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ABSTRACT: In many biotechnological applications, it is useful for gene expression
to be regulated by multiple signals, as this allows the programming of complex
behavior. Here we implement, in Escherichia coli, a system that compares the
concentration of two signal molecules, and tunes GFP expression proportionally to
their relative abundance. The computation is performed via molecular titration
between an orthogonal σ factor and its cognate anti-σ factor. We use mathematical
modeling and experiments to show that the computation system is predictable and
able to adapt GFP expression dynamically to a wide range of combinations of the
two signals, and our model qualitatively captures most of these behaviors. We also
demonstrate in silico the practical applicability of the system as a reference-comparator, which compares an intrinsic signal
(reflecting the state of the system) with an extrinsic signal (reflecting the desired reference state) in a multicellular feedback
control strategy.

T he ability to program and control information processing
functions in living cells is of great interest for biotechno-

logical and synthetic biology applications. In many such
applications it is useful to be able to compare the state of the
system with some reference state signal. For example, to
coordinate the production phase with a specific growth or
environmental condition during industrial fermentation,1,2 or to
compare a proxy for population density with a specific external
signal to trigger the release of a defined metabolite during
biosensing and bioactuation, (e.g., antibiotic3,4). Many attempts
have been made to reconstitute fundamental molecular pathways
and modules for signal integration and information process-
ing.5−11 These approaches rely on molecular interactions
between proteins, DNA and RNA, and have been useful to
design and implement genetic components that integrate
multiple signals to activate or repress gene expression.
Unfortunately these often have predetermined outcomes, and
cannot dynamically adapt their activation thresholds in response
to signal profiles that change over time. Such an ability is
fundamental for living cells to perform fast adaptation and
development, in the context of rapidly changing external and
internal cues.
Protein−protein interaction and sequestration have been

proposed, and partially experimentally validated, as a good
mechanism for the construction of adaptable synthetic path-
ways.12−14 In a validation of protein sequestration mechanisms
for genetic networks, Buchler and Cross showed that protein

sequestration by dominant negative inhibitors is able to generate
ultrasensitive responses that can be used to easily tune the
response of a genetic circuit.12 Furthermore, protein sequestra-
tion connected to positive feedback loops has been used to fine-
tune the behavior of genetic switches in a synthetic network.13

However, protein sequestration was achieved by protein
swapping from a three-element protein complex, thus making
the system cumbersome to integrate in larger synthetic networks.
It has also been shown that that protein sequestration can be used
to generate a signal tracking circuit, where the expression of an
antiscaffold protein (acting as an inhibitor of a protein complex
formation and used as reference signal tracking system) can be
linked via negative feedback loops to the expression level of a
transcriptional activator (acting as the output of the system).14

The proposed circuit is able to track only one external signal,
linking it to internal processes (e.g., expression levels) and
making it unsuitable for multisignal integration and real-time
external signal processing.
In their pioneering work, Rhodius et al.15 described a threshold

activated gate based on sequestration of the σ subunit of RNA
polymerase by a cognate anti-σ factor, proving that molecular
titration can regulate gene expression in response to compared
inducer concentrations, without additional genetic manipulation.
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Here we present an in-depth analysis of the tunability and

sensitivity of a σ/anti-σ module derived from the work of

Rhodius et al.,15 including its dynamic characterization, and its

ability to efficiently compare different signal intensities and

generate designed expression patterns. We also derive a detailed

mathematical model of the module, able to capture most of the

qualitative behavior observed experimentally. The goal is to

propose a simple yet effective protein−protein sequestration

module that is easier to embed in larger synthetic networks and
that can be used to perform multisignal integration.
The system relies on protein/protein titration to compute the

relative amounts of the quorum sensing molecule 3-O-C6-HSL
(AHL) and the chemical activator Isopropyl β-D-1-thiogalacto-
pyranoside (IPTG), and tune the expression of a Green
Fluorescent Protein (GFP) proportionally to the excess of
AHL over IPTG. At the molecular level, the computation of the
two signals and the tunable induction of GFP expression is

Figure 1. GFP expression is adapted to the computation of a wide range of signal intensities. (A) The proposed signal computation system. pcon
indicates an E. coli constitutive promoter. (B) GFP expression profile at the indicated time points post-treatment with the indicated concentrations of
AHL and IPTG. Data are averages of three independent experiments. (C)Mathematical simulations of the computation system at indicated time points
after treatment with the indicated concentration of AHL and IPTG. (B−C) GFP values are shown as heatmaps of scaled values across the entire
dynamical range of expression levels.
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achieved via molecular titration of an orthogonal extracytoplas-
mic function (ECF) σ and anti-σ factor pair, with σ activating
GFP expression.15 The computation system shows predictive
measurement of the two signal intensities with tunable and
proportional GFP expression in response to a defined regime of
combinations of the two signal concentrations. This system is a

useful orthogonal module that can be used in pathway
engineering for biotechnological and synthetic biology applica-
tions, in order to achieve complex programming of engineered
cells.
The molecular titration system at the core of the computation

module (Figure 1A) is composed of the orthogonal ECF20_992

Figure 2. Signal computation is achieved with time-varying inducer concentrations. (A−G)Mathematical simulations (black lines) and measured GFP
expression profiles (green line) at the indicated combination of AHL and IPTG concentrations. GFP fluorescence was measured and cells diluted every
hour (dashed gray lines). Data are averages of three independent experiments and s.e.m. is shown as shadowed green area. (A,B,D,E,F,G) Spearman’s
correlation coefficient (r) and p-value (p) for the entire time course: (A) rs = 0.920; p = 0.0004; (B) rs = 0.352; p = 0.238; (D) rs = 0.725; p = 0.005; (E) rs
= 0.701; p = 0.008; (F) rs = 0.793; p = 0.001 (G) rs = 0.923; p = 0.000007. * Significant correlation (0.6 < rs < 1) at the 0.05 level. ** Significant
correlation (0.6 < rs < 1) at the 0.01 level.
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σ and anti-σ pair from Pseudomonas f luorescens Pf-5.16 Its
specificity and orthogonality in E. coli has previously been
described.15 The σ and anti-σ pair can be expressed in E. coli cells
without affecting cell viability and growth, can regulate the
expression of a GFP protein encoded by the specific σ promoter
(p20_992), and has little crosstalk with native host components.

In our module the σ_20_992 gene is under the control of the
AHL-responsive promoter plux, the anti-σ_20_992 gene is
under the control of the IPTG-responsive promoter plac-UV5,
and the sfGFP gene is under the control of the σ_20−992-
responsive promoter, p20_992 (Table S1). All proteins were
destabilized by promoting their proteolysis via an ssrA-tag, to

Figure 3. The computation module can be used to generate desired expression profiles. (A−F) Mathematical simulations (black lines) and measured
GFP expression profile (green line) in the indicated combination of AHL and IPTG concentrations: (A−B) Square waves generation; (C−D) buffering
ability; (E−F) unbuffered controls. GFP fluorescence was measured and cells diluted every hours (dashed gray lines). Data are averages of three
independent experiments and s.e.m. is shown as shadowed green area. Spearman’s correlation coefficient (r) and p-value (p): (A) rs = 0.804; p = 0.001;
(B) rs = 0.629; p = 0.021; (C) rs = 0.433; p = 0.244; (D) rs = 0.866; p = 0.003; (E) rs = 0.260; p = 0.500 (F) rs = 0.866; p = 0.003. * Significant correlation
(0.6 < rs < 1) at the 0.05 level. ** Significant correlation (0.6 < rs < 1) at the 0.01 level. (C−F) gray area indicates the region formed by the mean value
between 3 h and 4 h and mean value between 7 h and 8 h. Fold increase of the latter with respect to the former is indicated as “ratio”.
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ensure fast dynamic responses of expression.17 In this way the
computation function is achieved by the sequestration of the σ
protein (activated by the AHL signal) by the anti-σ protein
(activated by the IPTG signal) so that only the resulting free σ is
able to trigger the expression of the GFP protein. Hence the
relative intensity of the two signals (AHL and IPTG) is
constantly computed and the GFP expression is proportionally
adapted to their relative abundances.
A good computation system should have a defined regime of

operation with good tunability and sensitivity. To test this we
incubated transformed E. coli MG1655 cells with 84 different
combinations of inducer concentrations, and measured GFP
fluorescence after 3, 4, and 5 h (Figure 1B). The GFP
fluorescence was coherently adapted to the computation output
(difference between the AHL and the IPTG concentrations),
with a defined range of concentrations (IPTG between 10 nM
and 100 μM, AHL between 1 μM and 1 mM) (Figure 1B and
Figure S1A). We argue that differences in the values observed at
low IPTG concentrations are due to biological noise, rather than
to a specific effect, as suggested by the s.e.m. values (Table S2).
The system was able to reach steady-state regulation within 4 h,
showing less than 20% of overall change between 3 h and 4 h and
around 10% of overall change between 4 h and 5 h (Figure S1B),
indicating that the system is already at steady-state at 4 h post-
treatment. The signal computation function and the resulting
tunability range is dependent on the σ/anti-σ system, as it was
not observed in the absence of the anti-σ protein (Figure S2). To
complement the experiments, we developed a mathematical
model of 4 ODEs (details in Supporting Information) to describe
the system behavior. We then used steady state fluorescence data
(Figure 1B, 4 h), as described in Supplementary Section S4, to fit
model parameters and simulated the observed experimental
conditions (Figure 1C and Figure S3), showing that the model
effectively captures most of the qualitative behavior detected
during the experiments.
Next, we analyzed the dynamical response of the system by

performing time course experiments in continuous batch
cultures, where cells were constantly kept in exponential growth
phase by diluting them every hour (dashed lines in Figure 2 and
Figure 3) and challenging them with a fixed concentration of one
signal and a 4 h step increasing or decreasing concentration of the
other. When cells were challenged with a fixed concentration of
10 μM AHL and a time varying IPTG concentration (100, 50, 0
μM, Figure S4), we found that the decrease or increase in IPTG
concentration resulted in a consistent increase or decrease of
GFP expression levels (Figure 2A−B), measured at steady state
after the 2−3 h transient response. Treatment with 10 μM AHL
alone produced stable GFP expression, with only small variations
from the mean value (Figure 2C). These experiments confirm
that GFP levels are adapted to the computed relative amounts
between the concentrations of IPTG and AHL and do not
change when the IPTG signal is lacking.
We also confirmed the dynamic behavior of the system in

experiments where cells were challenged with a fixed
concentration of 50 μM IPTG and decreasing or increasing
steps of AHL concentrations (0, 1, and 10 μM, Figure S4). GFP
expression levels coherently adapted to the relative amounts of
IPTG and AHL signals, after a transient response of 2−3 h
(Figure 2D and F). As expected, the same GFP expression profile
with higher maximal levels was reached in cells induced with the
same AHL signal, but in the absence of IPTG (Figure 2E and G).
This demonstrates that the response to one input can be tuned
by the concentration of the other. We measured high correlation

between the GFP expression profile and the comparator output
(defined as the error measure between the reference [IPTG] and
measured input [AHL]) in almost all of the conditions
(Spearman’s correlation coefficient between 0.7 and 0.9).
To qualitatively validate the fitting of the mathematical model

(Figure 1C) we simulated the behavior of the system in the same
experimental conditions (Figure 2A−G, black lines). Parameter-
ization of the model is particularly challenging in this case as a
single set of parameter values needs to be selected to capture
both steady state experimental data and time lapses to two
concurrent inputs. There is therefore an unavoidable trade-off to
be made in order to carry out the multiobjective optimization
strategy required for parameter selection. The parameter values
we present were found via a combination of nonlinear
optimization techniques and heuristics, and represent the best
solution we found via an exhaustive numerical experiments
campaign. The model was able to replicate most of the observed
behavior, with the exception of the intermediate steady state
levels in response to changes in AHL (Figure 2E−G), where the
model was able to qualitatively capture the step increase or
decrease in GFP expression but not the intensity of such changes.
We believe this is likely due to the unavoidable compromises
made during model parametrization and, possibly, unpredicted
AHL internalization dynamics. Nevertheless, even in this case,
the model predictions capture the overall trends of the GFP
expression profiles observed in the experiments.
To determine the capability of the module to generate

designed gene expression patterns, we tried (i) to program
square wave outputs, and (ii) to maintain a fixed output level in
the face of changes in one input signal by virtue of compensatory
changes in the second. To test (i), we generated a square wave
pattern, with different expression levels, by stimulating cells with
a square wave IPTG signal (increasing or decreasing 100, 0, 10
μM, Figure S5A−B), and a fixed amount of 10 μMAHL signal in
continuous batch cultures. The system took approximately 2 h to
reach the different desired GFP expression levels (encoded by
the combination of signal intensities and proportional to
differences in their concentrations) after each input change
(Figure 3A−B, green lines). To validate (ii), we predicted by
using steady state data (Figure 1B, 4 h) that an increase from 10
μM AHL + 5 nM IPTG to 100 μM AHL would require an
increase of IPTG to 10 μM in order to keep GFP expression
constant. We tested the predictions in continuous batch culture,
challenging cells for 4 h with the first inducer combination and
then for an additional 4 h with the second inducer combination.
We found that the GFP expression levels were kept constant
both when moving from the higher to the lower combination of
concentrations (Figure 3C and Figure S5C) and vice versa
(Figure 3D and Figure S5D). As expected the buffering effect is
not observed when the change in the IPTG concentration is
calculated not to compensate for the change in AHL
concentration (Figure 3E−F and Figure S5E−F; compare the
dimension of the area formed by the mean value between 3 h and
4 h or 7 h and 8 h in Figure 3C−F). We measured high
correlation between the GFP signal and the input in almost all of
the conditions tested (Spearman’s correlation coefficient
between 0.7 and 0.9). We mathematically simulated the
experimental observations (Figure 3A−F, black lines), finding
that the model captures again the qualitative behavior observed
experimentally, albeit with some mismatches in transient
behavior.
An interesting application of the module we derived is the

implementation of a negative feedback control scheme, where a
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variable (e.g., gene expression level) is constantly measured,
compared to a desired level (the reference signal) in a process
called reference-comparison, and adapted to the reference signal
via an actuation module.18,19 Such a scheme could be used for
bioprocessing or biomedical applications, such as to improve the
yield of metabolite production20 or to program bacteria-based
drug delivery in pathological conditions.4 Currently a reference-
comparison function has been achieved only via external in silico
computation, requiring complex experimental set-ups.19,21 As
demonstrated in this paper, and recently proposed in theoretical
work,22molecular titration is a good candidate to implement the

reference computation function in a single population or a
multicellular consortium.23,24 To test and validate the use of our
module in this context, we performed in silico experiments
implementing the multicellular control strategy we recently
presented24 via the module described in this paper. Results
shown in Figure 4 and Figure S6 confirm that the module, as
modeled here, can effectively be integrated within a complex
multicellular control scheme, whose in vivo validation is the
subject of ongoing work.
In conclusion, we have designed, implemented and tested a

biological computation module based on σ/anti-σ titration, able

Figure 4. The computation module can be embedded in complex meta-devices. (A) A schematic illustration of a possible scheme coupling our
computational module to a second cell population, designated the “Targets”, to form amulticellular consortium designed to act as a distributed feedback
controller. The objective is to control the target cells’ output (yellow). The output expression is coupled to generation of AHL, which is sensed by the
comparator cells allowing them to measure the effective output of the targets. The measured output is compared to an external IPTG concentration,
which designates a desired temporal profile for the output of the targets, using our σ/anti-σ module. The result of this comparison is a measure of the
difference between the desired reference and the actual output of the targets; this is coupled to the generation of an orthogonal quorum molecule
designated Q (green), which is fed back to the targets. Finally, this feedback signal actuates a repression on the target GRN’s output thus closing the
control loop on the target output. (B) and (C) show in silico experiments validating the ability of our comparator module to function as expected in the
proposed consortium. The desired multistep output is plotted in the top panels as a dashed line; the actual target output tracking this desired signal, as
controlled by the computation module, is plotted as a solid black line. The central panel indicates the actual comparator output over time (green).
Finally, the lower panel shows that actual IPTG reference signals corresponding to those in Figure 2A (B), and Figure 2B (C), that are fed to the
comparator module to signal the desired response.
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to dynamically integrate different concentrations of two signals
and adapt its output to the computed signal. We have shown the
full operation regime of the system, in biologically relevant
concentrations of the two inducers, extending the analysis
performed by Rhodius et al.15 The system can process and
compute, in experimentally useful time scales, multiple
combinations of signal intensities and can be used to generate
desired GFP expression patterns or to buffer sudden changes in
one of the two signals. In some treatments we observed higher
fluctuations around the mean expression values (Figure 2A−C
and Figure 2F−G) possibly due to the complex experimental
design and to intrinsic biological noise. We have derived and
validated a mathematical model, parametrized on the exper-
imental data. Parameter sensitivity analysis reported in
Supporting Information, Figures S7, S8, was also carried out to
show that the predicted model dynamics are robust to parameter
perturbations. The parametrized model allows in silico testing of
the use of this module in different applications, as for example the
multicellular control strategy we validated above.
In addition to this, computing the difference between the

amounts of two signals (biomarkers) is also of great interest to
differentiate between physiologic and pathologic states, such as
precancerous versus cancerous stage25,26 or latent versus infective
stage.27 Our computation system could be used to detect a
multiplexed “injury code” for a specific pathogenic condition and
elicit a particular response (such as expression of repair
metabolites or genes).
Our approach can be extended by using multiple σ/anti-σ

pairs, processing different signals and linked to multiple
expression modules, making it a powerful solution for different
biotechnological applications. For example, there is great interest
in biosensors for detection of environmental pollutants28,29 or
cancer and pathological biomarkers,3,30 but all the proposed
systems have a limited sensitivity range, which is generally
determined by the promoter used for the detection of the desired
signal. In all these cases, our system, in which a control signal
tunes the region of responsiveness to a second signal can be of
immediate application.

■ MATERIALS AND METHODS

Plasmids and Strains. Escherichia coli strain XL1-Blue
(recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F́ proAB
lacIqZΔM15 Tn10 (Tetr)]) (from Stratagene, #200249) was used
for all the cloning manipulations of this work.
Escherichia coli strainMG1655 (λ-, rph-1)31was used for all the

assays in this work (Guyer et al., 1981), and transformed with the
three plasmids constituting the computation system, unless
stated otherwise.
The computation system is composed of three plasmids:

pLuSb (medium copy number), pVRa_LacASb_Flag (medium
copy number) and pVRb_ssrA (low copy number). The genes
constituting the essential core of the computation module (σ,
anti-σ and GFP) are ssrA tagged (AANDENYALAA) to ensure
fast dynamics of expression and degradation.
Vector backbones were derived from plasmids pVRa20_992,

pVRb20_992 and pVRc20_992.15

The pLuSb plasmid (Table S1) encodes the LuxR gene, under
the control of the lacI promoter, and the σ gene under the control
of the plux promoter, and was built by standard restriction
digestion and ligation cloning procedure. The 6xHis-Sigma-ssrA
gene was amplified by the pVRa20_992 plasmid (from Addgene,
#49673) with primers Sigma_FW and Sigma_ssrA_RW, and

cloned NdeI/BamH1 in plasmid pVRc20_992 (from Addgene,
#49739).
The pVRa_LacASb_Flag plasmid (Table S1) encodes the

LacI gene, under the control of the lacI promoter, and the
antisigma-ssrA-Flag gene, under the control of the lacUV5
promoter and was cloned in a two step cloning procedure. First
the pBaASb plasmid was obtained by standard restriction
digestion and ligation procedure, by amplifying the Anti-Sigma
gene from the pVRc20_992 plasmid (Addgene #49739) with
primers AntiSigma_FW and AntiSigma_ssrA_RW and cloning
the PCR product in pBAD/His_iRFP plasmid (Addgene
#31855) after NcoI/BamHI digestion. Second the pVRa_La-
cASb plasmid was obtained by standard Gibson isothermal
cloning technique: plasmid backbone was amplified from the
pVRa20_992 plasmid with primers LacIASb_Vector_F and
LacIASb_Vector_R; plac promoter was amplified from plasmid
pSR/lacUV532 with primers LacIASb_Frag1_F and LacIASb_-
Frag1_R; anti-σ gene was amplified from pBaASb plasmid with
primers LacIASb_Frag2_F and LacIASb_Frag2_R. In a second
step the Flag tag was added to the pVRa_LacASb plasmid by
rolling circle PCR amplification with primers ASb_Flag_F and
ASb_Flag_R.
The pVRb_ssrA plasmid (Table S1) encodes the sfGFPssrA

gene, under the control of the p20_992 promoter, and was built
from the pVRb20_992 plasmid (from Addgene, #49714) by
whole-plasmid PCR amplification and ligation with primers
GFPssrA_F and GFPssrA_R.
Primer sequences are in Table S3.
Cells were transformed with standard CaCl2 heat-shock

transformation procedure and grown on LB-Agar plates with
appropriate antibiotic selections.
All plasmid sequences were confirmed by sequencing service

(Eurofins Genomics).
Reagents and Media. In all the assays and cloning

manipulations cells were grown in Luria−Bertani Medium
(from MP Biomedicals, #113002011).
AHL (3-oxo-N-(2-oxotetrahydro-3-furanyl) hexanamide from

Key Organics, #MS2575) was dissolved in water, filter-sterilized
and added to LB medium at the indicated concentrations.
IPTG (Isopropyl β-D-1-thiogalactopyranoside from Sigma-

Aldrich, #I5502) was dissolved in water, filter-sterilized and
added to LB medium at the indicated concentrations.
Antibiotic were used at the following working concentrations:

Ampicillin (Sigma-Aldrich #A9518) 100 μg/μL, Kanamycin
(Sigma-Aldrich #K4000) 50 μg/μL, Chloroamphenicol (Sigma-
Aldrich #C0378) 25 μg/μL.

96-Well Fluorescence Assays. To perform steady state and
wide range analysis of the computation module in 96 well plates,
colonies from freshly transformed cells were grown for 12 h at 37
°C in a shaking incubator in 5 mL of LBmedium and appropriate
antibiotic selection. After 12 h cells were diluted 100 fold in 20
mL of prewarmed LB medium (with appropriate antibiotics),
grown at 37 °C in a shaking incubator to an OD600 of 0.3
(approximately 2 h) and then 100 μL of the cell suspension was
added to each well of a standard flat bottom 96-well plate,
previously loaded with 100 μL of LB containing 2× the desired
final inducer concentration, in a final volume of 200 μL of LB
medium. Plates were incubated in a shaking mini-incubator
(TECAN Freedom EVO II workstation) at 37 °C; at each time
point GFP fluorescence (excitation 485 nm, emission 530 nm,
cutoff 515 nm) and OD600 were measured with a TECAN
Infinite M200 Pro plate reader.

ACS Synthetic Biology Letter

DOI: 10.1021/acssynbio.7b00109
ACS Synth. Biol. XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/acssynbio.7b00109/suppl_file/sb7b00109_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.7b00109/suppl_file/sb7b00109_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.7b00109/suppl_file/sb7b00109_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.7b00109/suppl_file/sb7b00109_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.7b00109/suppl_file/sb7b00109_si_001.pdf
http://dx.doi.org/10.1021/acssynbio.7b00109


Background (LB medium) values were subtracted from GFP
values and the resulting numbers were normalized on the OD600

measurements and the results from three independent experi-
ments were averaged. Finally the normalized values within each
time point were scaled across the full dynamical range (measured
value − min value/(max value − min value)) and shown as
heatmap.
Dynamical Fluorescence Quantification Assays. To

perform dynamical characterization of the computation module
in liquid cultures, colonies from freshly transformed cells were
grown for 12 h at 37 °C in 5 mL of LB medium and appropriate
antibiotic selection. After 12 h cells were diluted 100 fold in 5 mL
of fresh LB medium (with appropriate antibiotics), grown at 37
°C in a shaking incubator to an OD600 of 0.3 (approximately 2 h)
and then diluted 3 fold in 5 mL of prewarmed LB medium, with
indicated concentrations of inducer molecules and appropriate
antibiotics. Every hours 1 mL of samples was taken to measure
OD600 and stored at 4 °C for subsequent GFP fluorescence
analysis, while an appropriate amount of cell suspension was
spun down (13200 rpm for 1 min) and suspended in 5 mL of
prewarmed LB medium with the same concentration of inducers
and antibiotics, in order to keep cell in logarithmic phase (OD600

between 0.3 and 0.6). When inducer concentrations were
changed, cells were washed with 500 μL of PBS (137 mM NaCl,
2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4)
before being suspended in prewarmed LB medium with the new
inducers concentrations.
At the end of the time course 200 μL of each sample were

loaded in a 96 well plate and GFP fluorescence measured
(excitation 485 nm, emission 530 nm, cutoff 515 nm) in a
FLEXstation (VWR) system. Background (LB medium) values
were subtracted fromGFP values and the resulting numbers were
normalized on the OD600 measurements.
Statistical Analysis. For dynamic response experiments

Spearman rank-order correlation coefficient33 was calculated
between the mean GFP intensity profile (from three
independent experiments) and the computed signal (AHL-
IPTG), by using the 2-tailed bivariate correlation option in IBM
SPSS statistic software.
Mathematical Model. An Ordinary Differential Equation

(ODE) model was derived considering all the key reactions of
the system involving σ, anti-σ and their complex, as well as the
measurable GFP. The final (simplified) model, consisting of 4
ODEs, was used for parameter identification, and subsequently
for simulations of the steady-state behavior of the system as well
as its temporal dynamics. Further details of model derivation and
parametrization are provided in the Supporting Information.
In Silico Experiments of Multicellular Control Strategy.

The Ordinary Differential Equation (ODE) model of the
module, defined and parametrized above, was embedded in the
more complex model of a multicellular control strategy
presented in Fiore et al., 201724 and reported in Supporting
Information, Section S5. Simulations were carried out in
MATLAB.
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