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Abstract. In-network data aggregation is considered an effective technique for

conserving energy communication in wireless sensor networks. It consists in

eliminating the inherent redundancy in raw data collected from the sensor nodes.

Prior works on data aggregation protocols have focused on the measurement data

redundancy. In this paper, our goal in addition of reducing measures redundancy

is to identify near duplicate nodes that generate similar data sets. We consider a

tree based bi-level periodic data aggregation approach implemented on the source

node and on the aggregator levels. We investigate the problem of finding all pairs

of nodes generating similar data sets such that similarity between each pair of

sets is above a threshold t. We propose a new frequency filtering approach and

several optimizations using sets similarity functions to solve this problem. To

evaluate the performance of the proposed filtering method, experiments on real

sensor data have been conducted. The obtained results show that our approach

offers significant data reduction by eliminating in network redundancy and out-

performs existing filtering techniques.

1 Introduction

Data collection from sensor networks can be made on demand or by data streaming.

The first category is done by bi-directional dialogs between the sensor nodes and the

base station. A request for data is sent from the end user via the sink to the sensor

nodes which, in return, send back the data to the user via multi hop communications.

On the other side, in data streaming, data flows primarily from the sensor node to the

sink. In this category we distinguish the periodic sampling and the event driven data

models. In this paper we are interested in ”periodic sampling” data model in sensor

networks, where the acquisition of sensor data from a number of remote sensor nodes

are forwarded to the gateway on a periodic basis. This data model is appropriate for

applications where certain conditions or processes need to be monitored constantly,

such as the temperature in a conditioned space or pressure in a process pipeline. There

are couple of important design considerations associated with the periodic sampling

data model. The most critical design issue is the phase relation among multiple sensor

nodes. If two neighbor nodes operate with identical or similar sampling rates, redundant

packets from the two nodes are likely to happen repeatedly. It is essential for sensor

networks to be able to detect and clean redundant transfered data from the nodes to



the sink. In-network data aggregation has been proven as an effective technique for

eliminating redundancy and forwarding only the extracted information from the raw

data. Furthermore, by doing so data aggregation can often reduce the communication

cost and extend the whole network lifetime.

In this paper we present a hierarchical multilevel data aggregation scheme aiming to

optimize the volume of data transmitted thus saving energy consumption and reducing

bandwidth on the network level. A first level in-sensor process is done by the nodes

themselves. Instead of sending each sensor node’s raw data to a base station, the data

is cleaned periodically by the sensor node itself before sending it to an aggregator node

for a second level of aggregation. At this level, we are interested in exploring a new part

of the filtering aggregation problem, by focusing on identifying the similarity between

data sets generated by neighboring nodes and sent to the same aggregator. Our objective

is to identify similarities between near sensor nodes, and integrate their captured data

into one record while preserving information integrity.

In this paper, we provide a new prefix filtering method to study the sets similar-

ity in sensor networks. We propose frequency filtering optimization techniques, which

exploits the ordering of measurements according to their frequencies. A frequency of a

measure is defined by the number of occurrences of this measure in the set defined at the

first aggregation level. Furthermore, we provide a new optimization method for early

termination of sets similarity computing. To evaluate our approach we conducted exten-

sive experimental study using real data measurements. The obtained results compared

to the existing algorithms show the effectiveness of our method which significantly

reduces the number of duplicate data.

The rest of the paper is organized as follows, Section 2 gives an overview on related

works reported on data aggregation in sensor networks. Section 3 describes our periodic

data aggregation scheme. The local aggregation level is presented in section 4. Review

on similarity functions and our proposed frequency filtering techniques are presented

in Section 5. Experimental results are given in Section 6. Section 7 concludes the paper

with some directions to a future work.

2 Previous Data Aggregation Work

Data aggregation in wireless sensor networks has been well studied in recent years [1]

[2] [3]. It means computing and transmitting partially aggregated data to the end user

rather than transmitting raw data in networks to reduce the energy consumption [4].

There are vast amount of extant works on in-network data aggregation in the literature.

Some of the methods reported recently are query based methods [5] [6]. A query

is generated at the sink and then broadcasted through the network. Some nodes just

process the query, while others propagate it, receive partial results, aggregate results,

and send them back to the sink. Various algorithmic techniques have been proposed to

allow efficient aggregation without increasing the message size [7].

Some works, such as [8] [9] [10], use the clustering methods for aggregating data

packets in each cluster separately. Among these methods, the LEACH protocol [11]

[12]. In [9], the authors propose a self-organizing method for aggregating data based on

the architecture CODA (Cluster-based self-Organizing Data Aggregation), based on the



Kohonen Self-Organizing Map to aggregate sensor data in cluster. In a first step before

deployment, the nodes are trained to have the ability to classify the sensor data. Thus,

it increases the quality of data and reduces data traffic as well as energy-conserving.

An adaptive data aggregation (ADA) scheme for clustered sensor networks has been

proposed in [10]. In this scheme, a time based as well as spatial aggregation degrees are

introduced. They are controlled by the reporting frequency at sensor nodes and by the

aggregation ratio at cluster heads (CHs) respectively. The function of the ADA scheme

is mainly performed at the sink node, with a little function at CHs and sensor nodes.

In a tree based network as our presented work, sensor nodes are organized into a tree

where data aggregation is performed at aggregators along the tree to arrive to the sink.

Tree based data aggregation approaches are suitable for in-network data aggregation.

The authors in [13] [14], have proposed Tree on DAG (ToD) for data aggregation, a

semistructured approach that uses Dynamic Forwarding on an implicitly constructed

structure composed of multiple shortest path trees to support network scalability. The

key principle behind ToD was that adjacent nodes in a graph will have low stretch in

one of these trees in ToD, thus resulting in early aggregation of packets.

In our previous work [3], we have shown that existing prefix filtering methods

are very complex and not suitable for sensor networks and we proposed a heuristic

based on the frequency ordering. In this paper, we propose two optimization techniques

based on frequency filtering extention which can be integrated with our previous prefix

method [3] to find similar data sets efficiently. Furthermore we provide a new and faster

technique for sets similarity computation.

3 Periodic Data Aggregation

Due to resource restricted sensor nodes, it is important to minimize the amount of data

transmission among sensor networks so that the average network lifetime and the over-

all bandwidth utilization are improved. To reduce the amount of sending data, an aggre-

gation approach can be applied along the path from sensors to the sink. Sensor nodes

collect information from the region of interest and send it to aggregators. Each aggre-

gator then condenses the data prior to sending it on.

Our data aggregation method works in two phases, the first one at the nodes level,

which we call local aggregation and the second at the aggregators level. At each period

p each node sends its aggregated data set to its proper aggregator which subsequently

aggregates all data sets coming from different sensor nodes and sends them to the sink.

4 Local aggregation

In periodic sensor networks, we consider that each sensor node i at each slot s takes a

new measurement yis. Then node i forms a new set of captured measurements Mi with

period p, and sends it to the aggregator. It is likely that a sensor node takes the same (or

very similar) measurements several times especially when s is too short. In this phase

of aggregation, we are interested in identifying locally duplicate data measurements in

order to reduce the size of the set Mi. Therefore, to identify the similarity between two

measures, we provide the two following definitions:



Definition 1 (link function). We define the link function between two measurements

as:

link(yis1 , yis2) =

{

1 if ‖yis1 − yis2‖ ≤ δ,

0 otherwise.

where δ is a threshold determined by the application. Furthermore, two measures are

similar if and only if their link function is equal to 1.

Definition 2 (Measure’s frequency). The frequency of a measurement yis is defined

as the number of the subsequent occurrence of the same or similar (according to the

link function) measurements in the same set. It is represented by f(yis).

Using the notations defined above the local aggregation algorithm is done as fol-

lows [3]. For each new sensed measurement (at each slot), a sensor node i searches for

the similar measure already captured. If a similar measurement is found, it deletes the

new one while incrementing the corresponding frequency by 1, else it adds the new

measure to the set and initialize its frequency to 1. At the end of the period p, each node

i will possess a local aggregated set Mi and send it to its aggregator.

5 Duplicate data sets aggregation

At this level of aggregation, each aggregator has received k sets of measurements and

their frequencies. The idea here is to identify all pairs of sets whose similarities are

above a given threshold t. For this reason we use a similarity function which measures

the degree of similarity between the two sets and returns a value in [0, 1]. A higher

similarity value indicates that the sets are more similar. Thus we can treat pairs of sets

with high similarity value as duplicates and reduce the size of the final data set that will

be sent to the sink.

5.1 Similarity Functions

A variety of similarity functions have been used in the literature such as overlap thresh-

old, Jaccard similarity and Cosine similarity [15–17]. We denote |Mi| as the number of

elements (measures) in the set Mi. The following functions can be used to measure the

similarity between two sets of measurements Mi and Mj :

Overlap similarity: O(Mi,Mj) = |Mi ∩Mj |
Jaccard similarity: J(Mi,Mj) =

|Mi∩Mj |
|Mi∪Mj |

Cosine similarity: C(Mi,Mj) =
|Mi∩Mj |√
|Mi|×|Mj |

Dice similarity: D(Mi,Mj) =
2×|Mi∩Mj |
|Mi|+|Mj |

All these functions are commutative and can be transformed to the Overlap similar-

ity easily. For instance, we can present the Jaccard similarity function as follows:

J(Mi,Mj) =
O(Mi,Mj)

|Mi|+ |Mj | −O(Mi,Mj)



In our approach, we will focus on the Jaccard similarity. It is one of the most widely

accepted function because it can support many other similarity functions [16]. In our

application, two given sets Mi and Mj are considered similar if and only if:

J(Mi,Mj) ≥ t

where t is a threshold given by the application itself. This equation can be transformed

as:

J(Mi,Mj) ≥ t ⇔ O(Mi,Mj) ≥ α (1)

where, α = t
1+t

.(|Mi|+ |Mj |).
In order to study the similarity functions for data aggregation in sensor networks,

we define a new function for overlapping ”∩s” between two sets of measurements as

follows:

Definition 3 (Overlap function). Consider two sets of measurements M1 and M2,

then we define:

M1∩sM2 = {(y1, y2) ∈ M1×M2 such that link(y1, y2) = 1}; and Os(M1,M2) =
|M1 ∩s M2|.

To evaluate the similarity between two sets we obtain:

J(Mi,Mj) ≥ t⇔ |Mi ∩s Mj | ≥ α =
t

1 + t
.(|Mi|+ |Mj |) (2)

5.2 Sets similarity computation

In this section we provide techniques for computing the similarity between the received

sets. A naı̈ve solution to find all similar sets is to enumerate and compare every pair of

sets. This method is obviously prohibitively expensive for large data sets (such the case

of sensor networks), as total number of comparison is O(n2).
To reduce the number of comparisons between sets a prefix filtering method has

been proposed. Several approaches for traditional similarity join between sets are based

on the prefix filtering principle [15] [17] [3]. This method is based on the intuition that if

all sets of measures are sorted by a global ordering, some fragments of them must share

several common tokens with each other in order to meet the threshold similarity. An

inverted index maps a given measurement m to a list of identifiers of sets that contain mi

such that link(mi,m) = 1. After inverted indices for all measures in the set are built,

we can scan each one, probe the indices using every measure in the set M , and obtain a

set of candidates; merging these candidates together gives us their actual overlap with

the current set M ; final results can be extracted by removing sets whose overlap with

M is less than ⌈ t
1+t

.(|Mi|+ |Mj |)⌉(Equation 1).

This intuition is formalized by the following Lemma inspired from [17]:

Lemma 1. Consider two sets of sensor measures Mi and Mj , such that their elements

are ordered by a global defined ordering. Let the p-prefix be the first p elements of Mi.

If |Mi∩sMj | ≥ α, then the (|Mi|−α+1)-prefix of Mi and the (|Mj |−α+1)-prefix
of Mj must share at least one element.



Proof. Lemma 1 can be proven similarly to the lemma of page 6 in [17].

To ensure the prefix filtering based approach does not miss any similarity set result,

as shown in Lemma 1 we need a prefix of length |Mi| − ⌈t.|Mi|⌉ + 1 for every set

Mi [3]. The algorithm for finding similarity sets based on prefix filtering technique is

given in Algorithm 1. It takes as input a collection of datasets coming from different

sensor nodes already sorted according to a defined ordering. It scans sequentially each

set Mi, selects the candidates that intersects with its prefix. Afterwards, Mi and all its

candidates will be verified against the jaccard similarity threshold to finally return the

set of correct similar measurements sets.

Algorithm 1 Prefix-filtering based algorithm.

Require: Set of measures’ sets M = {M1,M2...Mn}, and a threshold t.
Ensure: All pairs of sets (Mi,Mj), such that J(Mi,Mj) ≥ t.
1: S ← ∅
2: Ii ← ∅ (1 ≤ i ≤ total number of measures)

3: for each set Mi ∈M do

4: p← |Mi| − ⌈t× |Mi|⌉+ 1
5: X ← empty map from set id to int

6: for k ← 1 to p do

7: w ←Mi[k]
8: if (Iws exists such that link(w,ws) = 1) then

9: for each Measurement (Mj [l]), f(Mj [l]) ∈ Iws do

10: X[Mj ]← X[Mj ] + 1
11: end for

12: Iws ← Iws ∪ {Mi}
13: else

14: create Iw
15: Iw ← Iw ∪ {Mi}
16: end if

17: end for

18: for each Mj such that X[Mj ] > 0 do

19: if Os(Mi,Mj) ≥ α then

20: (S ← {(Mi,Mj)})
21: end if

22: end for

23: end for

24: return S

Prefix filtering algorithm helps prune out unfeasible sets of measures, however, in

practice the number of non-similar sets surviving after this technique is still quadratic

growth [18]. Following the prefix filtering, many optimization methods [18] [19] were

proposed to prune out further the unfeasible non-similar sets. A trade-off of these pre-

fix filtering optimizations is that usually require more computational efforts which is

unsuitable by heavy resources sensor networks. In our approach, we provide some opti-



mizations for prefix filtering techniques based on measures frequency while taking into

account this trade-off.

5.3 Frequency filtering approach

In this section, we present our frequency filtering method based on prefix extension.

We begin by introducing some definitions and notations which will be the basis of what

follows. In periodic sensor networks, two data sets are similar if their measurements

overlap with each other, and especially the ones having higher frequencies values.

Definition 4 (Ordering O). We define an ordering O which arranges the measure-

ments of a given set by the decreasing order of their frequencies.

For two similar measures mi and mj such that link(mi,mj) = 1, we denote

fmin(mi,mj) = Min(f(mi), f(mj)) the minimum value of the frequency of these

measures.

Definition 5 (fs(Mi,Mj)). Consider two sets of measures Mi and Mj , we define

fs(Mi,Mj) =
∑Os(Mi,Mj)

k=1 (fmin((mi,mj) ∈ Mi ∩s Mj)).

In this paper, we consider that all sensor nodes operate with the same sampling rate,

and every node captures τ measures with each period p. Thus we can deduce that for

every received set Mi from node i we have:
∑|Mi|

k=1 (f(mk ∈ Mi) = τ .

Using the Jaccard similarity function, two sets Mi and Mj are similar if and only

if: Os(Mi,Mj) ≥ α where α = t
1+t

.(|Mi| + |Mj |) (Equation (2)). Supposing that

the sets were sent to the aggregators without applying the first aggregation phase and

without computing measures frequencies, thus we can observe that:

|Mi| = |Mj | = τ and fs(Mi,Mj) = Os(Mi,Mj). (3)

Hence, from Equation (2) and Equation (3) we can deduce that:

Mi and Mj are similar iff: fs(Mi,Mj) ≥
2× t× τ

1 + t
. (4)

Frequency filter principle Lemma 1 states that the prefixes of two sets of measures

must share at least one measure in order to satisfy the prefix filtering condition (PFC).

Nevertheless, in sensor networks this condition is easily satisfied. In this section, we

will present an extension of the prefix filtering technique making the PFC condition

more difficult to be satisfied.

Lemma 2. Assume that all the measures in the sets Mi and Mj are ordered according

to the global ordering O. Let the p-prefix be the first p elements of Mi. If fs(Mi,Mj) ≥
2×t×τ
1+t

, then fs(p-Mi, p-Mj) ≥
∑|p-Mi|

k=1 (f(mk ∈ p-Mi))− 1−t
1+t

× τ .



Proof. We denote by p-Mi the prefix of the set Mi and r-Mi the set of reminder mea-

sures where Mi = {p-Mi + r-Mi}. We have:

fs(Mi,Mj) = fs(p-Mi,Mj) + fs(r-Mi,Mj)

= fs(p-Mi, p-Mj) + fs(p-Mi, r-Mj) +

fs(r-Mi,Mj)
∼= fs(p-Mi, p-Mj) + fs(r-Mi,Mj)

≤ fs(p-Mi, p-Mj) +

|r-Mi|
∑

k=1

(f(mk ∈ r-Mi))

In the second line we can omit the term fs(p-Mi, r-Mj) because we have assumed

that it is negligible compared to the other terms in the equation. Indeed, if the two sets

are similar then the measures having highest frequencies must be in the prefix set and

not in the reminder, which means that the overlapping between the p-Mi and r-Mj is

almost empty. From the above equations and equation (4)(similarity condition) we can

deduce:

2× t× τ

1 + t
≤ fs(p-Mi, p-Mj) +

|r-Mi|
∑

k=1

(f(mk ∈ r-Mi)) (5)

From the following equation:

|p-Mi|
∑

k=1

(f(mk ∈ p-Mi)) +

|r-Mi|
∑

k=1

(f(mk ∈ r-Mi)) = τ (6)

We obtain:

fs(p-Mi, p-Mj) ≥
|p-Mi|
∑

k=1

(f(mk ∈ p-Mi))−
1− t

1 + t
× τ (7)

The lemma is proved.

Algorithm 2 describes our method to find similar sets of measures based on the

frequency filtering approach. It is a hybrid solution, where we integrate our frequency

condition presented in Lemma 2 to the prefix filtering approach presented in Algo-

rithm 1.

Jaccard similarity computation Although filtering approaches reduce the number

of comparisons between the received sets of measures, the number of candidate sets

surviving after this phase is still non negligible. Furthermore, the computation of the

jaccard similarity between two candidates sets can be very complex, especially when

it comes to sensor networks where measures’ sets can have ten hundreds or thousands

elements. Therefore, to continue filtering out further candidate sets we propose a new

frequency filtering constraint in the verification phase. In doing so, we can also reduce

the overhead of the jaccard similarity computation.



Algorithm 2 Frequency-filtering based algorithm.

Require: Set of measures’ sets M = {M1,M2...Mn}, t, τ .

Ensure: All pairs of sets (Mi,Mj), such that J(Mi,Mj) ≥ t.
Replace line 5 in Algorithm 1 with

– Fs← empty map from set id to int

– sumFreq ← 0
– for k ← 1 to p do

sumFreq ← sumFreq + f(mk ∈ p-Mi)
– end for

Replace line 10 in Algorithm 1 with

– Fs[Mj ]← Fs[Mj ] + fmin(Mi[k],Mj [l])

Replace line 18 in Algorithm 1 with

– for each Mj such that Fs[Mj ] > sumFreq − 1−t
1+t
× τ do

Assume that we want to compute the similarity between two sets Mi and Mj . Then,

these sets are similar if they satisfy the overlap condition fs(Mi,Mj) ≥ 2×t×τ
1+t

. We also

assume that a measure m ∈ Mi divides Mi into two partitions: one partition containing

all the measures having frequencies higher than f(m) including m denoted by h-Mi

and the second l-Mi containing all the measures having frequencies less than f(m).
Similarly, we assume that any measure in Mj divides it in two partitions h-Mj and l-

Mj . The idea of dividing the sets is to find a measure where at this position a similarity

upper bound is estimated and checked against the similarity threshold. As soon as the

check is failed we can stop the overlap computing early. This hypothesis is formalized

by the following lemma:

Lemma 3. Assume that |Mi| < |Mj | and all measures in Mi are ordered according to

the global ordering O. Mi and Mj are similar ⇒ for any m ∈ Mi dividing Mi into

h-Mi and l-Mi we have: fs(h-Mi,Mj) ≥ 2×t×τ
1+t

−∑|l-Mi|
k=1 (f(mk ∈ l-Mi)).

Proof. Mi and Mj are similar

⇒ fs(Mi,Mj) ≥
2× t× τ

1 + t
(8)

⇒ fs(h-Mi,Mj) + fs(l-Mi,Mj) ≥
2× t× τ

1 + t
(9)

⇒ fs(h-Mi,Mj) ≥
2× t× τ

1 + t
− fs(l-Mi,Mj) (10)



Then we have:

fs(l-Mi,Mj) ≤ min(

|l-Mi|
∑

k=1

(f(mk)),

|Mj |
∑

k=1

(f(mk))) (11)

≤ min(

|l-Mi|
∑

k=1

(f(mk ∈ l-Mi)), τ) (12)

≤
|l-Mi|
∑

k=1

(f(mk ∈ l-Mi)) (13)

From equations (10) and (13) we can deduce that:

fs(h-Mi,Mj) ≥
2× t× τ

1 + t
−

|l-Mi|
∑

k=1

(f(mk ∈ l-Mi)).

The lemma is proved.

The algorithm of overlap computation is given in Algorithm 3

Algorithm 3 Overlap Computation.

Require: Two sets of measures Mi and Mj , t, τ .

Ensure: Os(Mi,Mj).
1: Os ← 0
2: Consider |Mi| < |Mj |
3: sumFreqH ← 0
4: sumFreql← τ
5: Mj ← sort(Mj , |Mj |) Mj is sorted in increasing order of the measures

6: for k ← 0 to |Mi| do

7: sumFreql← sumFreql − f(Mi[k])
8: Search similar of Mi[k] in Mj

9: find Mj [l]/link(Mi[k],Mj [l]) = 1
10: sumFreqH ← sumFreqH + fmin(Mi[k],Mj [l])
11: if sumFreqH ≥ 2×t×τ

1+t
− sumFreql then

12: Os ← Os + 1
13: else

14: Return −∞
15: end if

16: end for

17: Return Os

In this algorithm, we used two kinds of measures ordering depending on the sets

sizes. The first one according to the global ordering O (Mi in the above algorithm) and

the second is sorted in increasing order of the measures to accelerate a measure search 1.

1 in our experiments we used the binary search



6 Experimental Results

To evaluate our approach, we conducted multiple series of simulations using the dis-

crete event simulator OMNET++ [20]. The objective of these simulations is to confirm

that our prefix frequency filtering (PFF) technique can successfully achieve desirable

results for data aggregation in periodic sensor networks. Therefore, In our simulations

we used real readings collected from 45 sensor nodes deployed in the Intel Berkeley

Research Lab [21]. Every 31 seconds, sensors with weather boards were collecting hu-

midity, temperature, light and voltage values. For the sake of simplicity, in this paper

we are interested in one field of sensor measurements: the temperature 2. We performed

several runs of the algorithms (an average of 15 runs). In each experimental run, we gen-

erated a network of 46 nodes corresponding to those was deployed in the Intel Berkeley

Lab. Each node then reads periodically real measures saved in a file while applying

the first aggregation algorithm. At the end of this step, each node sends its set of mea-

sures/frequencies to an aggregator node which in his turn applies prefix and filtering

algorithms to theses sets. Furthermore, we compare our approach to the ToD protocol

proposed in [13] [14]. As our real data sensor network consists of 46 nodes, we use ToD

in a one dimensional Network as explained in [14] and we only divide the network into

two F-cluster.

We evaluated the performance of the protocols using the following parameters: a)

the number of sensor measurements taken by all nodes during a period τ , and b) the

threshold of the Jaccard similarity function t. The threshold δ is fixed to 0.07. The

aggregation function used for the ToD protocol is the same used in our approach (PFF)

based on the link function (cf section 4). We employ four metrics in our simulations:

– The number of candidate sets generated after applying the prefix filtering approach [3],

the frequency filtering algorithms with optimizations (PFF) and the final result (the

real number of duplicate sets);

– Percentage of received measures: It represents how effective a protocol is in aggre-

gating data. It is the number of measures received by the sink over the number of

measures taken by all nodes.

– Data accuracy: represents the measures loss rate. It is a evaluate of measures taken

by the source nodes and did not received at the base station (sink). It is defined also

as the aggregation error.

– Overall energy dissipation: is the total energy dissipation of the entire network. To

evaluate the energy consumption of our approach we used the same radio model as

discussed in [21].

6.1 Prefix frequency filtering optimizations

In this section we compared the number of candidates (number of comparisons) gen-

erated respectively by our frequency filtering technique (PFF), the prefix filtering al-

gorithm and the results obtained after applying the Jaccard similarity function. We

2 the others are done by the same manner
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fixed the number of the total measuremtns taken by all the nodes during a period to

τ = 8.E + 04. The obtained result is shown in figure 1. We notice that, when the simi-

larity threshold increases from 0.7 to 0.9, the number of comparisons of the frequency

filtering and the prefix filtering becomes closer. We can also see that our frequency fil-

tering technique (PFF) outperforms the prefix filtering methods in all cases. Moreover,

the number of candidates generated by all the algorithms is far bigger than the results

number. This is to prove that under this circumstance, applying early termination algo-

rithm is very effective (Algorithm 3).

6.2 Percentage of received measures and data accuracy

Figure 2 shows the percentage of received measures over the total number taken by all

nodes for the temperature field. These experiments permit to show how well aggregation

protocols do aggregation and reduce redundant measures. PFF performs better than ToD

in terms of data aggregation because of it is ability to compare sets of data instead of

single packets. In other words, PFF reduces the number of redundant data traveling into

the networks better than TOD especially when the number of readings increase (the case

of periodic networks). We also notice that, the percentage of received packets remains

almost unchangeable while increasing the sensor readings.



Figure 3 depicts the resulsts of the aggregation error. This metric is an important per-

formance index, and the high measures loss rate will impact the use of the data greatly.

The obtained results show that the two protocols have good performance regarding the

aggregation error. As expected, when we increase the threshold t of the similarity func-

tion we reduce the measures loss rate. For instance, we can notice that PFF outperforms

ToD in terms of data accuracy for t = 0.9.

6.3 Overall energy dissipation

The overall energy dissipation is the total energy consumption of the entire network.

Figure 4 shows the results for total energy consumption obtained while varying the

total number of sensor readings. The figure shows that the overall energy dissipation for

different protocols increases as the number of readings increases. We notice that ToD

consumes not too much, but does not scale well as the number of readings increases. For

all the values of the threshold t tested, PFF always outperforms the ToD protocol in total

energy dissipation. This is because, the packet-packet comparison used in ToD instead

of data sets in PFF generates more transmissions in the network, furthermore, the packet

construction in ToD contains additional information required for the aggregation which

is not the case in PFF.

7 Conclusion and future work

In this paper we proposed a tree based bi-level model for data aggregation in periodic

sensor networks: Local aggregation and Frequency filtering aggregation. In the first one

we provided an aggregator for simple captured measurements based on a link similarity

function while in the second level our objective is to detect and aggregate multiple data

sets generated by different neighboring nodes. We proposed a new frequency filtering

approach and several optimizations using sets similarity functions to find similar data

sets. It was shown through simulations on real data measurements that our method

reduces drastically the redundant sensor measures and outperforms the existing prefix

filtering approaches.

We have two major directions for our future work. The first direction seeks to adapt

our proposed method to take into account reactive periodic sensor networks, where

sensor nodes operate with different sampling rate. In periodic applications the dynamics

of the monitored condition or process can slow down or speed up; and to save more

energy the sensor node can adapt its sampling rates to the changing dynamics of the

condition or process. The second direction is to develop a new suffix frequency filter

algorithm beside the frequency filtering approach proposed in this paper. Our goal is

to use additional filtering method that prunes erroneous candidates that survive after

applying the prefix and frequency filtering technique.
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