
Article

An Organized Repository of Ethereum Smart
Contracts’ Source Codes and Metrics

Giuseppe Antonio Pierro 1,* , Roberto Tonelli 2,* and Michele Marchesi 2

1 Inria Lille-Nord Europe Centre, 59650 Villeneuve d’Ascq, France
2 Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy;

marchesi@unica.it

* Correspondence: giuseppe.pierro@inria.fr (G.A.P.); roberto.tonelli@dsf.unica.it (R.T.)

Received: 31 October 2020; Accepted: 11 November 2020; Published: 15 November 2020 ����������
�������

Abstract: Many empirical software engineering studies show that there is a need for repositories

where source codes are acquired, filtered and classified. During the last few years, Ethereum block

explorer services have emerged as a popular project to explore and search for Ethereum blockchain

data such as transactions, addresses, tokens, smart contracts’ source codes, prices and other activities

taking place on the Ethereum blockchain. Despite the availability of this kind of service, retrieving

specific information useful to empirical software engineering studies, such as the study of smart

contracts’ software metrics, might require many subtasks, such as searching for specific transactions

in a block, parsing files in HTML format, and filtering the smart contracts to remove duplicated

code or unused smart contracts. In this paper, we afford this problem by creating Smart Corpus,

a corpus of smart contracts in an organized, reasoned and up-to-date repository where Solidity source

code and other metadata about Ethereum smart contracts can easily and systematically be retrieved.

We present Smart Corpus’s design and its initial implementation, and we show how the data set of

smart contracts’ source codes in a variety of programming languages can be queried and processed to

get useful information on smart contracts and their software metrics. Smart Corpus aims to create a

smart-contract repository where smart-contract data (source code, application binary interface (ABI)

and byte code) are freely and immediately available and are classified based on the main software

metrics identified in the scientific literature. Smart contracts’ source codes have been validated by

EtherScan, and each contract comes with its own associated software metrics as computed by the

freely available software PASO. Moreover, Smart Corpus can be easily extended as the number of

new smart contracts increases day by day.

Keywords: ethereum blockchain; solidity programming language; smart contracts; software

metrics; corpus

1. Introduction

With the advent of blockchain technology as a mainstream technological innovation,

many researchers and software developers started investigating the new possibilities for software

products relying on such an infrastructure. Second-generation blockchains offer the possibility to

code so-called smart contracts in a Turing complete programming language on which all the main

operations of traditional software systems can be carried out. The paradigmatic reference is the

Ethereum blockchain, which offers the possibility to deploy and execute decentralized applications

(dApps) which are mainly coded in Solidity, presently the most adopted programming language [1].

Coding smart contracts which run in a blockchain environment has its peculiarities and constraints

and differs from coding in traditional out-of-chain contexts. One of the major differences is the

immutability of deployed code: if bugs or bad smells are introduced into a smart contract, these cannot

Future Internet 2020, 12, 197; doi:10.3390/fi12110197 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/1999-5903/12/11/197?type=check_update&version=1
http://dx.doi.org/10.3390/fi12110197
http://www.mdpi.com/journal/futureinternet

Future Internet 2020, 12, 197 2 of 15

be fixed afterwards with patches. Another contract must be deployed in substitution of the former

and users must be well advised not to use the wrong code. Another main issue is the interaction

with the blockchain by means of transactions where information exchange can occur only between

blockchain internal components. Furthermore, memory occupation on blockchain typically has a cost

that developers want to reduce, and chaining all the blocks poses limitations to the reasonable space

available for each smart contract imposing practical constraints to source code size.

This new programming paradigm poses major challenges also for expert developers, and famous

failures are commonly found in blockchain software [2,3]. The novelty of the paradigm largely

contributes to these faults, since developers do not have historical records or examples to learn from

previous code, as it happens in traditional software coding, where software reuse and coding by

imitation are reference practices to help in coding better-quality software. Another issue is the lack of

reference measures, such as quality, complexity or coupling metrics, which are extensively used in

out-of-chain software production to keep software projects under control [4].

The situation is slowly changing for historical records (even if history is quite recent) of software

code, since the Ethereum blockchain can now count on up to 1.5 million deployed smart contracts,

which have been used and run in the last few years. Access to the source code of this body of smart

contracts is still a challenge since transparency and open access granted by public blockchains regards

only data registered in the blocks, where only contracts’ byte codes are available.

To access the smart contracts’ source codes, the developers must resort to other means or to

code repositories, such as the classical GitHub or similar resources. Fortunately, in the last few

years, EtherScan (https://etherscan.io/) and other web sites have started providing smart-contract

checking as a service, so that Ethereum developers can submit their source code to be analyzed and

the source code is made available afterwards by the website. However, there is an odd side of the

medal for many reasons: access to this body of knowledge is far from easy and far from fast; it is not

structured and organized; and the smart-contract metrics are not available and must be computed

separately. All these tasks can and need to be automatized to save developers time and work as well

as computational resources. Indeed, in the last few years, a number of research papers have been

published reporting findings based on smart contracts’ source codes, mined from GitHub or some

Ethereum block explorer such as EtherScan [5–8]. However, when conducting this kind of empirical

research on smart contracts with data from Ethereum blockchain, the abovementioned tasks need

to be carried out by the developers themselves. The first task is downloading the smart contracts’

source codes to be analyzed. One way to download smart contracts’ source code data is to inspect

open-source software (OSS) project repositories such as GitHub [9].

Another way to perform this task is to use an Ethereum block explorer. These web services

allow users to find the desired information by directly accessing the Ethereum blocks, by using a

unique identifier or by sequentially searching several blocks [10]. Some of these Ethereum block

explorers provide RESTful Web services, which allow the users to obtain a JSON format payload

containing various data. These data may be related to a current or past state of the Ethereum

blockchain: an example may be the list of transaction addresses included in a given block of the

Ethereum blockchain. This activity might be tedious and time-consuming [11] when conducted by a

single user/developer/researcher. Furthermore, the obtained smart contracts’ data set can consist of

duplicated smart contracts, i.e., smart contracts having different addresses but the same code.

In this work, we tackle these problems and propose an organized, easy to use, large and available

software repository for Ethereum smart-contract source codes and metrics where users, researchers,

blockchain startups and developers can take advantage of the body of knowledge collected during

the last few years. This paper thus proposes Smart Corpus, a repository that provides users with an

interface which allows for searching for and downloading smart contracts’ source codes. The user

interface is available at the following online address: https://aphd.github.io/smac-corpus/. The main

challenge of the implementation lies in the fact that the Ethereum blockchain stores a massive amount

of heterogeneous data, smart contracts included, which grow enormously in time. For this reason,

https://etherscan.io/
https://aphd.github.io/smac-corpus/

Future Internet 2020, 12, 197 3 of 15

Smart Corpus was designed to be scalable by adopting the latest cutting-edge technology, such as

document-oriented database, graph query language and serverless computing platform [12].

2. Related Work

2.1. Previous Literature on Software Corpus Analysis

Gabel and Su [13] built and studied a corpus of open-source software written in three of the

most widely used languages: C, C++, and Java. The corpus contains six thousand software projects

corresponding to 430 million lines of source code. The authors measured the degree to which each

project of the corpus can be “assembled” solely from portions of the corpus, thus providing a precise

measure of “uniqueness”. Their primary contribution is to provide a quantitative answer to the

following question: how unique is software? Our work also aims to answer this question because many

smart contracts written in the Solidity language have code that is a replication of other smart contracts,

although presenting different addresses, as we will see in Section 3.2. Our goal is therefore to answer

the question: how unique are smart contracts written in Solidity? in order to provide a corpus that is

composed of smart contracts which can be distinguished from each other.

Tempero and coauthors [14] presented the “Qualitas Corpus”, a curated collection of open-source

Java systems. The corpus reduced the time needed to find, collect and organize the necessary source

code sets to the time needed to download the corpus. The metadata provided with the corpus explicitly

indicate the metrics calculated to identify the main features of the source code: the number of code

lines, the number of classes, etc. Our work also aims to present a curated collection of smart contracts

equipped with a set of metadata with the aim of allowing experts in the blockchain field to perform

static analysis.

2.2. Static Analysis on Smart-Contract Code

There is a number of scientific publications with the objective of analysing smart contracts’

source codes and testifying to the scientific community’s interest in advancing the knowledge on the

characteristics of smart contracts’ code structure.

Hegedus [15] developed a metric calculator for Solidity code, inspired by the work by Tonelli

and collaborators [8]. The metric calculator uses a parser to generate an abstract syntax tree (AST),

on which it computes various software metrics, such as the number of code lines for each smart

contract, the cyclomatic complexity, the number of functions and the number of parameters for each

function. This command-line tool is written in Java and is available on GitHub without license

indication since February 2018 (https://github.com/chicxurug/SolMet-Solidity-parser). By using this

tool, he calculated and published software metrics results for 10,206 Solidity smart-contract source

code files written in Solidity languages. Our work also aims to calculate a set of metadata on the

smart-contract corpus by using a similar software.

Pinna and colleagues [16] performed a static analysis on 10,174 smart contracts, deployed in the

Ethereum blockchain. The authors showed that some metrics related to smart contracts, such as the

number of transactions and the balances, follow power-law distributions. Also, they reported that

software code metrics in Solidity have (on average) lower values but higher variance than metrics

values in other programming languages for standard softwares. Our work is inspired by their research

as Smart Corpus is characterized by (some of) the metrics they defined, as we will explain in Section 3.3.

Pierro and Tonelli [17] pointed out that even the most experienced users, as software developers

of smart contracts are, need to be helped to analyse smart contracts and to write a more reliable and

secure code. For this reason, an open-source platform (https://aphd.github.io/paso/), called PASO,

was proposed as an aid for experts in smart contracts’ static analyses. Their work focused on Ethereum

blockchain and smart contracts written in Solidity. The platform PASO facilitates debugging of smart

contracts by providing software metrics commonly used to comply with coding guidelines.

https://github.com/chicxurug/SolMet-Solidity-parser
https://aphd.github.io/paso/

Future Internet 2020, 12, 197 4 of 15

2.3. Related Projects

Other projects similar to Smart Corpus have been previously developed to access online smart

contracts’ codes deployed in the Ethereum blockchain platform. The projects present specific features

and limitations, which are summarized in Table 1.

Table 1. Project list, main features and limitations.

Project’s Name Home Page REST API URL Limitations

GitHub https://github.com/ https://developer.git... Some repositories have restricted
access.

Ethplorer https://ethplorer.io/ https://api.ethplorer... Requests are limited to
3000/week.

EtherScan https://etherscan.io/ https://etherscan... Smart contracts’ addresses are
not immediately available.

EtherChain https://www.etherch... https://www.etherch... Smart contracts’ source codes are
not available.

BlockScout https://blockscout.com/ https://blockscout.com... Smart contracts’ source codes are
not available.

2.3.1. GitHub

GitHub is the largest collaborative source code-hosting site built on top of the Git version control

system [18]. The availability of a comprehensive Application Programming Interface (API) has made

GitHub a target for many software engineering and online collaboration research efforts [19]. GitHub

offers just open-source software to the community. In GitHub, there are many works regarding projects

written in different programming languages, such as Java, Python and Solidity, which is by far the

most commonly used language to write smart contracts.

The repository proposed in the paper overcomes the following GitHub limitations:

• The smart-contract source codes collected in GitHub typically do not have a direct reference to

smart contracts deployed on the blockchain through an Ethereum address; therefore, it is hard to

find out whether it has been really tested or used on the blockchain.

• GitHub does not implement a search engine to filter smart contracts based on particular software

metrics, such as the number of modifiers or payables. This is due to the fact that some metrics are

specific to the type of language employed to write smart contracts, i.e., Solidity.

• In GitHub, there is no information on smart contracts’ use in a real blockchain scenario, on the

number of transactions invoking smart contracts or on the number of tokens associated with each

smart contract.

• GitHub does not provide smart-contract ABIs or Opcodes.

It is highly probable that the users, especially if they are developers or researchers, want to access

smart contracts’ source codes, choosing the features implemented in Smart Corpus, on the basis of its

specific software metrics and its real usage on the blockchain.

2.3.2. Ethereum Block Explorers

Ethereum block explorers are platforms that allow the users to explore and search the Ethereum

blockchain for transactions, addresses, tokens and other activities taking place on the Ethereum

blockchain [20]. Unlike GitHub, the Ethereum block explorers allow access to only Ethereum data used

in the Ethereum blockchain and thus smart contracts’ real use cases. To date, in the market, there are

different Ethereum block explorers:

• Ethplorer (https://ethplorer.io/) provides an API to access many Ethereum data, such as the

balances for a specified token and the description of a specific address, but it does not allow

https://github.com/
https://docs.github.com/en/free-pro-team@latest/graphql
https://ethplorer.io/
https://api.ethplorer.io/getAddressInfo/0xff71cb760666ab06aa73f34995b42dd4b85ea07b?apiKey=freekey
https://etherscan.io/
https://etherscan.io/apis
https://www.etherchain.org/
https://www.etherchain.org/api/gasPriceOracle
https://blockscout.com/
https://blockscout.com/eth/mainnet/api_docs
https://ethplorer.io/

Future Internet 2020, 12, 197 5 of 15

access to the smart contracts’ code. The full documentation of the Ethpoler API is available at the

following address (https://github.com/EverexIO/Ethplorer/wiki/Ethplorer-API). The requests

to API are limited to 5 per second, 50/min, 200/h, 2000/24 h and 3000/week.

• EtherChain (https://etherchain.org/) is an explorer for the Ethereum blockchain.

Unlike Ethplorer, it claims to provide smart contract code, even though it actually displays

the contract byte code and the constructor arguments for a specific smart contract’s

address. EtherChain provides the API just to access the Oracle gas price predictions

(https://www.etherchain.org/api/gasPriceOracle), but not the Ethreum data. If the users want

to gather Ethereum data from EtherChain, they need to parse the HTML code.

• BlockScout (https://blockscout.com/poa/xdai/) provides an API to access the Ethereum data.

It claims to have an API to access only the source code of a few verified smart contracts. Anyway,

the addresses list of the verified smart contracts is not available in BlockScout.

• EtherScan allows for exploration and searching of the Ethereum blockchain for smart contracts.

However, when downloading the smart contracts’ source code, the block explorer presents

some limitation. First, smart contracts’ data and number are huge (on the Giga scale, based on

our estimation), but there is a limited API rate of 100 submissions per day per user to

retrieve just a smart contract, making the complete download of data an impossible endeavour

(https://etherscan.io/apis#contracts). Second, the EtherScan’s API does not provide facilities to

obtain a list of the smart contracts’ addresses, as the existing API calls mainly allow navigation

from one block to another. Third, a researcher cannot directly and easily explore the smart

contract’s source code but, rather, has to first inspect any block in Ethereum and then look for all

the transactions that involve an address associated with the smart contract.

3. Research Methodology

Smart Corpus has been designed to provide the users with a reasoned repository, i.e., a repository

which is not just a webspace where to collect them but also mainly a service to help the researchers

filter and analyze the smart contracts’ source codes. To this aim, Smart Corpus has been planned to

perform four main automatic operations on smart contracts’ source codes (data):

1. data retrieving,

2. data cleaning,

3. data modelling and

4. data querying.

Figure 1 shows the Smart Corpus’s pipeline of operations.

Figure 1. Smart-Corpus’s pipeline model.

3.1. Retrieving Data

We collected smart contracts’ source codes, smart contracts’ application binary interfaces (ABIs)

and smart contracts’ byte codes through the EtherScan website, which makes available the source code

https://github.com/EverexIO/Ethplorer/wiki/Ethplorer-API
https://etherchain.org/
https://www.etherchain.org/api/gasPriceOracle
https://blockscout.com/poa/xdai/
https://etherscan.io/apis#contracts

Future Internet 2020, 12, 197 6 of 15

of a subset of verified smart contracts deployed on the Etehreum blockchain, though in a labourious

way. We instead made this task easier and automatic via a retrieving data script available at the

following address (https://github.com/aphd/solidity-metrics/tree/master/examples). During this

phase, the blockchain blocks are automatically inspected. Each block is formed by a list of transactions

between two different blockchain addresses, which can refer to a wallet or to a smart contract. The script

looks for addresses that refer to a smart contract, and when the source code is available, it downloads

the smart contract’s source code, the ABI and the byte code. The data coming from the source code

are not immediately available as they are embedded in the HTML code of the webpage provided by

EtherScan. Therefore, the script removes the HTML tags and stores the code cleaned up.

Figure 2a shows how Smart Corpus finds the smart contracts’ list in a given block. Figure 2b

shows the HTML page where the smart contract code is available. The HTML page containing the

smart-contract code and the HTML tags is downloaded. Figure 2c shows the HTML code that will be

processed to remove the HTML tags and to save just the Solidity source code of the smart-contract.

(a) (b) (c)

Figure 2. Data retrieving pipeline: Figure 2a–c shows three different phases to retrieve the smart

contracts. (a) Transactions list in a block, (b) smart contract’s webpage code and (c) smart contract’s

source code.

The smart contracts’ codes are stored in the filesystem of the Smart Corpus server. Due to the

quota limits on queries per second (the EtherScan website allows a few connections per second),

Smart Corpus contains only a portion of all available smart contracts. However, the retrieving data

phase is continuously collecting data, starting from 10 December 2019. To date, thirty thousand

smart contracts (source code, ABI and byte code) have been downloaded and made available through

Smart Corpus.

3.2. Cleaning Data

Each smart contract in the Ethereum blockchain is distinguished from any other smart contract

as it is identified by a unique address, i.e., a hash of 160 bits, and its byte code is stored on the

blockchain [21]. Indeed, each time a smart contract is deployed in the network, either in the main

or in the test network, a unique address is associated with the smart contract even in the case where

the source code of two or more smart contracts is the same. However, this is a problem for the

analysis of the software metrics because the smart contracts are distinguished only on the basis of their

address and not on their content. Therefore, Smart Corpus eliminates double contracts in order to

provide a clean smart contracts’ corpus on which to perform the analysis. To this aim, duplicate smart

contracts have been defined on the basis of their content, i.e., having the same code despite presenting

different addresses.

3.3. Modelling Data

Unlike the tools discussed in the related work of Section 2, Smart Corpus associates different

metrics (intrinsic metrics and extrinsic metrics) to the smart contracts, aiming to facilitate the selection of

https://github.com/aphd/solidity-metrics/tree/master/examples

Future Internet 2020, 12, 197 7 of 15

a smart-contract set that meets precise requirements. The metrics associated with the smart contracts are

then stored in a document-oriented database. Figure 3 shows the database schema of a smart contract.

Figure 3. Smart Corpus’s database schema.

3.3.1. Smart Contracts’ Intrinsic Metrics

The smart contracts’ intrinsic metrics are smart contracts’ software metrics which depend on

internal properties of the smart contracts’ code, such as the number of lines of code, modifiers,

payable, etc. Table 2 shows the smart contracts’ intrinsic software metrics.

Table 2. Smart contracts’ intrinsic metrics.

Name Description

Pragma “Pragma” indicates which version of Solidity compiler is used to prevent
issues with future compiler versions.

SLOC “SLOC” indicates the number of lines in a smart contracts’ source code.

Modifiers “Modifiers” indicates the number of function modifiers in a smart-contract.

Payable “Payable” indicates the number of payable functions in a smart-contract.

Mapping “Mapping” indicates the number of variables of mapping types in a
smart-contract.

Address “Address” indicates the number of variables of address types in a
smart-contract.

3.3.2. Smart Contracts’ Extrinsic Metric

The smart contracts’ extrinsic metrics are properties depending on external factors rather than the

code itself, such as the number of transactions executed to the smart contracts or the number of tokens

associated with the smart contracts. Table 3 shows the smart contracts’ extrinsic metrics.

Future Internet 2020, 12, 197 8 of 15

Table 3. Smart contracts’ extrinsic metrics.

Name Description

Transactions “Transactions” represent the total number of transactions generated by the
smart contract (sent or received).

Balance “Balance” is the amount of crypto coins associated with a smart-contract
address.

EtherValue “EtherValue” is the dollar value associated with a smart-contract address.

Token “Token” is the value for each token associated with a smart-contract address.

Last_seen “Last_seen” is the timestamp of the last time that the smart contract was
used (sent or received).

First_seen “First_seen” is the timestamp of the first time that the smart contract was
used (sent or received).

3.4. Filtered Data

The smart contracts’ source code is stored in a file system and is organized in folders and

subfolders to ease the navigation. Figure 4 shows the subdirectory structure. The first leaf corresponds

to the first two letters of the smart-contract address, and then, each directory contains the file named

using the full address of the smart contract and three different extensions, respectively .sol for the

Solidity source code, .abi for the ABI and .bytecode for the byte code.

Figure 4. Smart contracts’ directory structure.

The metadata (both the intrinsic and extrinsic metrics) are stored in a document-oriented database:

MongoDB [22]. The choice to use a document-oriented database instead of a relational database such

as Mysql is based on the following:

• Relational databases are prone to deterioration when data sets overcome a size threshold, while a

document-oriented database such as MongoDB comes with an inbuilt load balancer, which makes

it a better solution in applications with high data load [23]. We update MongoDB each day to

generate the data archive.

• Unlike relational databases where data is stored in rows and columns, document-oriented

databases store data in documents. The documents typically use a structure similar to

JSON (JavaScript Object Notation); they indeed provide a natural way to model data that is

closely aligned with object-oriented programming. Each document is considered an object in

Future Internet 2020, 12, 197 9 of 15

object-oriented programming; similarly, each document is a JSON in document-oriented database.

The concept of a schema in document databases is dynamic: every document might contain a

different number of fields. This is useful when modeling unstructured and polymorphic data.

Also, document databases allow robust queries: any combination of fields in the document can be

combined for querying data [24].

3.5. User Interface

Smart Corpus’ graphical user interface (GUI) allows users to access the smart contracts’ repository.

There are two ways to access the smart contracts’ repository: through the “HTML user interface” and

through a “GraphiQL application”, both of them via a web browser.

3.5.1. Smart Corpus HTML User Interface

The Smart Corpus HTML user interface is publicly available since January 2020 (https://aphd.

github.io/smac-corpus/). Figure 5 shows the different components of the GUI.

Figure 5. Smart Corpus’s user interface.

• At the top, the user can find the form to filter the smart contracts. The form is made of a number

of drop-down lists, each one corresponding to a different metric and a submit button to perform

the research. The GUI form allows the user to inspect smart contracts based on some metadata,

such as the “pragma version”, and software metrics, such as the numbers of “modifiers” and/or

the numbers of “payable”.

• Below the form, the smart contracts filtered by the user are displayed. For readability, only a part

of the smart-contract metrics are presented in the table layout format. Each column header in the

table indicates the name of a metric associated to smart contracts. While the HTML GUI displays

just some metrics, the user can access all the metrics and the smart contracts’ source codes by

selecting the checkbox displayed on the right of the smart-contract address and by clicking on the

red button “download”. The user can also access the original repository where the smart contract

was retrieved, i.e., the EtherScan service.

3.5.2. Smart Corpus GraphQL Application

Graph Query Language (GQL) is a full data query language to implement web-based services,

centered on high-level abstractions, such as schemas, types, queries and mutations. GQL is a

domain-specific language internally developed in Facebook from 2012 onward and publicly announced

in 2015, with the release of a draft language specification. The language was conceived with the

following goals:

• To reduce possible overload of data transfer relative to Representational State Transfer (REST)-like

web service models in terms of both the amount of data unnecessarily transferred and the number

of separate queries required to do it.

https://aphd.github.io/smac-corpus/
https://aphd.github.io/smac-corpus/

Future Internet 2020, 12, 197 10 of 15

• To reduce the potential of errors caused by invalid queries on the part of the client. In particular,

with the GQL application, the user can execute “type introspection”, i.e., the user can examine the

type or properties of an object at runtime. For example, thanks to introspection queries, the user

can find out both the intrinsic and the extrinsic metrics associated with a specific smart-contract

while typing the query.

Figure 6 shows an example query and its result.

Figure 6. Example use of variables to filter a query result with GraphQL.

Smart Corpus GQL application, unlike the Smart Corpus HTML user interface, is still in the

development and testing phase. However, the Smart Corpus GQL application source code is publicly

available and can be downloaded and deployed on any platform having the software requirements

specified in its documentation (https://github.com/aphd/smac-corpus-api). In the Appendix A we

present all the queries GraphQL application can perform.

3.6. Use Case

A use case for Smart Corpus might concern a researcher interested in the static analysis of smart

contracts. For example, the researcher might be interested in performing an analysis of smart contracts

written with a particular version of the Solidity language, 6.0, and having at least a payable function

in the smart contract. The research of smart contracts that meets these requirements would be very

expensive in terms of time, work and computational resources using a service like EtherScan. Instead,

thanks to Smart Corpus, the user needs to perform only a few steps, as described below:

• connect to the service through the link: https://aphd.github.io/smac-corpus/,

• select the option “version 6.0” from the drop-down menu entitled “pragma version”,

• select the option “greater than zero” from the drop-down menu entitled “number of payables” and

• submit the form by clicking on the button “submit”.

After few seconds, depending on the number of smart contracts that meet the requirements

specified by the user, the smart contracts’ addresses and the metrics values will be displayed in a table

layout format ready to be downloaded.

4. Results

Smart Corpus has been in use for 10 months, since December 2019, and 100 K smart contracts have

been downloaded via the user interface. Until the paper was written (October 2020), Smart Corpus

was a curated corpus of 30 K smart-contract source codes, ABI and byte codes with related metadata

and software metrics. As time passes, Smart Corpus is continuously increasing at a rate of 100 smart

contracts per day. Figure 7 shows the number of smart contracts’ source codes, ABI and byte codes

https://github.com/aphd/smac-corpus-api
https://aphd.github.io/smac-corpus/

Future Internet 2020, 12, 197 11 of 15

retrieved per day since Smart Corpus was deployed for the first time. For each smart contract, Smart

Corpus computed extrinsic and intrinsic metrics, as described in Sections 3.3.1 and 3.3.2.

Figure 7. Number of smart contracts collected in Smart Corpus.

Summing up, Smart Corpus has two GUIs to access data: the HTML GUI and the GraphQL

interface. The HTML GUI is described in Section 3.5.1, while the GraphQL interface is described in

Section 3.5.2. The GraphQL interface gives blockchain researchers the ability to request for exactly

what they need. The user can directly access the results via GraphQL interface, as shown in Figure 6.

Unlike the existing repositories (see Section 2.3.2) which make available the source code in a

laborious way, Smart Corpus instead made this task easier and faster. Indeed, one of the advantages

of using Smart Corpus lies in the fact that it can reduce the costs in performing the smart-contract

static analysis. For example, it can be used to easily analyze design and programming patterns for the

smart-contract programming language.

Even though the Smart Corpus service has been working for a few months and has not been

advertised yet, it has already collected 30K smart contracts, thus providing an interesting and

helpful future venue for researchers and software developers interested in the blockchain. Moreover,

Smart Corpus allows for analysis of how industry companies use the Solidity programming language

to solve concrete problems in different application areas, such as healthcare, insurance, transportation,

government, entertainment and energy.

5. Conclusions and Future Works

In this paper, we described the Smart Corpus project, an effort to bring smart-contract data (source

codes, ABIs and byte codes) to the hands of the research community, providing help to reproducible

research and a less time-consuming way to gather data and to perform static analysis. The project

has already stored several megabytes of data, which correspond to about thirty thousand smart

contracts. This work corresponds to 10 months of data retrieving that are made available to the

blockchain scientific community and blockchain developers in a few seconds. The Smart Corpus data

set has strong potential to provide an interesting venue for research in many software engineering

areas, including but not limited to the best practices for Solidity software development, distributed

collaboration, and code paternity and attribution. The Smart Corpus project is in its initial stage of

development, but it can already provide useful insight for researchers on smart contracts’ coding

and everyday use in the blockchain. The corpus will continue to be expanded in content and in the

Future Internet 2020, 12, 197 12 of 15

provision of intrinsic and extrinsic metrics, thus becoming more and more representative of the Solidity

code actually used in the blockchain community.

Author Contributions: Conceptualization, G.A.P. and R.T.; Data curation, G.A.P.; Formal analysis, G.A.P.;
Investigation, G.A.P. and R.T.; Methodology, G.A.P.; Project administration, R.T.; Software, G.A.P.; Supervision,
R.T. and M.M.; Validation, G.A.P.; Visualization, G.A.P.; Writing—original draft, G.A.P.; Writing—review & editing,
G.A.P. and R.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the CRYPTOVOTING project, financed by the Sardinia Region, call
POR FESR Sardegna 2014–2020, Prot. 0010083, n. 1361 REA, 01/08/2018, and by the ABATA project (Application
of Blockchain to Authenticity and Traceability of Aliments), funded by the Italian Ministry for Economic
Development, National Operational Program "Enterprises and Competitiveness", project n. F/200130/01-02/X45;
Fondazione di Sardegna, year 2019, grant. n. F72F20000190007.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ABI The smart-contract Application Binary Interface

GQL Graph Query Language

JSON JavaScript Object Notation

SLOC Source lines of code

REST Representational State Transfer

Appendix A. Queries

Listing A1 displays a GQL query that returns smart contracts’ addresses having more than

20 methods defined in a contract. Listing A2 displays the query results in the JSON format. The query

output, in addition to the smart contract’s addresses, contains various information (intrinsic metrics)

such as the number of events, the number of functions, the number of modifiers and the number of

payables, as specified by the query A1,

Listing A1: A Graph Query Language (GQL) query for displaying intrinsic metrics.

{

metr i cs (query : { f u n c t i o n s _ g t : 2 0 }) {

adress

events

f u n c t i o n s

modif iers

payable

}

}

Listing A2: A GQL result displaying intrinsic metrics.

{

" data " : {

" metr i cs " : [

{

" contractAddress " : " 0 xb7f4c286851cbf0cbf2fe8ebf40412b196c0e8ad " ,

" events " : 7 ,

" f u n c t i o n s " : 27 ,

" modif iers " : 1 ,

" payable " : 1

} ,

{

Future Internet 2020, 12, 197 13 of 15

" contractAddress " : " 0 x755cebe8cc53c7cb1e1bb641026a17d37d4aea91 " ,

" events " : 4 ,

" f u n c t i o n s " : 31 ,

" modif iers " : 1 ,

" payable " : 4

} ,

{

" contractAddress " : " 0 xb92aa4a864daf0d6a509e73a9364feba44384965 " ,

" events " : 3 ,

" f u n c t i o n s " : 24 ,

" modif iers " : 1 ,

" payable " : 1

} ,

. . .

}

}

Listing A3 displays a GQL query that returns some extrinsic metrics of a specific smart contract’s

address. Listing A4 displays the query results in the JSON format. The query output, in addition to

the smart contract’s address, contains information such as the total number of transactions generated

by the smart contract and the amount of crypto coins associated with the smart contract’s address

specified by the query A3,

Listing A3: A GQL query for displaying exstrinsic metrics.

{

metr i cs (query : { address_eq : " 0 x536c7efeebff067a69393133b1c87a163a6b0598 " })

{

adress

t r a n s a c t i o n s

balance

}

}

Listing A4: A GQL result displaying exstrinsic metrics.

{

" data " : {

" metr i cs " : [

{

" contractAddress " : " 0 x536c7efeebff067a69393133b1c87a163a6b0598 " ,

" t r a n s a c t i o n s " : 639 ,

" balance " : 0 Ether

}

]

}

}

References

1. O’Donovan, P.; O’Sullivan, D.T.J. A Systematic Analysis of Real-World Energy Blockchain Initiatives.

Future Internet 2019, 11, 174. [CrossRef]

2. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts:

Challenges, advances and platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]

http://dx.doi.org/10.3390/fi11080174
http://dx.doi.org/10.1016/j.future.2019.12.019

Future Internet 2020, 12, 197 14 of 15

3. Shala, B.; Trick, U.; Lehmann, A.; Ghita, B.; Shiaeles, S. Blockchain and Trust for Secure, End-User-Based and

Decentralized IoT Service Provision. IEEE Access 2020, 8, 119961–119979. [CrossRef]

4. Ibba, S.; Pinna, A.; Lunesu, M.; Marchesi, M.; Tonelli, R. Initial Coin Offerings and Agile Practices.

Future Internet 2018, 10, 103. [CrossRef]

5. Mense, A.; Flatscher, M. Security Vulnerabilities in Ethereum Smart Contracts. In Proceedings of the 20th

iiWAS, Yogyakarta, Indonesia, 19 November 2018; Association for Computing Machinery: New York, NY,

USA, 2018; pp. 375–380. [CrossRef]

6. Amani, S.; Bégel, M.; Bortin, M.; Staples, M. Towards Verifying Ethereum Smart Contract Bytecode in

Isabelle/HOL. In Proceedings of the 7th ACM SIGPLAN CCP, Los Angeles, CA, USA, 8 January 2018;

Association for Computing Machinery: New York, NY, USA, 2018; pp. 66–77. [CrossRef]

7. Tran, H.; Menouer, T.; Darmon, P.; Doucoure, A.; Binder, F. Smart Contracts Search Engine in Blockchain.

In Proceedings of the 3rd ICFNDS, Paris, France, 1 July 2019; Association for Computing Machinery: New

York, NY, USA, 2019. [CrossRef]

8. Tonelli, R.; Destefanis, G.; Marchesi, M.; Ortu, M. Smart Contracts Software Metrics: A First Study. arXiv

2018, arXiv:cs.SE/1802.01517.

9. Jaccheri, L.; Osterlie, T. Open Source Software: A Source of Possibilities for Software Engineering Education

and Empirical Software Engineering. In Proceedings of the First International Workshop on Emerging

Trends in FLOSS Research and Development, Minneapolis, MN, USA, 20–26 May 2007; p. 5. [CrossRef]

10. Bragagnolo, S.; Rocha, H.; Denker, M.; Ducasse, S. Ethereum Query Language. In Proceedings of the 1st

WETSEB, Gothenburg, Sweden, 7 May 2018; Association for Computing Machinery: New York, NY, USA,

2018; pp. 1–8. [CrossRef]

11. Zhou, Y.; Davis, J. Open Source Software Reliability Model: An Empirical Approach. In Proceedings of the

Fifth Workshop on Open Source Software Engineering; Association for Computing Machinery: New York, NY,

USA, 2005; pp. 1–6. [CrossRef]

12. Kratzke, N. Volunteer Down: How COVID-19 Created the Largest Idling Supercomputer on Earth. Future

Internet 2020, 12, 98. [CrossRef]

13. Gabel, M.; Su, Z. A Study of the Uniqueness of Source Code. In Proceedings of the Eighteenth ACM SIGSOFT

International Symposium on Foundations of Software Engineering, Santa Fe, NM, USA, 7 November 2010;

Association for Computing Machinery: New York, NY, USA, 2010; pp. 147–156. [CrossRef]

14. Tempero, E.; Anslow, C.; Dietrich, J.; Han, T.; Li, J.; Lumpe, M.; Melton, H.; Noble, J. The Qualitas Corpus:

A Curated Collection of Java Code for Empirical Studies. In Proceedings of the 2010 Asia Pacific Software

Engineering Conference, Sydney, NSW, Australia, 30 November–3 December 2010; pp. 336–345.

15. Hegedus, P. Towards Analyzing the Complexity Landscape of Solidity Based Ethereum Smart Contracts.

In Proceedings of the 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain (WETSEB),Gothenburg, Sweden, 27 May–3 June 2018; pp. 35–39.

16. Pinna, A.; Ibba, S.; Baralla, G.; Tonelli, R.; Marchesi, M. A Massive Analysis of Ethereum Smart Contracts

Empirical Study and Code Metrics. IEEE Access 2019, 7, 78194–78213. [CrossRef]

17. Pierro, G.A.; Tonelli, R. PASO. Conference Proceedings on Object-Oriented Programming Systems,

Languages, and Applications. 2020. Available online: https://ieeexplore.ieee.org/document/9050263

(accessed on 10 July 2020).

18. Loeliger, J. Version Control with Git; O’Reilly Media: Sebastopol, Calif, 2012.

19. Gousios, G.; Spinellis, D. Mining Software Engineering Data from GitHub. In Proceedings of the 39th

International Conference on Software Engineering Companion, Buenos Aires, Argentina, 20–28 May 2017;

pp. 501–502. [CrossRef]

20. Bistarelli, S.; Mazzante, G.; Micheletti, M.; Mostarda, L.; Tiezzi, F. Analysis of Ethereum Smart Contracts and

Opcodes. In Advanced Information Networking and Applications; Barolli, L., Takizawa, M., Xhafa, F., Enokido, T.,

Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 546–558.

21. Chidamber, S.R.; Kemerer, C.F. Towards a Metrics Suite for Object Oriented Design. In Proceedings of the

Conference Proceedings on Object-Oriented Programming Systems, Languages, and Applications, Phoenix,

AZ, USA, 6–11 October 1991; Association for Computing Machinery: New York, NY, USA, 1991; pp. 197–211.

[CrossRef]

22. Chodorow, K. MongoDB: The Definitive Guide; O’Reilly Media, Inc.: Newton, MA, USA, 2013.

http://dx.doi.org/10.1109/ACCESS.2020.3005541
http://dx.doi.org/10.3390/fi10110103
http://dx.doi.org/10.1145/3282373.3282419
http://dx.doi.org/10.1145/3167084
http://dx.doi.org/10.1145/3341325.3342015
http://dx.doi.org/10.1109/FLOSS.2007.12
http://dx.doi.org/10.1145/3194113.3194114
http://dx.doi.org/10.1145/1083258.1083273
http://dx.doi.org/10.3390/fi12060098
http://dx.doi.org/10.1145/1882291.1882315
http://dx.doi.org/10.1109/ACCESS.2019.2921936
https://ieeexplore.ieee.org/document/9050263
http://dx.doi.org/10.1109/ICSE-C.2017.164
http://dx.doi.org/10.1145/117954.117970

Future Internet 2020, 12, 197 15 of 15

23. Diogo, M.; Cabral, B.; Bernardino, J. Consistency Models of NoSQL Databases. Future Internet 2019, 11, 43.

[CrossRef]

24. Baker Effendi, S.; van der Merwe, B.; Balke, W.T. Suitability of Graph Database Technology for the Analysis

of Spatio-Temporal Data. Future Internet 2020, 12, 78. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/fi11020043
http://dx.doi.org/10.3390/fi12050078
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Previous Literature on Software Corpus Analysis
	Static Analysis on Smart-Contract Code
	Related Projects
	GitHub
	Ethereum Block Explorers

	Research Methodology
	Retrieving Data
	Cleaning Data
	Modelling Data
	Smart Contracts' Intrinsic Metrics
	Smart Contracts' Extrinsic Metric

	Filtered Data
	User Interface
	Smart Corpus HTML User Interface
	Smart Corpus GraphQL Application

	Use Case

	Results
	Conclusions and Future Works
	Queries
	References

