
 1

An Organizational Coevolutionary Algorithm for Classification

Licheng Jiao, Senior Member, IEEE Jing Liu1 Weicai Zhong

Institute of Intelligent Information Processing, Xidian University, Xi’an 710071, China

Abstract Taking inspiration from the interacting process among organizations in human societies, a new

classification algorithm, organizational coevolutionary algorithm for classification (OCEC), is proposed

with the intrinsic properties of classification in mind. The main difference between OCEC and the available

classification approaches based on evolutionary algorithms (EAs) is its use of a bottom-up search

mechanism. OCEC causes the evolution of sets of examples, and at the end of the evolutionary process,

extracts rules from these sets. These sets of examples form organizations. Because organizations are

different from the individuals in traditional EAs, three evolutionary operators and a selection mechanism

are devised for realizing the evolutionary operations performed on organizations. This method can avoid

generating meaningless rules during the evolutionary process. An evolutionary method is also devised for

determining the significance of each attribute, on the basis of which, the fitness function for organizations

is defined. In experiments, the effectiveness of OCEC is first evaluated by multiplexer problems. Then

OCEC is compared with several well-known classification algorithms on 12 benchmarks from the UCI

repository datasets and multiplexer problems. Moreover, OCEC is applied to a practical case, radar target

recognition problems. All results show that OCEC achieves a higher predictive accuracy and a lower

computational cost. Finally, the scalability of OCEC is studied on synthetic datasets. The number of

training examples increases from 100 000 to 10 million, and the number of attributes increases from 9 to

400. The results show that OCEC obtains a good scalability.

Index Terms Data mining, classification, organization, evolutionary algorithms, coevolution.

1 Corresponding author, e-mail: neouma@163.com, telephone: 86-029-88202661

 2

I. INTRODUCTION

Evolutionary algorithms (EAs) [1], based on an analogy to natural evolution, have

recently gained increasing interest. They are suitable for solving complex or ill-defined

problems and have been successfully applied to the fields of numerical optimization,

combinatorial optimization, machine learning, neural networks, and many other engineering

problems [2]-[7]. Classification is one of the fundamental tasks of data mining [8]-[13] and

can be described as follows [14]. The input data, also called the training set, consist of

examples, each example having several attributes. Additionally, each example is tagged with a

special class name. The objective of classification is to analyze the input data and to develop

an accurate description for each class using the attributes present in the data. The class

descriptions are used to classify future test data for which the class names are unknown.

Applications of classification include credit approval, medical diagnosis, store location, etc.

This paper introduces a new evolutionary algorithm for classification.

A. Related work

Classification has been studied extensively and the application of EAs to this field was

initiated in the 1980s [15], [16]. Holland [15] and Smith [16] proposed two basic reference

approaches, namely, the Michigan and Pittsburgh approaches, respectively. The Michigan

approach maintains a population of individual rules which compete with each other for space

and priority in the population. In contrast, the Pittsburgh approach maintains a population of

variable-length rule sets which compete with each other with respect to performance on the

domain task.

Neither of the approaches is perfect. The Michigan approach, which converges more

 3

rapidly, fails to learn good solutions for complex problems, whereas the Pittsburgh approach

solves more difficult problems at a relatively high computational cost. Present, it seems that

both approaches have their problems and advantages. This has prompted many researchers to

develop new approaches along each one or hybrid ones, by selecting good features from both

approaches and by avoiding the difficulties.

Choenni et al. in [17]-[20] proposed some algorithms based on the Michigan approach.

They have made many improvements. They modified the individual encoding method to use

nonbinary representation, and did not encode the consequents of rules into the individuals.

Moreover, they used extended version of crossover and mutation operators suitable to their

representations, did not allowing rules to be invoked as a result of the invocation of other

rules, and defined fitness functions in terms of some measures of the classification

performance.

De Jong et al. in [21] proposed an algorithm based on the Pittsburgh approach, GABIL.

GABIL can continually learn and refine classification rules from its interaction with the

environment. By incorporating a genetic algorithm (GA) as the underlying adaptive search

mechanism, GABIL is able to construct a concept learning system that has a simple, unified

architecture with several important features.

In order to alleviate the disadvantages of the Michigan and Pittsburgh approaches, some

hybrid Michigan/Pittsburgh methodologies have been proposed, for example, COGIN [22],

JoinGA [23], REGAL [24], and G-Net [25].

COGIN [22] is an inductive system based on GAs that exploits the conventions of

induction from examples. Its novelty lies in the use of training set coverage to simultaneously

 4

promote competition in various classification niches within the model and constrain overall

model complexity.

JoinGA [23] is a combination of the Michigan and Pittsburgh approaches together with a

symbiotic niching component that can be used in multimodal classification. On the level of

fixed-length individuals, JoinGA uses normal genetic operators. In order to be able to deal

with multimodal concepts, JoinGA uses a new level of operators above the basic genetic level.

The operators on this level put together and divide groups of individuals, building families out

of single, cooperating individuals. In this way JoinGA keeps the Michigan type effective

fixed-length individuals and corresponding simple crossover operations. JoinGA also avoids

the problems of multiple solutions by using the Pittsburgh type families, so that the system

may converge to a single highly fit family.

REGAL [24], a distributed GA-based system, designed for learning first order logic

concept descriptions from examples. The population constitutes a redundant set of partial

concept descriptions, and each evolves separately. G-Net [25] is a descendant of REGAL, and

consistently achieves a better performance. The main features of the system include

robustness with respect to parameter settings, use of the minimum description length criterion

coupled with a stochastic search bias, use of coevolution as a high-level control strategy, the

ability to face problems requiring structured representation languages, and the suitability to

parallel implementation on a network of workstations.

Recently, many new approaches based on EAs for the classification task have been

proposed. XCS [26], [27] acts as a reinforcement learning agent. It differs from traditional

approaches in several respects [27]. First, XCS has a simplified structure since it does not

 5

have an internal message list. In addition, XCS uses a modification of Q-learning instead of

the “bucket brigade” [15]. Most importantly, in XCS, classifier fitness is based on the

accuracy of the classifier’s payoff prediction instead of the prediction itself. XCS represents a

major development in learning classifier systems research, and has proved effective in many

domains [28].

GEP [10] is a new approach for discovering classification rules by using genetic

programming with linear representation. The antecedent of discovered rules may involve

many different combinations of attributes. To guide the search process, [10] suggested a

fitness function considering both the rule consistency gain and completeness. A multiclass

classification problem was formulated as a combination of multiple two-class problems by

using the one against all learning method. Compact rule sets were subsequently evolved using

a two-phase pruning method based on the minimum description length principle.

DMEL [11] handles classification problems of which the accuracy of each prediction

needs to be estimated. DMEL searches through the possible rule space using an evolutionary

approach that has the following characteristics: 1) the evolutionary process begins with the

generation of an initial set of simple, one-condition rules; 2) interestingness measure is used

for identifying interesting rules; 3) fitness of a chromosome is defined in terms of the

probability that the attribute values of a record can be correctly determined using the rules it

encodes; and 4) the likelihood of predictions made is estimated so that subscribers can be

ranked according to their likelihood to churn.

In economics, Coase in [29] explains the sizing and formation of organizations from the

framework of transaction costs. This concept was introduced to the GA-based classifiers by

 6

Wilcox in [30], which puts emphasis on inventing an autonomous mechanism using

transaction costs for forming the appropriately sized organizations within a classifier.

There are many other approaches that also obtain good performances, such as EVOPROL

[31], SIA [32], ESIA [33], EENCL [34], EPNet [35], etc. EAs are promising approaches for

data mining, and have been applied to many problems other than the classification task. For

example, Abutridy et al. in [12] presented a novel evolutionary model for knowledge

discovery from texts, and Cano et al. in [13] carried out an empirical study of the

performances of four representative EA models for data reduction in knowledge discovery in

databases.

B. Proposed approach

Inspired by the idea of organizations [30], we propose a new evolutionary algorithm for

classification, organizational coevolutionary algorithm for classification (OCEC). But the

emphasis of OCEC is different from that of [30]. Since in the real world situation,

organizations usually compete or cooperate with others so that they can gain more resources,

OCEC does not put emphasis on forming the appropriately sized organizations, but on

simulating the interacting process among organizations.

OCEC adopts the coevolutionary model of multiple populations, focusing on extracting

rules from examples. It causes the evolution of sets of examples, and at the end of the

evolutionary process, extracts rules from these sets. These sets of examples form

organizations. Three evolutionary operators and a selection mechanism are devised to

simulate the interaction among organizations. Additionally, because OCEC is inspired from

the coevolutionary model, and considers the examples with identical class names as one

 7

population, it can handle multi-class learning in a natural way so that multiple classes can be

learned simultaneously.

The main process of the existing EA-based and stochastic search classification algorithms

[36], is first generating rules randomly, and then improving the quality of the rules by using

the training examples. So these algorithms adopt an up-bottom search mechanism, and may

generate meaningless rules during the evolutionary process. But OCEC adopts a completely

different search mechanism. For classification, if the obtained description is represented as

rules, then each rule covers some examples, and the examples covered by the same rule have

some similarities in attribute values. Based on this, OCEC first clusters the examples with

similar attribute values so as to form organizations, and then guides the evolutionary process

by using the differing significance of attributes. At the end of the evolutionary process, rules

are extracted from organizations. Such a process can avoid generating meaningless rules.

Therefore, OCEC adopts a bottom-up search mechanism.

C. Organization of paper

In the remainder of this paper, OCEC is described in Section II. Section III evaluates the

effectiveness of OCEC by multiplexer problems. Section IV compares OCEC with the

available algorithms on benchmarks, and applies OCEC to a practical case, the radar target

recognition problem. The scalability of OCEC is studied in Section V. Finally, conclusions

and some ideas for the future work are presented in the last section.

 8

II. AN ORGANIZATIONAL COEVOLUTIONARY ALGORITHM FOR

CLASSIFICATION

A. Knowledge representation and relevant definitions

Present, since OCEC is devised to handle nominal data only, the continuous attributes are

transformed into nominal ones by discretizing. For the sake of simplicity, each continuous

attribute has been discretized by subdividing the range into 5 equal length intervals. In order

to avoid confusion about terminology, some concepts are first introduced here.

Definition 1: Let
i

A be a set of attribute values {ai1, ai2, …, aik}. An instance space I

is the Cartesian product of sets of attribute values, 1 2 ...
n

A A A= × × ×I . An attribute

:
i i

A A→I is a projection function from the instance space to a set of attribute values. An

instance i is an element of I, and an example e is an element of I×C, where C is a set of class

names. The set of examples is labeled as E⊂ I×C.

An attribute is a measurable feature of an instance. An instance is described by a vector of

attribute values and an example is an instance together with a class name. The set of class

names is fixed and is presented in advance. The examples are organized as a matrix, where

each row represents an example and each column an attribute. Here is a simple example.

Example 1: Given a set of classified

examples E={e1, e2, …, e9}. They are organized as

a matrix shown in Table I. The instance space

SIZE HAIR EYES= × ×I , where { }, SIZE short tall= ,

{ }, , HAIR golden red dark= , and { }, , EYES blue gray dark= .

The set of class names C={A, B}.

Table I The examples organized as a matrix

Name Class SIZE HAIR EYES

e1 A short golden blue

e2 A tall red blue

e3 A tall golden blue

e4 A short golden gray

e5 B tall golden dark

e6 B short dark blue

e7 B tall dark blue

e8 B tall dark gray

e9 B short golden dark

 9

Definition 2: An Organization, org, is a set of examples with identical class names,

and the intersection of different organizations is empty, that is,

org⊆ Ec, c∈ C, where Ec denotes the set of examples whose class names are c;

∀ org1, org2⊆ Ec, org1 ≠ org2 ⇒ org1 ∩ org2 = ∅ ;

The examples in an organization are called Members.

Because each attribute has different significance in determining the class name of an

instance, the attributes are classified into different types for an organization according to the

information of the members, and thus is convenient for rule extraction at the end of the

evolutionary process.

Definition 3: If all members of org have the same value for attribute A, then A is a

Fixed-value Attribute. If A′ is a fixed-value attribute and satisfies the conditions required for

rule extraction, then A′ is a Useful Attribute. The fixed-value attribute set of org is labeled as

Forg, and the useful attribute set is labeled as Uorg.

Because rules extracted from some organizations are meaningless, organizations are also

classified into three types.

Normal organization: It is the organizations with more than one members and non-empty

useful attribute set.

Trivial organization: It is the organizations with only one member. All attributes of such

organizations are useful ones;

Abnormal organization: It is the organizations with empty useful attribute set.

The sets of the three types of organizations are labeled as ORGN, ORGT, and ORGA,

respectively. To satisfy the requirement of evolutionary operations, each organization need

 10

record some information. Therefore, an organization is represented as the following structure,

Organization = Record

Member_List: Record the name of each member in this organization;

Attribute_Type: Record the type of each attribute in this

organization, that is, fixed-value attribute, useful attribute,

or others;

Organization_Type: Record the type of this organization, that

is, trivial organization, abnormal organization, or normal

organization;

Member_Class: Record the class name of all members;

Fitness: Record the fitness of this organization;

End.

B. Fitness function for organizations

After analyzing the relation between attributes and examples, we think that there are two

factors to be considered in devising the fitness function for organizations,

(1) The number of members: The more members an organization has, the better the quality of

the rule extracted from it. Therefore, the fitness of an organization should increase with

the number of members.

(2) The number of useful attributes: Useful attributes will be used to generate rules at the end

of the evolutionary process. The more useful attributes are, the more conditions the rules

have. In fact, the more conditions a rule has, the fewer examples the rule covers. But

over-generalization will result if the conditions are too few. Therefore, the fitness of an

 11

organization should not monotonically increase or decrease with the number of useful

attributes.

Because not all attributes, but only those with high significance are desired to appear in the

final rules, a measure, Attribute Significance, is introduced.

Definition 4: Attribute Significance is the ability of an attribute in determining the

class name for an instance. The attribute significance of A is labeled as SA, and the value of SA

is determined during the evolutionary process.

As can be seen, SA reflects the distribution of the values of A in each class. In the

evolutionary process, the value of SA is identical for all populations so that all populations can

coevolve. When populations evolve, SA evolves also. The value of SA is updated when

computing the fitness of an organization. The details are shown in Algorithm 1.

Algorithm 1 Attribute Significance

t denotes the generation of the evolutionary process. The number

of attributes is m. N is a predefined parameter. org is the

organization under consideration and org∉ ORGT. Aj denotes the jth

attribute in Forg.

begin

if (t=0) then for i:=1 to m do :=1.0
i

0

A
S ;

Determining Forg; Uorg:=∅ ;

for j:=1 to |Forg| do

begin

Randomly selecting an organization org′ satisfying

 12

org′.Member_Class ≠ org.Member_Class;

if (Aj∈ Forg′) and (the value of Aj in Forg′ is different from that

of Aj in Forg) then := ∪
org org j

U U A

else Reducing
j

t

A
S according to (1) (Case1);

end;

if (Uorg ≠ ∅) then

begin

Randomly selecting N examples whose class names are different

from org.Member_Class;

if (the combination of the attribute values in Uorg does not

appear in the N examples) then

Increasing the attribute significance of all attributes

in Uorg according to (1) (Case2)

else Uorg := ∅ ;

end;

end.

1
0.9 0.05, Case1,

0.9 0.2, Case2.

t

At

A t

A

S
S

S

+ +=
+

 (1)

The parameter N not only ensures that the rules extracted from organizations are

consistent to some extent, but also makes the algorithm robust against noise. If N is set to a

larger value, the rule is more consistent, but the algorithm is more sensitive to noise. Since the

value of SA is restricted to the range of [0.5, 2], it is set to 1.0 at the beginning, and updated

during the evolutionary process. When the conditions of Case1 in (1) are satisfied, SA should

 13

be punished:

1 0.05
0.9 0.05

10

t
t t tA
A A A

S
S S S

+ −= − = + . (2)

When the conditions of Case2 in (1) are satisfied, SA should be awarded:

1 2
0.9 0.2

10

t
t t tA
A A A

S
S S S

+ −= + = + . (3)

The conditions of Case1 and Case2 are the ones required for rule extraction.

The idea of Algorithm 1 is encouraged by the following observations. If the values of A

do not concentrate in the same class, A has low significance. But if a combination of several

attribute values is unique in a certain class, these attributes together have high significance.

An example is shown to evaluate whether Algorithm 1 can correctly determine attribute

significance.

Example 2: Following Example 1, Fig.1

shows the evolutionary process of the attribute

significance for the three attributes, where the

x-coordinate stands for generations. As can be

seen, after running 10 generations, the attribute

significance can be differentiated completely.

The significance of HAIR is the highest

whereas that of SIZE is the lowest. This result agrees with that of decision trees, and

illustrates the usefulness of Algorithm 1.

On the basis of the attribute significance, the fitness function for organizations is defined

as follows,

Fig.l. Evolutionary process of the attribute

significance

 14

| |

1

0, ,

() 1, ,

| | , ,org

i

T

A

U

A Ni

org ORG

Fitness org org ORG

org S org ORG
=

 ∈
= − ∈

∈ ∏
 (4)

where Ai denotes the ith attribute in Uorg. The fitness of trivial and abnormal organizations is

set to 0 and –1, respectively, whereas that of normal organizations is the product of the

number of members and each
iA

S in Uorg. If org∉ ORGT, the useful attributes must be

determined by Algorithm 1 in advance.

C. Evolutionary operations for organizations

All evolutionary operations act on the members of organizations, and the traditional

operators, such as crossover, mutation, and selection, cannot be used. Therefore, three new

evolutionary operators and a selection mechanism are devised for organizations:

Migrating operator: First, two parent organizations, orgp1 and orgp2, are randomly

selected from a population. Next, n members, randomly selected from orgp1, are moved to

orgp2, with two child organizations, orgc1 and orgc2, obtained. Here n≥1.

Exchanging operator: First, two parent organizations, orgp1 and orgp2, are randomly

selected from a population. Next, n members, randomly selected from each parent

organization, are exchanged, with two child organizations, orgc1 and orgc2, obtained. Here

1≤n<min{|orgp1|, |orgp2|}, where |org| denotes the number of members in org. The

precondition for this operator is |orgp1|>1 or |orgp2|>1.

Merging operator: First, two parent organizations, orgp1 and orgp2, are randomly selected

from a population. Next, the members of the two organizations are merged, with one child

organization, orgc1, obtained.

Organizational selection mechanism: The main idea of this mechanism is to encourage

 15

child organizations to compete with parent organizations. After an operator creates a pair of

child organizations, a tournament is held between the child pair and the parent pair. The pair

containing the organization with the highest fitness survives to the next generation, whereas

the other pair is deleted. Since the three operators may generate abnormal organizations, and

rules extracted from such organizations are meaningless, the mechanism must prevent such

organizations from getting into the next generation. Therefore, when an abnormal

organization survives to the next generation, it is dismissed and the members are added to the

next generation as trivial organizations. Because the child organizations contain the same

number of examples as the parent ones, the number of examples within a population remains

constant. If only one organization remains in a population, it will be passed to the next

generation directly.

D. Rule extraction from organizations and prediction method

For classification, one popular way of expressing the class descriptions is IF-THEN rules.

Each rule has the form, IF <conditions> THEN <class name>. The <conditions> part

(antecedent) of a rule contains a logical combination of attributes using the logical connective

∧ (AND) only, in the form, term1∧ term2∧ …∧ termn. Each term is a triple <attribute, operator,

value>, such as <HAIR = golden>. The <class name> part (consequent) of a rule contains the

class name predicted for an instance whose attributes satisfy the <conditions> part.

When the evolutionary process is over, rules are extracted from organizations. In order to

reduce the number of rules, all organizations are first merged by merging any two

organizations in the same population into a new organization if the two organization satisfy:

One useful attribute set is a subset of the other one and the values of the attributes in the

 16

intersection are identical. The members of the new organization are those of the two

organizations, and the useful attribute set is the intersection of the two original sets, that is,

1 2 2 1 1 21 2() or () () and ()
org org org org org org org

U U U U org org org U U U⊆ ⊆ ⇒ = =∪ ∩ . (5)

Next, a rule is extracted from each organization on the basis of the useful attribute set, i.e.,

each useful attribute forms a term in the <conditions> part, and the <class name> is equal to

the Member_Class. For example,

Example 3: Following Example 1, if members of an organization are e5 and e9, and the

useful attributes are HAIR and EYES, then the rule extracted from it is

IF (HAIR = golden) ∧ (EYES = dark) THEN (class name = B). □

In order to reduce the number of rules further, measures are taken as follows. Above all, a

measure, Relative Support, labeled as RS, is calculated for each rule, which is derived from

the ratio of positive examples a rule covers to all examples in the class the rule belongs to. On

the basis of relative support, all rules are ranked. In order to prevent the rules of the classes

with fewer examples from being positioned in tail, the rules are ranked based on the ratio, not

on the number of positive examples. After all rules are ranked, some rules are deleted as

follows. If the set of examples covered by a rule is a subset of the union of examples covered

by the rules before this one, this rule is deleted. Algorithm 2 sums up the method for rule

extraction.

Algorithm 2 Rules Extraction from Organizations

There are m populations, labeled as P1, P2, …, and Pm. Er denotes

the set of positive examples covered by rule r.

begin

 17

RULES:=∅ ;

for i:=1 to m do

while (there are two organizations in Pi, org1 and org2,

satisfying the condition of (5)) do

begin

Merging org1 and org2 to form org according to (5);

{ }()1 2:= , ∪
i i
P P org org org ;

end;

Extracting a rule r from each organization; Computing RSr;

:= ∪RULES RULES r;

Ranking the rules on the basis of the relative support;

i:=1;

while (i≤|RULES|) do

begin

if (there exist k rules, rj (j<i, j=1, 2, …, k), satisfying

⊆
1 2
∪ ∪…∪

i kr r r r
E E E E) then Deleting ri from RULES;

i:=i+1;

end;

end.

Because rules extracted from different classes are put together and in most cases the rules

for different classes may overlap, it is very important to adopt a suitable method to deal with

conflicting rules and predict the class names of the instances.

 18

Definition 5: Given that i∈ I and r∈ RULES. |termsr| denotes the number of terms in the

<conditions> part of r, and | |i

r
terms denotes the number of terms satisfied by instance i. The

Match Value, i

r
MV between r and i is defined as | | | |i i

r r r
MV terms terms= .

According to the definition, the range of the match value is [0, 1], while 0 is the worst

case and 1 the best case. The rule with the maximum match value is used to predict the class

name for an instance. When more than one rules have the same maximum match value, the

one ranked first is used.

E. Implementation of OCEC

Since a population is composed of the organizations with identical Member_Class, the

number of populations is equal to the number of class names. The details of OCEC is

presented in Algorithm 3.

Algorithm 3 Organizational Coevolutionary Algorithm for

Classification

There are m class names, c1, c2, …, and cm. The number of training

examples is |example|, and the ith example is labeled as ei.

begin

for i:=1 to |example| do

if (the class name of ei is cj) then

Add ei to population 0
j
P as a trivial organization;

t:=0;

while (the termination criteria are not reached) do

begin

 19

j:=1;

while (j≤m) do

begin

while (the number of organizations in t

j
P > 1) do

begin

Randomly selecting two parent organizations, orgp1 and

orgp2, from t

j
P ;

Randomly selecting an operator from the three

evolutionary operators;

Performing the selected operator on orgp1 and orgp2;

Updating the attribute significance according to

Algorithm 1 on the basis of orgc1 and orgc2;

Computing the fitness of orgc1 and orgc2;

Performing the selection mechanism on orgp1, orgp2 and

orgc1, orgc2;

Deleting orgp1, orgp2 from t

j
P ;

end;

Moving the organization left in t

j
P to +1t

j
P ; j:=j+1;

end;

t:=t+1;

end;

Extracting rules from all populations according to Algorithm 2.

 20

end.

In order to have a full understanding of OCEC, an example is presented to show how

multiple populations evolve and how rules are extracted from organizations.

Example 4: Following Example 1, n is set to 1. Because there are only 9 examples,

parameter N is not fixed, but all examples of the other class are used. Fig.2 shows the

organizations of each population at the 0th, 3rd, 6th, and 9th generation, respectively, with both

the members and the useful attributes presented. At the beginning of the evolutionary process,

populations A and B have 4 and 5 trivial organizations, respectively. During the evolutionary

process, similar examples are clustered and new organizations are generated. Finally,

populations A and B have 3 and 2 organizations, respectively. The rules extracted from

organizations at the 9th generation are shown in Table II.

Table II The rules extracted from organizations at the 9th generation

 Organizations IF-THEN rules

org1 IF (HAIR = golden) ∧ (EYES = blue) THEN (class name = A)

org2 IF (HAIR = red) ∧ (EYES = blue) ∧ (SIZE = tall) THEN (class name = A) population

A
org4

IF (HAIR = golden) ∧ (EYES = gray) ∧ (SIZE = short)

THEN (class name = A)

org1 IF (HAIR = golden) ∧ (EYES = dark) THEN (class name = B) population

B org2 IF (HAIR = dark) THEN (class name = B)

III. EVALUATION OF OCEC’S EFFECTIVENESS

The most important property of OCEC is evolving examples directly. Since the

evolutionary operators and the fitness function for organizations just exhibit this property, this

section conducts experiments to evaluate the effectiveness of the evolutionary operators and

the fitness function by multiplexer problems.

 21

Fig.2. The evolutionary process of organizations

A. Multiplexer problems

Multiplexer problems were introduced to the machine learning community by Wilson in

1987 [37], and have often been used to evaluate the performance of learning classifier systems

[26], [38]. Multiplexer problems are defined for strings of l bits, where l=k+2k. The first k bits

represent an address which indexes the remaining 2k bits, and the function returns the value of

the indexed bit. For instance, in the 6-multiplexer problem mp6, we have that mp6(100010)=1,

while mp6(000111)=0.

 22

For an l-multiplexer problem, where l=k+2k, the accurate and maximally general

classifiers have (k+1) specific bits [26]. That is to say, there are (k+1) bits whose values are

fixed, and the values of the other bits can be assigned arbitrarily. In the following experiments,

each bit is represented as an attribute, and the value of the indexed bit is considered as the

class name. Thus, the best IF-THEN rules have (k+1) terms.

B. Experimental results

The 20- and 37-multiplexer problems are used. The training set of the 20-multiplexer

problem has 3000 examples, and that of the 37-multiplexer problem has 15 000 examples.

The test set of each problem has 100 000 examples. Since the rule extraction is independent

of the evolutionary process, to evaluate the effectiveness of the evolutionary operators and the

fitness function, rules are extracted from the population at every 10 generations for the

20-multiplexer problem and every 100 generations for the 37-multiplexer problem, and used

to predict the class names of the test examples. The parameter N is set to 10 percent of the

number of the training set, and n is set to 1-5. For each multiplexer problem, 10 training and

test sets are generated randomly. The evolutionary processes of the predictive accuracy, the

number of rules, and the number of terms in each rule for the 10 independent runs are shown

in Figs.3 and 4.

Figs.3 and 4 show that the predictive accuracies of all the 10 independent runs get higher

along with the evolutionary process, and achieve 100% for both problems. In the meantime,

the number of rules and terms in each rule decrease with the evolutionary process. For the

20-multiplexer problem, the number of terms in each rule reduces to 5 whereas for the

37-multiplexer problem it reduces to 6. These results accord with the characteristics of

 23

multiplexer problems introduced above, that is, for a (k+2k)-multiplexer problem, the best

IF-THEN rule has (k+1) terms.

Fig.3. The evolutionary process of OCEC for the 20-multiplexer problem

Fig.4. The evolutionary process of OCEC for the 37-multiplexer problem

The above experimental results illustrate that along with the effect of the evolutionary

operators and the fitness function, OCEC not only evolves out the rules with high predictive

accuracy, but also evolves out the accurate and maximally general rules.

IV. COMPARISON OF OCEC WITH AVAILABLE ALGORITHMS

A. Comparison on UCI repository datasets

In this section, 12 benchmarks from the UCI repository datasets [39] are used to test the

performance of OCEC, and Table III shows the datasets and the test methods. For the Splice

dataset, in order to be consistent with the compared algorithm, (2000+1190) is used in Section

IV.A.1, and (2190+1000) is used in Section IV.A.2. In order to present a more stable estimate,

10-fold cross validation is used as the test method for small scale datasets. For large scale

datasets, a training set is drawn randomly and the remainder is used as the test set. This

process is repeated until ten training and test sets are generated.

 24

The parameters of OCEC that need tuning are actually very few, and the following setting

has been chosen. The number of generations is 500 for the datasets whose number of

examples is less than 1000, and 1000 for the other datasets. N is set to 10 percent of the

number of examples for each dataset, and n is fixed to 1 for all datasets. The results of OCEC

on each dataset report the average predictive accuracy, the standard deviation, the average

number of rules, and the average training time. All experiments are performed on a personal

computer with Intel Pentium III 667 GHz processor as CPU, 128 MB of main memory.

Table III The UCI repository datasets used in experiments (“10-CV” represents the
10-fold cross validation, and “number + number” represents “the number of
training examples + the number of test examples”)

Datasets #Examples #Attributes #Classes Test Methods

Monk1 432 6 2 10-CV

Monk2 432 6 2 10-CV

Monk3 432 6 2 10-CV

Tictactoe 958 9 2 10-CV

Credit 690 15 2 10-CV

Breast cancer (W) 699 9 2 10-CV

Vote 435 16 2 10-CV

Australian 690 14 2 10-CV

Lymphography 148 18 4 10-CV

Mushrooms 8124 22 2 4000+4124

Chess (KR-vs-KP) 3196 36 2 2130+1066

Splice 3190 60 3
2000+1190

2190+1000

A.1 Comparison between OCEC and G-Net

G-Net was a new classification algorithm proposed in [25] and obtained a good

performance. Here a comparison is made between OCEC and G-Net [25] on 9 different

datasets of various sizes and difficulties. G-Net [25] used many other datasets, but only the 9

datasets were available at the UCI repository datasets. Due to the broad application of C4.5,

its results are also given as a baseline. Table IV shows the comparison results and the best

ones are shown in boldface. The performances of G-Net and C4.5 are those reported in [25].

 25

As can be seen, the predictive accuracies of OCEC on 7 of the 9 datasets are equivalent to

or higher than those of G-Net. Especially for the Tictactoe dataset, OCEC finds all the 8

possible ways to create a “three-in-a-row for x” and achieves 100% in predictive accuracy.

The comparison on the Splice dataset is somewhat difficult since G-Net reports a classwise

accuracy only. Therefore, a comparison in classwise accuracy between G-Net and OCEC is

made, and the results of OCEC for all classes are also reported. The classwise accuracies of

OCEC on the Splice dataset are slightly lower than those of G-Net. The number of rules

obtained by OCEC is greater than that obtained by G-Net. This is probably due to the fact that

only the logical connective AND is used in the IF-THEN rules. This makes each rule simple,

but increases the size of the rule set. Because of the simplicity of each rule, this has little

effect on the predicted efficiency.

A.2 Comparison between OCEC and JoinGA

JoinGA [23] is one of the best methods in GA-based classifiers. Here a comparison is

made between OCEC and JoinGA on 5 different datasets. JoinGA [23] used many datasets,

but only the 5 ones were available at the UCI repository datasets. The results of C4.5 are also

used as a baseline. Table V shows the comparison results and the best ones are shown in

boldface. The performances of JoinGA and C4.5 are those reported in [23].

As can be seen, the predictive accuracies of OCEC on 4 of the 5 datasets are equivalent to

or higher than those of JoinGA. Only the predictive accuracy on the Splice dataset is little

lower than those of JoinGA and C4.5. The training time for smaller datasets, such as the

Australian and the Lymphography, are only 1.75s and 0.23s, respectively, and for larger

datasets, such as the Chess and the Mushrooms, are 15.13s and 13.18s, respectively. The time

 26

for the Splice dataset is 179.56s since this dataset is more complex. The low computational

cost of OCEC benefits mainly from the simple computations for the fitness function.

Moreover, OCEC deals with multiple classes simultaneously by using the coevolutionary

model, which also contributes to the low computational cost.

Table IV The comparison between OCEC and G-Net (“ ” denotes that the item is not
mentioned in the literature, and the results of OCEC are averaged over 10 runs.)

Datasets Algorithms
Predictive

accuracy (%)
Standard

deviation (%)
Number of

rules
Time (s)

C4.5 100.00 0.00

G-Net 100.00 0.00 3.0 Monk1

OCEC 100.00 0.00 11.0 0.22

C4.5 67.17 10.66

G-Net 97.20 3.80 26.0 Monk2

OCEC 73.18 7.31 28.1 1.18

C4.5 100.00 0.00

G-Net 100.00 0.00 3.0 Monk3

OCEC 100.00 0.00 6.0 0.15

C4.5 92.93 1.82

G-Net 99.03 0.62 10.5 Tictactoe

OCEC 100.00 0.00 10.4 0.67

C4.5 85.97 3.28

G-Net 84.20 4.40 14.0 Credit

OCEC 87.97 4.38 15.9 1.86

C4.5 94.15 3.32

G-Net 94.71 2.89 2.6
Breast cancer

(W)
OCEC 96.13 2.03 17.2 1.41

C4.5 95.37 3.05

G-Net 94.90 3.20 2.0 Vote

OCEC 95.87 2.61 5.0 0.33

C4.5 100.00 0.00

G-Net 100.00 0.00 3.0 Mushrooms

OCEC 100.00 0.00 13.0 13.18

G-Net (EI)

(IE)

(NE)

96.60

97.10

96.70

7.0

10.0

11.0

95.98

94.98

95.67

Splice OCEC (EI)

 (IE)

(NE)

(All) 93.32 0.55 42.9 111.92

 27

In the above, OCEC is compared with two GA-based classifiers on the UCI datasets.

Since the UCI datasets have been widely used in testing the performances of various

classifiers, high predictive accuracies have been obtained by many classifiers, such as EPNet

[35], which is based on neural networks. Reference [35] reported that EPNet obtained high

predictive accuracies on many UCI datasets, but we think EPNet is different from OCEC in

intrinsic. EPNet does not explicitly express the uncovered patterns in a symbolic, easily

understandable form, whereas OCEC uses a more understandable way, IF-THEN rules, to

represent the results.

Table V The comparison between OCEC and JoinGA (The results of OCEC are averaged over
10 runs.)

Datasets Algorithms
Predictive

accuracy (%)
Standard

deviation (%)
Number of

rules
Time (s)

C4.5 87.0 3.1

JoinGA 84.9 3.7 Australian

OCEC 87.97 4.04 15.9 1.75

C4.5 79.8 8.4

JoinGA 82.4 6.3 Lymphography

OCEC 86.38 8.92 4.9 0.23

C4.5 99.5

JoinGA 99.4
Chess

(KR-vs-KP)
OCEC 99.51 0.09 16.7 15.13

C4.5 100.0

JoinGA 100.0 Mushrooms

OCEC 100.00 0.00 13.0 13.18

C4.5 93.8

JoinGA 94.9 Splice

OCEC 93.34 0.52 45.5 179.56

B. Comparison of OCEC with XCS on multiplexer problems

XCS [26], [27] is one of the current state-of-the-art classifier systems, and [27] has made

an in-depth research on the performance of XCS by multiplexer problems. This section

presents a comparison between XCS and OCEC. Since XCS adopts an incremental mode, the

experiments are designed as follows. 20- and 37- multiplexer problems are also used. The 10

 28

training and test sets used in Section III.B are used for both OCEC and XCS. For OCEC, the

number of generations is 1000 for the 20-multiplexer problem and 10 000 for the

37-multiplexer problem. For XCS, the training set is repeatedly used to train XCS, and finally

the test set is used to check the predictive accuracy. The experiments for XCS are carried out

with Butz’s implementation [40] on the same computers as OCEC, and the parameters of

XCS are set according to [27]. The comparison results averaged over 10 independent runs are

shown in Table VI.

Table VI The comparison between OCEC and XCS (All results are averaged over 10 runs.)

20-multiplexer problem 37-multiplexer problem
Algorithms Predictive

accuracy (%)
Training
time (s)

Predictive
accuracy (%)

Training
time (s)

OCEC 100 12.18 100 3610.99

XCS(a) 97.07 67.73 65.19 5394.40

XCS(b) 99.74 71.71 95.27 6707.96

XCS(c) 100 74.27 100 6914.69

In Table VI, for the 20-multiplexer problem, XCS(a), XCS(b), and XSC(c) stand for the

training set has been repeatedly learned until 40 000, 50 000, and 60 000 examples are learned,

and for the 37-multiplexer problem, they stand for 300 000, 400 000, and 500 000 examples

are learned. As can be seen, although both the predictive accuracies of OCEC and XCS

achieve to 100%, OCEC is much faster than XCS. In addition, XCS has a parameter, P#. P# is

used to control the number of terms in the rules, and has an important effect on the

performance of XCS [27]. But the experimental results in Section III.B indicate, without any

prior knowledge about multiplexer problems, OCEC can evolve out the accurate and

maximally general rules automatically.

C. Radar target recognition problems

In this section, OCEC is applied to a practical case, radar target recognition problems. It

 29

refers to detecting and recognizing target signatures using high-resolution range profiles, for

our case, in the inverse synthetic aperture radar (ISAR). A radar image represents a spatial

distribution of microwave reflectivity sufficient to characterize the target illuminated. An

important signature of the range profile is range resolution. It is related to the system

bandwidth and represents the generally accepted measure of resolution of a range profile.

Range resolution allows sorting the reflected signals on the basis of range. When range-gating

or time-delay sorting is used to interrogate the entire range of the target space, a

one-dimensional image, called a range profile, will result. Fig.5. is an example of such a

signature for three different planes (B-52, Q-6, and Q-7) at 25°.

Fig.5. Range profiles of three different planes at 25°, (a) B-52, (b) Q-6, (c) Q-7

With the development of radar techniques, many methods based on imaging for the radar

target recognition problem have been proposed, of which neural networks (NNs) [41] and

support vector machines (SVMs) [42] are widely used. NNs have two drawbacks. One is that

their architectures have to be determined a priori and the other is that NNs must map

high-dimensional input spaces to low-dimensional input spaces. Although SVMs are

independent of the dimension of the input space, it has to select the best kernel function. In

this experiment, OCEC is used to classify the three planes, with higher predictive accuracies

obtained.

 30

The dataset used in this experiment is about three plane models, B-52, Q-6, and Q-7. It

was acquired in a microwave anechoic chamber, and was composed of data in the angle range

of 0°-150°. An example was obtained at every 0.5 degree, and total 301 × 3 = 903 examples

were obtained. The dimension of each example is 64, and such a high input dimension will

lead to poor results for many recognition techniques. To compare OCEC with the other

methods, NNs and SVMs, we adopt the same sampling method, that is, the sampling of every

other data is implemented for 150 training examples for every class, and the remaining

examples are the test ones. The average predictive accuracies over 10 independent runs are

shown in Table VII. The performances of NNs and SVMs are those reported in [41] and [42],

respectively. As can be seen, OCEC outperforms the two other algorithms.

Table VII The experimental results for radar target recognition problems (Because [42]

deals with two classes problem, there is no result in the cell of SVMs, B-52.

All results are averaged over 10 runs.)

Planes NNs (%) SVMs (%) OCEC (%)

B-52 90.00 98.17±±±±1.34

Q-6 94.50 94.91 96.79±±±±1.82

Q-7 86.00 94.41 97.33±±±±1.29

V. SCALABILITY OF OCEC

The experimental results in the previous section show that OCEC achieves a good

performance on small datasets. This section examines the scalability of OCEC along two

dimensions, the number of training examples and the number of attributes. In the absence of a

benchmark with large classification datasets, the evaluation methodology and synthetic

datasets proposed in [8] are used. The parameters of OCEC are set as follows. The number of

generations is 5000 for all datasets, and n is selected from 1-5 randomly. N is the same to that

of the previous section.

A. Synthetic datasets

 31

In [8], 10 classification functions were used to produce data distributions of varying

complexities, where the functions F5 and F10 were the hardest to characterize and led to the

highest classification errors. Moreover, the two functions have been used to examine the

scalability of many algorithms [14]. Therefore, the following experiments are executed on the

two functions.

Table VIII lists the attributes used in F5 and F10. There are two class names, A and B. We

only specify the predicate function for A. All examples are not selected by the predicate

function belong to B. F5 and F10 are defined as follows,

F5: A: ((age < 40) ∧

(((50K ≤ salary ≤ 100K) ? (100K ≤ loan ≤ 300K) : (200K ≤ loan ≤ 400K)))) ∨

((40 ≤ age < 60) ∧

(((75K ≤ salary ≤ 125K) ? (200K ≤ loan ≤ 400K) : (300K ≤ loan ≤ 500K)))) ∨

((age ≥ 60) ∧

(((25K ≤ salary ≤ 75K) ? (300K ≤ loan ≤ 500K) : (100K ≤ loan ≤ 300K))))

F10: hyears < 20 ⇒ equity = 0

hyears ≥ 20 ⇒ equity = 0.1 × hvalue × (hyears – 20)

disposable = (0.67 × (salary + commission) – 5000 × elevel + 0.2 × equity – 10K)

A: disposable > 0

Where P ? Q : R is equivalent to the sequential conditional function, i.e., the expression is

equivalent to (P ∧ Q) ∨ (¬P ∧ R).

Table VIII Description of the attributes used in F5 and F10

Attribute Description Value

salary salary uniformly distributed from 20 000 to 150 000

commission commission if salary ≥ 75 000 ⇒ commission = 0

else uniformly distributed from 10 000 to 75 000

age age uniformly distributed from 20 to 80

elevel education level uniformly chosen from 0 to 4

car make of the car uniformly chosen from 1 to 20

zipcode zip code of the town uniformly chosen from 9 available zipcodes

hvalue value of the house uniformly distributed form 0.5k100 000 to 1.5k100 000

where k∈ {1, 2, …, 9} depends on zipcode

hyears years house owned uniformly distributed from 1 to 30

loan total loan amount uniformly distributed form 0 to 500 000

Since the attributes, salary, commission, age, hvalue, hyears, and loan, are continuous,

 32

they must be discretized previously. After descretizing, there are some examples whose

attribute values are identical. Therefore, such examples are merged before they are used to

train the algorithm, and the times used to merge such examples are also considered in the

following experiments. In order to test the predictive accuracy of the obtained rules, another

10 000 instances are generated for each function as the test set.

B. Scalability on the number of training examples

Fig.6(a) shows the performance of OCEC as the number of training examples increases

from 100 000 to 10 million in steps of 1 100 000. This corresponds to an increase in total

database size from 4MB to 400MB.

The results show that OCEC has a linear classification time. Even when the number of

training examples increases to 10 million, the classification time is still shorter than 3500

seconds. In addition, all the predictive accuracies of F5 range from 95.5% to 97%, and those

of F10 range from 97.5% to 99.5%. The predictive accuracies of [8] on the two functions are

only about 90%.

C. Scalability on the number of attributes

Since the original synthetic datasets have only 9 attributes, extra attributes are created by

adding randomly generated values to each example. Note that the extra attributes do not

substantially change the final rules because their attribute significance is very low. They

simply increase the classification time. The number of training examples is fixed at 100 000.

The number of attributes increases from 9 to 400 in steps of 39. This corresponds to an

increase in the database size from 4MB to 160MB. Fig.6(b) shows the performance of OCEC.

The results show that OCEC still has a linear classification time. Even when the number

 33

of attributes increases to 400, the classification time is still shorter than 1400 seconds. In

addition, because the values of extra attributes distribute uniformly in each class, their

attribute significance is very low. Therefore, all predictive accuracies of F5 are still about

96%, and those of F10 are still about 98%.

Fig.6 (a) The scalability of OCEC on the number of training examples, (b) the

scalability of OCEC on the number of attributes

VI. CONCLUSION AND FUTURE WORK

Based on the interacting process among organizations in human societies, a new

classification algorithm, OCEC, has been proposed in this paper. The results in Tables IV-VII

show OCEC can learn the IF-THEN rules whose accuracy compares favorable to that

achieved by some well-defined learners. In fact, the performance of OCEC is the best on most

of the datasets we used. Additionally, OCEC has a low computational cost. All results of

OCEC are obtained without performing any specific tuning, and it is proved that OCEC is

quite robust and easy to use.

The good performance of OCEC benefits mainly from the bottom-up search mechanism,

which enables OCEC to make full use of the information in examples. Furthermore, since the

computations for the fitness function are simple, the computational cost of OCEC is very low.

 34

Finally, the scalability of OCEC is studied, and the results show that OCEC achieves good

scalability. Therefore, OCEC is an attractive tool for data mining.

The experimental results of Section IV.A.1 show that the number of rules obtained by

OCEC is greater than that obtained by G-Net. This is probably due to the fact that only the

logical connective AND is used in IF-THEN rules. Therefore, one of the future works is to

use more logical connectives to reduce the number of rules. There are also other aspects of

OCEC that need to be improved, such as updating the attribute significance in a better way,

defining better fitness function, etc. The field of attribute selection has gained increasing

interest in recent years [43]. OCEC could be also applied to this field in the future.

ACKNOWLEDGMENT

This research is supported by the National Natural Science Foundation of China under

Grant 60133010. The authors are grateful to the reviewers and Professor Xin Yao for their

helpful comments and valuable suggestions.

 35

REFERENCES

[1] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: comments on the

history and current state,” IEEE Trans. Evol. Comput., 1(1), pp.3-17, 1997.

[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd

Revised and Extended ed. New York: Springer-Verlag, 1996.

[3] D. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence.

Wiley-IEEE Press: New York, 2nd Edition, 1999.

[4] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press: Cambridge, MA, Reprint

Edition, 1998.

[5] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford University Press: Oxford, 1996.

[6] W. Zhong, J. Liu, M. Xue, and L. Jiao, “A multiagent genetic algorithm for global

numerical optimization,” IEEE Trans. Syst., Man, and Cybern. B, 34(2), pp.1128-1141,

2004.

[7] W. Zhong, J. Liu, and L. Jiao, “A multiagent evolutionary algorithm for constraint

satisfaction problems,” IEEE Trans. Syst., Man, and Cybern. B, to be published, 2005.

[8] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: a performance perspective,”

IEEE Trans. Knowledge and Data Engineering, 5(6), pp.914-925, 1993.

[9] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann,

2000.

[10] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Evolving accurate and compact

classification rules with gene expression programming,” IEEE Trans. Evol. Comput., 7(6),

pp.519-531, 2003.

[11] W. H. Au, K. C. C. Chan, and X. Yao, “A novel evolutionary data mining algorithm with

applications to churn prediction,” IEEE Trans. Evol. Comput., 7(6), pp.532-545, 2003.

[12] J. A. Abutridy, C. Mellish, and S. Aitken, “A semantically guided and

domain-independent evolutionary model for knowledge discovery from texts,” IEEE

Trans. Evol. Comput., 7(6), pp.546-560, 2003.

[13] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms as instance

 36

selection for data reduction in KDD: an experimental study,” IEEE Trans. Evol. Comput.,

7(6), pp.561-575, 2003.

[14] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: a fast scalable classifier for data mining,”

in Proc. 5th Int. Conf. Extending Database Technology, Springer-Verlag, pp.18-23, 1996.

[15] J. H. Holland, “Escaping brittleness: the possibilities of general purpose learning

algorithms applied to parallel rule-based systems,” Machine Learning: An AI Approach,

Los Altos, CA: Morgan Kaufmann, volume II, pp.593-623, 1986.

[16] S. F. Smith, “Flexible learning of problem solving heuristics through adaptive search,” in

Proc. 8th Int. Joint Conf. Artificial Intelligence, Karlsruhe, Germany: Morgan Kaufmann,

pp.422-425, 1983.

[17] A. Choenni, “Design and implementation of a genetic-based algorithm for data mining,”

in Proc. 26th Int. Conf. Very Large Data Bases, Cairo, Egypt, pp.33-42, 2000.

[18] M. V. Fidelis, H. S. Lopes, and A. A. Freitas, “Discovering comprehensible classification

rules with a genetic algorithm,” in Proc. 2000 Congress Evolutionary Computation, San

Diego, CA, pp.805-810, 2000.

[19] A. A. Freitas, “Understanding the critical role of attribute interaction in data mining,”

Artif. Intell. Rev., vol. 16, pp.177-199, 2002.

[20] W. Kwedlo and M. Kretowski, “Discovery of decision rules from databases: an

evolutionary approach,” in Proc. 2nd European Symp. Principles of Data Mining and

Knowledge Discovery, Nantes, France, pp.370-378, 1998.

[21] K. A. De Jong, W. Spears, and D. F. Gordon, “Using genetic algorithms for concept

learning,” Machine Learning, 13(2-3), pp.155-188, 1993.

[22] D. P. Greene and S. F. Smith, “Competition-based induction of decision models from

examples,” Machine Learning, 13(2-3), pp.229-257, 1993.

[23] J. Hekanaho, An Evolutionary Approach to Concept Learning. PhD thesis, Department of

Computer Science, Abo Akademi University, 1998.

[24] A. Giordana and F. Neri, “Search-intensive concept induction,” Evol. Comput., 3(4),

pp.375-416, 1995.

[25] C. Anglano and M. Botta, “NOW G-Net: learning classification programs on networks of

workstations,” IEEE Trans. Evol. Comput., 6(5), pp.463-480, 2002.

 37

[26] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput., 3(2), pp.149-175,

1995.

[27] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson, “Toward a theory of generalization

and learning in XCS,” IEEE Trans. Evol. Comput., 8(1), pp.28-46, 2004.

[28] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Learning Classifier Systems. From

Foundations to Applications. Springer-Verlag: Berlin, LNAI vol. 1813, 2000.

[29] R. H. Coase, The Firm, the Market, and the Law. University of Chicago Press: Chicago,

1990.

[30] J. R. Wilcox, Organizational Learning within a Learning Classifier System. Master thesis,

University of Illinois, Also Tech. Report No. 95003 IlliGAL, 1995.

[31] V. E. Castro, “Collaborative knowledge acquisition with a genetic algorithm,” in Proc.

IEEE Int. Conf. Tools with Artificial Intelligence, pp.270-277, 1997.

[32] G. Venturini, “SIA: a supervised inductive algorithm with genetic search for learning

attributes based concepts,” in Proc. Eur. Conf. Machine Learning, pp.280-296, 1993.

[33] J. J. Liu and J. T. Kwok, “An extended genetic rule induction algorithm,” in Proc. IEEE

Congress on Evolutionary Computation, pp.458-463, 2000.

[34] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative correlation

learning,” IEEE Trans. Evol. Comput., 4(4), pp.380-387, 2000.

[35] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural networks,”

IEEE Trans. Neural Networks, 8(3), pp.694-713, 1997.

[36] U. Rückert and S. Kramer, “Stochastic local search in k-term DNF learning,” in Proc.

20th Int. Conf. Machine Learning, Washington DC, pp.648-655, 2003.

[37] S. W. Wilson, “Quasi-Darwinian learning in a classifier system,” in Proc. 4th Int.

Workshop on Machine Learning, Los Altos, CA: Morgan Kaufman Publishing, pp.59-65,

1987.

[38] S. W. Wilson, “Classifier systems and the animat problem,” Machine Learning, vol. 2,

pp.199-228, 1987.

[39] C. Blake, E. Keogh, and C. J. Merz, UCI Repository of Machine Learning Databases.

1998. http://www.ics.uci.edu/~mlearn/MLRepository.html, University of California,

Irvine, Department of Information and Computer Sciences.

 38

[40] M. V. Butz, “An implementation of the XCS classifier system in C,” The Illinois Genetic

Algorithms Laboratory, Univ. Illinois, Urbana-Champaign, IL, Tech. Rep. 99021, 1999.

[41] M. Wu, Radar Target Identification Based on Computation Intelligence. Master thesis,

Xidian University, 1999.

[42] L. Zhang, W. Zhou, and L. Jiao, “Radar target recognition based on support vector

machine,” in Proc. World Computer Congress on Signal Processing, Beijing, China,

pp.1453-1456, 2000.

[43] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of

Machine Learning Research, 3, pp.1157-1182, 2003.

 39

Licheng Jiao (SM’89) was born in Shaanxi, China, on Oct. 15, 1959. He

received the B.S. degree from Shanghai Jiaotong University, Shanghai, China,

in 1982. He received the M.S. and Ph.D. degrees from Xi’an Jiaotong

University, Xi’an, China, in 1984 and 1990, respectively.

From 1984 to 1986, he was an Assistant Professor in Civil Aviation

Institute of China, Tianjing, China. During 1990 and 1991, he was a Postdoctoral Fellow in

the National Key Lab for Radar Signal Processing, Xidian University, Xi’an, China. Now he

is the Dean of the electronic engineering school and the director of the Institute of Intelligent

Information Processing of Xidian University. His current research interests include signal and

image processing, nonlinear circuit and systems theory, learning theory and algorithms,

optimization problems, wavelet theory, and data mining. He is the author of there books:

Theory of Neural Network Systems (Xi’an, China: Xidian Univ. Press, 1990), Theory and

Application on Nonlinear Transformation Functions (Xi’an, China: Xidian Univ. Press, 1992),

and Applications and Implementations of Neural Networks (Xi’an, China: Xidian Univ. Press,

1996). He is the author or coauthor of more than 150 scientific papers.

Jing Liu was born in Xi’an, China, on Mar. 5, 1977. She received the B.S.

degree in computer science and technology from Xidian University, Xi’an,

China, in 2000, and received the Ph.D. degree in circuits and systems from

the Institute of Intelligent Information Processing of Xidian University in

2004. Now she is a teacher in Xidian University.

Her research interests include evolutionary computation, multiagent systems, and data

mining.

Weicai Zhong was born in Jiangxi, China, on Sept. 26, 1977. He received

the B.S. degree in computer science and technology from Xidian University,

Xi’an, China, in 2000, and received the Ph.D. degree in pattern recognition

and intelligent systems from the Institute of Intelligent Information

Processing of Xidian University in 2004. Now he is a postdoctoral fellow in

Xidian University.

His research interests include evolutionary computation, multiagent systems, pattern

recognition, and data mining.

