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Abstract 

 

The compound active clamp zero voltage soft switching (CACZVS) three-phase power factor correction (PFC) converter has 
many advantages, such as high efficiency, high power factor, bi-directional energy flow, and soft switching of all the switches. 
Triple closed-loop PI controllers are used for the three-phase power factor correction converter. The control objectives of the 
converter include a fast transient response, high accuracy, and unity power factor. There are six parameters of the controllers that 
need to be tuned in order to obtain multi-objective optimization. However, six of the parameters are mutually dependent for the 
objectives. This is beyond the scope of the traditional experience based PI parameters tuning method. In this paper, an improved 
chaotic particle swarm optimization (CPSO) method has been proposed to optimize the controller parameters. In the proposed 
method, multi-dimensional chaotic sequences generated by spatiotemporal chaos map are used as initial particles to get a better 
initial distribution and to avoid local minimums. Pareto optimal solutions are also used to avoid the weight selection difficulty of the 
multi-objectives. Simulation and experiment results show the effectiveness and superiority of the proposed method. 
 
Key words: Chaotic particle swarm optimization, Pareto optimal solution, PI parameters, Spatiotemporal chaos map lattice, Three 
phase PFC converter 
 

I. INTRODUCTION 

As a type of improved three phase Pulse-Width Modulation 
(PWM) converter, the compound active clamp zero voltage 
soft switching (CACZVS) three-phase power factor correction 
(PFC) converter [1] has wide application prospects, because it 
can realize zero voltage soft switching for all of the switches 
(including auxiliary switch) and suppress the diode reverse 
recovery current to reduce power losses. 

Traditionally, a three phase PWM converter employs a 
Proportional Integral (PI) controller based on the synchronous 
rotating coordinate frame [2]. Using this control configuration, 
there are three PI controllers including the outer loop output 
DC voltage controller, the inner loop active current controller 
and the reactive current controller. Therefore, there are six 

control parameters that need to be determined to get good 
performance including a unity power factor, fast transient 
response and zero steady state error. These parameters are 
mutual influenced to obtain good performance. References [3] 
and [4] introduced some PI parameter calculation methods. 
Reference [5] also proposed an improved parameters tuning 
algorithm. However, the PI parameters obtained by these 
methods can only be used as a starting point for parameter 
tuning. It is necessary to further tune the PI parameters 
depending on designer experience to get satisfactory 
performance. In addition to the conventional PI control, many 
control methods have been proposed recently to improve the 
performance of three-phase PWM converters [6]-[10]. 
However, the difficulty of controller parameters tuning limits, 
to a certain extent, the performance of these control algorithms 
in practical applications. To avoid the above difficulty, fuzzy 
logic [11], genetic algorithm (GA) [12], and particle swarm 
optimization (PSO) theory [13], [14] have been applied to 
controller design and parameters optimization. However, the 
control parameter optimization of three phase PWM converters 
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are a multi-dimensional (six-parameters) and multi-objective 
(including the unity power factor, fast transient response and 
zero steady state error) optimization problem, which is still a 
challenging task. 

Generally speaking, there are two main problems restricting 
advanced optimization algorithms from getting good results. 
Firstly, to deal with a multi-objective condition, the traditional 
method gives different weights to different objectives. 
However, weights selection is very difficult. Secondly, the 
initial individual distribution has an important impact on the 
performance of optimization algorithms. In the case of the PSO 
method, a non-uniform distribution of the initial particles 
decreases the global convergence performance. To deal with 
the first problem, reference [14] proposed using the PSO 
method and the Pareto optimal solution theory to overcome the 
difficulty of weights selection. For the second problem, 
because the uniform distribution of the initial particles in the 
solution space accelerates the convergence speed and reduces 
the possibility of falling into a local optimum [15], references 
[16], [17] use chaotic maps to produce the initial particles, 
where the ergodic characteristic of the chaotic maps was used 
to get uniform distribution. However, the traditional chaotic 
map, such as the logistic map [18] and the self-logical map [19], 
can only achieve a one-dimensional uniform distribution of the 
particles. With an increasing number of parameters, the 
uniform distribution of the initial particles in the 
multi-dimensional solution space is required. 

In this paper, an improved CPSO method is proposed for 
the optimization of the triple closed-loop PI controller 
parameters for CACZVS three-phase PFC converters. In the 
proposed method, a spatiotemporal chaos model, referred to as 
unilateral coupled map lattices, is used to produce 
multi-dimensional initial particles. The Pareto optimal solution 
theory is used to avoid the difficulty of weight selection and to 
achieve balance among the different control objectives such as 
a unity power factor, fast transient response and zero steady 
state error. When compared to the conventional random 
initialization method and the traditional logistic map 
initialization method, the proposed particles initialization 
method improves the global searching ability and reduces the 
time consumption. When compared to the weighted 
multi-objective optimization method, the proposed method 
avoids the difficulty of weight selection, and gets automatic 
balance among the different objectives. Simulation and 
experiment results verify the effectiveness and superiority of 
the proposed method. 

This paper is organized as follows: Section II gives a brief 
analysis of the working principle of a CACZVS three-phase 
PFC converter and its mathematical model; Section III gives 
the PI controller design for the current loop and voltage loop in 
detail; Section IV gives the proposed multi-parameter 
multi-objectives CPSO algorithm; Section V gives a 
comparison of the simulation and prototype experimental  

 
Fig. 1. CACZVS three-phase PFC rectifier. 

 
results to show the effectiveness and superiority of the 
proposed method; Section VI gives some conclusions. 
 

II. THREE PHASE PFC CONVERTER AND ITS 
MATHEMATICAL MODEL 

The CACZVS three-phase PFC rectifier circuit topology is 
shown in Fig. 1, where Ua, Ub, and Uc denote the three-phase 
input voltages; ia, ib, and ic denote the three-phase input 
currents; the three-phase AC side filter inductor La=Lb=Lc=L; 
and R denotes the equivalent resistance of the filter inductor 
and the switches. The output DC voltage is Udc. The load 
resistance RL and the DC-link capacitor C are connected to the 
DC side of the converter, where iL=Udc/RL denotes the load 
current. The resonant inductor Lr is resonant with the switches 
parallel capacitors C1-C7 to create the condition of soft 
switching and to suppress the diode reverse recovery current. 
Cc denotes clamping capacitor, which forms the clamp branch 
together with switch S7 and resonant inductor Lr to reduce the 
voltage stress across the switches. 

The switching function of the bridge leg is defined as Si (i=a, 
b, c), where Sa=1 means that S1 is on, and S2 is off. Meanwhile, 
Sa=0 means that S1 is off, and S2 is on. 

Based on the working principle of a CACZVS three phase 
PFC converter [1], it is known that during most of the 
operation time, the auxiliary switch S7 is conducting. S7 is 
turned off in a very short time to create the zero voltage 
switching condition for the main switches. This does not affect 
the main circuit during the rest time. Therefore, the state space 
equation of the CACZVS three phase PFC converter in the 
three phase stationary coordinate system can be written as [1]: 
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where UCc denotes the voltage crossing clamping capacitor Cc. 
By transforming Eq. (1) into the two-phase rotating coordinate 
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system, the following is obtained: 
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where w=2πf denotes the angular frequency of the input 
sinusoidal voltage, Ud, Uq denote the active and reactive 
voltage components in the dq coordinate system, respectively, 
id, iq denote the active and reactive current components in the 
dq coordinate system, respectively, and Sd, Sq denote the 
switching functions in the dq coordinate system, respectively. 
Because Cc<<C, it is true that UCc<<Udc. By ignoring UCc, it is 
possible to obtain: 
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Based on Eq. (3), the PI controllers are designed in the next 
section. 
 

III. TRIPLE CLOSE-LOOP PI CONTROLLERS DESIGN 

A. Current Loop Controller Design 

From Eq. (3), the current loop equation is given as: 
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where Urd=SdUdc and Urq=SqUdc denote the d-axis (active) and 
q-axis (reactive) current manipulating variables, respectively. 
The d-axis and q-axis current dynamics are nonlinear and 
strongly coupling. Therefore, traditional current feedback 
control based on the linear system theory cannot deal with such 
case. Here, it is possible to use the feed-forward decoupling PI 
control strategy for the current loop [3]. The controller 
equation is: 
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where idref is the d-axis current reference, and iqref is the q-axis 
current reference, respectively, and eid=id-idref, eiq= iq-iqref 
denote the corresponding current errors. kidp, kidi, kiqp, kiqi are PI 
parameters. By substituting (5) into (4), it is possible to obtain: 
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Fig. 2. Schematic of triple closed loop PI controller. 
 

 
Fig. 3. Block diagram of the traditional PI current controller 
design [3]. 

 
The stability analysis shows that, as long as kidp>0, kidi>0, 

kiqp>0, kiqi>0, the feed-forward decoupling PI control strategy 
can make id track idref, and iq track iqref. In order to achieve a 
unity power factor, the reactive current iq must be zero. 
Therefore, iqref=0. idref is determined by the voltage loop 
controller. The function of the current loop controller is to 
make the input current sinusoidal and synchronous with the 
input voltage. At the same time, it should also make the active 
power of the converter have a quick response to load 
variations. 

B. Voltage Loop Controller Design 

From Eq. (3), the voltage loop equation is given as: 
2
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The voltage loop controller is: 

0
( ) ( )

t

dref vp dcref dc vi dcref dci k U U k U U dt    ,    (8) 

where Udcref is the voltage reference, and kvp, kvi are the 
proportional and integral gains of the voltage PI controller, 
respectively. 

To sum up, a block diagram of the triple closed loop PI 
controllers is shown in Fig. 2. Six control parameters, including 
kidp, kidi, kiqp, kiqi, kvp, kvi need to be tuned to obtain the desired 
performance. Moreover, the six parameters are mutually 
influenced. Therefore, they should be tuned coordinately to get 
better performance.  

The traditional control parameter tuning method [3] 
simplified the synchronous reference-frame current control 
plant into a first-order time lag block. Then the linear control 
theory was used to design the control parameters. A block 
diagram of the traditional current control loop design is shown 
in Fig. 3, where Udis denotes the voltage disturbance, and the 
PWM rectifier is treated as a first-order subsystem given by 
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(0.5 1)VSR sK T s  , where KVSR denotes the equivalent gain of 

the rectifier, and Ts denotes the sampling period. The sampling 
process is modeled as a first-order subsystem given by 

1 ( 1)sT s  . The AC block is modeled as a integral subsystem 

given by 1 Ls , where the equivalent resistance R is omitted. 

The traditional parameter tuning method, based on a lot of 
hypothesis and simplification, the voltage loop control 
parameters and the current loop control parameters are 
designed separately. Then the PI parameters need to be 
adjusted in a large range according to the designer experience. 
PI parameters obtained by the traditional method, generally 
speaking, make it impossible to achieve optimal performance. 
 

IV. TRIPLE CLOSE LOOP PI CONTROLLER 

PARAMETER OPTIMIZATION BASED ON CPSO 

A. Basic PSO 

PSO is an optimization tool based on the principle of bird 
food searching, where each bird is treated as a particle, and 
each particle is a potential N-dimensional solution of the 
problem under consideration. There are M particles forming a 
population, the particles in the population coexist and 
cooperate. Each particle, with its velocity determined by the 
experience of itself and the "best experience" of the adjacent 
particles, flies to a "better" position in the solution space. In 
this way, the optimal solution is eventually found. The main 
parameters used in the PSO are shown in Table I. 

The searching algorithm of particle m is given as follows: 
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      (9) 

 Xmn(k+1)=Xmn(k)+Vmn(k),            (10) 
where Xmn(k), Vmn(k) denote the nth coordinate position value 
and the nth coordinate speed value of particle m at the kth 
iteration, respectively. In the algorithm, Vmn is limited to within 

±Vmax, which is set as 20% of the searching range of the 

particle. In this paper, a particle presents the 6-dimensional PIs 
parameters of the triple closed loop PI controllers. 

B. Initial Population Generation Using the Unilateral 
Coupled Map Lattice 

Based on the result in [21], the parameters w, c1 and c2 affect 
the convergence of the classical PSO algorithm. However, c1 
and c2 are constant parameters, while the linearly or 
exponentially variant w can not ensure the ergodicity of the 
solution. In fact, the initial distribution of the particles has an 
important effect on the performance of the PSO. Non-uniform 
distribution of the initial particles might cause instability of the 
algorithm. In order to obtain a better initial distribution of the 
particles, chaotic logistics and a self-logical map have been 
proposed to generate the initial particles [16]-[19]. However, 
the most commonly used chaotic maps can only generate a 
one-dimensional uniform distribution of particles. For the  

TABLE I 
PSO PARAMETERS DESCRIPTION 

Parameter Description 

m m=1,2,…,M is particle index 

n 
n=1,2,…,N is the dimension index of the 

solution space 
k iteration number 

Xmn  nth coordinate position value of particle m 

Vmn nth coordinate speed value of particle m 

Ymn 
the historical best nth coordinate position value 

of particle m by itself 

Ygn 
the historical global best nth coordinate position 

value for all particles in the population 
w inertia weight 

c1, c2 acceleration constants 

r1, r2 independent random numbers 

 

 
 

Fig. 4. Initial population generated by unilateral coupled map 
lattices. 

 
application of a multi-dimensional optimization problem, such 
as the multiple control parameter optimization problem in this 
paper, the ideal situation is that the initial population 
(N-dimensional M-particles) is uniformly distributed in the 
entire solution space. However, the existing methods can 
hardly fulfill this requirement. 

In this paper, a unilateral coupled lattices spatiotemporal 
map is proposed to generate the initial particles. The unilateral 
coupled map lattices model is given as: 

1( 1) (1 ) [ ( )] [ ( )]n n n n nL m f L m f L m      ,    (11) 

where f [Ln(k)] is the Logistic map, which is given by: 

[ ( )] ( )(1 ( ))n n nf L m L m L m  ,         (12) 

where Ln(m) denotes the state variables, n denotes the space 
position (corresponding to the dimension of the particle), m 
denotes the discrete-time (corresponding to the population of 
the particle), μ is a constant, and εn denotes the coupling 
strength. Here, Xmn=Ln(m). As a result, it is possible to use Eqs. 
(11) and (12) to generate the initial population of the proposed 
PSO. 

The distribution chart of particles generated by the unilateral 
coupled map lattices is shown in Fig. 4. 

Fig. 5 is a distribution comparison between the traditional 
logistic map and the proposed unilateral coupled map lattices 
spatiotemporal map. Figures 5 (a) and (b) are the box-plot  
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(a) boxplot of the proposed chaotic map. 
 

 
 

(b) boxplot of logistic map. 
 

 
 

(c) 
 

Fig. 5. Distribution comparison between the traditional logistic 
map and the proposed unilateral coupled lattices spatiotemporal 
map. 

 
curves of the proposed method and the logistic map, 
respectively, where m is chosen as different values to see the 
degree of the uniform distribution, and the box length indicates 
the uniform distribution degree, i.e., the longer the box is, the 
better the uniform distribution is. From Figs. 5 (a) and (b), it 
can be seen that, for every value of m, the length of the 
corresponding box in Fig. 5(a) is larger than that in Fig. 5(b). 
This indicates the better performance of the proposed map 
when compared to the traditional logistic map. Figure 5(c) 
shows a comparison of the N-dimension elements between the 
proposed chaotic map and the traditional logistic map when 
m=30. From Fig. 5 (c), it can be seen that when compared to 
the traditional logistic map, the proposed method has tighter  



1vJ 2vJ

 
Fig. 6. Calculation of objective functions. 

 
boundary conditions in the sense of no boundary point 
appearing in the “red star points” in the left subplot of Fig. 5 (c) 
(by using the logistic map). 

In summary, by using the unilateral coupled lattices 
spatiotemporal chaotic map, the proposed CPSO algorithm in 
this paper can achieve a better distribution for the initial 
particles, which helps accelerate the convergence speed and 
avoid falling into a local optimum. 

C. Objective Functions and Pareto Optimum Based Best 
Solution Selection 

The objectives of the optimization problem in this paper are 
multi-fold, because the ideal performance of triple closed loop 
PI controllers needs to fulfill the following requirements: (1) a 
small raising time and a small overshoot; (2) zero steady state 
error; and (3) a unity power factor. The objectives of the 
voltage loop controller include two parts: firstly, the output DC 
voltage should approach the reference as soon as possible, and 
the corresponding overshoot should be as small as possible, i.e., 
the shadow area in Fig. 6 should be as small as possible. This 
objective is denoted as Jv1 given by Eq. (13). Secondly, the 
steady-state error of the output voltage should be 0. This 
objective is denoted as Jv2 given by Eq. (14). The objective of 
the current loop is to achieve a unity power factor. This is 
denoted as Ji given by Eq. (15). 
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where ei=Udcref(iT)-Udc(iT) and ej=PF(jT)-1 denote the voltage 
error and the power factor error, respectively, PF(jT) denotes 
the power factor at the jth sampling time, T is the sampling 
interval, and ε denotes the boundary of the steady-state error, 
which is used to distinguish the transient and steady state. L1 
represents the data length considered for the output DC voltage 
in the transient state. L2 represents the data length considered 
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for the steady state of the output DC voltage, and L3 is the data 
length considered for the power factor PF. 

Clearly, for the optimization problem in this paper, there are 
three objectives. These objectives might have conflicts, and the 
increasing of one objective function might cause a decreasing 
of the other objectives (such as Jv1 and Jv2). Balancing these 
objectives is a challenge task. The simplest way to solve a 
multi-objective optimization problem is giving different 
weights to different objectives and summing them together to 
form a single objective. In this way, it is possible to use the 
traditional single objective optimization algorithm to find the 
optimal solution. The drawback of this approach is the 
difficulty in choosing optimal weights for the multi-objectives. 
In fact, there exists a proper weight set to get the optimum 
solution only for convex optimization problems [20]. In order 
to solve these problems, an objective function based on the 
Pareto optimal solution theory is proposed. 

To begin with, a definition about the domination (for the 
maximization problem) is given as follows: 
 

Domination: one solution X1 dominates another solution X2 

for a optimizing problem, denoted as X1> X2, if and only if 
1) X1 is not worse than X2 for all of the objectives, i.e., 

Jk(X1)≥ Jk (X2), where Jk is the kth objective function. 

2) X1 is strictly better than X2 for at least one objective, i.e., 
 k = 1,2, ..., nk, Jk (X1) > Jk (X2), where nk is the    
number of objectives. 

 

A non-dominated solution is a solution that is not 
dominated by any other solutions. A non-dominated solution 
is the best solution to a problem in the sense of no other 
solution being better than it. All non-dominated solutions 
form the Pareto non-dominated solutions set. 
  Unlike the classical PSO, non-dominated solutions are used 
as the individual best Ym, and the global best Yg. In other words, 
the global best and individual best are selected from the Pareto 
non-dominated solutions set for the proposed PSO. 

D. Steps of the Proposed Algorithm 

The detailed steps of the proposed multi-objective CPSO 
method are given as follows:  

1) Initialize M particles with positions and velocities in 
the N-dimensional solution space using the proposed 
spatiotemporal chaos model. Then initialize the 
maximum number of iterations, kmax, and the initial 
global best.  

2) For particle m in the kth iteration, a six dimensional 
vector, consisting of Xm1(k), Xm2(k), Xm3(k), Xm4(k), 
Xm5(k) and Xm6(k) (representing the controller 
parameter vectors kvp, kvi, kidp, kidi, kiqp and kiqi), is 
used in the simulation model of a CACZVS three 
phase PFC converter to derive the output voltage 
response curve, the current response and the 
corresponding power factor. Then, the objective 

functions, including Jv1(m, k), Jv2(m, k) and Ji(m, k), 
corresponding to particle m in the kth iteration are 
calculated, where m=1, 2,…, M. 

3) Compare the objective functions Jv1(m,k), Jv2(m,k), 
and Ji(m,k) of particle m with its corresponding 
historical optimal objective functions (i.e. the best 
objective functions among all of the past iterations 
of particle m, given as Jv1max(m), Jv2max(m), and 
Jimax(m)). If the following conditions are all satisfied, 

Jv1(m,k) ≥ Jv1max(m), Jv2(m,k) ≥ Jv2max(m) and Ji(m,k) 

≥ Jimax (m), then Jv1max(m)= Jv1(m,k), Jv2max(m)= 

Jv2(m,k), and Jimax (m)= Ji(m,k), at the same time. 
Because particle m is the new non-dominated 
solution, it is incorporated into a vector set referred 
to as an individual Pareto optimal set using 
YYm(ii)={Xm1, Xm2, Xm3, Xm4, Xm5, Xm6}, ii=ii+1, 
where YYm denotes the individual Pareto optimal set 
of particle m (the best “experience” of itself), and ii 
denotes the row number of the particles in the 
individual Pareto optimal solution set. The 
individual best at the kth iteration is randomly 
selected from YYm, using Ym(1)=YYm(randindex, 1), 
Ym(2)=YYm(randindex, 2), Ym(3)=YYm(randindex, 3), 
Ym(4)=YYm(randindex, 4), Ym(5)=YYm (randindex, 5), 
Ym(6)=YYm (randindex, 6), randindex is randomly 
selected in the integer set [1, ii-1]. 

4) Compare the three objective functions of all the M 
particles in this iteration. If Jv1(m, k)=

1,
max

i M 
{Jv1(i, 

k)}, Jv2(m, k)= 
1,

max
i M 

{Jv2(i, k)} or Ji(m, 

k)=
1,

max
i M 

{Ji(i, k)}, then particle m is saved in a 

global Pareto optimal solution set using P(jj)={Xm1, 
Xm2, Xm3, Xm4, Xm5, Xm6}, and the corresponding 
objective functions of particle m are also saved in a 
global objective function vector set using 
O(jj,:)=[Jv1(m, k), Jv2(m, k), Ji(m, k)], then jj=jj+1, 
where P denotes the global Pareto optimal solution 
set, O denotes the global optimal objective function 
set, and jj denotes the row index of the set. Search 
in the global objective function set for the 
maximum value of each objective function, i.e., 
Jv1gm, Jv2gm, and Jigm. Then it is possible to obtain 
the global best Yg=P(j)= [Xg1, Xg2, Xg3, Xg4, Xg5, Xg6], 
where j is an index such that ε(O(j, :), [Jv1gm, Jv2gm, 
Jigm])=

1,..., 1
min

i jj 
ε(O(i, :), [Jv1gm, Jv2gm, Jigm]), where 

ε(O(i, :), [Jv1gm, Jv2gm, Jigm]) is a Euclidean distance, 
and O(i, :) means the vector in the objective 
function value set corresponding to the ith global 
Pareto optimal solution, which consists of [O(i,1), 
O(i,2), O(i,3)]. This operation means that a particle 
in the global Pareto optimal solution set is selected 
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as the global best, so that its three objective function 
values are the closest to the perfect objective 
functions values, i.e., [Jv1gm, Jv2gm, Jigm].  

5) Using the individual best derived in step 3) and the 
global best derived in step 4) to update the velocity 
and position of particle m according to Eqs. (9) and 
(10), then k=k+1. 

6) Loop to step 2) until k=kmax, where kmax is the 
maximum iteration. 

In [22], the global best is selected by calculating the average 
value of all of the particles in the global Pareto optimal solution 
set. Reference [23] divided the searching space into different 
hypercubes, where each hypercube had a chance of being 
selected (by the Roulette method). Within one hypercube the 
global best would be randomly selected from the intersection 
of this hypercube and the global Pareto optimal solution set. 
This method needs a greater computation cost. Reference [24] 
calculated the Euclidean distances, in every iteration, from 
particle m to each row in the global Pareto optimal solution set. 
The row in the Pareto optimal solution set which had the 
smallest distance is selected as the global guide for particle m. 
This method is very complicated in terms of computation. 
Compared with the existing methods used to select the global 
best in [22] [23] [24], the method proposed in this paper has a 
faster search speed and a larger possibility to obtain the true 
global best. 
 

V. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation Results 

A simulation model of a CACZVS three phase PFC 
converter with triple closed loop PI controllers is built by 
integrating PSIM and MATLAB as done in reference [25]. 
This simulation configuration has the following benefits: (1) 
Compared to MATLAB, PSIM uses an ideal device to build 
the model and it uses a simpler trapezoidal method to solve the 
system equation. Thus, the simulation speed is faster. In this 
paper, the optimization algorithm requires many iterations. 
Therefore, using this configuration can effectively save the 
simulation time. (2) When compared to the PSIM simulation 
environment, MATLAB provides greater flexibility in terms of 
the controller design, and it provides a facility for running the 
proposed CPSO algorithm. 

The converter parameters used in the simulation are given as 
follows: the three-phase input voltage value Uin=220V; the 
three-phase input filter inductor L=20mH; the inductor 
equivalent resistance R=1Ω; the switch parallel capacitor 
C1=C2=…=C7=2nF; the resonant inductor Lr=100μH; the 
clamp capacitor CC=40μF; the output filter capacitor 
C=1500μF; the load resistor RL=300Ω; the reference of the 
output voltage Udcref=600V; and the switching frequency 
f=10kHz. 

The parameters used in the proposed multi-objective CPSO  

TABLE II 
PERFORMANCE COMPARISON OF DIFFERENT METHODS 

Initialization method
Average value 

Jv1 Jv2 Ji kr 

Random 0.12801 1.3442 21.0278 9.25

Logistic map 0.13577 1.3257 27.7862 8.654

Unilateral coupled 

map lattices 
0.14393 1.3987 27.8081 8.5 

 

TABLE III 
OPTIMIZATION RESULTS OF DIFFERENT METHODS 

Value
Optimization method 

Traditional PI tuning Weighted CPSO Proposed CPSO

kvp 0.053025 0.037309 0.10664 

kvi 1.4546 1.5836 0.77894 

kidp 1.8671 1.2085 2.9229 

kidi 0.25412 1.1818 0.028256 

kiqp 2.0126 2.7516 4.1698 

kiqi 0.19868 1.2002 2.8368 

Jv1 0.0389 0.0443 0.0466 

Jv2 0.4045 0.5357 0.5784 

Ji 31.651 41.6298 43.4745 

 

are given as follows: the population size M=100, the maximum 
number of iterations kmax=10, the initial value of the particles 
are generated in [0, 1] by the unilateral coupled lattices 
spatiotemporal map, then they are transformed into the 
parameter range [0, PKmax] as the initial position, PKmax =5 in 
the following simulation, the learning factors c1=2.5 and 
c2=1.5, the inertia weight w=0.9, and the speed limit Vmax=1. 
The coupling strength εn of the unilateral coupled map lattices 
is 0.85, and the initial values of the lattices are randomly 
chosen in [0, 1]. 

In this paper, the proposed chaotic initialization method has 
the advantage of global convergence. In order to prove this, 
based on the same multi-objective PSO condition above but 
with different particles initialization methods, the comparison 
results using the random number in [14], the logistic map in 
[16], and the proposed chaotic map are shown in Table II. The 
results shown in Table II are the average values for running the 
optimization algorithm 50 times, where kr denotes the average 
iteration times used for the different algorithms to reach stable 
optimized solutions. As can be seen from Table II, the 
traditional multi-objective PSO method in [14] (using the 
random initial particles) makes it easy to find a local optima 
because of the non-uniform distribution of the particles. 
Obviously, the proposed method has the highest average 
objective function and the fewest average iterations.  

In order to verify the effectiveness of the proposed 
multi-objective optimization method, the PI parameters derived 
by the conventional method in [3] and fine tuning by the  
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Fig. 7. Output DC voltage waveforms. 
 

 
 

Fig. 8. The input A-phase voltage and the corresponding current 
waveforms. 
 

 
 

Fig. 9. Output dc voltage simulation waves when load changes. 
 

weighted multi-objective CPSO (the weighted function is 
J=2Jv1+ 3Jv2+ Ji), and by the proposed multi-objective CPSO, 
are shown in Table III. It can be seen from Table III that the 
objective function values of the proposed method are the best.  

The advantage of the Pareto optimal solution is 
automatically achieving balance among the different 
objectives in order to achieve better performance. The 
CACZVS three phase PFC converter output voltage 
waveforms are shown in Fig. 7 using the different PI 
parameters obtained by different methods in Table III. The 
input A-phase voltage and the corresponding current 
waveforms are shown in Fig. 8. From Figs. 7 and 8, the 
following conclusions can be obtained: the traditional PI 
parameter tuning method is very complicated and time 
consuming since it depends heavily on the designer’s 
experience. The weighted multi-objective optimization 
method is simple and easy to operate. However, it is difficult  

 
 

Fig. 10. Experimental platform photo. 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 11. Experiment result: (a) A-phase input voltage and current 
waveforms (b) result displayed by HIOKI 3197 power quality 
analyzer. 

 
to obtain the ideal weights to get the best results. The 
proposed method has the best performance. The output DC 
voltage has a smaller overshoot and no static state error. The 
input current of the proposed method settles down very 
quickly and achieves a unity power factor. Considering the 
performance of the voltage loop and current loop 
comprehensively, there is no doubt that the PI control 
parameters obtained by the proposed CPSO method are the 
best. 

A load RL variation from 300Ω to 450Ω is simulated, and 
the output DC voltage waveforms using the different PI 
parameters in Table III are shown in Fig. 9. From Fig. 9, it 
can be seen that the output perturbation is large and recovery 
time is long using the traditional PI tuning parameters. The 
performance of the weighted CPSO method is better than the  
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(a) 
 

 
 

(b) 
 

 
 

(c) 

Fig. 12. Output DC voltage experimental waves when load 
changes. (a) Traditional PI tuning method. (b) Weighted CPSO 
method. (c) The proposed method. 
 
traditional PI tuning method. The performance of the 
parameters obtained by the proposed method is the best. 

B. Experiment Results 

A 1.2kW hardware prototype is built as shown in Fig. 10. 
The control algorithms are programmed on a DSP28335 digital 
controller. The circuit parameters of the prototype are the same 
as those used in the simulation. 

The CACZVS three phase PFC converter experiment results 
using the PI parameters obtained by the proposed 
multi-objective CPSO method are shown in Fig. 11. Fig. 11(a) 
shows the input A-phase voltage and the corresponding current 
waveforms, where the input current is synchronized with the 

input voltage. This indicates a unity power factor. Fig. 11(b) 
shows the display of a HIOKI3197 three-phase power quality 
analyzer, where the average three phase power factor is 0.991 
and the three-phase total harmonic distortion THD <5%. This 
shows that the PI parameters obtained by the proposed 
optimization method work very well. 

The experimental results corresponding to the simulation 
results in Fig. 9 are shown in Fig. 12. Fig. 12(a) shows the 
output DC voltage (channel 1) and the A-phase input current 
(channel 2) waveforms using the traditional tuning PI 
parameters. The output DC voltage perturbation is 24V and the 
voltage recovery time is about 0.36s. Fig. 12(b) shows the 
output DC voltage (channel 1) and the A-phase input current 
(channel 2) waveforms using the control parameters obtained 
by the weighted CPSO method. The output DC voltage 
perturbation is 16.5V and the voltage recovery time is about 
0.3s. Figure. 12 (c) shows the output DC voltage (channel 1) 
and the A-phase input current (channel 2) waveforms using the 
control parameters obtained by the proposed method. The 
output DC voltage perturbation is 15V and the voltage 
recovery time is about 0.27s. Comparing three subplots in Fig. 
12, it can be seen that the proposed method has the smallest 
output voltage perturbation and the shortest recovery time. The 
experiments results are consistent with the simulation results, 
which verifies the effectiveness and superiority of the proposed 
method. 

 

VI.  CONCLUSION 

A CACZVS three phase PFC converter is used as an 
example for triple close loop PI controller parameter 
optimization. A multi-dimension multi-objective CPSO 
method is proposed to optimize the control parameters of the 
triple close loop PI controllers. For multi-dimensional particles, 
the unilateral coupled map lattices is proposed to produce the 
uniformly distributed initial particles in an N-dimension 
solution space. At the same time, for multi-objective functions, 
the Pareto optimal solution theory is applied to achieve balance 
among multiple objectives. The proposed chaos particle 
initialization method can realize a better initial distribution of 
particles in a multi-dimension solution space when compared 
to the traditional random number or one dimensional chaotic 
map. The proposed method avoids the difficulty of weight 
selection of the traditional weighted multi-objective 
optimization method. The propose method can be applied to 
optimize the control parameters. It can also be applied to the 
topology and parameter optimization of the circuits of the 
whole converter. 
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