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ABSTRACT

A decoding rule is presented which minimizes the

probability of symbol error over a time-discrete

memoryless channel for any linear error-correcting

code when the code words are equiprobable. The

complexity of this rule varies inversely with code

rate, making the technique particularly attractive

for high rate codes. Examples are given for both

block and convolutional codes.
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I. INTRODUCTION

In recent years there has been a growing interest in

"soft decision ll decoding schemes for error-correcting codes.

The intent is to avoid, in part or in whole, the degradation

of communication system performance which results when symbol

by-symbol IIhard decision" quantization precedes decoding. The

two best known techniques, which are optimum in the sense that

they minimize the probability of word error for any time-discrete

memoryless channel ·when the code words are equiprobable, are

correlation decoding of block codes and Viterbi decoding of

trellis codes [1]. Although in practice correlation and Viterbi

decoding are usually used in conjunction with linear codes,

neither technique makes any essential use of the linear property.

Both techniques are exhaustive in that the received word is

compared with every word in the code. For this reason, these

techniques may be used only with codes having a small number of

code words, i.e. low rate codes or middle-to-high rate codes

with short block or constraint lengths.

In this paper we present a new decoding rule which is, in

a way, the dual of correlation/Viterbi decoding in the case of

linear codes. This rule is also optimum, but in the sense

that it minimizes the probability of symbol error for any

time-discrete mernoryless channel when the code words are

equiprobable, and makes essential use of the linear property.
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It is also exhaustive, but in the sense that every word in the

dual code is used in the decoding process. This means that

in practice this decoding rule can be used only with codes whose

dual code has a small number of code words, i.e. high rate codes

or low-to-middle rate codes with short block or constraint

lengths.

In Section II, we present the decoding rule and prove that

it is optimum. Although perhaps not immediately obvious from

the concise treatment given there, the decoding rule is a form

of threshold decoding [2]. This is easily seen from the examples

in Section III where the actual form of the decoding rule in

the binary case is illustrated for both block and convolutional

codes. Section IV contains a discussion of results.
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II. THE DECODING RULE

For convenience, we present the decoding rule for linear

block codes. The extension to convolutional codes is immediate

and will be obvious from the examples in Section III.

Let £ = (cO,cl , ••• ,cn _1) denote any code word of an Cn,k)

linear block code Cover GF(p) and c! = (c!O,c~l'···'c~ 1) theNJ J J J,n-

jth code word of the (n,n-k) dual code ct. A code word c is
,...",

transmitted over a time-discrete memoryless channel with output

alphabet B. The received word is denoted by £ = (rO,rl, .•• ,rn _1),

r j € B. The decoding problem is: given E, compute an estimate

c of the transmitted code symbol c in such a way that the probabilitym m

t at C = c isaximized. Othe not tion: w = e

(primitive complex pth root of unity); 0 .. = 1 if i = j and 0
1J ..

otherwise; Pr(x) is the probability of x and Pr(xly) is the

probability of x given y. Unless otherwise stated, the elements

of GF(p) are taken to be the integers O,l, ••• ,p-l and all

arithmetic operations are performed in the field of complex

numbers.

DECODING RULE:

Set em = s, where s €. GF (p) maximizes

the' expression

(1)
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Theorem: Decoding Rule (1) maximizes the probability that
A

C = C •
m m

(Proof) We must show that choosing s to maximize A (s) is
m

equivalent to maximizing the probability that c = s given the
m

received word E. We do this directly by showing that

A (s) = A Pr(c = SIE}, where A is a positive constant whichm m

is independent of s. We first note that the expression in the

brackets on the RHS of (1), which is in product-of-sums form,

can be rewritten in the sum-of-products form

p-l p-l
L L

v =0 v =0o 1

(2 )

where Z = (vO'v1 ,···,vn - 1) is any element of Vn , the vector

space of all n-tuples over GF(p). Expressing (2) in vector

notation and substituting in (1) yields

p-l n-k
[ Z·~! t(~·xm) ]-st PIA (s) = L w I w J w pr(5Ix)m t=O j=l VEV/'" n

p-1 t(v·e ) n-k v·e!
I -st .~:.J I'./m PI oN IVJ= w l w pr(EI~) w ,

t=O yEV j=l
.J n

where e = (0 0' a 1, •.• ,0 1) is the vector with 1 in the mth. ~m m m m,n-

posi ti·on and 0 elsewhere. By the orthogonali ty properties of

group characters [3,4] we know that

(3)

n-k
PI
j=l

V·c~
wtV ""'J =

n-k if VEeP ,v

(4)
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Applying (4) to (3) gives

n-k p-l -st t(c.e )
A (s) = p I w I w IV I\"~m Pr (r Ic)

m t=o ce:C
"...." tv

rr

n-k p-l t(c·e -5)
I pr(r)c) l r-J "'m= p W

SEC
tV ,...,

t=O

But the sum on the far RHS of (5) vanishes unless

c.e - s = O. Hence,
,..J ""'m

(5)

A (s)
m

n-k+l= P L Pr(~ls)
c£.C,c =s".., m

n-k+l \'
= P L Pr (s IE) (Pr (r) /Pr (c) ) ( 6)

CEC C =8 ~ ~
,.J , m

Finally, since the code words of Care equiprobable,

-kPres) = p and (6) becomes

Am(S) = pn+l Pr(E) l pr(sl!)
CEC,C =s
tY m

As one might expect, the decoding rule takes a simple
A A

form in the binary case: set em = 0 if Am(O) > Am(l) and em = 1

otherwise. It is more convenient however to state the rule in

terms of the likel'ihood ratio ep = Pr(r Il)/pr(rmlo).m m

Substituting the RHS of (1) into the inequality

Am(O) > ~(l) yields

Q.E.D.
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1 2n- k n-1 1 i(c~ +to )r r IT r (-1) J~ m~ Pr(r Ii) >
t=o j=l ~=O i=O ~

1 2n - k n-l 1 i(c~ +to )
I (-1) t I IT I (-1 ) J ~ m~ P r (r Ii) ,

t=O j=l ~=O i=O 1
or

2
n

-
k

n-l [ c· +0 -1r IT pr(r1IO)+(-1) j1 m1pr (r1 /1) I > 0 •
j=l t=o t

n-l .J

Dividing both sides of (7) by IT pr(r1Io) and using the definition
2=0

of the likelihood ratio, we have

2nik n~l[ 1+<I>1(_1)Cj~+Om1] > 0 •
j=l ~=O

Then dividing both sides of (8) by the positive quantity

n-l
II rL1+¢11,
~=O oJ

c~ +0
2n- k n-1 1+<1> (-1) J1 m1

I IT 1 > 0 •
j=l ~=O 1+<1>1

Finaily, using the identity

c! +<5
1+<1>1(-1) J1 m1 _ ( l-.$~. ) Cj 1eom1

1+4> R, - 1+<P R,

where ' $ , denotes modulo 2 addition, we obtain the

(8)
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BINARY DECODING RULE:

'"Se.t em = 0 if

n-k I ) cjt$O'mt2 n-l 1-4>

jI1 t~O l 1+<P~ > 0

and a = 1 othe.rwise.m

We remark that up to this point we have ignored the question

of how one retrieves the decoded information symbols from the

'"code word estimate £. This could be a problem because, when a

'"symbol-by-symbol decoding rule is used, £ is not in general a

code word. In the case of block codes, we could insist that the

code be systematic without loss of generality, but there might

(9)

be some objection to this restriction in the case of convolutional

codes. As it turns out, this is not a problem since our decoding

rule is easily modified to produce estimates of the information

symbols directly if need be. Simply note that every information

symbol am can be expressed as a linear combination, over GF(p) ,

of code word symbols cm' i.e. am = fbmtCt' bmt £ GF(p), and

that the proof of the theorem goes through intact if we substitute

~ '"
fbmtC t for cm and bmt for Gmt in (1).
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III • EXAMPLES

Ca) (7,4) Hanuning c'ode

We will illustrate the decoding rule for the received

symbol rOe Since the (7,4) code is cyclic, r 1 , ••• ,r6 are decoded

simply by cyclically permuting the received word ~ in the buffer

store.

Binary Decoding Rule (9) in this case becomes

( )

cjR,$OOR,

Co = 0 iff I ~ 1~~R, > 0 •
j=l R,=O 1+<PR,

The parity check matrix H of the (7,4) code and its row space

C' are shown below.

(10)

r-------··· --I
111101001

H = 10 1 1 1 0 1 01

100111011

( a)

(b)

( c)

C' :

Co °1 °2 c 3 °4 °5 c 6

o 0 0 0 000

1 1 1 0 1 0 0 Ca)

o 1 1 1 0 1 0 (b)

1 0 0 1 1 1 0 (aeb)

o 0 1 1 1 0 1 (c)

1 1 0 1 0 0 1 (a~)

o 1 0 0 1 1 1 (b$c)

1 0 1 0 0 1 1 (aeb$c)

(11)

Let Pi = (l-~i)/{l+~t). Then substituting (11) into (10) gives

A

Co = 0 iff Po + P1P2P4 + P2PSP6 + P1P3 P6 + P3P4PS +

+ POPlP2P3PS + POP2P3P4P6 + POPIP4PSP6 > 0 •

(12)
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The decoder configuration corresponding to (12) is shown in

Figure 1.

The knowledgable reader will immediately recognize the

similarity between the decoder of Figure 1 and a one-step majority

decoder using nonorthogonal parity checks [5]. And in fact if the

"soft decision" function (l-q,(x)/(l+<p(x» were replaced by the

"hard decision" function f(x) = -1 if x > ~ and +1 otherwise,

and the last three parity checks in the decoder were deleted, the

resulting circuit would be mathematically equivalent to a

conventional one-step majority decoder. Parity checks in the

circuit of Figure 1 would be computed by taking products of +1's

and -lis, rather than by taking modulo 2 sums of O's and lis as

would be the case in a conventional digital decoding circuit.

(b) (4,3,3) convolutional code

We now illustrate the decoding rule for the received symbol

r o using an (nO,kO,m) = (4,3,3) convolutional code (from Peterson

and Weldon [6], page 395).

Binary Decoding Rule (9) in this case becomes

00 00

(1-$ )

cjR,$OoR,
A o iff L 1+$~Co = II > 0 . (13)

j=l t=O

Of course, there are only a finite number of nonzero terms in (13),

the number depending upon the length of the transmitted code

sequence. The initial portions of the parity check matrix H of

the (4,3,3) code and its row space C' are shown below.
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fll-l - r ..... _._r............h •• ,........ _

1 0 (a)

H = 1 0 1 0 1 1 1 1 0 (b)

1 1 0 0 1 0 1 0 1 1 1 1 0 ... ( c)

0

1 1 1 1 0 (a)

1 0"1 0 1 1 1 1 a
(b)

0 1 0 1 1 1 1 1 0 (a$b)

C' : 1 1 0 a 1 0 1 0 1 1 1 1 0 ( c) (14)

0 0 1 1 1 0 1 0 1 1 1 1 0 (a$c)

0 1 1 0 0 1 0 1 1 1 1 1 0 (bee)

1 0 0 1 0 1 0 1 1 1 1 1 0
( aG3bfBc)

..
As before, let p~ = (1-<P~)/(1+<P~) • Then substituting (14) into

(13) gives
A

Co = o iff Po + PIP2 P3 + P2 P4PSP6P7 + POPIP3P4PSP6P7 + • •• > 0 • (15)

The decoding diagram corresponding to (15) is shown in Figure 2.

This takes the form of a trellis diagram for the (4,1,3) dual code

C' with the cjo positions in the branch labels complemented. (In

general, to decode r the c~ positions would be complemented.)
m Jrn

Note that the all-zero state acts as the accumulator for the terms

of (15).
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Since a different storage unit must be used for each symbol

to be decoded, the amount of storage for this type of decoder

grows linearly with the length of the transmitted code sequence.

This is also true of a Viterbi decoder, which must keep track

of its path-elimination decisions. Of course a Viterbi decoder

for the (4,3,3) code would be considerably more complex, since

the trellis would have 64 states instead of the 4 states of the

decoder in Figure 2.
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IV. DISCUSSION

We have presented a symbol-by-symbol decoding rule for linear

codes which is optimum in that it minimizes the probability of

symbol error on a time-discrete memoryless channel when the code

words are equiprobable. A comment or two on the relationship

of this technique to correlation/Viterbi decoding, which is

optimum in that it minimizes the same channels, would seem to be

in order.

First, although the performance of correlation/Viterbi

decoding is inferior to the performance of the decoding rule

presented here on a symbol-error basis, and vice versa on a

word-error basis, some preliminary simulation results for the

Gaussian channel suggest that the two approaches are very close in

performance on either basis. Symbol-error-rate is generally

considered to be a better measure of performance than word-error

rate, especially in the case of convolutional codes, and this would

seem to give a slight edge to our decoding rule. On the other

hand, correlation/Viterbi decoding is applicable to nonlinear

as well as linear codes, which might be of some advantage. Our

present feeling is that for all practical purposes the two

approaches give essentially the same performance.

When we turn to the question of complexity, there is of course

a radical difference between the two decoding techniques.

Correlation/Viterbi decoding is only practical for low rate or

short codes whereas our decoding rule is only practical for
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high rate or short codes. We are fairly well convinced, and the

reader may be able to convince himself by studying the examples

in Section III, that the complexity of our decoding rule for

an (n,k) linear code is comparable to the complexity of a

correlation/Viterbi decoder for the (n,n-k) dual code. This is

fairly easy to see in the case of linear block codes and not

so obvious in the case of convolutional codes since there are so

many options and programming tricks to be considered. The authors,

however, are firm believers in the coding-complexity Folk Theorem:

"The complexity of any operation involving a linear code is

comparable to the complexity of essentially that same operation

involving the dual code". (In fact, it was the unsatisfying

lack of a decoding method for high rate linear codes that was

"dual" to correlation/Viterbi decoding that motivated the research

reported here.) If our intuition is correct, then our scheme and

correlation/Viterbi decoding should be of about the same complexity

for rate 1/2 codes.

Finally, we remark that the decoding rule presented here,

where all words of the dual code are used in the decoding process

and the "soft decision function" is the finite Fourier transform

p-l ij pr(rtli),l w is a very important but very special limiting
i=O
case of a general approach to soft decision decoding which we

discuss in a companion paper [7].
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Figure 2. Decoder for the (4,3,3) code.
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