

* Corresponding author
E-mail: vasko@kutztown.edu (F. Vasko)

2020 Growing Science Ltd.
doi: 10.5267/j.ijiec.2019.6.004

International Journal of Industrial Engineering Computations 11 (2020) 73–82

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

An OR practitioner’s solution approach to the multidimensional knapsack problem

Zachary Kerna, Yun Lua and Francis J. Vaskoa*

aDepartment of Mathematics, Kutztown University, Kutztown, PA 19530, USA
C H R O N I C L E A B S T R A C T

Article history:
Received March 5 2019
Received in Revised Format
April 15 2019
Accepted June 14 2019
Available online
June 14 2019

 The 0-1 Multidimensional Knapsack Problem (MKP) is an NP-Hard problem that has many
important applications in business and industry. However, business and industrial applications
typically involve large problem instances that can be time consuming to solve for a guaranteed
optimal solution. There are many approximate solution approaches, heuristics and
metaheuristics, for the MKP published in the literature, but these typically require the fine-tuning
of several parameters. Fine-tuning parameters is not only time-consuming (especially for
operations research (OR) practitioners), but also implies that solution quality can be
compromised if the problem instances being solved change in nature. In this paper, we
demonstrate an efficient and effective implementation of a robust population-based
metaheuristic that does not require parameter fine-tuning and can easily be used by OR
practitioners to solve industrial size problems. Specifically, to solve the MKP, we provide an
efficient adaptation of the two-phase Teaching-Learning Based Optimization (TLBO) approach
that was originally designed to solve continuous nonlinear engineering design optimization
problems. Empirical results using the 270 MKP test problems available in Beasley’s OR-Library
demonstrate that our implementation of TLBO for the MKP is competitive with published
solution approaches without the need for time-consuming parameter fine-tuning.

© 2020 by the authors; licensee Growing Science, Canada

Keywords:
Mixed-integer programming
Payment term
Trade credit
Logistics
Quantity flexible contract
Factoring

1. Introduction

Since the 0-1 Multidimensional Knapsack Problem (MKP) has numerous real-world direct applications
or sub-problem applications that need to be solved, it is important for operations research practitioners
to use simple, effective and efficient solution approaches for solving such problems. This is true
regardless if the OR practitioner is called on to assist with a critical strategic planning issue (e.g., Newhart
et al., 1993; Vasko et al., 2005; Vasko & Stott, 2008) or needs to implement an optimization module in
a production system that is executed daily (e.g., Vasko et al., 1989; Vasko et al., 1991; Vasko et al., 1993;
Vasko et al., 2005). Since the MKP is NP-hard and most real-world applications are typically large in
scale, exact solution approaches are usually not appropriate.

74

A comprehensive overview of practical and theoretical results for the MKP can be found in the
monograph on knapsack problems by Kellerer et al. (2004). An early review of the MKP was given by
Fréville (2004), and a more recent survey of the MKP is given by Laabadi et al. (2018). The 0-1 MKP
has been introduced to formulate many practical problems including capital-budgeting problems,
transportation problems, allocation of databases and processors in distributed data processing, scheduling
of computer programs in multiprogramming environments, investment policies for the tourism sector of
developing countries, approval voting, and so on. (Meng & Pan, 2017; Baghel et al., 2012). Next, we
give a mathematical programming formulation for the multidimensional knapsack problem.

The mathematical formulation for the 0-1 Multidimensional Knapsack Problem is:

1
max

n

j j
j

z p x

(1)

subject to

1
 1, ,

n

ij j i
j

a x b i m

(2)

 0,1 1, .jx j n (3)

Decision variables are binary where xj = 1 means that item j is packed in the knapsack, and xj = 0
otherwise. Each item j requires aij units of resource consumption in the ith knapsack constraint and yields
pj units of profit upon inclusion in the knapsack. The goal is to find a subset of items that yields maximum
profit without exceeding the resource capacities (the bi s). There are many approximate solution
approaches available from the literature. Some recent (since 2011) examples applied to solve the MKP
include: harmony search (HS)-based approaches by Kong et al. (2015) and Rezoug and Boughaci (2016),
particle swarm optimization (PSO)-based approaches by Labed et al. (2011) and Kang (2012), a shuffled
complex evolution algorithm by Baroni and Varejao (2015). fruit fly optimization algorithm by Meng
and Pan (2017), or a guided genetic algorithm (GGA) approach by Rezoug et al. (2018). In order to solve
the MKP, earlier papers discussed a genetic algorithm by Chu and Beasley (1998) and heuristic
approaches by Moraga et al. (2005), Akçay et al. (2007) and Boyer et al. (2009). A classic paper by
Freize and Clarke (1984) discussed both probabilistic and worst-case analyses for the MKP.

All the solution approaches mentioned in the previous paragraph require the user to set or fine-tune
several parameters. For example, Labed et al. (2011) present a hybrid Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA) algorithm which requires the fine-tuning of both PSO parameters
such as acceleration coefficients and inertia weight and GA parameters involved in parent selection,
crossover operator and mutation operator. Another example of an algorithm requiring considerable fine-
tuning is the fruit fly algorithm of Meng and Pan (2017) which requires the fine-tuning of six parameters.
Additionally, harmony search-based algorithms (Kong et al. (2015)) require harmony memory size,
harmony memory considering rate, pitch adjustment rate, and pitch adjustment step. In contrast, the two-
phase Teaching-Learning Based Optimization (TLBO) approach is a population-based metaheuristic
developed by Rao et al. (2011) and originally designed to solve continuous nonlinear engineering design
optimization problems. This metaheuristic is particularly attractive to practitioners that need to solve
real-world problems and do not have time for parameter fine-tuning (and re-fine-tuning if the problem
instances change over time). The user simply needs to decide on the population size and when to
terminate the process—two things which all population-based metaheuristics must address. We develop
an easy-to-implement adaptation of TLBO for the MKP. Our adaptation of TLBO for the MKP uses a
simple binarization approach (previously used successfully by Lu and Vasko (2015), Zyma et al. (2015)
and Vasko et al. (2016)) to adapt this metaheuristic to solve the binary MKP. Furthermore, unlike many
other MKP solution approaches (e.g., Kong et al., (2015)), we do not require the solution of the MKP
linear programming relaxation as part of the repair operator. Additionally, assuming that an OR
practitioner would have limited time to experiment with population size, we used a population size of 30

Z. Kern et al. / International Journal of Industrial Engineering Computations 11 (2020) 75

which had worked well when the TLBO was used to solve other binary optimization problems (Lu and
Vasko (2015), Zyma et al. (2015) and Vasko et al. (2016)).

In this paper, we used 270 test problems available in Beasley’s OR-Library to measure the performance
of our TLBO algorithm for the MKP. Furthermore, Rezoug et al. (2018) recently summarized in their
Table 10, how 10 solution approaches for the MKP performed on these same 270 test problems. TLBO
performed competitively with the 10 solution approaches reported in Rezoug et al. (2018). Specifically,
on the problems with the largest number of constraints (usually considered more difficult to solve),
TLBO outperformed all but two of the 10 solution procedures, while its results on the best two solution
procedures were comparable without the need for time-consuming parameter fine-tuning. The advantage
of the TLBO approach is its relative simplicity while generating high-quality solutions effectively. This
is especially important for operations research practitioners who need a simple, robust solution approach
(that does not need periodic re-fine-tuning) for solving their problems.

In the next section, we will give details of the TLBO metaheuristic. That will be followed by a
discussion of the adaptation of this metaheuristic to solve the MKP. Then empirical results will be
used to compare our TLBO solutions of the 270 Beasley test problems with the 10 solution approaches
that are compared in Rezoug et al.(2018). Finally, a brief summary will be provided.

2. Teaching-Learning Based Optimization

The Teaching-learning-based optimization (TLBO) metaheuristic is a two-phase population-based
metaheuristic designed to solve continuous nonlinear optimization problems. It was proposed by Rao et al.
(2011) as a novel method for solving large constrained mechanical design optimization problems which
involve no specific parameters to tune. Since the tuning of parameters in other metaheuristics can often be
time consuming and largely experimental, Rao et al. (2011) describe a procedure in which the only
parameters that need to be specified are those common to all other metaheuristics--population size and
termination criterion. TLBO was inspired by the observation of how learning is done in a typical classroom
setting. This is seen as being done in two phases: (1) the teaching phase and (2) the learning phase. The
teaching phase attempts to raise the mean quality of a population of students based on the teacher. Factors
which impact this process are the quality of the teacher, the capability of the class, and an amount of random
or unpredictable behavior. The learning phase mimics how students in a class learn amongst themselves
through group discussions, presentations, and so forth. Here, a learner may learn something new if other
learners are more knowledgeable than him or her. The first phase of TLBO, the teaching phase, utilizes a
global search procedure. The “difference mean” is created by subtracting the quality of the best solution
with the current mean solution. The objective here is to improve all solutions by this difference. The operator
creating a new solution in the teaching phase is given as the following:

 – ,new old teacher f meanX X r X T X where Xold is a current solution of a population being modified, r
is a random number in the range [0,1], Xteacher is the best solution of a population, Tf = round(1 + rand(0,1))
implying that Tf takes on the values 1 or 2 with equal probability. Also, Xmean is the mean solution of a
population (Rao et al, 2011). Here, two variables r and Tf could have been used as parameters; however,
they are defined as being random numbers and therefore their values are not specified as input parameters.
The teaching phase is completed by checking if the new solution is better than the current. The second phase
of TLBO adjusts each solution relative to a randomly selected solution (another learner). The operator is
given by the following (for a minimization problem):

 ,

 ,

 ,
i i j i j

i new

i j i

X r X X if f X f X
X

X r X X else

where, similar to the teaching phase, r is randomly chosen in the range of [0,1], Xi is the current solution
and Xj is a randomly chosen solution where 𝑖 ≠ 𝑗. For both phases of TLBO, since Xj is a vector of non-

76

negative values, the actual implementation of TLBO requires the use of these update formulas on each
component of Xj.

This procedure is given below:

1.
2. 0
3. _ _

4.
5.
6.
7. 1

g
X initialize population pop size

evaluate X

X sort X from minimum objective function to maximum
i po

TLBO METAHEURISTIC
Begin

Repeat

For

_ / 2

1

,

_
8.

9. 1 0,1

.

.

. 0,1 –

1

10
11

2

.

1

3

F

mean pop size

teacher

i new i teacher F mean

p size
Teacher Phase

T round rand

X X
X X

X X rand X T X

do

14. ,
15.
16

.

.

.
17
1 8

new

i new i

i new

Evaluate X
X better than X

X X
End of Teacher Phase

Learner Phase

ii ra

If then

end if

,

,

_
.

20. 0,1 –
21.
22. 0,1 –

3.

19

2

i ii

i new i i ii

i new i ii i

ndom pop size ii i
X better than X
X X rand X X

X X rand X X

If then

Else

End

 ,

,

24.

5. 2
i new

i new i

Evaluate X

If X better than X then

if

,26.

27.
8.

29. 1
30. _

1

2

3 . _ _
23 .

i i newX X

End of Learner Phase

g g
g num gen termination condition

Print best result X

End if
End for

Until

End

For more information on TLBO, we suggest reading Rao et al. (2011).

Z. Kern et al. / International Journal of Industrial Engineering Computations 11 (2020) 77

3. Details for Implementing TLBO to solve MKPs

3.1 Initial Population Generation

Any population-based metaheuristic requires the generation of an initial population of feasible solutions.
The initial population size is set at 30 unique feasible solutions. This population size is used because that
size worked well for Lu and Vasko (2015), Zyma et al. (2015) and Vasko et al. (2016) on other combinatorial
optimization problems. The first step is to generate 100 permutations of the indices of the problem variables.
Next, starting at the beginning of the first permutation of the indices, the corresponding item is inserted into
the knapsack as long as all constraints are satisfied. This is continued until all indices have been considered.
This results in a feasible solution. For example, if the problem has 250 variables and the first five indices in
a permutation of the indices are: 190, 15, 65, 223, 99 then all 250 variables are initially set to zero (the
knapsack is empty). We first set X190 =1, if all constraints are feasible. Next set X15 = 1 and continue until
all variables in the permuted list that can be set to one without violating any constraints have been set to one.
When constraint(s) violations are encountered, the variable is set back to zero. Then the program moves on
to the next variable. In other words, we try to insert each item into the knapsack without violating the
constraints based on the permutation order of the variable indices. Once this has been done for the 100
permutations of the indices, the 30 best (highest objective function values) unique feasible solutions
compose the initial population of solutions. This is a fast and efficient way to generate an initial population
of unique feasible solutions.

3.2 Binarization Approach

Keep in mind that TLBO is designed to solve continuous nonlinear optimization problems; whereas, the
MKP is a zero-one constrained optimization problem. In other words, the solutions in the population of
a TLBO problem will be vectors of real (rational) numbers (usually nonnegative). The solutions in the
population for the MKP are bit strings (zeros and ones). To adapt TLBO to deal with bit strings, we used
the simple approach that Lu and Vasko (2015) used successfully for the Set Covering Problem. In any
of the transformation formulas (teaching or learning), the variables are now bits. The random numbers
that took on any values between 0 and 1 now take on only 0 or 1 with equal probability. As in the original
TLBO, the teaching factor in TLBO takes on the values 1 or 2 with equal probability. Also, in the
teaching phase, the mean solution is replaced by the median solution. Specifically, for our population of
30 solutions, after sorting by objective function, the median solution is taken as solution number 15 (i.e.,
the 15th best solution out of 30). If, after a transformation formula is performed, a variable value is less
than 0, it is set to 0. If it is greater than 1, it is set to 1. Intuitively, if the results of a transformation
formula produces a variable that “wants” to have a value less than 0, we simply set it to 0. In a like
manner, variables that “want” to have a value greater than 1 are set to 1. The empirical results will
demonstrate that this simple binarization approach yields good results. Additionally, it is important to
note that there are other (more complicated) approaches in the literature for binarization of metaheuristics
originally designed to solve continuous nonlinear optimization problems (Lanza-Gutierrez, 2016).
However, Vasko and Lu (2017) reported that the simple approach outlined above performed the best for
the set covering problem.
3.3 The Repair Operator

After a transformation formula is used to modify a bit string, this transformed bit string may not represent
a feasible solution. We used a variation of the DROP/ADD repair operator commonly used for the MKP
(see Chu and Beasley (1998)) to “repair” this bit string, i.e., to make it a feasible solution. If a solution
is infeasible because constraints are violated, items are first removed from the knapsack (dropped). Once
enough items have been removed so that the solution is now feasible, items are then added as long as the
solution remains feasible. Pseudo-utility ratios are defined for each variable based on the following
equation: Uj = pj /(ΣWiaij) where Wi are surrogate multipliers or weights. Typically, the Wi values are
obtained from solving the linear programming relaxation of the MKP and using the shadow prices (dual
variable values) for constraint i as the value for Wi. In trying to keep our solution easy to use and

78

implement (potentially in a large production system), we chose a simpler way to determine the Wi values.
Specifically, we simply took the best (highest objective function value) solution in the initial
population and sorted its constraints by tightness (least slack) in descending order (tightest constraints
are at the top of the list). The top half of the constraints have their corresponding Wi = 1 and the lower
half of the constraints have their corresponding Wi = 0. This way of setting the Wi values means that the
user does not have to solve the LP relaxation of the MKP. This might not seem like a big deal, but if a
MKP(s) was being solved routinely (e.g., daily) in a larger production system requiring the system to
access an LP solver would definitely make the system slower and more complicated. All items are then
sorted in descending order based on their Uj values. The DROP/ADD repair operator consists of two parts.
The first part (called DROP) examines each variable starting at the end of the sorted Uj list and changes the
variable from one to zero if feasibility is violated. The second part (called ADD) reverses the process by
examining each variable starting at the beginning of the sorted Uj list and changes the variable from zero to
one as long as feasibility is not violated.

The aim of the DROP part is to obtain a feasible solution from an infeasible solution, while the ADD part
tries to improve the objective function value of the feasible solution. Although this approach for determining
the Wi values is simpler (and not as sophisticated) compared to solving the linear programming relaxation
of the MKP (especially if the MKP is very large), in solving a number of MKPs using both approaches for
determining the Wi values, the bottom line results were about the same. Hence, our simpler, easier-to-
implement approach does not appear to sacrifice performance.
4. Empirical Results using Beasley’s 270 MKPs

So far in this paper, we have reviewed a “parameter-less” population-based metaheuristics, TLBO (Rao,
Savsani and Vakharia (2011)), that was designed to solve continuous nonlinear optimization problems. We
then defined a simple procedure for generating an initial population of feasible solutions for the MKP. We
then showed how this metaheuristic can be adapted to efficiently solve any binary optimization problems
(not just the multidimensional knapsack problem) where the solutions are represented as bit strings. Next,
we offered a repair operator for restoring feasibility after solutions are transformed by either phase of TLBO
(teaching or learner) that did not require the solution of the linear programming relaxation of the MKP.
These steps outline a methodology that can be used by operations research (OR) practitioners (and others)
if they need to solve real-world applications requiring the solution of multidimensional knapsack problems.
Without a detailed analysis, it is obvious that this methodology is computationally efficient especially for
OR practitioners. For example, there is no need for solving the linear relaxation of this problem and no need
for any parameter fine-tuning which can be very time consuming. Also, it is important to note, that if a MKP
is solved routinely in an industrial production system by an approach that has parameters that need fine-
tuning, the initially tuned parameters will need to be periodically checked in case they need to be adjusted.
We have described an efficient, easy to code and implement solution approach for the MKP, but how
effective is it on solving large MKPs? To test and compare solution approaches for the MKP, Chu and
Beasley (1998) defined 270 MKPs which are available to researchers in Beasley’s OR-Library. These 270
problems are divided into 9 datasets with 30 problems in each dataset. In each dataset, there are 10
problems with a tightness ratio of 0.25, 10 problems with tightness ratio of 0.50 and 10 problems with
tightness ratio of 0.75. A tightness ratio implies the size of the right hand side value compared to the
sum of the variable coefficients for that constraint. For example, a tightness ratio of 0.25 implies that the
right hand side of the dimensional constraint is 0.25 times the sum of the variable coefficients for that
constraint. The problems consist of either 100, 250 or 500 variables and the number of dimensional
constraints are either 5, 10 or 30 for a total of nine datasets—one for each combination of the number of
variables and number of constraints. Table 1 shows how well our TLBO implementation for the MKP
performed on these 270 MKP instances. Specifically, in Table 1 the results are summarized for the 9
data sets. Each entry in the table is the average deviation from optimum over all 30 problems in the
dataset. The results for TLBO represent only one execution of this metaheuristic for 300 iterations of
the teaching and learning phases. Since there are 30 solutions in the population, the transformation

Z. Kern et al. / International Journal of Industrial Engineering Computations 11 (2020) 79

formulas were executed 30 x 2 x 300 x (the number of variables in the problem) or 18,000 x (the number
of variables in the problem) for each of the 270 MKPs. We used 300 iterations for two reasons; (1) we
assumed that if this approach was implemented in a production environment, there would be an execution
time limit, (2) preliminary results on the 270 test instances showed negligible improvement by the time
200 iterations were reached. Given that the results in Table 1, can be obtained very quickly (in a few
seconds depending on the PC used), and given that the real-world optimal solution will not be known,
the OR practitioner could increase his or her confidence in the solution by putting this program in a loop
(do not reset the random number seed) and take the best solution. For example, even embedded in a
production system, the user can have the program loop say five times (with different initial populations,
etc. each time) and have the program return the best overall solution out of the five best solutions obtained
by TLBO.

Table 1
Deviation from optimum for TLBO

#CONSTRAINTS #VARIABLES TLBO
5 100 0.42
5 250 1.46
5 500 2.59

10 100 0.68
10 250 1.4
10 500 1.97
30 100 0.83
30 250 1.13
30 500 1.33
OVERALL AVERAGE 1.31

Recently, Rezoug et al. (2018) presented a guided genetic algorithm (GGA) to solve the MKP. In their
paper, using the 270 MKPs from Beasley’s OR-Library, Rezoug et al. (2018) report in their Table 10
how their GGA performed compared to 9 solution approaches from the literature. These results along
with our TLBO results are given in Table 2.

Table 2
Deviation from optimum

CONS-
VARS

TLBO GGA GA PECH MAG VZ PIR SCE CB NRP MCF

5-100 0.42 0.54 1.2 4.24 8.47 7.6 1.0 2.4 .59 .53 .68
5-250 1.46 0.56 1.9 4.03 5.1 4.6 .31 3.03 .14 .24 .26
5-500 2.59 0.54 2.1 3.83 3.37 3.0 .12 3.33 .94 .08 .12

10-100 0.68 0.73 1.5 4.57 10.77 10.6 2.1 4.77 .05 1.1 1.12
10-250 1.4 0.63 1.9 3.27 7.63 6.7 .67 5.03 .3 .49 .48
10-500 1.97 0.57 1.9 2.9 6.03 4.97 .29 5.33 .14 .19 .26
30-100 0.83 1.08 1.6 3.97 11.89 11.1 4.9 6.27 1.7 1.45 2.06
30-250 1.13 1.23 1.8 2.7 8.83 7.8 2.0 6.33 .68 .8 .99
30-500 1.33 2.14 1.9 2.1 6.87 6.27 1.0 6.67 .35 .49 .59

OVERALL
AVERAGE

1.31 0.89 1.8 3.51 7.66 6.95 1.4 4.8 .54 .6 .73

The solution procedures listed in Table 10 of Rezoug et al. (2018) and repeated in our Table 2 are their
guided GA, a GA, Primal Effective Capacity Heuristic (PECH), MAG and VZ, two solution approaches
using Lagrange multipliers, PIR, a dual surrogate relaxation heuristic with a branch and bound
component, Shuffled Complex Evolution (SCE), CB, a GA augmented with a feasibility and constraint

80

operator, New Reduction (Pirkul) NRP operates a lagrangian dual relaxation on MKP, and the Modified
Choice Function-Late Acceptance Strategy (MCF). The reader should consult Rezoug et al. (2018) for
more details. When a paper develops several metaheuristics and empirically evaluates them based on test
problem instances available (typically on the WWW) to researchers, usually some statistical analysis is
appropriate to determine which results are statistically better than other results. However, metaheuristics
are not necessarily compared in a statistical manner to previously published metaheuristics. In this paper,
we only developed one metaheuristic. To compare our results with other published metaheuristic results
would be very difficult. Either we would have to code these procedures or we would have to request
other researchers to share their results or code with us. Both of these seemed restrictive since the purpose
of this paper is just to show that our simple TLBO approach for the MKP is reasonably “competitive”
with other published MKP solution approaches. In other words, we were not interested in trying to
(statistically) prove that our TLBO approach was better than any of the 10 approaches reported in Table
10 of Rezoug et al. (2018), we just wanted to show that it was competitive, while requiring considerably
less effort to code, test and implement. From Table 2, we see that our TLBO is competitive with the
other 10 solution approaches. We also see from Table 2, that TLBO performs better on the problems
with 30 constraints. In Table 3, we focus on the 30 constraint problem instances (usually an MKP is
considered to be more difficult as the number of constraints increase).

Table 3
Deviation from optimum for 30 constraint problem only

CONS-
VARS

TLBO GGA GA PECH MAG VZ PIR SCE CB NRP MCF

30-100 0.83 1.08 1.6 3.97 11.89 11.1 4.9 6.27 1.7 1.45 2.06
30-250 1.13 1.23 1.8 2.7 8.83 7.8 2.0 6.33 .68 .8 .99
30-500 1.33 2.14 1.9 2.1 6.87 6.27 1.0 6.67 .35 .49 .59

OVERALL
AVERAGE

1.1 1.5 1.8 2.9 9.2 8.4 2.6 6.4 .91 .92 1.2

In Table 3, we see that for the larger (usually more difficult) problems, TLBO is actually very
competitive. In this case, only two solution procedures have smaller deviations from optimum (and not by
much) than TLBO. Furthermore, these two solution procedures that gave slightly better solutions than
TLBO for the 90 problem instances with 30 constraints each were definitely more complicated than TLBO.
Specifically, the one procedure (CB) used a GA augmented with a feasibility and constraint operator which
utilizes problem-specific knowledge and repair operators which locally improve the offspring. The other
solution procedure (NR(P)) that was slightly better than TLBO used a lagrangian dual relaxation combined
with a non-trivial dynamic estimation of the core size. TLBO is clearly simpler to code and implement than
these two procedures with negligible sacrifice in solution quality.

5. Summary and Implications for Operations Research Practitioners

In this paper we discussed an efficient and effective but yet simple to code and implement solution
procedure for the multiple dimensional knapsack problem. Specifically, we demonstrated how the
“parameter-less” metaheuristic, TLBO (Rao, Savsani and Vakharia (2011)), originally designed to solve
continuous nonlinear optimization problems, can be adapted in a straightforward manner to solve binary
optimization problems. Furthermore, we demonstrated how this solution procedure can easily be used to
effectively solve the multidimensional knapsack problem. Comparing our TLBO solutions for 270 MKPs
available from Beasley’s OR-Library to published results (Rezoug et al. (2018)) for other MKP solution
procedures, we see that TLBO is not only easy to implement and use, but it also gives high quality solutions.
TLBO is certainly “competitive” with the other methods discussed in Rezoug et al. (2018).

Z. Kern et al. / International Journal of Industrial Engineering Computations 11 (2020) 81

A major benefit of our results is that they can easily be used by operations research practitioners to solve
industrial problems that cannot be solved efficiently with exact solution procedures. Furthermore, in a
real-world situation when the optimal solution is not known, the practitioner can very easily build his/her
confidence in the answer obtained from our procedure by simply putting it in a loop and executing it
several times (do NOT reset the random number seed) and choosing the best answer obtained.

References

Akçay, Y., Li, H., & Xu, S. H. (2007). Greedy algorithm for the general multidimensional knapsack
problem. Annals of Operations Research, 150(1), 17.

Baroni, M. D. V., & Varejão, F. M. (2015, November). A shuffled complex evolution algorithm for the
multidimensional knapsack problem. In Iberoamerican Congress on Pattern Recognition (pp. 768-
775). Springer, Cham.

 Boyer, V., Elkihel, M., & El Baz, D. (2009). Heuristics for the 0–1 multidimensional knapsack
problem. European Journal of Operational Research, 199(3), 658-664.

Chu, P. C., & Beasley, J. E. (1998). A genetic algorithm for the multidimensional knapsack
problem. Journal of Heuristics, 4(1), 63-86.

Fréville, A. (2004). The multidimensional 0–1 knapsack problem: An overview. European Journal of
Operational Research, 155(1), 1-21.

Frieze, A. M., & Clarke, M. R. B. (1984). Approximation algorithms for the m-dimensional 0-1 knapsack
problem: worst-case and probabilistic analyses. European Journal of Operational Research, 15(1),
100-109.

Baghel, M., Agrawal, S., & Silakari, S. (2012). Survey of metaheuristic algorithms for combinatorial
optimization. International Journal of Computer Applications, 58(19), 2709-2716.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Multidimensional Knapsack Problems. In Knapsack
problems(pp. 235-283). Springer, Berlin, Heidelberg.

Kong, X., Gao, L., Ouyang, H., & Li, S. (2015). Solving large-scale multidimensional knapsack problems
with a new binary harmony search algorithm. Computers & Operations Research, 63, 7-22.

Laabadi, S., Naimi, M., El Amri, H., & Achchab, B. (2018). The 0/1 Multidimensional Knapsack
Problem and Its Variants: A Survey of Practical Models and Heuristic Approaches. American Journal
of Operations Research, 8(05), 395.

Labed, S., Gherboudj, A.,& Chikhi, S. (2011) A Modified Hybrid Particle Swarm Optimization
Algorithm for Multidimensional Knapsack Problem, International Journal of Computer Applications,
34(2), 11-16.

Lanza-Gutierrez, J. M., Crawford, B., Soto, R., Berrios, N., Gomez-Pulido, J. A., & Paredes, F. (2017).
Analyzing the effects of binarization techniques when solving the set covering problem through
swarm optimization. Expert Systems with Applications, 70, 67-82.

Meng, T., & Pan, Q. K. (2017). An improved fruit fly optimization algorithm for solving the
multidimensional knapsack problem. Applied Soft Computing, 50, 79-93.

Moraga, R. J., DePuy, G. W., & Whitehouse, G. E. (2005). Meta-RaPS approach for the 0-1
multidimensional knapsack problem. Computers & Industrial Engineering, 48(1), 83-96.

Newhart, D. D., Stott, K. L., & Vasko, F. J. (1993). Consolidating product sizes to minimize inventory
levels for a multi-stage production and distribution system. Journal of the operational Research
Society, 44(7), 637-644.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel
method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3),
303-315.

Rezoug, A., & Boughaci, D. (2016). A self-adaptive harmony search combined with a stochastic local
search for the 0-1 multidimensional knapsack problem. International Journal of Bio-Inspired
Computation, 8(4), 234-239.

Rezoug A, Bader-El-Den M., & Boughaci D. (2018) Guided genetic algorithm for the multidimensional
knapsack problem, Memetic Computing, 10, 29-42.

82

Vasko, F. J., Wolf, F. E., & Stott, K. L. (1989). A practical solution to a fuzzy two-dimensional cutting
stock problem. Fuzzy Sets and Systems, 29(3), 259-275.

Vasko, F. J., Wolf, F. E., & Pflugrad, J. A. (1991). An efficient heuristic for planning mother plate
requirements at Bethlehem Steel. Interfaces, 21(2), 1-7.

Vasko, F. J., Wolf, F. E., Stott, K. L., & Woodyatt, L. R. (1993). Adapting branch-and-bound for real-
world scheduling problems. Journal of the Operational Research Society, 44(5), 483-490.

Vasko, F. J., Newhart, D. D., & Strauss, A. D. (2005). Coal blending models for optimum cokemaking
and blast furnace operation. Journal of the Operational Research Society, 56(3), 235-243.

Vasko, F. J., & Stott, K. L. (2008). Strategic Planning: OR to the Rescue. OR Insight, 21(3), 26-32.
Vasko, F.J., Lu, Y., & Zyma, K. (2016). An empirical study of population-based metaheuristics for the

multiple-choice multidimensional knapsack problem, International Journal of Metaheuristics, 5(3-4),
193-225.

Vasko, F.J., & Y. Lu, Y.(2017). Binarization of continuous metaheuristics to solve the set covering
problem: Simpler is better. invited talk, 21st Triennial Conference of The International Federation
of Operational Research Societies (IFORS), Quebec, Canada, July 17-21, 2017.

Zyma, K., Lu, Y., & Vasko, F.J. (2015). Teacher training enhances the teaching-learning-based
optimization metaheuristic when used to solve multiple-choice multidimensional knapsack problems,
International Journal of Metaheuristics, 4(3-4), 268-293.

© 2019 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

