
An orthogonal-collocation integral

formulation for transient radiative transport

J.I. Frankel

Mechanical and Aerospace Engineering

Department, University of Tennessee, Knoxville,

Tennessee, 372̂ -22 JO, CASL4

ABSTRACT

A new formulation is offered for transient radiative transport which pro-
motes the use of orthogonal collocation. An intermediate variable is in-
troduced which permits the efficient and rapid development of accurate
numerical results. Chebyshev polynomials of the first kind are used as
the basis functions for the spatial variable while the temporal variable is
resolved by an initial value method. Some a posteriori error estimates
are presented illustrating the effectiveness of the approach. This new for-
mulation has potential impact to the boundary element community with
regard to nonlinear problems.

INTRODUCTION

The accurate numerical simulation of nonlinear, weakly-singular integro-
partial differential equations of mathematical physics often represents a
formidible challenge to researchers. Both algebraic nonlincarities in the
temperature variable and the appearance of kernels containing logarith-
mic singularities arise in applications involving transient heat transfer
[1] in a participating medium and multidimensional heat transfer in a
participating medium.

Recently, Kumar and Sloan [2] proposed a new formulation of one-
dimensional Hammerstein integral equations which permits efficient com-
putation by a collocation method. Frankel [3] illustrated that the ap-
proach of Kumar and Sloan can be extended to multidimensional and
transient studies.

ALTERNATIVE INTEGRO-DIFFERENTIAL FORMULATION

In the present context, we consider [1]

i

(r,,t) = g(r,) - 0*(r,,t) + Xa 0*(£,t)Ei(a\£ - r,\)d̂  (la)
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52 Boundary Element Technology

where

(̂77) = A ̂[a(l + 77)] 4- 0̂ 2[a(l - 77)]] ,

with A = 1/2 and a > 0.

Here, 0(r],t) is the unknown dependent variable requiring resolution
and 77, t are the spatial and temporal independent variables, respectively.
The n̂  exponential integral function [4] is denoted by En(z) where EI(Z)
contains a logarithmic singularity as z -> 0.

Let
p (77, f) = ̂(,7,;), (2)

thus Equation (la) can be written as

i
d9 f
— (77,t)=p(77)-y,(77,t) + Aa j <XWEi(a|f-77|)df, (3)

£=-i

r?e[-l,l], t>0.

Next, we integrate Equation (3) with respect to t, to get

i

where

t

#(77,6)= / ̂(77,̂ )̂ , f>0, (46)

«o=0

and

6)i, f >0. (4c)

Clearly,

9̂
— (77, 2) = ̂ (77,2) = ̂ (77, 2), (5o)
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Boundary Element Technology 53

and

*(?7,0)=0, 774-1,1]' (56)

Substituting Equation (4a) into Equation (5a), we obtain the new
nonlinear, weakly- singular integro-partial differential equation

/
J

(6)

subject to the initial condition displayed in Equation (5b). Note that
the algebraic nonlinearity has been peeled away from within the integral
operator shown in Equation (1) to a new position outside the integral
operator. This new form permits the implementation of a collocation
method in a highly efficient manner in the new variable. #(77, t). Once we
resolve fy(rj,t), we can reconstruct 0(r),t) through the integral transform
shown in Equation (4a).

SOLUTION BY ORTHOGONAL COLLOCATION

Let the unknown function $(rj,t) be represented by the series expansion

[-l,l], t>0, (7)

where the basis functions {Tm(ri)}m=Q are chosen as the Chebyshev poly-
nomials of the first kind [4]. The unknown time varying expansion coef-
ficients requiring resolution are denoted as {ĉ (t)}̂ _Q. In practice, we
must truncate this series representation at a finite number of terms, say
N. Thus, we express an approximation to ̂(??,t) as ##(77,2), namely

N

?7X W-i, i], f > o, (8)

where ĉ (t) is an approximation to ĉ (t).

Upon substituting Equation (8) into Equation (6), we arrive at

m=0
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54 Boundary Element Technology

where

i

Am(n)= I TUO£i(ak-£|R, m = 0, !,...,#, »?e[-l,l], (96)

which is analytically expressible [5]. The residual function Rjy(r],t) is
introduced in order to maintain the equal sign displayed in Equation (9a).
Correspondingly, we find, from Equation (5b), the initial conditions for
ĉ (t), ra = 0,1,..., TV, at t — 0, namely

AT

m=Q

Unless the exact solution to #(77, £), at any instant in time, t > 0, is a
linear combination of {T̂ (77)}̂ _Q, we cannot obtain {Cm(t)}m=o which
makes both ##(77, t) for t > 0 and Rff(r]) at t = 0 vanish for all ?/e[— 1,1].
However, we can obtain suitable time varying expansion coefficients by
making the residuals indicated in Equation (9a) and Equation (9c) small
in some sense. Using the definition of the inner product of two functions
shown in Frankel [5], we define the weighted residual method through

=0, f > 0,

and
=0, t = 0. (106)

For the collocation method, we have ̂(77) = 1, w^ — 6(77 — 77̂ ), k —
0, 1, ..., TV. Here the Dirac delta function is denoted by 6 while the TV + 1
collocation points are indicated by 77%, k = 0, 1, ..., N and are defined by
the closed rule [5]

7T A*
Vk = cos(— ), k = 0,l,...,N. (11)

By choosing this set of N-fl collocation points, we ensure that both
RN(±l,t) = 0 for t > 0 and fl^p(dbl) = 0 at t = 0.

Applying Equation (lOa) on Equation (9a), and Equation (lOb) on
Equation (9c) formally produces

dt ,m=0 *- m=0
(12a)
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Boundary Element Technology 55

k = 0,1,..., AT, * >0,

and

N

E c%(0)Tm W = 0, A; = 0, 1, ..., TV, f = 0,
m=0

respectively. Since {T̂ (ry)}̂ _o forms a set of linearly independent ba-
sis functions, we see that Equation (12b) reduces to ĉ (0) = 0, m —
0, 1, ..., JV, which now represent the initial conditions necessary for resolv-
ing c%(f),m = 0,1, ...,#.

Clearly, once ĉ (t), m = 0,1, ...,7V, t > 0 are resolved, ̂ (̂77, t) is
reconstructed through Equation (8). Finally, the approximate solution
to #(77, t), namely Ô (r)̂ t) is arrived at through Equation (4a) i.e.,

N

M?7,Z) = W) - E 4M[r_(77) - Aâ (?7)], W'̂ l]. ^ > 0-
m=0

(13)

STEADY-STATE ANALYSIS

At steady-state conditions, Equation (1) reduces to the linear (in
Fredholm integral equation of the second kind

where 9(rj) = lim^_^oo ̂ (?y,̂ ).

As before, we can develop a series representation for #̂ (77), namely

(15a)

while the N^ order approximation is given by

TV

m=0

where 7̂ (77) was previously defined. Following a similar procedure as
described previously, we can obtain the expansion coefficients {̂ }̂ -Q
by solving a closed system of linear algebraic equations using conventional
means.
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56 Boundary Element Technology

TRANSIENT ANALYSIS

From viewing the findings at steady-state conditions, we choose to express
the approximate solution for #̂ (77,̂ ) at discrete time t; as

N

m=0

Evaluating Equation (16a) at 77 = 77̂ , A; = 0,1,.. .,7V and substitut-
ing Equation (13) into the left-hand side of Equation (16a), we obtain
{̂ m(̂ )}m=o through matrix inversion at the indicated discrete time,
t — ti. These discrete times t; correspond to the times used in obtain-
ing the numerical results mandated by a initial value method for finding
{CmM}m=o &s indicated by Equation (12). Doing so produces the linear
system of equations for

N

^̂ -(̂ )̂  k = OJ,-̂ . (166)

By comparing Equation (15b) to Equation (1Gb), it is clear that in the
limit as t — » oo (assuming no numerical errors in time)

(16c)

RESULTS AND CONCLUSIONS

Let us define the dimensionless dependent variables [1]

J. — C/i 1 — t/i

which will be used for transient and steady-state analyses purposes, re-
spectively. At this juncture, we can readily establish a posteriori error
bounds for f̂ (rj). Let the local error of /̂ (r?) be denoted by

7NW = fW-/̂ (77), W-W], (18)

and its size may be measured by means of some functional norm. In
general, the error is typically as inaccessible as the exact solution. How-
ever, the residual Rw(r]) is a computable measure of how close fĵ (rj) is
to f*(rj). Following Frankel [5], we arrive at

when 1 — |Aa|||/c||oo > 0- Here, \\K\\OO is the infinity norm of the integral
operator [5] indicated in Equation (14).
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Boundary Element Technology 57

A program was developed using Mathematical^, Version 2.2 on a
NeXT TurboStation having 16 MBytes of memory. Table 1 presents a
comparision of steady-state results using f̂ (rj) as defined by Equation
(17b) between two previous investigations and the current study when
a = 0.5 (L = 1) for various N. From viewing the upper- and lower-error
estimates, the results shown when N=12 appear to be accurate to ±0.001.

Table 2 presents f̂ (rj,t), where 0̂ (rj,t) is arrived at through Equa-
tion (16a), when a = 0.5 (L — 1) and N=12. In this case, the functions
{Cm(*)}m=o defined by the differential equations in Equation (12) are
resolved numerically using a conventional fully explicit, fifth-order, six-
stage Runge-Kutta then the function ##(??,Z) is reconstructed through
Equation (8). The time step used in presenting this table is Af = 0.2,
which represents a relatively large time step. It was found that the num-
bers presented here when compared to smaller time steps (At = 0.1,
0.05) converged to six places of accuracy with exception of a few (rare)
occasions. In contrast, Prasad and Bering [1] often required time steps
of up to 20 times smaller then used in the present study.

The alternative formulation described in this communication illus-
trates that an effective and accurate orthogonal collocation method can
be conceived and applied to transient radiative transport.

Heaslet- Prasad-
Warming Hering

Present Investigation, Equation (14)

77

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

0
0
0
0
0
0
0
0
0
0
0

.756

.698

.646

.590

.551

.500

.449

.410

.354

.302

.244

0
0
0
0
0
0
0
0
0
0
0

.760

.692

.642

.594

.545

.499

.452

.405

.355

.305

.240

N

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

= 6

758186
693707
642139
594817
547736
5
452264
405183
357861
306293
241814

0
0
0
0
0
0
0
0
0
0
0

N = 8

.758159

.694002

.643344

.594241

.54636

.5

.45364

.405759

.356656

.305998

.241841

N

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

= 10

758152
694616
642915
593962
547025
5
452975
406038
357085
305384
241848

0
0
0
0
0
0
0
0
0
0
0

N = 12

.758149

.694771

.642706

.594316

.546715

.5

.453285

.405684

.357294

.305229

.241851

Error Bounds for the present study, Equation (19):
Upper-Error Estimate: 0.004533 0.002587 0.001667 0.001161
Lower-Error Estimate: 0.0008849 0.0005050 0.0003255 0.0002267

Table 1. Steady-state solution /̂ (rj) when a = 0.5 and compared with
previous investigations [1]. The error estimates make use of Equation
(19).
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58 Boundary Element Technology

t = 0.2 t = 1 t = 5 t = 15

-1
-0
-0
-0
-0
0
0
0
0
0
1

.8

.6

.4

.2

.2

.4

.6

.8

0
0
0
0
0
0
0
0
0
0
0

.0622082

.0425642

.0326082

.0261886

.021283

.0176481

.014785

.0124121

.010571

.00896476

.00765155

0
0
0
0
0
0
0
0
0
0
0

.423464

.297264

.226019

.178075

.141842

.115012

.0942173

.0774039

.0643619

.0531695

.0435793

0
0
0
0
0
0
0
0
0
0
0

.749361

.682926

.628382

.577727

.528047

.479479

.43123

.382579

.333788

.282468

.222282

0
0
0
0
0
0
0
0
0
0
0

.758148

.694769

.642704

.594314

.546712

.499997

.453282

.40568

.35729

.305225

.241848

Table 2. Transient distribution for f̂ (rj,t) at equally spaced locations
when N = 12 and a = 0.5.
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