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ABSTRACT Electricity price is an important indicator of the market operation. Accurate prediction of

electricity price will facilitate the maximization of economic benefits and reduction of risks to the power

market. At the same time, because of the excellent performance of deep learning models, using long-short

term memory neural network (LSTM) and other deep learning models to predict time series has gradually

become a research hotspot. In this paper, an optimized heterogeneous structure LSTM model is proposed

to solve the problems of the single network structure and hyperparameter selection existing in the current

research on LSTM. The heterogeneous structure LSTM is constructed based on the decomposed and

reconstructed electricity price data, and sequence model-based optimization (SMBO) is used to optimize

its hyperparameters. In order to verify the proposed model, online hourly forecasting and day-ahead

hourly forecasting are tested on the electricity markets of Pennsylvania–New Jersey–Maryland (PJM). The

experimental results show that the performance of the proposed model is much better than that of the general

LSTMmodel and traditional models in accuracy and stability, providing a new idea for the use of LSTM for

time series prediction.

INDEX TERMS Long short-term memory neural network, neural network structure, hyperparameter

optimization, time series analysis, electricity price forecasting.

LIST OF ABBREVIATIONS

LSTM Long-short term memory neural network

SMBO Sequence Model-Based Optimization

PJM Pennsylvania–New Jersey–Maryland

EPF Electricity price forecasting

AI Artificial intelligence algorithms

ANN Artificial neural network

SVM Support vector machine

RNN Recurrent neural network

GRU Gated recurrent units

DNN Deep neural network

CNN Convolutional neural network

EMD Empirical mode decomposition

EEMD Ensemble empirical mode decomposition

IMF Intrinsic mode function

SVR Support vector regression
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BPNN Backpropagation neural networks

GTB Gradient boosting regressor

DTR Decision tree regressor

LSTM-HF LSTM model for predicting

high-frequency components of

sequences

LSTM-LF LSTM model for predicting

low-frequency components of

sequences

EEMD-LSTM The heterogeneous network

which consists of LSTM-HF

and LSTM-LF is used to predict

the high and low-frequency

components obtained by EEMD

EEMD-LSTM-SMBO SMBO is used to optimize the

hyperparameter of EEMD-LSTM

APE Absolute Percentage Error

MAPE Mean Absolute Percentage Error

RMSE Root Mean Square Error

IQR Interquartile Range
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I. INTRODUCTION

Electricity price is an important factor in the electricity

market. Accurate electricity price forecasting (EPF) is crit-

ical to all parties in the power market competition [1]. The

decision-making in the power market highly relies on the

electricity prices, making the EPF model a crucial compo-

nent for the orderly and efficient operation of the electricity

market. EPF has a certain degree of periodicity, it also pos-

sesses highly random and time-varying characteristics. Thus,

it is a very challenging task to establish a model to predict

electricity prices. The accuracy of EPF in the electricity mar-

ket affects the efficiency and rationality of energy resource

optimization. Moreover, accurate prediction of the electricity

price enables the balance between power supply and demand,

and facilitates the stable operation of the power market [2].

The existing EPF methods include statistical methods [3]

and artificial intelligence algorithms (AI). The AI approach

can better fit the nonlinear data and has shown good pre-

diction results in electricity price prediction, solar radia-

tion prediction [4], wind power prediction [5], stock market

prediction [6] and other fields [7]. The major AI models

include the artificial neural network (ANN) [8], [9], support

vector machine (SVM) [10], ensemble model [11], and the

meta-heuristic optimization algorithm [12].

The ANN and SVM models establish a nonlinear relation-

ship between the output and the input through a large amount

of historical data. They transform the dynamic time modeling

problem into a static space modeling problem. The electricity

price can be modeled as a typical time series. It is nonlinear

and has dynamic characteristics, that is, the output of the

system is not only related to the input at the current moment

but also related to the past inputs. Hence, the traditional

artificial intelligence algorithms exhibit limited accuracy for

electricity prices prediction.

Recently, deep learning has been widely studied due to its

excellent performance. Recurrent neural network (RNN) is a

deep learning algorithm with a recurrent feedback network

framework. Compared with traditional AI algorithms, it can

consider the temporal correlation of time series, which can

performmore comprehensive and complete modeling of time

series. LSTM [13] is a special RNN model with special

structure design, which can effectively avoid the problems of

gradient disappearance and gradient explosion in the process

of RNN training. For electricity price prediction, LSTM has

been used to predict the day-ahead electricity price for the

Australian market in the Victoria region and Singapore mar-

ket. Mean Absolute Percentage Error (MAPE) is improved

by 47.3% compared with other traditional machine learning

models [14]. LSTM is also used for short-term residential

load forecasting [15]. Two other neural network architectures,

TD-CNN and C-LSTM, are used to model the load data

based on different time dimensions to extract the informa-

tion contained in the time series [16]. Single gated recurrent

units (GRU) network structure is used for prediction. GRU

neuron structure is simpler than LSTM, which makes its

calculation speed faster [17]. ANN-LSTM hybrid model is

utilized to predict the electricity price, that is, the predicted

results are the average of the predicted values of ANN and

LSTM [18]. Empirical mode decomposition (EMD) is uti-

lized to decompose time series, and LSTM is used to predict

each subsequence, which fully explores the connotation infor-

mation of time series [19]. A large number of experiments

were conducted, and four kinds of deep learning network

structures deep neural network (DNN), LSTM-DNN, GRU-

DNN and convolutional neural network (CNN) were used to

predict the electricity price [20].

The aforementioned researches have two main drawbacks.

Firstly, the selection of network hyperparameters is based on

experience or spending a lot of time experimenting to select

parameters [14]–[19], but the hyperparameters obtained by

these methods may not be optimal, resulting in the limited

performance of models [21]. Secondly, some researches use

a single network structure to model time series [14]–[20].

However, a large number of studies have shown that because

of the strong volatility and nonlinearity of electricity prices,

if the similar time series are decomposed in multiple scales,

and the predictionmodel is adjusted according to the different

components with a different nonlinear degree, the prediction

performance will be significantly improved compared with

sole forecasting models [22]–[25]. Besides, in paper [19],

Multiscale components are obtained through EMD, while the

sub-sequences (IMFs) are not classified, and all sub-models

need to be trained separately, resulting in a huge workload.

This paper proposes an optimized heterogeneous structure

LSTM hybrid forecasting model for electricity price pre-

diction. The Intrinsic Mode Functions (IMFs) obtained by

ensemble empirical mode decomposition (EEMD) method

are reconstructed into high and low-frequency components

using the fine to coarse method. Heterogeneous LSTM net-

work structures are designed for different components. The

smaller the nonlinear degree of the component is, the sim-

pler the network structure is. Then the SMBO is utilized to

optimize the hyperparameters of the heterogeneous LSTM,

to further improve the performance of the model. Contribu-

tions of this study include:

• Fully explore the information contained in the time

series by decomposing and reconstructing the electricity

price time series into high and low-frequency compo-

nents.

• Improve the prediction performance of the forecasting

model by designing appropriate LSTM structures for

different components, adjusting the nonlinear degree of

the network (Construction of heterogeneous structure).

• To further improve the performance and reduce the cost

of training, SMBO is utilized to optimize the hyperpa-

rameters of deep neural networks.

The remainder of this paper is organized as follows. The

characteristics analysis of electricity price is described in

Section II. Section III introduces the internal structure of

LSTM and the impact of network structure on model per-

formance. Section IV describes the selection of hyperpa-

rameters and the SMBO algorithm. Data decomposition and
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FIGURE 1. ACF plots of the electricity price.

reconstruction based on EEMD are presented in Section V.

Procedure and design of the proposed model is introduced

in Section VI. Section VII describes the settings of models,

forecasting results and comparative analysis. Finally, the con-

clusions are drawn in Section VIII.

II. DATA FEATURES

In the power market, the short-term electricity price change

rule is different from the long-term electricity price, and it has

the following features:

• Obvious periodicity, generally taking 24 hours as a

cycle;

• Strong time regularity and self-correlated to a certain

extent;

• Greatly affected by various environmental factors, show-

ing a certain degree of non-stationary randomness.

The LSTMmodel can make full use of the memory charac-

teristic when predicting the time series with autocorrelation.

In each processing process, recursive architecture can keep or

pass on the memory information when the weight is updated.

Besides, the unit architecture of the LSTM model achieves

long-term persistence based on short-term persistence, which

is superior to RNN. Therefore, highly accurate prediction can

be obtained by utilizing the autocorrelation existing in time

series.

Considering the requirement of day-ahead hourly forecast-

ing, it is necessary to continuously forecast the electricity

price of the next 24h based on historical information. In this

paper, batch forecasting is used, that is, a single forecasting

batch is created within the whole forecasting time length,

which is different from the forecasting executed in one or

more iterative steps and directly predicts the electricity price

of the next 24h. However, the batch prediction is only effec-

tive if the autocorrelation lasts for more than 24h. As men-

tioned above, it is necessary to conduct an autocorrelation

analysis of electricity price.

The electricity price of the PJM power market from

the periods 2018.2-2018.4 is selected [26]. Fig. 1 shows

the autocorrelation function graph of electricity price.

It can be seen that the autocorrelation coefficient still

exceeds the confidence boundary at the 24th order, rep-

resenting strong autocorrelation. Therefore, we can con-

struct the LSTM model based on the high autocorrelation

lag.

III. NEURAL NETWORK STRUCTRUE

A. LSTM MODEL

An LSTM cell includes forgetting gates, input gates, and out-

put gates, and a flow of information representing long-term

memory is added to form a black box of input x and state

output s. These two features allow LSTM to be trained more

effectively so that historical sequence information is fully

utilized. The structure of an LSTM cell is shown in Fig. 2.

FIGURE 2. The detailed structure within an LSTM cell.

xt is the current input; ht−1/ht are hidden layer previous

state and current state; ct−1/ct are previous and current cell

memory information; Wc, Wi, Wf , Wo are weight matrixes

connecting the input signal x and the hidden layer output

signal y respectively; bi, bc, bf , bo are offset vectors; σ is

a sigmoid activation function.

ft = σ (Wf · [ht−1, xt ] + bf ) (1)

it = σ (Wi · [ht−1, xt ] + bi) (2)

c̃t = tanh(WC · [ht−1, xt ] + bC ) (3)

ct = ft · ct−1 + it · c̃t (4)

ot = σ (Wo · [ht−1, xt ] + bo) (5)

ht = ot · tanh(Ct ) (6)

The weights in the LSTM network can be updated by

the input training set to minimize the prediction error. Since

LSTM is a deep neural network and the information trans-

mitted is the information flow containing historical memory,

key information can be retained by adjusting the weight.

Therefore, LSTM has a significant advantage in processing

the time series data.

B. NETWORK STRUCTURE CHARACTERISTICS

The nonlinear degree of the neural network is mainly affected

by the network structure. Fig. 3 A and B show the single-layer

neural network and the two-layer neural network structure

respectively. Structure A has two layers, namely the input

layer and output layer. The input cell in the input layer

only transmits data and does not perform calculations. The

output cell in the output layer needs to calculate the input of

the previous layer, which is called computing layer, and the

network with a computing layer is called ‘‘single-layer neural
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FIGURE 3. Neural network structure.

FIGURE 4. The fitting performance of different network structures.

network’’. w is the weight value, g is the activation function,

and z is the output function.

z = g(a1 · w1 + a2 · w2 + a3 · w3) (7)

For the two-layer neural network, an intermediate layer

is added in addition to the input layer and the output layer.

The upper corner mark represents the number of layers, wkm,n

represents the weight of the nth neuron in the kth layer con-

nected to the mth neuron in the kth+1 layer, and z is the output

function.
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By the formula (7) and (9), it can be seen that the non-

linear degree of the function increases with the increase

of the number of layers. As shown in Fig. 4, from the

single-layer neural network to the two-layer neural network

and then to the multi-layer neural network, the ability to

fit the decision-making boundary is continuously enhanced.

The essence of the neural network is a method to simulate

the real relation function between features and targets. More

parameters mean that its fitting function can bemore complex

and have more capacity to fit the real relation, but it also

means that the probability of overfitting increases accord-

ingly, especially when the model is highly complex and the

sample data has a low degree of nonlinearity.

Thus, there are two points to note when designing the

network structure.

• For high-frequency data with a high degree of non-

linearity, the shallow neural network has poor fitting

performance.

• For low-frequency data with a low degree of nonlinear-

ity, the deep neural network has high complexity and is

prone to over-fitting, resulting in poor ductility.

For the electricity price data with high complexity and

unstable volatility, it is a combination of two types of

sequences [22]–[25]. Therefore, using a single structure neu-

ral network to fit the electricity price data will restrict the

prediction performance to some extent.

In addition to the number of layers, the number of neu-

rons is also an important parameter of the network structure.

However, because it is a hyperparameter, the parameter space

is large and the change is more flexible, its selection is based

on the SMBO introduced in the next section.

IV. OPTIMIZATION OF HYPERPARAMETERS – SEQUENCE

MODEL-BASED OPTIMIZATION

The hyperparameters of the deep learning model must be

selected properly before the model can be applied to a new

data set. Studies have shown that the influence of hyperpa-

rameters on different network architectures exhibits a com-

plex relationship. Hyperparameters that provide significant

performance improvement in simple networks do not have

the same effect to complex architectures. Conventional meth-

ods for hyperparameter selection usually depend on prior

experience and experimental errors. This leads to two draw-

backs. One is that the final model prediction still exhibits

low accuracy and unsatisfactory robustness. Another is the

computational cost of the algorithm training is high.

The Bayesian optimization, known as active optimization,

uses a surrogate model to fit the real objective function and

proactively selects the most ‘‘potential’’ evaluation points

based on the fitting results to avoid unnecessary sampling.

The Bayesian optimization framework effectively employs

the complete historical information to improve the search

efficiency and can be expressed as

p(f |D1:t ) =
p(D1:t |f )p(f )

p(D1:t )
(10)

In (11), f denotes an unknown objective function; D1:t =

{(x1, y1) , (x2, y2) , . . . , (xt , yt)} denotes the observed set

which is composed of different hyperparameter sets and cor-

responding prediction results, xt are the decision vectors,

yt = f (xt ) + εt denotes the observed value, εt denotes the

observation error, p (D1:t |f ) denotes the likelihood distribu-

tion of y; p (f ) denotes the prior probability distribution of f ;

p (D1:t) represents the marginal likelihood distribution of f ,

and it is mainly used to optimize hyperparameter in Bayesian

optimization; p (f |D1:t) represents the posterior probability

distribution of f , and it describes the confidence of the

unknown objective function after correction by the observed

data set.
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The SMBO is used in this study which is an improved algo-

rithm based on Bayesian optimization. The SMBO method

builds a model based on historical data to evaluate the perfor-

mance of the hyperparameters, then selects new hyperparam-

eters based on this model for testing. Replacing the previous

distribution with a non-parametric density means to obtain a

posterior probability distribution p (f |D1:t) containing more

data information according to formula (8).

The acquisition function α : χ × R × 2 → R is an

active strategy for selecting the next evaluation point. This

function maps from input space X , the observation space

R, and the hyperparameter space 2 to the real space. It is

constructed from the posterior distribution of the observed

data set D1:t and is maximized as a reference for selecting

the next evaluation point

xt+1 = max
x∈χ

α(x;D1:t ) (11)

The expected improvement (EI) strategy [27] is adopted to

quantify the probability so that the observed value of x could

improve the current optimal objective function value and

reflect different improvement amount as well. The acquisition

function of the EI strategy can be expressed as

EIy∗ (x) =

∫ y∗

−∞

(y∗ − y)p(y|x)dy (12)

y∗ is the threshold of the objective function, x is the suggested

hyperparameter set, and y is the actual value of the objective

function using the hyperparameter set x. The goal is to max-

imize the expected improvement of x, that is to find the best

hyperparameter under the surrogate function p(y|x).

The optimization framework is an iterative process (as

shown in Algorithm 1.), consisting of three steps. Step 1

selects the next most potential point xt according to the

maximum acquisition function. Step 2 evaluates the objective

function value yt = f (xt ) + εt according to the selected

evaluation point xt . Step 3 adds the new input-observation

value {xt , yt } to the historical observation set D1:t−1 and

updates the probabilistic surrogate model to prepare for the

next iteration.

Algorithm 1 Hyperparameter Optimization

1: for t = 1, 2 . . . do

2: Maximize the acquisition function to get the next

evaluation point: xt = argmaxx∈χ α (x|D1:t−1)

3: Evaluate the objective function value yt = f (xt ) + εt ;

4: Data Integration:Dt = Dt−1 ∪ {xt , yt }, Update

probabilistic surrogate model

5: end for

V. DECOMPOSITION AND RECONSTRUCTION

OF SEQUENCES

This section describes the method of preprocessing elec-

tricity price data. The essence includes the decomposition

and reconstruction of the sequence using the EEMD algo-

rithm and the fine-to-coarse scheme to avoid the excessive

decomposition.

A. EEMD

EMD is based on the cycling alternation algorithm [28]. How-

ever, due to the mode overlapping in EMD, an IMF has mul-

tiple sequences with different frequencies, or sequences with

the same frequencymay appear in different IMFs. The EEMD

algorithm was proposed to overcome these defects, it adds

the white noise to the sequence, obtaining the local mean of

the upper and lower envelopes accurately, thereby promoting

anti-aliasing decomposition and avoiding the mode mixing

defects [29]. Let X (t) be the original time series, then the

EEMD process can be described by the following steps.

1) Add a set of white noise sequence ω (t) to the original

time series X (t) to obtain a new set of sequence x (t).

x (t) = X (t) + ω (t) (13)

2) Identify the local minima and local maxima in the

original time series x (t).

3) Determine the upper envelope emax (t) of x (t) accord-

ing to all the maximum points in the sequence x (t)

using the cubic spline interpolation function. Similarly,

the lower envelope emax (t) of the sequence can be

determined according to the corresponding minimum

points.

4) Remove the low-frequency sequence by subtracting the

sequence m (t) = (emax (t) + emin (t)) /2.

5) Replace the original time series x (t) with the newly

created d (t) = x (t) − m (t) and repeat Step 1 to Step

3 until the d (t) is an IMF. Denote d (t) as c1 (t) and let

the residual r (t) = x (t) − c1 (t) be the new x (t);

6) Repeat steps 1) to 4) to filter out the multiple IMFs

until the new IMF can no longer be filtered out from

X (t). Under this circumstance, the original time series

X (t) decomposed into multiple IMFs and a trend term

component r (t) and can be expressed as

x(t) =
∑

ci(t) + r(t) (14)

B. FINE TO COARSE

The obtained IMFs are reconstructed into high and low-

frequency sequence by the fine-to-coarse method to avoid

the accumulation of errors caused by too many subsequences

and the excessive decomposition [30]. It has a positive effect

on preventing error propagation caused by multiple steps.

Suppose that the original time series x (t) is decomposed into

N IMFs. Procedure of the reconstruction is:

1) Let si =
∑i

k=1 IMFs, i = 1, 2, . . . ,N

2) Using the T-test method to determine the corresponding

value of i when the mean value of si is significantly

different from 0;

3) Since each IMF is independent and orthogonal to

each other, IMF1 to IMFi can be added up to be the
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FIGURE 5. The proposed electricity price forecasting model.

high-frequency sequence and the sum of IMFi to IMFN
can be used as the low-frequency sequence.

VI. THE PROPOSED ELECTRICITY PRICE

FORECASTING MODEL

The proposed electricity price forecasting method is shown

in the flowchart of Fig. 5. Detailed procedure is given below.
1) The autocorrelation analysis is conducted to determine

whether the price data could be predicted in batches

based on the LSTM model, and to provide a refer-

ence for determining the looking back steps of LSTM

model.

2) According to the characteristics of non-linear,

non-stationary and multi-frequency superposition of

electricity price, EEMD is used to decompose the

electricity price sequence.

3) Concerning the IMFs and Res. obtained by decomposi-

tion, fine to coarse method is used to classify them into

high and low-frequency components.

4) LSTM network structure is adjusted according to the

non-linearity of high and low-frequency sequences.

LSTM-HF and LSTM-LF are obtained respectively.

5) Based on the network structure designed in step 3,

the hyperparameters of LSTM-HF and LSTM-LF are

optimized by SMBO to further improve the perfor-

mance of the model

6) The predicted values of high and low-frequency

sequences are added together to obtain the final pre-

dicted value.

VII. CASE STUDIES

The data of the electricity price in the last weeks of March,

June, September, and December are utilized as the test set.

The electricity price of the test set for the past half-year

before the corresponding months is utilized as the train-

ing set and the data for the whole year of 2017 is utilized

as the validation set for parameter optimization. In addi-

tion to the proposed method, the models used for perfor-

mance comparison include support vector regression (SVR),

backpropagation neural networks (BPNN), gradient boost-

ing regressor (GTB), and decision tree regressor (DTR),

LSTM series models include shallow LSTM, stacked LSTM,

EEMD-LSTM and EEMD-LSTM-SMBO.

The experiment includes the on-line hourly forecasting

which is the prediction of the electricity price in the next hour

with the prediction time step of 1 hour and the day-ahead

hourly forecasting which is a batch prediction of the electric-

ity price in the next 24 hours, with the prediction time step

of 24 hours. Performance of the proposed forecasting method

is evaluated by the following three metrics: Absolute Percent-

age Error (APE), Mean Absolute Percentage Error (MAPE)

and Root Mean Square Error (RMSE). These metrics can be

expressed as

APE =
|yi − ŷi|

yi
× 100% (15)

MAPE =
1

N

∑N

i=1

|yi − ŷi|

yi
× 100% (16)

RMSE =

√
1

N

∑N

i=1
(yi − ŷi)2 (17)

N is the number of predicted points; yi is the actual price value

of the ith predicted point; ŷi is the predicted electricity price

value of theith predicted point.

A. DATA PREPROCESSING

The activation function of the neurons is sensitive to whether

the data are in [-1,1]. The efficiency and the effectiveness

of the neural network training will be greatly accelerated if

values of the input data are in the interval of [-1,1]. Thus, it is

preferred to normalize the input data. The normalized input

variable x ′ can be expressed as

x ′ =
x − min(x)

max(x) − min(x)
(18)

where max(x) and min(x) are the maximum and minimum

values of the input variable, respectively.

In the next stage, data reconstruction, data from Febru-

ary to April are selected to show the process. The normalized

electricity price data are decomposed into nine independent

IMFs and one trend component Res, as shown in Fig. 6. Plots

of IMF1 to IMF6 denote the high-frequency sequences and

that of IMF7 to IMF9 constitute the low-frequency sequences.

It can be seen from Fig. 6 that fluctuation of the IMFs

becomes smaller as the index of IMF are larger. Then, the

fine-to-coarse is applied to reconstruct the sub-sequences.
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FIGURE 6. The EEMD results of electricity price.

The reconstructed high and low-frequency sequence results

are shown in Fig. 7.

B. ALGORITHM SETTINGS

Traditional machine learning models include SVR, BPNN,

GTB, and DTR. Grid search and k-fold cross-validation are

used for the selection of traditional machine learning models’

parameters. It is worth noticing that although the type of

research data is time series, in order to use the machine

learning model, time series prediction problem should be

re-framed as supervised learning problems. Time series data

are converted to supervised data during the data processing

stage. K-fold cross-validation is therefore used and divides

all the samples into K groups called folds. K-1 folds are used

for training, the K fold is used for testing and this process

would be performed K times. That is, search in the hyper-

parametric domain specified in grid search and take k-fold

cross-validation results as corresponding parameters evalua-

tion. Finally, the optimal parameters are obtained through this

process.

Based on the above methods, SVR selects the Gaussian

kernel function and the loss function is quadratic function.

The BPNN utilizes a single hidden layer structure. The num-

ber of neurons in the hidden layer is 30, the activation function

of the hidden layer is the tanh function and the activation

function of the output layer is a linear function. The learning

rate is 0.001 and the learning target is 0.01. The loss function

is defined as the MSE and the Adam algorithm is used. For

GTB, the number of boosting stages is 300, the maximum

depth of estimators is 4, the minimum number of samples

required to be at a node is 1, the learning rate is 0.01 and the

loss function is the least square method. For DTR, the max-

imum depth is 3, the minimum number of samples required

to be at a node is 1, the learning rate and loss function are the

same as GTB. Their inputs are all the electricity price of the

two days before the prediction date.

LSTM series models include shallow LSTM (Since the

commonly used LSTMmodels are shallow structures, LSTM

is used to refer to the shallow LSTM in the following

results presentation and description), stacked LSTM, EEMD-

LSTM, and EEMD-LSTM-SMBO. The purpose of using

both shallow and stacked LSTM is to test the content of

Section III.B, that is, neural networks with different depths

perform variously on data sets with different characteris-

tics. EEMD-LSTM combines the first two single network

structures for different components, then for EEMD-LSTM-

SMBO, SMBO is used to further improve the performance.

The preliminary parameter design of each LSTM model

is established. The number of neurons is generally a power

of 2, and the number of neurons in the first layer cannot

be too small, otherwise it is impossible to learn the rule of

data set. Based on the above considerations, Shallow LSTM

adopts two-layer network structure, the first layer contains

128 neurons, the second layer 64 neurons. The tanh function

is selected as the activation function the Dropout set to 0.2,

the number of iterations is 150, and the optimization algo-

rithm is Adam, the batch size is 64, the number of epochs is

150. As for the determination of lag order, there are no clear

rules for reference at present, which are mainly determined

according to specific application scenarios. Considering that

the experiment includes continuous prediction of data of the

next 24 orders, the lag order of LSTM should be greater

than 24. Meanwhile, according to the application experience

of LSTM in various fields, the order should not exceed the

required order too much. Combined with the autocorrelation

analysis in section II, the 36th order with high correlation

coefficient is finally selected as the lag order. For Stacked

LSTM, it adopts a six-layer network structure. From shallow

to deep, the number of neurons in each layer is 128, 128, 64,

64, 32, 32, and the dropout of each layer is set at 0.3. Other

parameters are the same as those of the shallow LSTM.

After the price sequence is processed by EEMD, the elec-

tricity price is reconstructed into high and low-frequency

components using the Fine to coarse method. EEMD-LSTM

is utilized, for low-frequency components, to reduce the non-

linearity of the model, the structure of LSTM needs to be sim-

plified, so shallow LSTM (LSTM-LF) is used to predict this

part. For high-frequency component, stacked LSTM (LSTM-

HF) is used. The batch size is 64 and the number of epochs

is 150. Besides, the learning rate in the LSTM series model

is set to make the adaptive adjustment according to the value

loss at each training. The number of acceptances of model

performance not improved is set as 5, each time reduced by

0.2. The learning rate is at least 0.001.

For the optimized LSTM model, based on the above

network architecture, SMBO is used to search for optimal

parameters in the preset hyperparameter space to optimize the

LSTM model, and the preset hyperparameter space is shown

in Table 1.
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TABLE 1. Hyperparameter search space.

TABLE 2. Hyperparameters of EEMD-LSTM-SMBO.

FIGURE 7. High and low-frequency sequences obtained after IMFs
reconstruction.

The network structures modified by SMBO are shown

in Table 2 (for lstm-i, dropout-i, i represents the ith layer):

C. ON-LINE HOURLY FORECASTING

Fig. 8 shows the daily mean values of MAPE for different

models in different months. It can be seen that BPNN and

DTR models are unstable in continuous prediction. Their

prediction accuracy at 3.30, 6.26 and 9.29, etc. is close to

that of LSTM series models, but there is a big deviation on

other days. The LSTM series models show good stability,

but further observation reveals that single LSTM models

with different structures perform dissimilarly. For example,

according to the result on March 27-31, the Stacked LSTM

outperforms the ShallowLSTM.While, in terms of the results

at 6.25, 6.28 and 9.27, the Shallow LSTM’s performance

is better, and the Stacked LSTM becomes inaccurate, even

inferior to the traditional machine learning models.

Table 3 and 4 show the comparison of the various models

by seven-day averages of MAPE and RMSE in different

months. It can be seen that the proposed method is superior

to other LSTM series models and traditional machine learn-

ing models throughout the whole four stages. Combining

Fig. 8 with Table 3 and 4, we can draw the following

conclusions.

The single LSTMmodels could not maintain high accuracy

on electricity price forecasting. TheMAPE of Stacked LSTM

in march is 6.28% lower than that of shallow LSTM, and

RMSE decreases by 0.22%. While, in terms of the metric

evaluation in June, September, and December, the shallow

LSTM performs better, and the MAPE decreases by 30.60%,

7.24%, 44.74%, and the RMSE decreases by 16.11%, 4.67%

and 33.60% respectively which means that the single LSTM

model can only show good performance on data within some

specific stages, but for other data with a large difference

in nonlinear degree, it’s accuracy is inferior to other LSTM

models with different network structure. Besides, on the

whole, the shallow LSTM has more advantages over the

stacked LSTM in terms of electricity price prediction.

The performance of EEMD-LSTM is much better than

single LSTM models, compared with shallow LSTM and

stacked LSTM, the MAPE decreases by 1%∼10% and

10%∼50% respectively, and RMSE decreases by 1%∼5%

and 1%∼40% respectively. It indicates that EEMD-LSTM

with heterogeneous network structure can effectively over-

come the poor stability of single network architecture, and

can achieve good adaptability for data sets with complex

characteristics.

After the optimization by SMBO, the performance is fur-

ther improved. According to the result in September, the accu-

racy of LSTM series models in this stage is poor, which

may be caused by the improper selection of hyperparameters.

However, after optimization by SMBO, the model perfor-

mance is greatly improved. It can be seen from metric eval-

uation in different months, the MAPE decreases by 0.36%,

2.30%, 15.08%, 4.78%, and RMSE decreases by 4.95%,

16.92%, 8.23%, and 2.20%, respectively. Also, the perfor-

mance of LSTM series models is far better than traditional

machine learning models generally, the MAPE of LSTM

models is generally reduced by more than 20%.

For further comparison, Fig. 9 shows the plots of results for

various methods on different days. It can be seen that when

the price fluctuation is relatively small, the predicted values

of the four models are close to the actual values, as shown

in Fig. 9(b) 6:00-16:00. When the electricity price fluctuates

violently, there is a large deviation on the predicted values

of BPNN and SVR models, but LSTM series models can

still maintain a certain high accuracy, as shown in Fig. 9(a)

12:00-20:00 and Fig. 9(d) 16:00-21:00. When the electricity

price continues to fluctuate violently, the prediction bias of

single LSTM models increases, but the proposed algorithm

can still show excellent prediction accuracy under such severe

conditions, as shown in Fig. 9(c) 06:00-20:00.

To further validate the capability of EEMD-LSTM-

SMBO in forecasting electricity prices, the prediction

error distribution of 24 hours of the LSTM and the pro-

posed model in different months, are examined and shown
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FIGURE 8. MAPE for different models in different month.

TABLE 3. Comparison of the on-line hourly forecasting various models by seven-day averages of MAPE in different months.

TABLE 4. Comparison of the on-line hourly forecasting various models by seven-day averages of RMSE in different months.

in Fig. 10. Combined with Fig. 9, it can be found that

when severe fluctuation occurs, as illustrated in Fig. 10(c)

06:00-20:00, or evident trend of the data occurs, as illus-

trated in Fig. 10(d) 00:00-7:00 and Fig. 10(a) 00:00-6:00,

themedian and IQR (interquartile range) of proposedmodel’s

APEs are lower than those of the LSTM model. Small IQR

reflects concentrated error distribution, which indicates good

stability.

When the data changes gently, as shown in Fig. 10(b)

00:00-18:00, the proposed model can achieve almost the

same excellent performance as LSTM (As mentioned above,

the shallow LSTM has high prediction accuracy on data sets

with low nonlinear degree), the median of APEs is less than

0.1% throughout the period.

Besides, Fig. 10(c) 6:00-7:00 shows that the trend of data

changes suddenly, the proposedmodel can quickly respond to
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FIGURE 9. Forecasting results of different models on different days.

the changes of sequence which greatly improve the accuracy.

However, we found that after a period of significant fluc-

tuation, as shown in Fig. 10(c) 19:00-20:00, the median of

proposed model’s APEs remains at a low level, but the IQR

suddenly increases, and the stability of the model is poor in

this period. While it is worth noting that the proposed model

is affected by this special case for a very short time and can

quickly restore high stability.

D. DAY-AHEAD HOURLY FORECASTING

The data set remains unchanged, and the training and test sets

are selected as well as the on-line hourly forecasting, How-

ever, models are set to forecast electricity prices of 24 hours

based on the input data.

Table 5 and 6 show theMAPE and RMSE of different mod-

els in different months, and they are similar to on-line hourly

forecasting. The performance of traditional machine learn-

ing models is worse than LSTM series models, the MAPE

of SVR, BPNN, GTB and DTR increases by more than

30%, the RMSE generally increases by more than 20%. Fur-

thermore, the heterogeneous LSTM (EEMD-LSTM) greatly

improves the performance of single LSTM models, and after

the optimization of hyperparameters by SMBO, the EEMD-

LSTM-SMBO offers lowest MAPE and RMSE in general,

maintaining high accuracy and stability.

Fig. 11 shows the error distribution of different models

of different months, the median of Stacked LSTM’s APEs

is around 0.045, which is about 30% higher than that of

shallow LSTM. The median of EEMD-LSTM’s APEs is 25%

and 45% lower than those of shallow LSTM and Stacked

LSTM, respectively. Although the prediction accuracy of

EEMD-LSTM is greatly improved compared with that of

single LSTM, the IQR still fluctuates in a wide range from

0.028 to 0.061. The IQR of June and September is 0.045 and

0.061 respectively. However, after the hyperparameter opti-

mization by SMBO, the IQR of these two months decreases

significantly by 15.6% and 19.7% respectively. The median

of APEs of the proposed model is less than 0.03 in the whole

period, and the IQR is between 0.025 and 0.05, which means

that it can maintain high prediction accuracy and stability

over complex price data sets.

Fig. 12 compares the MAPE averages and the RMSE

averages for four weeks in day-ahead hourly forecasting and

on-line hourly forecasting. It can be seen that the accuracy

of models performed in the day-ahead hourly forecasting has

a different degree of decline compared with on-line hourly

forecasting. The following states the observation from these

figures.
• The conventional machine learning model trans-

forms the regression problem of dynamic time series

into the static space modeling problem, while the

LSTM network directly carries out dynamic modeling

of time series. The latter makes full use of histori-

cal data and is more suitable for the electricity price

forecasting.

108170 VOLUME 7, 2019



S. Zhou et al.: Optimized Heterogeneous Structure LSTM Network for Electricity Price Forecasting

FIGURE 10. The error distribution of 24-hour of LSTM and EEMD-LSTM-SMBO in different months.

FIGURE 11. Error distribution of day-ahead hourly forecasting for different models.

• No matter the forecasting is the day-ahead hourly or the

on-line hourly, the heterogeneous structure is effective.

Both the MAPE and RMSE of the EEMD-LSTM are

much lower than single LSTM. In addition, the SMBO

can effectively optimize the hyperparameters of LSTM.

Experimental results show that the use of SMBO lowers

the MAPE of EEMD-LSTM by about 7%. The most

important is that EEMD-LSTM-SMBO can maintain

high accuracy in both cases, solving the problem of poor

stability of single LSTMmodel, and achieve good adapt-

ability of electricity price sequence data with complex

nonlinear characteristics.
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TABLE 5. Comparison of the various day-ahead hourly forecasting models by seven-day averages of MAPE in different months.

TABLE 6. Comparison of the various day-ahead hourly forecasting models by seven-day averages of RMSE in different months.

FIGURE 12. Comparison of MAPE, RMSE in day-ahead hourly and on-line hourly forecasting of different models.

VIII. CONCLUSION

This paper focuses on the multi-frequency analysis of the

target time series, the non-linearity of deep neural network

structures and the selection of hyperparameters, a heteroge-

neous structure LSTM with SMBO has been presented to

predict the electricity price, which provides a new idea for

the use of LSTM to predict time series.

The online hourly forecasting and the day-ahead hourly

forecasting were performed. Simulation results demonstrate

that LSTM outperforms traditional machine learning models

greatly, the heterogeneous LSTM fully exploits the hidden

information in the electricity price and overcomes the poor

stability of single LSTM. The distribution of prediction errors

of EEMD-LSTM-SMBO is more concentrated, which shows

that the proposed model is more stable, and is more suitable

for practical applications.

This study analyzes the price sequence without consid-

ering the influence of exogenous variables such as load

and holidays. Moreover, the chosen LSTM network architec-

ture is the basic sequential structure. In the future research,

to further improve the performance of the model, a variety

of variables can be considered to enrich the input of the

model and some new network architectures can be tried in

the selection of deep network structure.
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