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 The 0-1 Multidimensional Knapsack Problem (MKP) is an NP-Hard problem that has many 
important applications in business and industry.  However, business and industrial applications 
typically involve large problem instances that can be time consuming to solve for a guaranteed 
optimal solution. There are many approximate solution approaches, heuristics and 
metaheuristics, for the MKP published in the literature, but these typically require the fine-tuning 
of several parameters. Fine-tuning parameters is not only time-consuming (especially for 
operations research (OR) practitioners), but also implies that solution quality can be 
compromised if the problem instances being solved change in nature.  In this paper, we 
demonstrate an efficient and effective implementation of a robust population-based 
metaheuristic that does not require parameter fine-tuning and can easily be used by OR 
practitioners to solve industrial size problems. Specifically, to solve the MKP, we provide an 
efficient adaptation of the two-phase Teaching-Learning Based Optimization (TLBO) approach 
that was originally designed to solve continuous nonlinear engineering design optimization 
problems. Empirical results using the 270 MKP test problems available in Beasley’s OR-Library 
demonstrate that our implementation of TLBO for the MKP is competitive with published 
solution approaches without the need for time-consuming parameter fine-tuning. 
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1. Introduction 

 
Since the 0-1 Multidimensional Knapsack Problem (MKP) has numerous real-world direct applications 
or sub-problem applications that need to be solved, it is important for operations research practitioners 
to use simple, effective and efficient solution approaches for solving such problems. This is true 
regardless if the OR practitioner is called on to assist with a critical strategic planning issue (e.g., Newhart 
et al., 1993; Vasko et al., 2005;  Vasko & Stott, 2008) or needs to implement an optimization module in 
a production system that is executed daily (e.g., Vasko et al., 1989; Vasko et al., 1991; Vasko et al., 1993; 
Vasko et al., 2005).  Since the MKP is NP-hard and most real-world applications are typically large in 
scale, exact solution approaches are usually not appropriate.   
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A comprehensive overview of practical and theoretical results for the MKP can be found in the 
monograph on knapsack problems by Kellerer et al. (2004). An early review of the MKP was given by 
Fréville (2004), and a more recent survey of the MKP is given by Laabadi et al. (2018). The 0-1 MKP 
has been introduced to formulate many practical problems including capital-budgeting problems, 
transportation problems, allocation of databases and processors in distributed data processing, scheduling 
of computer programs in multiprogramming environments, investment policies for the tourism sector of 
developing countries, approval voting, and so on. (Meng & Pan, 2017; Baghel et al., 2012).  Next, we 
give a mathematical programming formulation for the multidimensional knapsack problem.  

The mathematical formulation for the 0-1 Multidimensional Knapsack Problem is: 

1
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n

j j
j

z p x
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Decision variables are binary where xj = 1 means that item j is packed in the knapsack, and xj = 0 
otherwise.  Each item j requires aij units of resource consumption in the ith knapsack constraint and yields 
pj units of profit upon inclusion in the knapsack.  The goal is to find a subset of items that yields maximum 
profit without exceeding the resource capacities (the bi s). There are many approximate solution 
approaches available from the literature.  Some recent (since 2011) examples applied to solve the MKP 
include: harmony search (HS)-based approaches by Kong et al. (2015) and Rezoug and Boughaci (2016), 
particle swarm optimization (PSO)-based approaches by Labed et al. (2011) and Kang (2012), a shuffled 
complex evolution algorithm by Baroni and Varejao (2015). fruit fly optimization algorithm by Meng 
and Pan (2017), or a guided genetic algorithm (GGA) approach by Rezoug et al. (2018).  In order to solve 
the MKP, earlier papers discussed a genetic algorithm by Chu and Beasley (1998) and heuristic 
approaches by Moraga et al. (2005), Akçay et al. (2007) and Boyer et al. (2009). A classic paper by 
Freize and Clarke (1984) discussed both probabilistic and worst-case analyses for the MKP.   

All the solution approaches mentioned in the previous paragraph require the user to set or fine-tune 
several parameters.  For example, Labed et al. (2011) present a hybrid Particle Swarm Optimization 
(PSO) and Genetic Algorithm (GA) algorithm which requires the fine-tuning of both PSO parameters 
such as acceleration coefficients and inertia weight and GA parameters involved in parent selection, 
crossover operator and mutation operator.  Another example of an algorithm requiring considerable fine-
tuning is the fruit fly algorithm of Meng and Pan (2017) which requires the fine-tuning of six parameters. 
Additionally, harmony search-based algorithms (Kong et al. (2015)) require harmony memory size, 
harmony memory considering rate, pitch adjustment rate, and pitch adjustment step.  In contrast, the two-
phase Teaching-Learning Based Optimization (TLBO) approach is a population-based metaheuristic 
developed by Rao et al. (2011) and originally designed to solve continuous nonlinear engineering design 
optimization problems. This metaheuristic is particularly attractive to practitioners that need to solve 
real-world problems and do not have time for parameter fine-tuning (and re-fine-tuning if the problem 
instances change over time).  The user simply needs to decide on the population size and when to 
terminate the process—two things which all population-based metaheuristics must address. We develop 
an easy-to-implement adaptation of TLBO for the MKP.  Our adaptation of TLBO for the MKP uses a 
simple binarization approach (previously used successfully by Lu and Vasko (2015), Zyma et al. (2015) 
and Vasko et al. (2016)) to adapt this metaheuristic to solve the binary MKP.  Furthermore, unlike many 
other MKP solution approaches (e.g., Kong et al., (2015)), we do not require the solution of the MKP 
linear programming relaxation as part of the repair operator. Additionally, assuming that an OR 
practitioner would have limited time to experiment with population size, we used a population size of 30 
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which had worked well when the TLBO was used to solve other binary optimization problems (Lu and 
Vasko (2015), Zyma et al. (2015) and Vasko et al. (2016)).   

In this paper, we used 270 test problems available in Beasley’s OR-Library to measure the performance 
of our TLBO algorithm for the MKP.  Furthermore, Rezoug et al. (2018) recently summarized in their 
Table 10, how 10 solution approaches for the MKP performed on these same 270 test problems. TLBO 
performed competitively with the 10 solution approaches reported in Rezoug et al. (2018). Specifically, 
on the problems with the largest number of constraints (usually considered more difficult to solve), 
TLBO outperformed all but two of the 10 solution procedures, while its results on the best two solution 
procedures were comparable without the need for time-consuming  parameter fine-tuning.  The advantage 
of the TLBO approach is its relative simplicity while generating high-quality solutions effectively.  This 
is especially important for operations research practitioners who need a simple, robust solution approach 
(that does not need periodic re-fine-tuning) for solving their problems. 

In the next section, we will give details of the TLBO metaheuristic.  That will be followed by a 
discussion of the adaptation of this metaheuristic to solve the MKP.  Then empirical results will be 
used to compare our TLBO solutions of the 270 Beasley test problems with the 10 solution approaches 
that are compared in Rezoug et al.(2018).  Finally, a brief summary will be provided. 
    
2. Teaching-Learning Based Optimization 
 
The Teaching-learning-based optimization (TLBO) metaheuristic is a two-phase population-based 
metaheuristic designed to solve continuous nonlinear optimization problems.  It was proposed by Rao et al. 
(2011) as a novel method for solving large constrained mechanical design optimization problems which 
involve no specific parameters to tune. Since the tuning of parameters in other metaheuristics can often be 
time consuming and largely experimental, Rao et al. (2011) describe a procedure in which the only 
parameters that need to be specified are those common to all other metaheuristics--population size and 
termination criterion. TLBO was inspired by the observation of how learning is done in a typical classroom 
setting. This is seen as being done in two phases: (1) the teaching phase and (2) the learning phase. The 
teaching phase attempts to raise the mean quality of a population of students based on the teacher. Factors 
which impact this process are the quality of the teacher, the capability of the class, and an amount of random 
or unpredictable behavior. The learning phase mimics how students in a class learn amongst themselves 
through group discussions, presentations, and so forth. Here, a learner may learn something new if other 
learners are more knowledgeable than him or her. The first phase of TLBO, the teaching phase, utilizes a 
global search procedure.  The “difference mean” is created by subtracting the quality of the best solution 
with the current mean solution. The objective here is to improve all solutions by this difference. The operator 
creating a new solution in the teaching phase is given as the following: 

    –   ,new old teacher f meanX X r X T X    where Xold is a current solution of a population being modified, r 
is a random number in the range [0,1], Xteacher is the best solution of a population, Tf  = round(1 + rand(0,1)) 
implying that Tf takes on the values 1 or 2 with equal probability.  Also,  Xmean is the mean solution of a 
population (Rao et al, 2011).  Here, two variables r and Tf  could have been used as parameters; however, 
they are defined as being random numbers and therefore their values are not specified as input parameters. 
The teaching phase is completed by checking if the new solution is better than the current. The second phase 
of TLBO adjusts each solution relative to a randomly selected solution (another learner).  The operator is 
given by the following (for a minimization problem): 

     
 ,  

   ,   
 

  ,                          
i i j i j

i new

i j i

X r X X if f X f X
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where, similar to the teaching phase, r  is randomly chosen in the range of [0,1],  Xi is the current solution 
and Xj is a randomly chosen solution where 𝑖 ≠ 𝑗.  For both phases of TLBO, since Xj is a vector of non-
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negative values, the actual implementation of TLBO requires the use of these update formulas on each 
component of Xj.    

This procedure is given below:  
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For more information on TLBO, we suggest reading Rao et al. (2011).    
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3. Details for Implementing TLBO to solve MKPs 
 

3.1 Initial Population Generation 
 

Any population-based metaheuristic requires the generation of an initial population of feasible solutions.  
The initial population size is set at 30 unique feasible solutions.  This population size is used because that 
size worked well for Lu and Vasko (2015), Zyma et al. (2015) and Vasko et al. (2016) on other combinatorial 
optimization problems.  The first step is to generate 100 permutations of the indices of the problem variables.  
Next, starting at the beginning of the first permutation of the indices, the corresponding item is inserted into 
the knapsack as long as all constraints are satisfied.  This is continued until all indices have been considered.  
This results in a feasible solution.  For example, if the problem has 250 variables and the first five indices in 
a permutation of the indices are:  190, 15, 65, 223, 99 then all 250 variables are initially set to zero (the 
knapsack is empty).  We first set X190 =1, if all constraints are feasible.  Next set X15 = 1 and continue until 
all variables in the permuted list that can be set to one without violating any constraints have been set to one.  
When constraint(s) violations are encountered, the variable is set back to zero.  Then the program moves on 
to the next variable.  In other words, we try to insert each item into the knapsack without violating the 
constraints based on the permutation order of the variable indices.  Once this has been done for the 100 
permutations of the indices, the 30 best (highest objective function values) unique feasible solutions 
compose the initial population of solutions.  This is a fast and efficient way to generate an initial population 
of unique feasible solutions. 
 

3.2 Binarization Approach 
 

Keep in mind that TLBO is designed to solve continuous nonlinear optimization problems; whereas, the 
MKP is a zero-one constrained optimization problem.  In other words, the solutions in the population of 
a TLBO problem will be vectors of real (rational) numbers (usually nonnegative).  The solutions in the 
population for the MKP are bit strings (zeros and ones).  To adapt TLBO to deal with bit strings, we used 
the simple approach that Lu and Vasko (2015) used successfully for the Set Covering Problem.  In any 
of the transformation formulas (teaching or learning), the variables are now bits.  The random numbers 
that took on any values between 0 and 1 now take on only 0 or 1 with equal probability.  As in the original 
TLBO, the teaching factor in TLBO takes on the values 1 or 2 with equal probability.  Also, in the 
teaching phase, the mean solution is replaced by the median solution.  Specifically, for our population of 
30 solutions, after sorting by objective function, the median solution is taken as solution number 15 (i.e., 
the 15th best solution out of 30).  If, after a transformation formula is performed, a variable value is less 
than 0, it is set to 0.  If it is greater than 1, it is set to 1.  Intuitively, if the results of a transformation 
formula produces a variable that “wants” to have a value less than 0, we simply set it to 0.  In a like 
manner, variables that “want” to have a value greater than 1 are set to 1.   The empirical results will 
demonstrate that this simple binarization approach yields good results.  Additionally, it is important to 
note that there are other (more complicated) approaches in the literature for binarization of metaheuristics 
originally designed to solve continuous nonlinear optimization problems (Lanza-Gutierrez, 2016).  
However, Vasko and Lu (2017) reported that the simple approach outlined above performed the best for 
the set covering problem. 
3.3 The Repair Operator 
 

After a transformation formula is used to modify a bit string, this transformed bit string may not represent 
a feasible solution.  We used a variation of the DROP/ADD repair operator commonly used for the MKP 
(see Chu and Beasley (1998)) to “repair” this bit string, i.e., to make it a feasible solution.  If a solution 
is infeasible because constraints are violated, items are first removed from the knapsack (dropped).  Once 
enough items have been removed so that the solution is now feasible, items are then added as long as the 
solution remains feasible.  Pseudo-utility ratios are defined for each variable based on the following 
equation:  Uj = pj  /(ΣWiaij) where Wi are surrogate multipliers or weights.  Typically, the Wi values are 
obtained from solving the linear programming relaxation of the MKP and using the shadow prices (dual 
variable values) for constraint i as the value for Wi.  In trying to keep our solution easy to use and 
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implement (potentially in a large production system), we chose a simpler way to determine the Wi values.  
Specifically, we simply took the best (highest objective function value) solution in the initial 
population and sorted its constraints by tightness (least slack) in descending order (tightest constraints 
are at the top of the list).  The top half of the constraints have their corresponding  Wi = 1 and the lower 
half of the constraints have their corresponding Wi = 0.  This way of setting the Wi values means that the 
user does not have to solve the LP relaxation of the MKP.  This might not seem like a big deal, but if a 
MKP(s) was being solved routinely (e.g., daily) in a larger production system requiring the system to 
access an LP solver would definitely make the system slower and more complicated.  All items are then 
sorted in descending order based on their Uj values.  The DROP/ADD repair operator consists of two parts.  
The first part (called DROP) examines each variable starting at the end of the sorted Uj list and changes the 
variable from one to zero if feasibility is violated.  The second part (called ADD) reverses the process by 
examining each variable starting at the beginning of the sorted Uj list and changes the variable from zero to 
one as long as feasibility is not violated. 
 
The aim of the DROP part is to obtain a feasible solution from an infeasible solution, while the ADD part 
tries to improve the objective function value of the feasible solution.  Although this approach for determining 
the Wi values is simpler (and not as sophisticated) compared to solving the linear programming relaxation 
of the MKP (especially if the MKP is very large), in solving a number of MKPs using both approaches for 
determining the Wi values, the bottom line results were about the same.  Hence, our simpler, easier-to-
implement approach does not appear to sacrifice performance.   
4. Empirical Results using Beasley’s 270 MKPs 
 

So far in this paper, we have reviewed a “parameter-less” population-based metaheuristics, TLBO (Rao, 
Savsani and Vakharia (2011)), that was designed to solve continuous nonlinear optimization problems.  We 
then defined a simple procedure for generating an initial population of feasible solutions for the MKP.  We 
then showed how this metaheuristic can be adapted to efficiently solve any binary optimization problems 
(not just the multidimensional knapsack problem) where the solutions are represented as bit strings.  Next, 
we offered a repair operator for restoring feasibility after solutions are transformed by either phase of TLBO 
(teaching or learner) that did not require the solution of the linear programming relaxation of the MKP.  
These steps outline a methodology that can be used by operations research (OR) practitioners (and others) 
if they need to solve real-world applications requiring the solution of multidimensional knapsack problems.  
Without a detailed analysis, it is obvious that this methodology is computationally efficient especially for 
OR practitioners.  For example, there is no need for solving the linear relaxation of this problem and no need 
for any parameter fine-tuning which can be very time consuming.  Also, it is important to note, that if a MKP 
is solved routinely in an industrial production system by an approach that has parameters that need fine-
tuning, the initially tuned parameters will need to be periodically checked in case they need to be adjusted.    
We have described an efficient, easy to code and implement solution approach for the MKP, but how 
effective is it on solving large MKPs?  To test and compare solution approaches for the MKP, Chu and 
Beasley (1998) defined 270 MKPs which are available to researchers in Beasley’s OR-Library.  These 270 
problems are divided into 9 datasets with 30 problems in each dataset.  In each dataset, there are 10 
problems with a tightness ratio of 0.25, 10 problems with tightness ratio of 0.50 and 10 problems with 
tightness ratio of 0.75.   A tightness ratio implies the size of the right hand side value compared to the 
sum of the variable coefficients for that constraint.  For example, a tightness ratio of 0.25 implies that the 
right hand side of the dimensional constraint is 0.25 times the sum of the variable coefficients for that 
constraint.  The problems consist of either 100, 250 or 500 variables and the number of dimensional 
constraints are either 5, 10 or 30 for a total of nine datasets—one for each combination of the number of 
variables and number of constraints. Table 1 shows how well our TLBO implementation for the MKP 
performed on these 270 MKP instances.  Specifically, in Table 1 the results are summarized for the 9 
data sets.  Each entry in the table is the average deviation from optimum over all 30 problems in the 
dataset.  The results for TLBO represent only one execution of this metaheuristic for 300 iterations of 
the teaching and learning phases.  Since there are 30 solutions in the population, the transformation 
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formulas were executed 30 x 2 x 300 x (the number of variables in the problem) or 18,000 x (the number 
of variables in the problem) for each of the 270 MKPs.  We used 300 iterations for two reasons; (1) we 
assumed that if this approach was implemented in a production environment, there would be an execution 
time limit, (2) preliminary results on the 270 test instances showed negligible improvement by the time 
200 iterations were reached.  Given that the results in Table 1, can be obtained very quickly (in a few 
seconds depending on the PC used), and given that the real-world optimal solution will not be known, 
the OR practitioner could increase his or her confidence in the solution by putting this program in a loop 
(do not reset the random number seed) and take the best solution.  For example, even embedded in a 
production system, the user can have the program loop say five times (with different initial populations, 
etc. each time) and have the program return the best overall solution out of the five best solutions obtained 
by TLBO. 

Table 1 
Deviation from optimum for TLBO 

#CONSTRAINTS #VARIABLES TLBO 
5 100 0.42 
5 250 1.46 
5 500 2.59 

10 100 0.68 
10 250 1.4 
10 500 1.97 
30 100 0.83 
30 250 1.13 
30 500 1.33 
OVERALL AVERAGE 1.31 

 

Recently, Rezoug et al. (2018) presented a guided genetic algorithm (GGA) to solve the MKP.  In their 
paper, using the 270 MKPs from Beasley’s OR-Library, Rezoug et al. (2018) report in their Table 10 
how their GGA performed compared to 9 solution approaches from the literature. These results along 
with our TLBO results are given in Table 2. 

Table 2 
Deviation from optimum  

# CONS-
VARS 

TLBO GGA GA PECH MAG VZ PIR SCE CB NRP MCF 

5-100 0.42 0.54 1.2 4.24 8.47 7.6 1.0 2.4 .59 .53 .68 
5-250 1.46 0.56 1.9 4.03 5.1 4.6 .31 3.03 .14 .24 .26 
5-500 2.59 0.54 2.1 3.83 3.37 3.0 .12 3.33 .94 .08 .12 

10-100 0.68 0.73 1.5 4.57 10.77 10.6 2.1 4.77 .05 1.1 1.12 
10-250 1.4 0.63 1.9 3.27 7.63 6.7 .67 5.03 .3 .49 .48 
10-500 1.97 0.57 1.9 2.9 6.03 4.97 .29 5.33 .14 .19 .26 
30-100 0.83 1.08 1.6 3.97 11.89 11.1 4.9 6.27 1.7 1.45 2.06 
30-250 1.13 1.23 1.8 2.7 8.83 7.8 2.0 6.33 .68 .8 .99 
30-500 1.33 2.14 1.9 2.1 6.87 6.27 1.0 6.67 .35 .49 .59 

OVERALL 
AVERAGE 

1.31 0.89 1.8 3.51 7.66 6.95 1.4 4.8 .54 .6 .73 

  

The solution procedures listed in Table 10 of Rezoug et al. (2018) and repeated in our Table 2 are their 
guided GA, a GA, Primal Effective Capacity Heuristic (PECH), MAG and VZ, two solution approaches 
using Lagrange multipliers, PIR, a dual surrogate relaxation heuristic with a branch and bound 
component, Shuffled Complex Evolution (SCE), CB, a GA augmented with a feasibility and constraint 
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operator, New Reduction (Pirkul) NRP operates a lagrangian dual relaxation on MKP, and the Modified 
Choice Function-Late Acceptance Strategy (MCF).  The reader should consult Rezoug et al. (2018) for 
more details. When a paper develops several metaheuristics and empirically evaluates them based on test 
problem instances available (typically on the WWW) to researchers, usually some statistical analysis is 
appropriate to determine which results are statistically better than other results.  However, metaheuristics 
are not necessarily compared in a statistical manner to previously published metaheuristics.  In this paper, 
we only developed one metaheuristic.  To compare our results with other published metaheuristic results 
would be very difficult.  Either we would have to code these procedures or we would have to request 
other researchers to share their results or code with us.  Both of these seemed restrictive since the purpose 
of this paper is just to show that our simple TLBO approach for the MKP is reasonably “competitive” 
with other published MKP solution approaches. In other words, we were not interested in trying to 
(statistically) prove that our TLBO approach was better than any of the 10 approaches reported in Table 
10 of Rezoug et al. (2018), we just wanted to show that it was competitive, while requiring considerably 
less effort to code, test and implement.  From Table 2, we see that our TLBO is competitive with the 
other 10 solution approaches.  We also see from Table 2, that TLBO performs better on the problems 
with 30 constraints.  In Table 3, we focus on the 30 constraint problem instances (usually an MKP is 
considered to be more difficult as the number of constraints increase). 

Table 3 
Deviation from optimum for 30 constraint problem only 

# CONS-
VARS 

TLBO GGA GA PECH MAG VZ PIR SCE CB NRP MCF 

30-100 0.83 1.08 1.6 3.97 11.89 11.1 4.9 6.27 1.7 1.45 2.06 
30-250 1.13 1.23 1.8 2.7 8.83 7.8 2.0 6.33 .68 .8 .99 
30-500 1.33 2.14 1.9 2.1 6.87 6.27 1.0 6.67 .35 .49 .59 

OVERALL 
AVERAGE 

1.1 1.5 1.8 2.9 9.2 8.4 2.6 6.4 .91 .92 1.2 

 

In Table 3, we see that for the larger (usually more difficult) problems, TLBO is actually very 
competitive.  In this case, only two solution procedures have smaller deviations from optimum (and not by 
much) than TLBO.  Furthermore, these two solution procedures that gave slightly better solutions than 
TLBO for the 90 problem instances with 30 constraints each were definitely more complicated than TLBO.  
Specifically, the one procedure (CB) used a GA augmented with a feasibility and constraint operator which 
utilizes problem-specific knowledge and repair operators which locally improve the offspring.  The other 
solution procedure (NR(P))  that was slightly better than TLBO used a lagrangian dual relaxation combined 
with a non-trivial dynamic estimation of the core size.  TLBO is clearly simpler to code and implement than 
these two procedures with negligible sacrifice in solution quality.   

5. Summary and Implications for Operations Research Practitioners 
 

In this paper we discussed an efficient and effective but yet simple to code and implement solution 
procedure for the multiple dimensional knapsack problem.  Specifically, we demonstrated how the  
“parameter-less” metaheuristic, TLBO (Rao, Savsani and Vakharia (2011) ),  originally designed to solve 
continuous nonlinear optimization problems, can be adapted in a straightforward manner to solve binary 
optimization problems.  Furthermore, we demonstrated how this solution procedure can easily be used to 
effectively solve the multidimensional knapsack problem.  Comparing our TLBO solutions for 270 MKPs 
available from Beasley’s OR-Library to published results (Rezoug et al. (2018)) for other MKP solution 
procedures, we see that TLBO is not only easy to implement and use, but it also gives high quality solutions. 
TLBO is certainly “competitive” with the other methods discussed in Rezoug et al. (2018). 
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A major benefit of our results is that they can easily be used by operations research practitioners to solve 
industrial problems that cannot be solved efficiently with exact solution procedures.  Furthermore,  in a 
real-world situation when the optimal solution is not known, the practitioner can very easily build his/her 
confidence in the answer obtained from our procedure by simply putting it in a loop and executing it 
several times (do NOT reset the random number seed) and choosing the best answer obtained.    
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