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Abstract Technological advances combined with the
demand of cost efficiency and environmental
considerations has led farmers to review their practices
towards the adoption of new managerial approaches,
including enhanced automation. The application of field
robots is one of the most promising advances among
automation technologies. Since the primary goal of an
agricultural vehicle is the complete coverage of the
cropped area within a field, an essential prerequisite is
the capability of the mobile unit to cover the whole field
area autonomously. In this paper, the main objective is
to develop an approach for coverage planning for
agricultural operations involving the presence of
obstacle areas within the field area. The developed
approach involves a series of stages including the
generation of field-work tracks in the field polygon, the
clustering of the tracks into blocks taking into account
the in-field obstacle areas, the headland paths
generation for the field and each obstacle area, the
implementation of a genetic algorithm to optimize the
sequence that the field robot vehicle will follow to visit
the blocks and an algorithmic generation of the task
sequences derived from the farmer practices. This
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approach has proven that it is possible to capture the
practices of farmers and embed these practices in an
algorithmic description providing a complete field area
coverage plan in a form prepared for execution by the
navigation system of a field robot.

Keywords Agricultural Vehicles, Mission Planning,
Complete Coverage, Genetic Algorithms

1. Introduction

Technological advances combined with the demand for
cost efficiency and environmental considerations
require farmers to reconsider their practices and adopt
approaches
automation [1]. The application of new technologies,

new managerial including enhanced
which is able to maximize the operational efficiency of
the system in a way that optimizes the use of scarce
resources and minimizes the environmental impact, is
needed [2]. The application of field robots is one of the
most promising applications of these automation

technologies.
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Emerging field robots are required to operate with
minimum human intervention but also in an efficient and
safe way. Since the primary goal of an agricultural vehicle
is the complete coverage of the cropped area of a field, an
essential prerequisite is the capability of the mobile unit
to cover the field area parts autonomously. An automated
machine needs a planned path directing the execution of
the operation. The boundaries of a field and its obstacle
areas are usually fixed from year to year, providing a pre-
determined environment where the resultant paths could
be deterministic and known in advance.

Coverage path planning for field operations is a special
case of the general problem of path planning for outdoor
environments (e.g., [3]). Due to the semi-structural
environment, both on-line planning based on sensor
fusion (e.g., [4-5]) and off-line planning can be applied.
Regarding the off-line planning for field area coverage, a
number of approaches have been presented. The first
step for complete off-line planning is the solution of the
problem of the geometrical representation of the field as
an operational environment. In [6] a field geometrical
representation algorithm is presented, which can generate
straight and curved tracks and treats a field as a single
region or divides it into sub-regions and generates field
work tracks parallel to the longest edge of the field/sub-
region. This method has also been applied in non-
agricultural domains such as planning operations
including the planning of grass cutting operations in
football stadiums [7]. Pursued methods have also taken
into consideration biodiversity issues, as for example in
[8]. Regarding the specific coverage planning procedure
pertained to such generated operational environments, a
number of methods have been introduced. In [9] and [10]
the algorithmically-computed optimal fieldwork patterns,
the B-patterns, are presented, which provide optimal field-
work track sequencing according to the criterion of
minimizing the non-working travelled distance of an
agricultural vehicle. In [11] a genetic algorithm based
approach for the simultaneous selection of the driving
line direction and sequence of tracks that minimizes
operational time and overlapped areas was derived. In
the case of field operations in rolling terrains the terrain
characteristics (i.e., for example elevation) have a
significant influence on the design and optimization of
the coverage path planning. A route planning method for
agricultural vehicles carrying time-dependent loads with
the objective of reducing the risk of soil compaction was
presented in [12]. In [13] a 3D geometrical field
representation combined with a simulation tool for field
operations under capacity constraints is presented. The
developed tool can represent a field more accurately in a
3D environment using the digital elevation model (DEM)
of the field’s area and therefore can be used for more
realistic optimization of various field operations and for
more accurate robot navigation.
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There are some mobile-robot applications that require the
complete coverage of an unstructured environment.
Examples are humanitarian de-mining, floor-cleaning
tasks and tasks in agriculture. A complete-coverage
algorithm is then used, a path-planning technique that
allows the robot to pass over all points in the
environment in a systematic way, avoiding unknown
obstacles. Different coverage algorithms exist, but they
fail to work in unstructured environments. In some
applications, such as in agriculture, the task becomes
more complex since an autonomous vehicle or a robot has
to drive in rows in order to minimize crop damage and to
simplify the cooperation between a set of autonomous
vehicles in carrying out a single task [11-13]. A variety of
coverage algorithms exist [14-21], but the most powerful
ones are those that rely on finding the critical points of a
function to guarantee the completeness of the method
[16-20]. Liu and Palmer [14] developed an approach
based on graph theory for formulating efficient courses
around an obstacle. Obstacles that are less than four
implement widths should be circumvented with each
pass. Larger obstacles should have a headland with each
side of the obstacle being processed separately. This
approach works well for simple obstacle shapes, however
it requires, under some human
intervention for making hard decisions. Lumelsky et al.
[15] presented a dynamic path planning approach based
on a vision system where the task is accomplished by
walking from one obstacle to the other in order to build a
terrain map. Zelinsky et al. [16] presented an approach
for generating a path from a start location to a goal
location, while minimising one or more parameters such
as length of path, energy consumption or journey time
where a robot sweeps all the areas of the free space in a
systematic and efficient manner. This approach can be
used by autonomous vacuum cleaners, lawn mowers,
security robots and land mine detectors but cannot be
used in applications where crops are planted in rows. In
[17-19], an approach based on the formulation of cellular
decompositions of an unknown space using critical points
of Morse functions is presented. The critical point
formulation forms simple cells that can be covered by
performing simple motions, such as back and forth.
Garcia and Gonzalez de Santos [20] described a method
for complete track coverage of unstructured
environments incorporating obstacle avoidance. The
method was based on exact cellular decomposition of a
field. With this decomposition it was possible to divide a
field with obstacles into subfields (cells) containing no
obstacles. The drawback of this approach is the unvisited
subfields, which can cause an economical loss to farmers.
In [21] a grid representation for the field and a genetic
algorithm (GA) were used to find the optimal path

circumstances,

travelling through all the grids and hence covering the
entire field area. Nevertheless, the method does not
provide paths that are feasible for all field operations,
e.g., in the case of row crops.
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In this paper, the main objective is to develop an
approach for coverage
operations involving the presence of obstacle areas within
the field area. The aim of the approach is to capture the
prevailing practices of farmers, and if possible to
optimize such practices and provide a complete field area
coverage plan that is executable by the navigation system
of an agricultural field robot. The developed approach
does not require any human intervention and can deal
with any field regardless of the complexity of its shape
and the number of the shape complexity of its obstacles.

planning for agricultural

2. Methodological approach
2.1 Geometrical representation

The developed approach includes three stages. In the first
stage, the field polygon is filled with field tracks parallel
to a user-defined angle (i.e., driving angle). The driving
angle can also be optimized in a manner that reduces, for
example, operational time, soil compaction or emitted
COxz as a result of the vehicle’s activities, etc. (see [11-13]).
In the second stage, the generated tracks are arranged
and clustered into sub-fields (referred to as blocks) taking
into account the in-field obstacles. In the third stage,
headland paths are generated at the upper and lower
sides of the tracks in each block. Each stage will be
explained in detail in the following sections.

2.1.1 First stage: track generation

In this stage, the field boundary and the boundaries of the
in-field obstacle areas are firstly inputted using a user-
provided source shape/text file. The minimum bounding
box (MBB) of the field boundary is then generated and
filled with straight lines parallel to a user-defined driving
angle, 0, spaced by a distance equal to a user-defined
operating width, w. The driving angle is defined as the
angle between the driving direction and a horizontal
reference x-axis (e.g., the UTM Easting axis). The
intersection between each track line and the field outer
boundary or the boundaries of the obstacle areas are then
obtained. The parts of the tracks contained within the
field boundary are maintained, while the remaining parts
are eliminated. More details of this process can be found
in [6]. As an example, the blue line of the field shown in
Fig. 1a, represents the field outer boundary, while the red
line represents the boundary of an obstacle area.
Generated field tracks for two selected driving angles are
shown in Fig. 1b and Fig. 1c.

2.1.2 Second stage: clustering of field tracks

A track generated in the first stage, is defined as a line
segment, which intersects the field outer boundary in the
form of two end points. Let T = {1, 2, 3,...} denote the set
of these initial tracks. If a track intersects with an in-field
obstacle area, then it can be divided into two independent
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tracks, each track having two end points with one end
point located on the field outer boundary and the other
end point located on the boundary of the intersecting
obstacle boundary.

F-axis
riving
direetion

X-AXis

(b)

(©

Figure 1. The outer boundary of a field (blue polygon) and the
boundary of an in-field obstacle (red polygon) [+56° 29' 14.01",
+9° 32' 33.33"] (a) examples of generated field tracks for two
selected driving angles (b) 6 =45° (c) 6 = 90°

In the general case, if a track ieT, has n, intersections,
then it crosses n,/2-1 obstacle area parts and can be
subdivided into m; =n; /2 segments, which make up the
new tracks. Forn =2, the track intersects no obstacles
and therefore it is undividable. The total number of the
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(&
new generated tracks can be obtained as ) m; and let
T= {1,2,3,...} denote the set of the new set dfltracks.

trackNumber = 1
numberOfNewTracks=
numberOfPointsMaking ATrack(trackNumber)/2
oldNumberOfNewTracks = numberOfNewTracks + 1
A:
IF numberOfNewTracks # oldNumberOfNewTracks

blocks = createEmptyBlocks(numberOfNewTracks)
END
FOR i =1 TO numberOfNewTracks

SAVE Track(trackNumber, 7)) INTO blocks(7)

END
oldNumberOfNewTracks = numberOfNewTracks
INCREAMENT trackNumber BY 1
currentTrack =Track(trackNumber)
numberOfNew Tracks =
numberOfPointsMaking ATrack(trackNumber)/2
GOTO A

Table 1. The pseudo-code of the track clustering process

Driving direction ——>

(@)

Diriving direction ————=»

2

6

S5

(b)
Figure 2. The effect of driving direction on the number of field
blocks for a field with two obstacles

The next step involves clustering of the generated tracks
into blocks. The clustering process starts by checking the
possible subdivision of a specific sequenced track. If the

Int J Adv Robotic Sy, 2013, Vol. 10, 231:2013

current track can be divided into m; tracks, then m;
empty blocks are created and the generated tracks are
allocated to these blocks in sequence. If the next track in
the sequence is expressed as m, ; =m,, the new m,
tracks are saved in the current m; blocks. On the other
hand, if m, ; #m; then m,  , new empty blocks are
created then the new generated tracks are saved in the
new blocks in sequence. A pseudo-code of the clustering
process is listed in Table 1. It should be noted that the
number of the generated blocks depends on the selected
driving angle and consequently on the driving direction.
For example, Fig. 2 presents a virtual field with two
obstacles and different number of resulting blocks for two

different driving directions.
2.1.3 Third stage: headland polygons generation

In a field operation, headlands are created by the sequential
passes that the agricultural machine has to perform
peripherally to the main field area and around each obstacle
area (Fig. 2). A headland area consists of a sequence of
internal (or external in the case of an obstacle area)
boundaries corresponding to headland passes. The width of
the headland area results from the multiplication of the
effective operating width of the machine by the number of
the peripheral passes. Let h denote the number of the
headland passes. The distance between the first headland
pass and the field boundary is half of the implement width,
w /2, while the distance between subsequent headland
passes equals an implement width, w, where w denotes
the (effective) operating width of the operating implement.
A headland path is obtained by acquiring the intersection
points between segments of lines parallel to the segments of
lines of the previous headland pass at distance d to the
interior of the field area or the exterior area in the case of an
obstacle. The distance d for the first headland pass is set to
w /2, while for the rest of the passes it is set tow . An
additional (virtual) headland pass is generated at distance
w /2 from the last headland pass to be used as the internal

boundary of the main field area, as is shown in Fig. 3.

Figure 3. Creation of headland passes polygons: point a is the
intersection of the track with the field outer boundary (black
line), point b is at half operating width from the field outer
boundary, point ¢ is at full operating width from previous
headland pass, and point d at half operating width from the last
headland pass
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2.2 Block sequence optimization

For a field robot to carry out an agricultural operation
without crossing any field obstacles it should cover
each block of tracks one at a time and therefore it is
required to find the optimal covering order of the
generated blocks. This problem can be formulated as
an optimization problem where the decision variable is
the order of blocks and the objective function to be
minimized is the total connection distance between
blocks.

Let B= {1,2,3,...} denote the set of generated blocks and
let x;,i,jeB/i#j denote the decision variables of the
problem where x;=1 if the vehicle after block i
transfers to block j and x; =0 otherwise. The objective

function of the problem is ZZX--C- which has to be

5= 7
ieBjeB
i#j

minimized, where c; the cost for transferring block i to
block j. The cost ¢; does not have a uniquely specified

value but it depends on the exit point from block i and
the entry point of block j and thus the problem cannot be
considered as a pure assignment problem. Four
connection points or arguments can be defined for each

block, as is shown in Fig. 4.

The exit point of a block is a function of the entrance
point as derived by the configuration of the field tracks.
Let f(): {1,...,4} —){1,...,4} express the function that a
specific entrance connection point results in a specific
connection point. In the case of an odd number of field
tracks in a block f(1)=3, f(2)=4, {(3)=1 and f(4)=2,
while in the case of even number of tracks in the block
then f(1)=4, £f(2)=3, £(3)=2 and f(4)=1.

I"_!p?.‘:.r.ilf &'dlan:'l.._* Upper headland
" J'{ o ‘If’ 4
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Figure 4. Entrance points are arranged in clock-wise direction (a)
a block with odd number of tracks (b) a block with even number
of tracks

www.intechopen.com

2.2.1 Small-scale problems (SSP)

In this context, SSP are defined as a problem, which has a
number of blocks ‘B‘ <4. For four blocks, there are up to
24 (i.e., B‘!) candidate solutions with repetitions or 12
candidate solutions without repetitions. In this type of

problem, all possible sequences can be easily obtained
using random permutation within B. A real-valued
genetic algorithm (RGA) is applied to find the optimum
entrance points for each respective block in each sequence
of blocks (i.e., candidate solutions). A chromosome
constitutes of ‘B‘ genes where each gene has an integer
value in the range of [1, 4], as is shown in Fig. 5a. The
connection distance for each solution is saved and the one
with minimum connection distance is returned. The
advantage of this type of problems is that a global
optimum solution is guaranteed, however, it is time
consuming and not practical for problems of more than
four blocks.

o [Xpy| === |Xby

(@)

bl b"] AR bB Xb

] ;\’1}2 cee ;\’I}B

(b)
Figure 5. Chromosome structure (a) coding of entrance points of
blocks optimizing entrance points of field blocks (b) coding of
block sequence in the first half and entrance points in the second
half of the chromosome

2.2.1 Large-scale problems (LSP)

For more than four blocks, an RGA can be used to find
both the optimal sequence of blocks and, at the same
time, the optimum entrance point of each respective
block. The sequence of blocks is encoded in permutation
and constitutes the first half of the chromosome while the
entrance points of the respective blocks constitute the
second half of the chromosome. The chromosome
structure for solving this type of problem is shown in Fig.
5b. The advantage of these types of problems is their
quick convergence but at the cost of having an optimized
solution where there is no guarantee that the obtained
solution is the global optimum.

2.2.3 Real-valued genetic algorithm (RGA)

The input to the block-sequencing problem is two sequenced
set of integers, where the first set of integers represents
different blocks together with the order representing the
time at which a block must be visited and a second set of
integers where each integer represents a block entrance
point. The output of the problem is the connection distance
between blocks measured using Euclidean distance over 2D
space. The decision variables are represented by the
sequences of blocks, which are permutationally encoded,
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and entrance points, which are real-valued and encoded.
Real-valued encoding not only reduces computational
efforts but also speeds up convergence. The performance of
the GA depends on the crossover and the mutation
operators of the GA [22]. The type and the implementation
of operators depend on the encoding and also on the
underlying problem. In real-valued encoding, every
chromosome is a string of values. Values can be anything
connected to the underlying problem, from numbers, real
numbers or charts to complicated objects. In real-valued
encoding, crossover operators used in binary encoding are
applicable where parts of the strings from two parent
chromosomes are swapped in order to produce two new off-
spring [23]. Mutation is carried out by adding or subtracting
a small value to a selected gene value. In the case of integer
values, this value is rounded to the nearest integer after the
addition or subtraction.

In permutation encoding, every chromosome is a string or
a sequence of integers, where each integer represents a
different block and the order represents the time at which a
block is visited. Permutation encoding can be used in
ordering problems, such as the travelling salesman
problem (TSP) or task ordering problems. In this case, each
block has to be visited once and no blocks can be
discarded. Also, a scheme analogous to simple crossover is
required, but one which preserves solution viability while
allowing the exchange of ordering information. One such
scheme, among others, is partially matched crossover
(PMX). In this scheme, a crossing region is chosen by
selecting two crossing sites at random. Crossover is
performed in the centre region. Replicated alleles in the
crossing region are replaced by cross-referencing with the
parent of the alternate chromosome [24]. Mutation is often
used in GAs as a way of adding random variation to the
evolving population, preventing a total loss of diversity. To
avoid a resulting non-viable block order, inversion
mutation is used, in which a randomized exchange of
alleles in a randomized chosen chromosome is applied.
This can be accomplished by applying a given (usually
small) probability, much like mutation.

2.3 Generation of the final path

The sequence of the visited blocks and the sequence of
traversing the tracks within each block cannot provide by
themselves an executable and complete coverage of the
field area. The reason for this is that in field operations, as
mentioned earlier, auxiliary paths in terms of headland
passes are needed in order to complete the operation. The
execution time for these paths, i.e., prior or after finishing
the main area coverage, depends on the type of operation.
In the case of a material input operation (e.g., seeding),
the headland passes are executed after the completion of
the operation in the main area. In the case of output
material operations (e.g., harvesting), the headland passes
are executed prior to the operation in the main area.

Int J Adv Robotic Sy, 2013, Vol. 10, 231:2013

In order to produce a complete coverage plan that
includes both the traversal sequence between the tracks
as well as the headland passes, two algorithms were
developed, one for input material flow operations and
one for output material flow operations, incorporating
the task execution practices that have to be followed in
agricultural operations. Fig. 6 and Fig. 7 represent the
flow diagrams depicting the two algorithms representing
input material flow operations (for example, the seeding
operation) and material output operations (for example,
the harvesting operation), respectively.

Block Sequence

1¢-Blockindex:

YES-

Outer child?

Quter headland

YES

Travel an last
track

| | |Wnﬂ(unlhz

headland

Work on the
headland

A ES NO NO

| H Wark an inner |

M e
Figure 6. The flow diagram for the generation of the final path in

'Work last track

YES

Travel on last
track

the case of input material flow operations

Harvest main
Block Sequence field boundary

14Blockindex

Blockindex<=n

:

Blockindex+1¢Blockindex
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Harvest field \
){ ke }(\'ES Parent Block?
A
N
Hanvest
current N Outer child?
headland

YES

Harvest one
track
Harvest the
ather head|znd

Harvest
remaining NG

tracks
Harvest inner
[
Figure 7. The flow diagram for the generation of the final path in
the case of output material flow operations
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niter from oute
headland?
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3. Results
3.1 SSP example

The first demonstration field [+54° 57' 8.28" E, +9° 46'
49.31"N], shown in Fig. 8a, has an area of 5.54ha or
55375.38m? and has one obstacle area. The coverage
planning is generated for a driving angle of 4.5° and an
operating width of 9m and two headland passes. The
developed coverage planning approach is applied to this
field and the field tracks are clustered into four blocks, as
is shown in Fig. 8b. The computational time for this
operation was 0.18 seconds as an average of ten running
times on an average computer. The field has four blocks
so it could be classified as an SSP and therefore the
general GA was used to find the optimum entrance point
for all possible permutations of block sequences (i.e., for
4! = 24 block sequences). The default sequences of tracks
in each block are given in Table 2.

(b)
Figure 8. Test field 1 (a) A field of a single obstacle area (i.e., SSP
type) (b) the block generation for a selected driving angle of 45°,
a working width of 9m and two passes in the headland area

Block number Default track sequence

1 12345 6 7 8 910 11 12 13]
2 [14 16 18 20 22]

3 [15 17 19 21 23]

4 [24 25 26 27 28 29 30 31 32]

Table 2. Indices of after division tracks in each block

www.intechopen.com

X Best Block Enter Exit Connection
Solutions . . .
sequence points  points distance
1 [1324] [1221] [3443]
2 [4231] [3443] [1221] 77.01 (m)

Table 3. Optimal block sequence

The sequence of the blocks and the corresponding
entrance and exit connection points are shown in Fig. 9.
There are two optimal solutions, as is shown in Table 3. It
is worth noting that the two solutions are identical but
one is the reverse of the other. The two solutions are
graphically shown in Fig. 9. The solution was obtained in
0.47 minutes (as an average of ten running times on an
average computer) using an RGA of a population size of
100, 50 generations and 0.8 and 0.01 crossover and
mutation probability, respectively.

Figure 9. Illustration of the two equivalent optimum solutions of
experimental field 1: circles and squares could be either entrance
or exit points and vice versa

3.2 LSP example

The second experimental field [+56° 30' 26.79", +9° 36'
54.35"], shown in Fig. 10a, has an area of 94.03ha (i.e.,
940,309.60m?) and two in-field obstacle areas. An
operating width of 18m and two headland passes were
assumed, together with a driving angle of 84°. The field
representation after clustering 67 tracks into 7 blocks is
shown in Fig. 10b. The block generation was obtained in
an average time of 0.28 seconds (average of ten running
times on an average computer).

Block number Default track sequence
[12345678910111213141516171819
2021 22 23 24 2526 27 28]

[29 31 33 35]
[30 32 34 36]
[37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56]
[57 59]
[58 60]
7 [61 62 63 64 65 66 67]

1

o O = N

Table 4. Indices of after division tracks in each block

Ibrahim A. Hameed, Dionysis Bochtis and Claus A. Sgrensen: An Optimized Field Coverage Planning

Approach for Navigation of Agricultural Robots in Fields Involving Obstacle Areas

7



Figure 10. Test field 2 (a) A field with two obstacle areas (of LSP
type) (b) The block generation for a selected driving angle of 84°,
working width of 9m and two passes in the headland area

For seven blocks, there are 5040 different sequences of
permutations. The RGA was used to find the best sequence
of blocks. The solution was obtained in 14.41 minutes (as
an average of ten running times on an average computer)
and a minimum connection distance of 610.04m was
achieved. The default sequence of tracks in each block is
shown in Table 4, while the resultant optimized solution is
shown in Table 5. In this problem, a mixed permutation
and real-valued encoded GA of a population size of 100, a
maximum generation number of 100, a crossover
probability of 0.8 and a mutation probability of 0.01 were
used. The solution is graphically shown in Fig. 11.

Ecattield here

Enter ficld hiere

Figure 11. Illustration of the obtained optimized solutions of
experimental field 2: circles and squares represent entrance and
exit points to and from a block respectively

Int J Adv Robotic Sy, 2013, Vol. 10, 231:2013

. Best Block Enter Exit Connection
Solutions . . .
sequence points points distance
[11133 [4432 2
1 [2576431] 33] 22] 610.04 (m)

Table 5. Optimal block sequence
4. Conclusions

The developed approach for coverage planning for
agricultural operations involving the presence of obstacle
areas within the field area provides the necessary
information required for aiding and supporting
navigation of field robots in such complex fields. The
performance of the optimization algorithms used to
optimize the coverage planning requires relatively low
computational times compared to an off-line planning
system. This approach has proven that it is possible to
capture the practices of farmers and embed these
practices in an algorithmic description providing a
complete field area coverage plan in a form prepared for
execution by the navigation system of a field robot.
Moreover, in the case of complex fields in terms of the
number of obstacle areas, the approach can provide an
optimized plan that enhances the farmer’s practice.
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