the pretrained CNN architecture (ResNet50). In the third

phase, ResNet50 was completely trained using the values

of the hyperparameters determined in the second phase that

helped the architecture accurately diagnose the test set in

the next phase. The phases of IMPA-ResNet50 will be

presented in detail in the following sections.

5.1 Phase 1: data prepossessing and data
augmentation

In this phase, data preprocessing and data augmentation

were applied to the two mammographic datasets. First, the

images were enhanced by removing noise and resizing

them to 224� 224 resolution before applying data aug-

mentation, thereby minimizing the storage capacity and

reducing computational time. Second, multiple data aug-

mentation procedures [68] have been applied to increase

training sets, decrease overfitting, speed up the conver-

gence process, and improve generalization. Here, data

augmentation was implemented using the Keras

ImageDataGenerator to enlarge the images of the dataset’s

training set. Table 2 lists the used data augmentation

approaches and their ranges.

5.2 Phase 2: hyperparameters optimization

The TL approach adopts the exact structure of the pre-

trained architecture after making small modifications. The

most significant difference is that the classifier is replaced

with a new one, requiring adjusting or adding several

hyperparameter values. Tuning parameters of a CNN has a

significant contribution to classification efficiency. As

previously mentioned in Sect. 3.3, in this subsection, we

determine hyperparameters that the proposed IMPA can

optimize. In the proposed IMPA-ResNet50 model, eight

hyperparameters are optimized: the learning rate, the batch

size, the three dropout rates of the three dropout layers, and

the number of units of the first three dense layers. As a

result, the search space is eight-dimensional, with each

point representing a combination of the eight

hyperparameters.

5.3 Phase 3: learning phase

Feature extraction and FT are performed to adapt the

ResNet50 model to learn from the used datasets (CBIS-

DDSM and MIAS). The convolutional base is unmodified

in the feature extraction process, but the basic classifier is

replaced by the newest one, which fits the datasets. The

new classifier has eight layers: a flatten layer, four dense

layers, and three dropout layers separating the dense layers.

The IMPA is used to calculate the learning rate for the

convolutional layer, the number of neurons in the first three
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dense layers that use the activation function (ReLU), and

the rates of all dropout layers. The last dense layer has one

neuron with a softmax function. After training the new

classifier for some epochs, fine-tuning is performed by

retraining the last two blocks of the convolutional part of

ResNet50 integrating the new classifier.

5.4 Phase 4: performance evaluation

Accuracy, sensitivity, specificity, precision, F-score, and

AUC are the metrics used in this paper to assess the quality

of the proposed method. The following is a summary of

these metrics.

Accuracy (Acc) This determines how many cases have

been correctly categorized. It is expressed by Eq. 15 [7]:

ACC ¼ ðTPþ TNÞ
ðTPþ TNþ FPþ FNÞ ð15Þ

where TP defines true positive, TN defines true negative,

FP defines false positive, and FN defines false negative.

Sensitivity (Sn) This analysis just displays how many of

the total positive cases are only approximated correctly.

This can be measured using Eq. 16 [7]:

Sn ¼
TP

ðTPþ FNÞ ð16Þ

Specificity metric (Sp) This metric shows how correct the

overall pessimistic predictions are and how accurate the

normal prediction is. It is expressed using Eq. 17 [7]:

Phase 2: Hyperparameters Optimization 

Generate the hyperparameters
values using the IMPA algorithm

Train the ResNet50 for the no. of
epoch

Stopping Criteria

Return the best
hyperparameters values

Yes

No

Phase 3: Learning Phase

Training ResNet50 using
Feature Extraction 

Training the ResNet50 using
Fine tuning 

Training the ResNet50
model

Phase 4: Performance Evaluation 

Predicting the output

Performance analysis

Phase 1: Data Preprocessing and Data Augmentation 

Dataset

Data preprocessing
step

Training set

Test set

Data Augmentation
techniques

Fig. 3 The proposed IMPA-ResNet50 architecture block-diagram phases

Table 2 The data augmentation approaches and their ranges

Data-augmentation technique Range

Shearing 0.1

Zooming 0.1

Width shift 0.3

Height shift 0.3

Rotation 15

Featurewise center True

Featurewise standard deviation normalization True

Fill mode Reflect

Vertical flip True

Horizontal flip True
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Sp ¼
TN

ðTNþ FPÞ ð17Þ

Precision metric (Pr) This metric indicates how accurate

the abnormal breast cancer prediction is. It is denoted using

Eq. 18 [7]:

Pr ¼
TP

ðTPþ FPÞ ð18Þ

Average F-score F-score is a metric of the test accuracy, as

expressed in Eq. (19) [69]:

F1j ¼
TPj

TPj þ FPj

� �

F1 ¼ 1

q

Xq

j¼1

F1j

ð19Þ

AUC The AUC indicates how well a model will perform in

various scenarios, expressed using Eq. 20 [7]:

AUC ¼
P

Ri Itð Þ � ItðIt þ 1Þ=2
It þ If

ð20Þ

where It and If represent the number of positive and neg-

ative images, and Ri denotes the rate of the ith positive

image.

6 Experimental results and performance
analysis

This section describes and analyzes the results to validate

the proposed IMPA-ResNet50 model’s performance for

classifying mammography of breast cancer. This section is

structured as follows: Sect. 6.1 presents the datasets used in

this paper. Section 6.2 presents the platform used in this

paper. Section 6.3 presents the experimental parameter

settings for the IMPA. Section 6.4 presents the results of

the CBIS-DDSM dataset, and Sect. 6.5 describes the results

of the MIAS dataset. Section 6.6 presents the comparative

results of the proposed IMPA-Resnet50 with four other

meta-heuristic algorithms paring with the ResNet50

architecture: GSA-ResNet50, HHO-ResNet50, WOA-

ResNet50, and MPA-ResNet50. Eventually, the limitations

of the proposed model are illustrated in Sect. 6.7

6.1 Dataset description

In this paper, two datasets were used to evaluate the pro-

posed model including MIAS [70] and CBIS-DDSM [71]

described as follows:

1. CBIS-DDSM datasetThe CBIS-DDSM dataset is an

upgraded and standard version of the DDSM

mammogram dataset. Its images were decompressed

and changed to the DICOM form for download. To

process this dataset, we applied the guidance of CBIS-

DDSM and transformed the DICOM format into PNG

files to train the method to categorize images as benign

or Cancer. The total number of images are 5283.

Table 3 presents the specification of the dataset and its

number of samples for the training and test sets.

2. MIAS dataset The MIAS dataset consists of 322

mammography images with a size 1024� 1024. This

dataset has two (abnormal: 113; normal: 209) classes.

The abnormal category was divided into two classes:

benign contains 65 images, and malignant contains 48

images. Each class in the MIAS dataset contains useful

information. The abnormality type, such as calcifica-

tions, masses, and asymmetries, is identified in the

data. This dataset is categorized into six categories

shown in Fig. 1. After applying data augmentation

techniques as mentioned in Sect. 5.1 on the MIAS

dataset, the number of images increases, as reported in

Table 4 (Fig. 4).

6.2 Experimental platform

The IMPA and the IMPA-ResNet50 model are coded on

Google Colaboratory [72] platform and implemented by

Python 3 with Keras [73]. Keras is a high-level NN API

that may be used with TensorFlow, CNTK, or Theano. It is

the most popular DL framework. It was created for ease of

use, and it has been able to conduct multiple tests and

obtain findings as rapidly as possible, with the least amount

of delay, allowing for adequate paper.

6.3 Parameter settings

The parameters employed in the proposed model are listed

in Table 5. The maximum number of iterations is 50, and

the population size is 30, which are almost relative to our

number of dimensions. The IMPA algorithm aims to

optimize the initial learning rate parameter to fit in the

optimal area. The range of the learning rate is between

1e�7 and 1e�3; it should be a small value in the fine-tuning

method since the number of changes that will occur in the

model must be quite small so that the features learned from

the feature extraction method are not lost. The batch size

value is between [1, 64]; the searching range of batch size

is bounded by a lower bound of 1 and the upper bound of

64, and the dropout rates are in the range of [0.1, 0.9]; the

searching range of dropout rates is bounded by a lower

bound of 0.1 and the upper bound of 0.9 as a good value for
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dropout in a hidden layer is between 0.1 and 0.9, and the

number of neurons is in the range of [50, 500]. The epochs

training number of ResNet50 was chosen by experimenting

with more than one value. When employing a number of

epochs more than 30, the experiment determined that each

IMPA’s training process takes exponential time. Also,

when using less than 30 epochs, the results of the ResNet50

were not adequately accurate. As a result, the ResNet50

was trained using 30 epochs. The Dimension parameter of

the IMPA denotes the number of hyperparameters that the

proposed IMPA can optimize. It is set to 8 as they are 8

hyperparameters: the learning rate, the batch size, the three

dropout rates of the three dropout layers, and the number of

units of the first three dense layers.

6.4 Analysis of IMPA-ResNet50 model for CBIS-
DDSM dataset

This subsection presents the results of the proposed IMPA-

ResNet50 model using hyperparameters determined by the

IMPA according to the CBIS-DDSM dataset. In addition, it

presents the comparison among other studies and related

work. Furthermore, to demonstrate the effectiveness of the

IMPA in determining the best values for the hyperparam-

eters of the ResNet50 model that can achieve the most

significant accuracy, we compare it with the ResNet50

model based on setting the hyperparameters of the

ResNet50 manually, i.e., randomly chosen.

Table 6 presents the results of the IMPA-ResNet50

model on the CBIS-DDSM dataset evaluated in terms of

accuracy, sensitivity, specificity, precision, F1-score, and

AUC. The proposed method produced 98.32% accuracy on

the test set. The average sensitivity, specificity, precision,

F1-score, and AUC were 96.61%, 98.56%, 98.68%,

97.65%, and 97.88%, respectively. Table 7 compares the

Table 3 Specifications of CBIS-

DDSM dataset
Dataset Class No. of training samples No. of test samples

CBIS-DDSM Benign 1824 783

Cancer 1873 803

Table 4 Specifications of MIAS

dataset
Dataset No. of training samples No. of test samples Total images

MIAS 904 386 1290

Normal-category

830

Abnormal-category

460

(a)

(d)

Circumscribed Mass (b) MISC (c) Spiculated Mass

Calcification (e) Asymmetry (f) Architecture distortion

Fig. 4 MIAS mammography Categories [70]

Table 5 Parameter settings for IMPA

Parameter Value

Maximum iteration numbers 50

Population size 30

Dimension 8

Learning rate [1e-7, 1e-3]

Batch size [1,64]

Dropout rate [0.1,0.9]

Number of neurons [50,500]

Maximum number of ResNet50 training epochs 30

Table 6 Results of the proposed IMPA-ResNet50 on the CBIS-

DDSM dataset

Metrics IMPA-ResNet50 (%)

Accuracy 98.32

Sensitivity 96.61

Specificity 98.56

Precision 98.68

F-score 97.65

AUC 97.88
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proposed IMPA-ResNet50 model with the MPA-ResNet50

method based on manual search on the CBIS-DDSM

dataset. According to the results presented in Table 7, the

proposed IMPA-ResNet50 model outperforms ResNet50

model without the hyperparameters optimization. Where,

the accuracy of the ResNet50 architecture is 90.11%, the

sensitivity is 89.80%, specificity is 90.33%, the precision,

F1 score, and AUC of this architecture are 89.01%,

90.00%, 91.88%, respectively. The improvement of the

proposed IMPA-ResNet50 model relative to the ResNet50

architecture according to the accuracy is 8.21%, and the

improvement according to the sensitivity, specificity, pre-

cision, F1 score, and AUC are 6.81%, 8.23%, 9.67%,

7.65%, 6.00%, respectively.

Furthermore, the proposed IMPA-ResNet50 model’s

performance was compared with other published studies on

breast cancer diagnosis using the CBIS-DDSM dataset in

Table 8. These studies [35, 46, 48, 74–79] were chosen for

comparison because they are recent models and were

trained on a various data samples. The proposed IMPA-

ResNet50 model was compared with other studies in terms

of accuracy, sensitivity, specificity, precision, F1-score,

and AUC, as shown in Table 8. The symbol - in the

table means the comparison method does not have an

equivalent metric. In [35], several CNN models were

introduced to classify three datasets. The significant per-

formance was on the DDSM dataset that contains 5316

images and the ResNet50 model. The ResNet50 model

achieves 97.27% accuracy. In [76], multi-deep CNN

models were evaluated on two datasets: CBIS-DDSM and

MIAS. They used 5272 images from the first dataset and

achieved accuracy, Sensitivity, and specificity of 87.2%,

86.04%, and 89.40%, respectively. The study in [48] pro-

posed a fine-tuned technique to enhance the performance of

the ResNet50 model. This method was evaluated on 2620

images from the CBIS-DDSM dataset and achieved accu-

racy, specificity, Sensitivity, AUC of 93.15%, 92.17%,

93.83%, 0.95, respectively. While in [46], the authors

hybridized the SVM and the CNN on CBIS-DDSM dataset

to enhance the performance. The obtained accuracy was

Table 7 Comparison between

the proposed IMPA-ResNet50

model and ResNet50 model on

the CBIS-DDSM dataset

Metrics ResNet50 (%) IMPA-ResNet50 (%) Improvement (%)

Accuracy 90.11 98.32 8.21

Sensitivity 89.80 96.61 6.81

Specificity 90.33 98.56 8.23

Precision 89.01 98.68 9.67

F1-score 90.00 97.65 7.65

AUC 91.88 97.88 6.00

Table 8 Comparison between the proposed IMPA-ResNet50 model and other related studies on the CBIS-DDSM dataset

References No. of

images

Dataset Model Accuracy

(%)

Sensitivity

(%)

Specificity Precision

(%)

F1-score

(%)

AUC

[35] 5316 DDSM ResNet50 97.35 – – – – 0.97

[35] 5316 DDSM VGG16 97.12 – – – – 0.98

[74] 600 DDSM CNN 96.7 – – – – –

[75] 2400 DDSM CNN-YOLO 97.0 93.20 94.00 – – 96.45%

[48] 2620 CBIS-

DDSM

Fine-tuned

ResNet50

93.15 93.83 92.17% – – 95.0%

[76] 5272 CBIS-

DDSM

ResNet50 87.2 86.04 89.40% – – 95.00%

[46] 5272 CBIS-

DDSM

Fine-tuned

AlexNet

87.20 86.2 87.7% 88.0 87.1 94.00%

[77] 3568 CBIS-

DDSM

ResNet50 96.6 92.95 88.60% – – 93.4%

[78] 11,562 DDSM DCNN 92.80 – – – – –

[79] 2781 CBIS-

DDSM

AdaBoost 90.91 82.96 98.38% 86.00 – 98.32%

Proposed 5283 CBIS-

DDSM

IMPA-ResNet50 98.32 95.61 98.56% 98.68 97.65 97.88%
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87.2% as shown in Table 8. In addition, in [74], 600 images

from the DDSM dataset have been classified and achieved

96.7% accuracy. In [75], a YOLO-CNN method was pro-

posed for classifying 2400 images from DDSM dataset as

seen in row 5 of Table 8. Several CNN models used in [77]

to classify three breast cancer datasets. A DCNN model

proposed in [78] uses a large number of images; 11562

images. The gained accuracy is 92.80%. According to the

table, the proposed IMPA-ResNet50 model’s classification

performance is superior to other approaches. It outperforms

all comparison methods in terms of all evaluation matrices.

6.5 Analysis of IMPA-ResNet50 model for MIAS
dataset

This subsection presents the results of the proposed method

IMPA-ResNet50 using hyperparameters calculated by the

IMPA algorithm according to the MIAS dataset. Further-

more, it presents the comparison between other related

studies. In addition, to demonstrate the effectiveness of the

IMPA in determining the best values for the hyperparam-

eters of the ResNet50 model that can achieve the most

significant accuracy, we compare it with the ResNet50

model based on setting the hyperparameters of the

ResNet50 model manually, i.e., randomly chosen without

optimization.

Table 9 presents the results of IMPA-ResNet50 for the

MIAS dataset evaluated in terms of accuracy, sensitivity,

specificity, precision, F1-score, and AUC. The proposed

method achieved 98.88% accuracy. The average sensitiv-

ity, specificity, precision, F1-score, and AUC were 97.61%,

98.40%, 98.30%, 97.10%, and 99.24%, respectively.

Table 10 compares IMPA-ResNet50 model with the MPA-

ResNet50 method based on manual search for the MIAS

dataset. According to the results in Table 10, the proposed

ResNet50 model outperform the ResNet50 architecture that

selected without the hyperparameters optimization. Where,

the accuracy of the ResNet50 architecture is 87.50%, the

sensitivity is 88.10%, specificity is 86.12%, the precision,

F1 score, and AUC of this architecture are 87.32%,

87.88%, 89.01%, respectively. The improvement of the

proposed IMPA-ResNet50 model relative to the ResNet50

architecture according to the accuracy is 11.38%, and the

improvement according to the sensitivity, specificity, pre-

cision, F1 score, and AUC are 9.51%, 12.28%, 10.98%,

9.22%, 10.23%, respectively.

In addition, the proposed IMPA-ResNet50 model’s

performance was compared with other published studies on

breast cancer diagnosis using the MIAS dataset. The

comparison studies, [35, 36, 43, 76, 80, 81], were chosen

because they are based on CNN architectures and have

used the same dataset. The methods were compared in

terms of accuracy, sensitivity, specificity, precision, F1-

score, and AUC, as shown in Table 11. The symbol - in the

table means the comparison method does not have the

equivalent metric. In [35], several CNN models were

introduced to classify three datasets. The obtained results

on the MIAS dataset are 98.23% accuracy and 0.99 AUC.

In [36], the graph convolutional network is used with CNN

to classify 322 images; the results of that method are

reported in row 4 on Table 11. In [43], an improved CNN

model was introduced to classify the MIAS breast cancer

dataset that achieves 89.47%, 90.71%, and 90.50% for

sensitivity, specificity, and accuracy, respectively. In [80],

a DenseNet201 model evaluated on the MIAS dataset and

obtain 92.73% accuracy. Based on the table, the proposed

IMPA-ResNet50 model is superior to other approaches. It

outperforms all comparison methods in terms of all eval-

uation matrices.

6.6 Comparison with other optimization
algorithms

This subsection presents the comparative results between

the IMPA algorithm and other well-known meta-heuristic

algorithms to demonstrate that the IMPA algorithm effec-

tively determines the best values for the ResNet50 archi-

tecture’s hyperparameters to reach high accuracy. It was

compared to four other meta-heuristic algorithms that have

received much attention and highly cited meta-heuristics:

the GSA algorithm [82], the HHO algorithm [83], the

WOA algorithm [84], and the original MPA algorithm.

These algorithms are also hybrid with the ResNet50

architecture produce models named GSA-ResNet50, HHO-

ResNet50, WOA-ResNet50, and MPA-ResNet50, respec-

tively. For a fair comparison between the IMPA and the

other compared algorithms, all the compared algorithms

have the same parameters as the IMPA, as stated in

Table 5. Table 12 presents the comparison between the

Table 9 Results of the proposed IMPA-ResNet50 on the MIAS

dataset

Metrics IMPA-ResNet50 (%)

Accuracy 98.88

Sensitivity 97.61

Specificity 98.40

Precision 98.30

F-score 97.10

AUC 99.24
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proposed IMPA-ResNet50 model with the MPA-ResNet50,

GSA-ResNet50, HHO-ResNet50, and WOA-ResNet50

models. According to the comparative results, the IMPA is

more suitable for combining with the ResNet50 architec-

ture to classify the mammography breast cancer datasets. It

was able to select the optimal hyperparameter values for

the ResNet50, resulting in a greater accuracy ratio for this

architecture.

In summary, the following observations from the

reported experiments are worth mentioning

• In terms of accuracy It is observed that the proposed

IMPA-ResNet50 model outperforms the MPA-

ResNet50 model, which means the improved version

of the MPA achieves a significant performance when

used to optimize the ResNet50 hyperparameters com-

pared to the original MPA algorithm. The MPA-

ResNet50 model achieves an accuracy of 95.59% on

the CBIS-DDSM dataset and 94.95% on the MIAS

dataset. Also, the IMPA-ResNet50 model outperforms

all other compared models. In the case of using the

Table 10 Comparison between

the proposed IMPA-ResNet50

model and the ResNet50 model

on the MIAS dataset

Metrics ResNet50 (%) IMPA-ResNet50 (%) Improvement (%)

Accuracy 87.50 98.88 11.38

Sensitivity 88.10 97.61 9.51

Specificity 86.12 98.40 12.28

Precision 87.32 98.30 10.98

F1-score 87.88 97.10 9.22

AUC 89.01 99.24 10.23

Table 11 Comparison between the proposed IMPA-ResNet50 model and other related studies on the MIAS dataset

References No. of

images

Dataset Model Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Precision

(%)

F1-score

(%)

AUC

(%)

[35] 322 MIAS ResNet50 98.23 – – – – 99.0

[76] 1288 MIAS Fine-tuned

DCNN

95.4 96.60 92.10 – – 99.00

[36] 322 MIAS CNN-GCN 96.10 ±

1.60

96.20 ± 2.90 96.00 ± 2.30 – – –

[80] 330 MIAS DenseNet201 92.73 94.58 91.67 – – –

[81] 322 MIAS CNN 82.68 82.73 82.71 – – –

[43] 322 MIAS CNN 89.47 90.71 90.50 – – –

Proposed 1290 MIAS IMPA-ResNet50 98.88 97.61 98.40 98.30 97.10 99.24

Table 12 Comparison between the proposed IMPA-ResNet50 model with the MPA-ResNet50, GSA-ResNet50, HHO-ResNet50, and WOA-

ResNet50 models

Dataset Classification Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-score (%)

CBIS-DDSM IMPA-ResNet50 98.32 96.61 98.56 98.68 97.65

MPA-ResNet50 95.95 93.03 95.28 94.22 93.85

GSA-ResNet50 95.48 94.16 95.00 95.00 94.00

HHO-ResNet50 94.55 93.12 94.84 94.12 94.50

WOA-ResNet50 94.13 93.10 94.00 94.00 94.00

MIAS IMPA-ResNet50 98.88 97.61 98.40 98.30 97.10

MPA-ResNet50 94.95 94.03 94.28 94.22 94.85

GSA-ResNet50 94.38 94.00 93.38 94.16 94.00

HHO-ResNet50 94.30 93.50 94.18 93.69 94.00

WOA-ResNet50 93.38 93.00 93.00 93.00 93.00
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GSA algorithm to select the hyperparameters of the

ResNet50, it achieves an accuracy of 95.48% on the

CBIS-DDSM dataset and 94.38% on the MIAS dataset.

In comparison, the HHO-ResNet50 model achieves an

accuracy of 94.55% on the CBIS-DDSM dataset and

94.30% on the MIAS dataset. While the WOA-

ResNet50 model achieves an accuracy of 94.13% on

the CBIS-DDSM dataset and 93.38% on the MIAS

dataset.

• In terms of sensitivity, specificity, precision, and

F-score As listed in Table 12, the performance of the

proposed IMPA-ResNet50 model outperforms all other

compared models, which means the IMPA algorithm is

very appropriate in conjunction with the ResNet50

architecture.

6.7 Limitations of the proposed model

This paper proposes an efficient breast cancer classification

model that depends on the hybridization of pretrained CNN

architecture and an improved meta-heuristic optimization

algorithm. Although the proposed IMPA-ResNet50 model

achieves high classification performance in breast cancer

detection from mammography images, future studies need

to address some limitations. The limitation of the IMPA

algorithm and the limitation of the proposed IMPA-

ResNet50 model are illustrated as follows:

• Because the IMPA algorithm is merged with the OBL

strategy, it is comparatively computationally expensive

than the original MPA algorithm.

• The running time may increase when adding the OBL,

but the increase in the time here is for getting more

performance compared to the original algorithm.

• The IMPA-ResNet50 was only implemented to classify

mammography images. These results are limited to a

specific dataset, MIAS dataset, and CBIS-DDSM

dataset and may not be generalized to the other dataset.

• The performance of the IMPA-ResNet50 is closely

related to medical imaging applications.

• The IMPA algorithm success in determining the values

of the hyperparameters of the ResNet50 architecture

only, and it may not be generalized to other pretrained

CNN architecture.

7 Conclusion and future work

Deep Learning is one of the essential techniques in medical

imaging classification. Convolution Neural Networks are

examples of common DL techniques used for biomedical

image classification that involves layer-wise automatic

feature extraction. The preparation of CNNs for classifi-

cation objectives depends on the knowledge of hyperpa-

rameter tuning. Hyperparameters for each layer are

different. Because these hyperparameters determine a CNN

model’s performance, they need to be fine-tuned to achieve

great results. It is not suitable to optimize hyperparameters

manually because manually selecting them is quite a

complex and time-consuming task. Meta-heuristic algo-

rithms have significantly influenced hyperparameter opti-

mization in several fields. This paper proposes a novel

classification model for breast cancer based on a hybridized

pretrained CNN architecture (ResNet50) and an improved

meta-heuristic optimization algorithm. The marine preda-

tors algorithm (MPA) is the used optimization algorithm,

and we improve it using the OBL strategy to improve

exploitation and avoid getting stuck in the local optimal.

The Improved Marine Predators Algorithm (IMPA) is used

to find the best values for the hyperparameters of the

ResNet50 architecture, resulting in a model called IMPA-

ResNet50. To the best of our knowledge, this is the first

paper using the IMPA as an optimization algorithm to

optimize the hyperparameters for the ResNet50 architec-

ture for breast cancer classification. The proposed IMPA-

ResNet50 model includes four phases: (1) the data pre-

processing and augmentation phase, (2) hyperparameter

optimization phase, (3) learning phase, and (4) perfor-

mance evaluation phase. The proposed model is compared

with other state-of-the-art methods and other CNN

approaches. The comparison results showed the effective-

ness of the proposed model in diagnosing breast cancer.

The evaluation is performed on two mammography data-

sets: the curated breast imaging subset of DDSM (CBIS-

DDSM) and the mammographic image analysis society

(MIAS). To demonstrate the effectiveness of the IMPA in

determining the best values for the hyperparameters of the

ResNet50 model that can achieve the most significant

accuracy, we compare it with the MPA-ResNet50 model,

also compare it with the pretrained CNN ResNet50 model

based on the manual search. The first experiment applied to

the CBIS-DDMS consisted of 5283 images for two classes,

normal and abnormal. The obtained accuracy was 98.32%

in the testing phase according to the IMPA-ResNet50

model and 95.95% accuracy according to the MPA-

ResNet50 model, which means the improved version for

the MPA (i.e., IMPA) significantly improves performance

when used to optimize the ResNet50 hyperparameters

compared to the original MPA. The second experiment was

performed using another dataset (MIAS) consisting of 1290

images after applying the data augmentation techniques.

The obtained accuracy was 98.88% according to IMPA-

ResNet50 95.95% accuracy according to MPA-ResNet50.

Also, compared to four meta-heuristic algorithms: GSA,

HHO, WOA, and the original MPA algorithm, the results
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of the comparison showed the effectiveness of the proposed

algorithm. The proposed method’s performance has been

assessed using five measures: accuracy, sensitivity, speci-

ficity, precision, and F-score. The results showed that the

proposed model gets better results than the other competing

algorithms, which means using the IMPA as a meta-

heuristic optimization algorithm to determine the ResNet50

architecture’s hyperparameters boosts the classification

models to achieve the best performance for a breast cancer

diagnostic.

In future work, multiple datasets with more images will

be used and evaluated in the proposed model. Also, various

pre-trained models such as DensNet201, DensNet121, and

Inception will be used to classify breast cancer in con-

junction with the proposed IMPA algorithm. In addition,

various metaheuristic algorithms will be used for hyper-

parameter tuning. Also, we will test the proposed method’s

performance in solving different medical image classifi-

cation problems and different diagnosis applications,

applying the IMPA algorithm to solving other medical and

engineering issues, and using it as a feature selection

method. Furthermore, various feature extraction methods

will be used with CNN architecture to improve the clas-

sification accuracy further. Transfer learning with other

models can enhance the performance.
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72. Carneiro T, Da Nóbrega RVM, Nepomuceno T, Bian G-B, De

Albuquerque VHC, Filho PPR (2018) Performance analysis of

google colaboratory as a tool for accelerating deep learning

applications. IEEE Access 6:61677–61685

73. Chollet F et al. (2015) Keras

74. Jiao Z, Gao X, Wang Y, Li J (2016) A deep feature based

framework for breast masses classification. Neurocomputing

197:221–231

75. Al-Masni MA, Al-Antari MA, Park J-M, Gi G, Kim T-Y, Rivera

P, Valarezo E, Choi M-T, Han S-M, Kim T-S (2018) Simulta-

neous detection and classification of breast masses in digital

mammograms via a deep learning yolo-based cad system. Com-

put Methods Prog Biomed 157:85–94

76. Ragab DA, Attallah O, Sharkas M, Ren J, Marshall S (2021) A

framework for breast cancer classification using multi-dcnns.

Comput Biol Med 131:104245

77. Khan HN, Shahid AR, Raza B, Dar AH, Alquhayz H (2019)

Multi-view feature fusion based four views model for mammo-

gram classification using convolutional neural network. IEEE

Access 7:165724–165733

78. Song R, Li T, Wang Y (2020) Mammographic classification

based on xgboost and dcnn with multi features. IEEE Access

8:75011–75021

79. Zhang H, Renzhong W, Yuan T, Jiang Z, Huang S, Jinpeng W,

Hua J, Niu Z, Ji D (2020) De-ada*: a novel model for breast mass

classification using cross-modal pathological semantic mining

and organic integration of multi-feature fusions. Inf Sci

539:461–486

80. Xiang Yu, Zeng N, Liu S, Zhang Y-D (2019) Utilization of

densenet201 for diagnosis of breast abnormality. Mach Vis Appl

30(7):1135–1144

81. Tan YJ, Sim KS, Ting FF (2017) Breast cancer detection using

convolutional neural networks for mammogram imaging system.

In: 2017 international conference on robotics, automation and

sciences (ICORAS). IEEE, pp 1–5

82. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a

gravitational search algorithm. Inf Sci 179(13):2232–2248

83. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H

(2019) Harris hawks optimization: Algorithm and applications.

Fut Gen Comput Syst 97:849–872

84. Mirjalili S, Lewis A (2016) The whale optimization algorithm.

Adv Eng Softw 95:51–67

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:18015–18033 18033

123

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

	An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
	Abstract
	Introduction
	Literature review
	Preliminaries
	Marine predators algorithm
	Opposition-based learning
	Convolutional neural networks
	Transfer learning

	Improved marine predators algorithm
	Initialization steps in IMPA
	Optimization processes
	Final steps in IMPA
	IMPA computational complexity

	The proposed IMPA-ResNet50 classification model
	Phase 1: data prepossessing and data augmentation
	Phase 2: hyperparameters optimization
	Phase 3: learning phase
	Phase 4: performance evaluation

	Experimental results and performance analysis
	Dataset description
	Experimental platform
	Parameter settings
	Analysis of IMPA-ResNet50 model for CBIS-DDSM dataset
	Analysis of IMPA-ResNet50 model for MIAS dataset
	Comparison with other optimization algorithms
	Limitations of the proposed model

	Conclusion and future work
	Author contributions
	Open Access
	References




