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AN ORDER DROP THEOREM

MIHAI TURINICI

A drop theorem on ordered metric spaces is established from the (pre)
order version of Ekeland’s variational principle in Turinici [An St UAIC Iaşi
(Math), 36 (1990), 329-352]. The logical equivalence between these results
is also discussed.

1. Introduction.

Let (X, ||.||) be a Banach space. For each a ∈ X and each nonempty
subset C of X with a /∈ C , put D(a, C) = {λa +(1−λ)c; 0 ≤ λ ≤ 1, c ∈

C}; this will be referred to as the drop generated by a and C . Note that
D(a, c) = [a, c] (the segment with endpoints a and c), if C = {c}. The
following result [known as the drop theorem (DT)] is our starting point.

Theorem 1. Let the (nonempty) parts A, C of X be such that

(1.1) A is closed and C is closed, bounded, convex
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(1.2)
δ(A,C) := inf {||x− y||; x ∈ A, y ∈ C} ≥ ρ, for a certain ρ > 0.

Then, for each a0 ∈ A, there exists a ∈ A with

(1.3) a ∈ D(a0, C) (hence a ∈ A ∩ D(a0, C))

(1.4) x ∈ A ∩ D(a, C) ⇒ a = x(a is C-support for A).

A first proof of Theorem 1 was given in the 1971 paper by Zabreiko
and Krasnoselskii [19] (see also Daneš [7]), via Cantor’s intersection
theorem. Further, in his 1974 paper, Brøndsted [5] provided a different
proof of the same, by using the Bishop-Phelps lemma [2]. This (cf.
also Georgiev [10]) shows that Theorem 1 is logically reducible to the
1974 Ekeland’s variational principle [9] (in short: (EVP)) which may be
stated as:

Theorem 2. Let (M, d) be a complete metric space and f : M →

R ∪ {∞}, some function with

(1.5)
f is proper (Dom( f ) �= ∅),

bounded below ( f∗ := inf [ f (M)] > −∞)

(1.6)
f is lsc on M :

[ f ≤ τ ] := {x ∈ M; f (x) ≤ τ } is closed, ∀τ ∈ R.

Then, for each a0 ∈ Dom( f ) there exists a ∈ Dom( f ) with

(1.7) d(a0, a) ≤ f (a0) − f (a) ( hence f (a0) ≥ f (a))

(1.8) x ∈ M, d(a, x) ≤ f (a) − f (x) ⇒ a = x(a is f -variational ).

The structural analogy between these statements is clear; because,
roughly speaking, their conclusions (1.3)/(1.4) and (1.7)/(1.8) may be
expressed as: each element is majorized by a ”maximal” one. So, it
is natural asking of to what extent is this retainable from a logical
perspective; i.e.,

(1.9) (DT) and (EVP) are deductible from each other.

A first (positive) answer to this was obtained in 1985 by Daneš [8],
via specific methods related to the geometry of the ambient Banach space.
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Further, in his 1986 paper, Penot [12] established a second answer to the
same, again via geometric methods. Note that an interesting conclusion of
these developments is the following: (EVP) is logically equivalent with its
continuous (modulo f ) variant. So, further extensions of such facts are not
without interest. Among these, the ”relational” way is a promising one.
Its starting point is the 1990 (pre)order extension of Ekeland’s variational
principle obtained by Turinici [19] (cf. Section 2); which seems to include
it in a strict way (from a technical viewpoint). The next step is to look for
an appropriate counterpart of the drop theorem; the answer to this will
be provided in Section 3. Further, in Section 4, the converse question is
considered; and the conclusion to be derived is the (pre)order counterpart
of (1.9) above. Notice that, the proposed arguments are not reducible to
the ones of the quoted authors (when this preorder is the trivial one).
Finally, Section 5 is devoted to the (pre)order version of the ”amended”
Ekeland variational principle in Georgiev [10]. We provide two proofs
for this result. The former of these is purely metrical; and consists in a
direct application of the (pre)order Ekeland variational principle to our
data. The latter of these is geometric in nature; and is related to our
previous developments. Further aspects will be discussed elsewhere.

2. Order EVP in metric and normed spaces.

Let (M, d) be a metric space and (≤), some preorder (i.e.: reflexive
and transitive relation) over it; the triplet (M, d; ≤) will be referred to
as a preordered metric structure. We say that the (nonempty) subset A
of M is (≤)-closed when the limit of each ascending sequence in A
belongs to A. Further, call the underlying preorder (≤), self-closed if
M(x,≤) := {y ∈ M; x ≤ y} is (≤)-closed for each x ∈ M . Finally, term
the ambient space, (≤)-complete when each ascending Cauchy sequence in
M converges (in M ). The following result [referred to as the (pre)order
Ekeland variational principle; in short: (OEVP)] is now available (cf.
Turinici [19]).

Theorem 3. Let the preordered metric structure (M, d; ≤) be such that
(M, d) is (≤)-complete and (≤) is self-closed. Further, let the function
f : M → R ∪ {∞} be such that (1.5) is valid, as well as

(2.1) f is (≤) − lsc on M : [ f ≤ τ ] is (≤)-closed, ∀τ ∈ R.
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Then, for each a0 ∈ Dom( f ) there exists a ∈ Dom( f ) with

(2.2) a0 ≤ a, d(a0, a) ≤ f (a0) − f (a) (hence f (a0) ≥ f (a))

(2.3) a ≤ x, d(a, x) ≤ f (a)− f (x) ⇒ a = x (a is (≤, f )-variational).

Some remarks are in order. The basic tool of the proof is the
pseudometric maximality principle in Turinici [17]. But, the ordering
principles in Brezis and Browder [4], Altman [1] or Kang and Park [11]
are also working here; because (cf. Turinici [18]) all these are equivalent
to each other. Further, Theorem 3 includes Theorem 2, to which it reduces
when (≤) = M2 (the trivial preorder on M ). For the converse question,
note that

(2.4) f is (≤)-antitone (x ≤ y �⇒ f (x) ≥ f (y))

is a particular case of (2.1) (under the self-closedness of (≤)); i.e.,
Theorem 3 is applicable to such functions. This, however, is no longer
valid for Theorem 2. Indeed, let us take M = R (endowed with the usual
metric and order). Then, the function

f = − sgn (i.e.: f (x) = −x/|x | if x �= 0 and f (0) = 0)

is (≤)–antitone; hence (≤)-lsc as well (because (≤) is self-closed); but
not lsc, as it can be directly seen; and this proves the claim. In other
words, a reduction of Theorem 3 to Theorem 2 is not possible in such a
way. The question of this being realizable via different methods is open;
we conjecture that a positive answer is eventually available.

The obtained (OEVP) is metrical in nature. However, it may be put
into a normed framework (useful to the converse question formulated in
Section 1). Precisely, the following ”normed” version of Theorem 3 is
available:

Theorem 4. Let the Banach space (V, ||.||) be given, as well as the
self-closed preorder (≤) over it. Further, let the (nonempty) part N of V
and the function g : V → R ∪ {−∞} be such that (for a certain ρ > 0)

(2.5) N is(≤)-closed and diam(N ) ≤ ρ

(2.6) g is (≤)-usc on V and 0 = inf[g(N )] ≤ sup[g(N )] < ρ.

Then, for each b0 ∈ N with g(b0) = 0 there exists b ∈ N with

(2.7) b ≥ b0, ||b − b0|| ≤ g(b) − g(b0)(= g(b))
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(2.8) ||x − b|| > g(x) − g(b), for all x ∈ N (b,≤), x �= b.

For the moment, Theorem 4 is a logical consequence of Theorem
3. This follows by simply taking (M = N , d=the norm-induced metric)
and also

( f : M → R) : f (x) = sup[g(N )]− g(x), x ∈ M.

The remarkable fact to be added is that the converse inclusion also holds:

Proposition 1. Under these conventions,

(2.9) Theorem 3 is deductible from Theorem 4.

So (combining with the above) these results are deductible from each
other.

Proof. Let the complete metric space (M, d) and the preorder (≤) over
it be as in the premises of Theorem 3. Further, let f : M → R ∪ {∞} be
some function as in (1.5) + (2.1); and a0 ∈ Dom( f ) be arbitrary fixed.
Without loss of generality, one may assume that

(2.10) a0 ≤ x,∀x ∈ M; f (a0) = sup[ f (M)].

For, otherwise, the nonempty subset M0 = {x ∈ M; a0 ≤ x, f (a0) ≥

f (x)} (which fulfills (2.10)) is (≤)-closed (hence (≤)-complete) by the
admitted hypothesis; and, from the conclusions (2.2) + (2.3) written for
M0, it clearly follows the same fact for M . Let ρ > 0 be taken in
accordance with

(2.11) f (a0) − f∗ < ρ (i.e. : sup[ f (M)] − inf [ f (M)] < ρ).

Again without loss of generality, one may now assume that

(2.12) diam(M) := sup{d(x, y); x, y ∈ M} ≤ ρ.

For, if this fails, let us substitute d by the metric (fulfilling (2.12))
e(x, y) = min{ρ, d(x, y)}, x, y ∈ M . Then, from (2.2) + (2.3) written in
terms of e, it follows via (2.11) the validity of the same in terms of d ;
hence the claim.

We are now passing to the effective part of the argument. Let V
stand for the class of all continuous bounded functions ϕ : M → R. This
is a linear space which becomes a Banach one, with respect to

||ϕ|| = sup{|ϕ(x)|; x ∈ M}, ϕ ∈ V (the supremum norm).
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For each z ∈ M , let T (z) stand for the element in V introduced as

T (z)(x) = d(z, x) − d(a0, x), x ∈ M.

The canonical map z �→ T (z) fulfills d(z, w) = ||T z − T w||, for all
z, w ∈ M ; so, it is an isometry between M and its image N = T (M) in
V . Let (≤) stand for the relation (over V )

x ≤ y iff either x, y ∈ N , T −1(x) ≤ T −1(y) or x, y ∈ V \N , x = y.

Clearly, (≤) acts as a self-closed preorder on V . In addition to this,
the working condition (2.12) and the properties of T give (2.5). Let
h : V → R ∪ {∞} stands for the function

(2.21) h(v) = f (T −1(v)), v ∈ N ; h(v) = ∞, otherwise.

By the same way as in Daneš [8] one gets that (cf. the working
hypotheses (2.10) + (2.11) and the remarks above)

h is (≤)- lsc on V, sup [h(N )] = h(T (a0)) < inf [h(N )] + ρ.

So, if we introduce the function

(g : V → R ∪ {−∞}) : g(v) = h(T (a0)) − h(v), v ∈ V,

it is clear that (2.6) holds. Summing up, Theorem 4 applies to our data.
Hence, for the starting point b0 = T (a0) in N (with g(b0) = 0 as it
can be directly seen) there exists b = T (a) in N so that (2.7) + (2.8)
be true. But, in this case, (2.2) + (2.3) are being retainable, by the very
definition of (≤) and g. The proof is thereby complete. �

In particular, when (≤) is the trivial preorder on M , this result reduces
to the one in Daneš [op. cit.]. Further aspects may be found in Penot [12].

3. Main results.

Let (X, ||.||) be a Banach space; and (≤), some self-closed preorder
over it. Further, let the (nonempty) parts A, C of X be such that (1.2) is
fulfilled. The following result [referred to as the (pre)order drop theorem
(ODT)] is available.

Theorem 5. Suppose that (in addition)

(3.1) A is (≤)-closed and C is closed, bounded, convex.
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Then, for each a0 ∈ A, there exists a ∈ A with

(3.2) a ≥ a0, a ∈ D(a0, C) (hence a ∈ A(a0, ≤) ∩ D(a0, C))

(3.3) x ∈ A(a,≤) ∩ D(a, C) ⇒ x = a (a is (≤, C)-support for A).

In particular, when (≤) is the trivial preorder on X , this statement is
nothing but the drop theorem (DT). But (cf. the remarks in Section 1) there
is a logical equivalence between this last result and Ekeland’s variational
principle (EVP). So, it is natural to ask whether this equivalence can
be extended to our preorder setting [involving (ODT) and (OEVP)]. The
answer to this is affirmative; and the first half of it is precised in

Proposition 2. Let the conditions above be in use. Then

(3.4) (ODT) is deductible from (OEVP).

Proof. Let the parts A, C of X and the number ρ > 0 be as in the
premises of (ODT); and take some a0 in A. Denote

M = A(a0,≤) ∩ D(a0, C), d = the norm-induced metric.

Let (�) stand for the preorder on M

(x, y ∈ M) x � y iff x ≤ y and y ∈ D(x, C).

It is clear, via (3.1) (and the self-closedness of (≤)) that (M, d)

is (�)-complete and (�) is self-closed. Further, denote f (x) =

(α/ρ)δ(x,C), x ∈ M ; where

α = �(M, C) := sup{||x − y||; x ∈ M, y ∈ C} (hence α ≥ ρ).

By the nonexpansiveness of u �→ δ(u, C), f is continuous (hence
(�)-lsc) over M . Finally, let x, y ∈ M be such that x � y ; i.e.,

x ≤ y and y = λx + (1 − λ)c, for some λ ∈ [0, 1], c ∈ C.

By the convexity of u �→ δ(u, C), one has δ(y,C) ≤ λδ(x, C) ≤

δ(x, C); wherefrom

(1 − λ)ρ ≤ (1 − λ)δ(x, C) ≤ δ(x, C) − δ(y, C).

On the other hand ||x − y|| = (1 − λ)||x − c|| ≤ (1 − λ)α; so,
combining these

(3.5) x, y ∈ M, x � y �⇒ x ≤ y, ||x − y|| ≤ f (x) − f (y).
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(Note that, as a direct consequence of this, (�) is antisymetric (hence an
order) on M ). Summing up, the (pre)order Ekeland variational principle
(subsumed to Theorem 3) applies to (M, d;�) and f . It gives us, for
the starting point a0 ∈ M , some point a ∈ M with the properties (2.2)
+ (2.3) (written for these data). The former of these yields (3.2) (by the
definition of (≤)). And the latter one gives (3.3) if we take (3.5) into
account. Hence the conclusion. �

The following complement of this result is useful for us. Let again
A, C be as in Theorem 5. Denote

Cθ = X [C, θρ] := {x ∈ X : δ(x, C) ≤ θρ}, θ ≥ 0.

This is a family of closed bounded convex parts of X fulfilling

(3.6) C0 = C and θ �→ Cθ increases with θ

(3.7) δ(A,Cθ ) ≥ ρ(1 − θ) > 0, for each θ ∈ [0, 1[

(3.8) Cµ = X [Cν, (µ − ν)ρ], whenever µ ≥ ν.

Theorem 6. Let µ be arbitrary fixed in ]0, 1[. Then, for each a0 in A,
there exists a point a(µ) in A with

(3.9)
a(µ) ≥ a0, a(µ) ∈ D(a0, Cµ)

(hence a(µ) ∈ A(a0, ≤) ∩ D(a0, Cµ))

(3.10) A(a(µ),≤) ∩ D(a(µ), Cν) = {a(µ)},∀ν ∈ [0, µ].

Moreover, ∀ν ∈]0, µ[ one has (with α(µ, ν) = �(a(µ), Cν))

(3.11) (µ−ν)ρ||x−a(µ)||≤α(µ, ν)δ(x, A(a(µ), ≤)),∀x ∈ D(a(µ), Cν).

Hence, in particular (with the same µ, ν as before)

(3.12) (xn) ⊆ D(a(µ), Cν), δ(xn, A(a(µ),≤)) → 0 imply xn → a(µ).

Proof. By the admitted hypotheses and (3.7), Theorem 5 is applicable
to (A,Cµ) and ρµ = ρ(1− µ). So, for the starting point a0 in A, there
exists a point a(µ) ∈ A with the properties (3.2) + (3.3) (written for
(Cµ, a(µ)) in place of (C, a)). From this, (3.9) + (3.10) are clear; so,
it remains to prove (3.11). Fix ν in ]0, µ[; and let x �= a(µ) be some
point in D(a(µ), Cν). Hence

(3.13) x = θa(µ) + (1 − θ)c, for some θ ∈ [0, 1[, c ∈ Cν;
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in addition, x /∈ A(a(µ),≤) (by (3.10)). Without loss of generality, one
may suppose that

(3.14) ||x − a(µ)|| > δ(x, A(a(µ),≤));

for, otherwise, combining with (µ−ν)ρ ≤ (1−ν)ρ ≤ α(µ, ν) (cf. (3.7)),
we are done. Let � be taken in the open interval of the numbers in (3.14).
There exists, by definition, some x A ∈ A(a(µ),≤) with

||x − a(µ)|| > � > ||x − xA||(> 0, in view of x /∈ A(a(µ),≤)).

This, and (3.10), tells us that x A /∈ D(a(µ), Cµ). On the other hand,
x ∈ int[D(a(µ),Cµ)]; because Cν ⊆ int [Cµ]. So, necessarily

[xA, x] ∩ bd[D(a(µ), Cµ)] �= ∅ (where ”bd” = the boundary) .

Let y be some point in this intersection. Note that y �= a(µ); for,
otherwise, ||x − a(µ)|| ≤ ||x − xA|| < ||x − a(µ)||, contradiction. Denote
further (with θ ∈ [0, 1[ taken as in (3.13))

u = (y − θa(µ))/(1 − θ) ( hence y = θa(µ) + (1 − θ)u).

The case (=alternative) below is not acceptable

u ∈ X (Cν, (µ − ν)ρ) := {x ∈ X ; δ(x, Cν) < (µ − ν)ρ}.

For (in view of (3.8)) u ∈ int[Cµ] ⊆ int[D(a(µ), Cµ)]; and this,
combined with a(µ) ∈ D(a(µ), Cµ), gives y ∈ int[D(a(µ), Cµ)] (cf.
Bourbaki [3, Ch 2, Sect 2]); in contradiction with the choice of y . Hence
δ(u, Cν) ≥ (µ − ν)ρ ; wherefrom

||x − y|| = (1 − θ)||u − c|| ≥ (1 − θ)(µ − ν)ρ.

On the other hand, (3.13) and the definition of α(µ, ν) give

||x − a(µ)|| = (1 − θ)||a(µ) − c|| ≤ (1 − θ)α(µ, ν);

so, by simply combining with the above,

(µ − ν)ρ||x − a(µ)|| ≤ α(µ, ν)||x − y|| ≤ α(µ, ν)||x − xA|| ≤ α(µ, ν)�.

As � was arbitrarily chosen with ||x−a(µ)|| > � > δ(x, A(a(µ),≤)),
this yields (3.11), by a limit process. �

Some remarks are in order. When A is bounded, the conclusions
of Theorem 5 are valid (cf. Phelps [13]) even if C were unbounded;
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precisely, when (3.1) is to be written as

(3.15) A is (≤)-closed bounded and C is a closed convex cone.

This approach goes back to Bishop and Phelps [2]; see also Ursescu
[20]. On the other hand, if X is reflexive and C is some closed ball in
X , i.e.,

C = X [c, σ ], for some c ∈ X and some σ > 0,

the regularity condition (1.2) may be relaxed as (under (≤) = X 2)

(3.16) δ(A, C) = 0, A ∩ C = ∅ (cf. Rolewicz [16]).

So, we may presume that a similar conclusion is retainable in our
preorder setting. Further aspects were developed in Browder [6].

4. The converse question.

We are now in position to discuss the converse to (3.4) implication
(cf. Proposition 2). As precised there, a positive answer is (ultimately)
available, by the formal analogies between Theorem 3 and Theorem 5.
But, from a technical viewpoint, the situation is a bit more complicated,
by the different nature of the concepts involved. This, among others,
motivated the developments involving Theorem 4, which may be viewed
as an attempt of transposing the metrical concepts of Theorem 2 in a
normed setting. Their usefulness is to be judged from

Proposition 3. Under the precised conventions,

(4.1) (OEVP) is deductible from (ODT).

Hence (cf. Proposition 2) the order Ekeland variational principle and the
order drop theorem are deductible from each other.

Proof. Let the Banach space (V, ||.||), the self-closed preorder (≤) over
it, the (nonempty) part N of V and the function g : V → R ∪ {−∞} be
such that conditions (2.5) + (2.6) are fulfilled (for some ρ > 0). Without
loss of generality, one may assume

(4.2) γ := sup[g(N )] > 0 (hence 0 < γ < ρ).
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Fix also b0 ∈ N with g(b0) = 0; and let the numbers ω, λ be
introduced as

(4.3) 3 < ω < 4 (hence γ + ρ < (ω − 1)ρ);λ :=
1

ω − 1
.

Take the product structure X = V ×R, endowed with the λ-maximum
norm

||(x, ξ )|| = max(λ||x ||, |ξ |), x ∈ V, ξ ∈ R

and the ”product” preorder

(x, ξ ) ≤ (y, η) if and only if x ≤ y, ξ ≤ η.

Clearly, (X, ||.||) is a Banach space; and (≤) is self-closed over it
(by the admitted hypotheses). Define further the subsets (of X )

(4.4) A = {(x, ξ ) ∈ N × R+; g(x) ≥ ξ }, C = X [(b0, ωρ), ρ].

These fulfill the regularity condition (3.1). Moreover, in view of

(4.5) (y, η) ∈ C ⇒ |η −ωρ| ≤ ρ ⇒ γ +ρ < (ω − 1)ρ ≤ η ≤ (ω + 1)ρ

one gets, for each (x, ξ ) ∈ A, (y, η) ∈ C , the relation

||(x, ξ ) − (y, η)|| ≥ |ξ − η| = η − ξ ≥ (ω − 2)ρ > ρ;

wherefrom δ(A,C) ≥ ρ (i.e., condition (1.2) holds too). Summing up,
Theorem 5 is applicable to these data. It gives us, for the starting point
a0 = (b0, 0) in A, some point a = (b, β) in A with the properties (3.2)
+ (3.3). We claim that b ∈ N is our desired element. This may be shown
under the lines below.

(i) By (3.2), there must be some ν in [0, 1] and some (y, η) in C
with b − b0 = ν(y − b0), β = νη. The choice of C now gives

λ||y − b0|| ≤ ρ (hence λ||b − b0|| = λν||y − b0|| ≤ νρ ≤ ρ);

which shows that (b, ωρ) also belongs to C . On the other hand, the same
fact yields, via (4.5) (and the choice of λ)

(4.6) ||b − b0|| =
β

η
||y − b0|| ≤

β(ω − 1)ρ

(ω − 1)ρ
= β.

Finally, β ≤ g(b) ≤ γ < ωρ (by the definition of A); wherefrom

(b, g(b)) = µ(b, β) + (1 − µ)(b, ωρ), for some µ ∈ [0, 1].
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This, along with (b, β) ≤ (b, g(b)) yields, via (3.3)

(b, g(b)) ∈ A((b, β),≤) ∩ D((b, β), C) = {(b, β)}.

Hence, necessarily, g(b) = β ; and this gives (via (3.2) + (4.6))

b ≥ b0, ||b − b0|| ≤ g(b) (= g(b) − g(b0)); which is just (2.7).

(ii) Suppose by contradiction that there would be some z ∈ N (b,≤)

distinct from b, such that (2.8) be false:

(4.7) 0 < ||z − b|| ≤ g(z) − g(b) (= g(z) − β).

Put for simplicity ζ = ||z − b|| + β ; note that

(4.8) β < ζ ≤ g(z) [hence (z, ζ ) ∈ A((b, β),≤)].

We claim that there may be found some number � in ]0, 1[ with the
properties

(4.9) λ||
1

�
(z − b) + b − b0|| ≤ ρ, |

1

�
(ζ − β) + β − ωρ| ≤ ρ.

To verify this, note that the underlying relations are fulfilled as soon as

(1/�)(ζ − β) + β = (ω − 1)ρ; 0 < � < 1.

(The assertion follows at once from the definition of λ and ζ ; we do not
give details). This now forces us taking

� = (ζ − β)/[(ω − 1)ρ − β] (= the unique solution of that equation).

That � belongs to ]0, 1[ follows directly via (4.7) and (4.8):

β < ζ, β = g(b) ≤ γ < (ω − 1)ρ ⇒ � > 0

ζ ≤ g(z) ≤ γ < (ω − 1)ρ ⇒ � < 1.

Moreover, � fulfills (4.9) as above said; and this proves our claim. But
then, the point (y = 1

�
(z − b)+ b, η = 1

�
(ζ −β)+β) belongs to C . And,

from z − b = �(y − b), ζ − β = �(η − β), one derives, via (3.3) + (4.8)

(z, ζ ) ∈ A((b, β),≤) ∩ D((b, β), C) = {(b, β)}(hence z = b, ζ = β);

in contradiction with (4.7). Hence, this working assumption is unaccept-
able; and conclusion (2.8) follows. �

In particular, when (≤) is the trivial preorder on M , this result is just
the one in Daneš [8] (see also Penot [12]). But, we must underline that
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our techniques are quite distinct from the ones of these authors. Further
aspects may be found in Georgiev [10] and Qiu [14].

5. Amended OEVP.

Let us now return to the framework of Section 2. The following local
type result, referred to as the amended order Ekeland variational principle
[in short: amended (OEVP)] may be stated.

Theorem 7. Let preordered metric space (M, d;≤) be such that
(M, d) is (≤)-complete and (≤) is self-closed. Further, let the function
f : M → R ∪ {∞} be such that (1.5) is valid, as well as (2.1). Then,
for each a0 ∈ Dom( f ) and � > 0 there exist a = a(a0, �) ∈ Dom( f )

and λ = λ(a0, �) in ]0, 1[ with

(5.1) a0 ≤ a, d(a0, a) ≤ f (a0) − f (a) + �

(5.2) d(a, x) − ( f (a) − f (x)) > λd(a, x), ∀x ∈ M(a, ≤), x �= a.

Hence, in particular, we have the conclusion

(5.3) (xn) ⊆ M(a,≤), d(a, xn) − ( f (a) − f (xn)) → 0 imply xn → a.

Proof. Let the number λ = λ(a0, �) be taken in accordance with

(5.4) 0 < λ < 1 and
λ

1 − λ
( f (a0) − f∗) < �, where f∗ = inf [ f (M)].

Further, let the metric (x, y) �→ e(x, y) over M be introduced as

e(x, y) = (1 − λ)d(x, y), x, y ∈ M (in short: e = (1 − λ)d).

By the admitted hypotheses, Theorem 3 is applicable to the preordered
metric space (M, e; ≤) and the same function f . Hence, for the starting
point a0 ∈ Dom( f ) there exists a ∈ Dom( f ) such that (2.2) + (2.3) be
valid (with e in place of d ). The latter of these is just (5.2). And, by the
former one, we derive (cf. (5.4))

d(a0, a) ≤
1

1−λ
( f (a0)− f (a)) = f (a0)− f (a) +

λ

1 − λ
( f (a0)− f (a))

≤ f (a0) − f (a) +
λ

1 − λ
( f (a0) − f∗) < f (a0) − f (a) + �;
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wherefrom, (5.1) holds too. �

In particular, when (≤) is the trivial preorder on M , this result is
nothing but the amended Ekeland variational principle (in short: amended
(EVP)) due to Georgiev [10]. Now, the quoted result was established by
means of the trivial preorder version of Theorem 6. So, it is expectable
that such a device could also work in our preorder setting. As we shall
see, a positive answer to this is available. For technical reasons it would
be useful starting with the normed setting (of Theorem 4). Precisely, we
have

Theorem 8. Let the Banach space (V, ||.||) be given, as well as the
self-closed preorder (≤) over it. Further, let the (nonempty) part N of
V and the function g : V → R ∪ {−∞} be such that (2.5) + (2.6) hold
(for some ρ > 0). Then, for each b0 ∈ N with g(b0) = 0 and each � > 0
there exist b = b(b0, �) ∈ N and τ = τ(b0, �) in ]0, 1[ such that

(5.5) b ≥ b0, ||b − b0|| ≤ g(b) − g(b0) + � (= g(b) + �)

(5.6) τ ||x − b|| ≤ g(b) + ||x − b|| − g(x), for all x ∈ N .

Hence, in particular, we have the conclusion

(5.7) (xn) ⊆ N (b,≤), g(b) + ||xn − b|| − g(xn) → 0 imply xn → b.

Proof. Without loss of generality, one may assume that (4.2) is true. Fix
a certain ω in ]3, 4[; and introduce the functions

ϕ(t) =
t

ω − t
, 0 < t < ω; ψ(t) =

ϕ(1 + t)

ϕ(1)
− 1, 0 < t < ω − 1.

Further, let us consider the Cartesian product X = V × R endowed
with the ϕ(1)-maximum norm and the ”product” preorder of Proposition
3. Finally, let the subsets A,C of X be taken as in (4.4); note that (with
the notations of Section 3) Cθ = X [(b0, ωρ), (1 + θ)ρ], for all θ ≥ 0.
By the remarks in the quoted statement, conditions of Theorem 6 are
holding for these data. So, given the starting point a0 = (b0, 0) in A and
µ in ]0, 1/4[ (arbitrary for the moment) there exists a(µ) = (b, β) in A
fulfilling (3.9) + (3.10) as well as: for each ν in ]0, µ[, the evaluation
(3.11) is true. We now claim that b is our desired element (for a suitable
choice of (µ, ν)). Th is will be shown in several steps.



AN ORDER DROP THEOREM 227

(j) By (4.3) and the preliminary choice of µ,

ω −
5

2
> 2µ

�

hence ω − 1 − 2µ >
3

2

�

.

This, by the Lagrange mean value theorem, yields (for all such µ)

(5.8) ψ(µ) ≤
µϕ�(1 + µ)

ϕ(1)
=

ω(ω − 1)µ

(ω − 1 − µ)2
≤

ωµ

ω − 1 − 2µ
<

2

3
ωµ.

(jj) By (3.9), there must be some θ in [0, 1[ and some (y, η) in
Cµ with b − b0 = θ(y − b0), β = θη. The representation above for Cµ

imposes to (y, η) a couple of conditions like

ϕ(1)||y − b0|| ≤ (1 + µ)ρ, |η − ωρ| ≤ (1 + µ)ρ

(hence (ω − 1 − µ)ρ ≤ η ≤ (ω + 1 + µ)ρ).

This, and (5.8), yields (via β ≤ g(b) < ρ)

(5.9) ||b − b0|| ≤
β

η
||y − b0|| ≤ β(1 + ψ(µ)) < β +

2

3
ρωµ.

So, in order that (5.5) be true, we have to impose a condition like

(5.10)
2

3
ρωµ < �

�

hence 0 < µ < min

�
1

4
,
3�

2ρω

��

.

(jjj) It remains now to discuss (5.6). Let the pair (µ, ν) be taken
in accordance with (5.10) and

(5.11) µ < ω − 3;
2

3
<

ν

µ
< 1.

We show that, under these requirements, one has an evaluation like

(5.12) (x, β + ||x − b||) ∈ D((b, β), Cν), for all x ∈ N (b,≤).

In fact, take some x in N (b,≤); without loss of generality one may
assume that x �= b. The desired conclusion is clearly obtainable from

(x, β + ||x − b||) = (b, β) + θ(y − b, η − β),

for some θ in ]0, 1[ and (y, η) in Cν.

This also reads (in an evident way)
�

y =
1

θ
(x − b) + b, η =

1

θ
||x − b|| + β

�

is in Cν; or, equivalently
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(5.13)

ϕ(1)

�
�
�
�
1

θ
(x − b) + b − b0

�
�
�
� ≤ (1 + ν)ρ,

�
�
�
�
1

θ
||x − b|| + β − ωρ

�
�
�
� ≤ (1 + ν)ρ.

A reasonable way of satisfying the second requirement above is by
solving

(5.14)
1

θ
||x −b||+β−ωρ = −(1+ν)ρ; hence θ =

||x − b||

(ω − 1 − ν)ρ − β
.

That θ > 0 is clear, by the choice of ω (and β < ρ). We also have
θ < 1; for (in view of (2.5) and (5.11))

||x − b|| ≤ ρ < (ω − 1 − µ)ρ − β < (ω − 1 − ν)ρ − β.

This value of θ is also appropriate for the first half of (5.13). Indeed,
a sufficient condition for the underlying relation to hold is

ϕ(1)

�
1

θ
||x − b|| + ||b − b0||

�

≤ (1 + ν)ρ.

This (cf. (5.9) and (5.14)) is fulfilled as soon as

ϕ(1)[(ω−1−ν)ρ +βψ(µ)] ≤ (1+ν)ρ; or, equivalently, βψ(µ) ≤ ωρν.

But, the written condition is verified, by (5.8) and the choice (5.11) of
(µ, ν); hence (5.12) is retainable. Note that, as an immediate consequence
of this (and (3.10))

(5.15) (x, β+||x −b||) /∈ A((b, β),≤), for each x ∈ N (b,≤), x �= b.

(jv) Let x ∈ N (b,≤) be arbitrary fixed. By (5.12), it follows that
evaluation (3.11) is applicable to (x, β +||x −b||) (and the couple (µ, ν)

above). To give it an appropriate form, we start by noting that (cf. (2.5))

α(µ, ν) = �((b, β),Cν) ≤ ||(b, β) − (b0, ωρ)|| + (1 + ν)ρ ≤

max{λ||b − b0||, |β − ωρ|} + (1 + ν)ρ ≤ (ω + 1 + ν)ρ.

On the other hand, the distance in the left member of (3.11) is
evaluated as (from λ < 1)

||(x, β + ||x − b||) − (b, β)|| = max(λ||x − b||, ||x − b||) = ||x − b||.
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For the (point to set) distance in the right member of the same, it
will suffice considering the alternatives

(5.16) g(x) ≥ β[hence (x, g(x)) ∈ A((b, β),≤)]; g(x) < β(= g(b)).

In fact, the former of these yields (cf. (5.15))

d[(x, β + ||x − b||), A((b, β),≤)] ≤ ||(x, β + ||x − b||) − (x, g(x))|| =

= β + ||x − b|| − g(x) ≤ g(b) + ||x − b|| − g(x).

This, added to the above, allows us deducing [via (3.11)]

(µ − ν)ρ||x − b|| ≤ (ω + 1 + ν)ρ(g(b) + ||x − b|| − g(x));

wherefrom (5.6) is clear, with τ = (µ − ν)/(ω + 1 + ν). The latter
alternative of (5.16) gives us the same conclusion (in a trivial way). This
ends the argument. �

Now, by simply remembering the way of translating Theorem 3 in
terms of Theorem 4, one re-obtains Theorem 7 (in this geometric way).
Note that, when (≤) is the trivial preorder in V , Theorem 8 reduces to the
statement in Georgiev [10] proved via slightly different methods. Some
interesting applications of such results to the generic well-posedness in
the sense of Revalski [14] are available. These will be discussed in a
separate paper.
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