
1

An OS Interfae for Ative Routers

Larry Peterson, Yitzhak Gottlieb, Mike Hibler, Patrik Tullmann, Jay Lepreau, Stephen Shwab,

Hrishikesh Dandekar, Andrew Purtell, and John Hartman

Abstrat| This paper desribes an operating system in-

terfae for ative routers. This interfae allows ode loaded
into ative routers to aess the router's memory, ommu-
niation, and omputational resoures on behalf of di�erent

paket ows. In addition to motivating and desribing the
interfae, the paper also reports our experienes implement-

ing the interfae in three di�erent OS environments: Sout,
the OSKit, and the exokernel.

Keywords|Ative networks, programmable networks, op-
erating systems.

I. Introdution

Ative networks o�er the promise of being able to us-
tomize the network on an appliation-by-appliation ba-
sis [26℄. This is aomplished by allowing paket ows to
injet ode into the routers they traverse. One of the en-
tral hallenges in designing an ative network is to de�ne
the interfae that this ode is written to. This interfae
spei�es the servies and resoures the ative ode is able
to aess on every node (router) in the network.
The design spae for ustomizing networks is large, and

inludes approahes ommonly referred to as \ative net-
works" (the fous of this paper) and \programmable net-
works" (an approah being pursued in industry). The lat-
ter approah|as exempli�ed by the IEEE P1520 working
group [12℄ and Nortel's Open IP [16℄|involves a more re-
stritive programming environment, in whih the network's
signalling and ontrol funtions are programmable, but the
data transfer funtions are �xed. In ontrast, ative net-
works permit appliations to ustomize both the ontrol
plane and the data plane.
A general arhiteture for ative networks has evolved

over the last few years [24℄. This arhiteture identi�es
three layers of ode running on eah ative node (Fig-
ure 1). At the lowest level, an underlying operating system
(NodeOS) multiplexes the node's ommuniation, mem-
ory, and omputational resoures among the various paket
ows that traverse the node. At the next level, one or more
exeution environments (EE) de�ne a partiular program-
ming model for writing ative appliations. To date, several
EEs have been de�ned, inluding ANTS [30℄, [29℄, PLAN

Authors' urrent addresses: L. Peterson and Y. Gottlieb,
Department of Computer Siene, 35 Olden Street, Prine-
ton, NJ 08544 (fllp,zukig�s.prineton.edu); M. Hibler, P. Tull-
mann and J. Lepreau, University of Utah Shool of Comput-
ing, 50 S. Central Campus Drive Rm. 3190, Salt Lake City,
UT 84112 (fmike,tullmann,lepreaug�s.utah.edu); S. Shwab and
H. Dandekar and A. Purtell, NAI Labs, Network Assoiates,
3415 S. Sepulveda Blvd., Suite 700, Los Angeles, CA 90034
(fsshwab,hdandeka,apurtellg�nai.om); and J. Hartman, Depart-
ment of Computer Siene, University of Arizona, Tuson, AZ 85721
(jhh�s.arizona.edu).
This work was supported in part by DARPA ontrats N66001{96{

8518, N66001{97{C{8514, and DABT63{94{C{0058, and NSF grants
ANI{99{06704 and ANI{00{82493.

[3℄, [11℄, and CANES [5℄. At the topmost level are the
ative appliations (AA) themselves.

Execution
Environments

NodeOS

Active
Applications

Fig. 1. Software layers running on an ative router.

We were major ontributors to developing and dou-
menting the interfae [1℄ between the bottom two layers
in Figure 1. This paper fouses on that interfae, making
two ontributions. The �rst is to motivate and desribe
the NodeOS interfae. While similar in many respets to
a standard API suh as POSIX, the emphasis of an ative
router on forwarding pakets makes this interfae unique
in many ways. The seond ontribution is to report our
experienes implementing the interfae in three di�erent
OS environments: within the Sout kernel [21℄, using the
OSKit omponent base [9℄, and above the exokernel [13℄.
Although none of these implementations is omplete, eah
exposes an interesting set of implementation issues for a
signi�ant subset of the NodeOS interfae.

II. Design Rationale

The goal of ative networks is to make the network as
programmable as possible, while retaining enough ommon
interfaes so that ative appliations injeted into the net-
work an run on as many nodes as possible. In this ontext,
it is not obvious where to draw the line between the EEs
and the NodeOS. One answer is that there is no line: a sin-
gle layer implements all the servies required by the ative
appliations. This is analogous to implementing a language
runtime system diretly on the hardware, as some JavaOSs
have done. However, separating the OS from the runtime
system makes it easier for a single node to support mul-
tiple languages. It also makes it easier to port any single
language to many node types. This is exatly the rationale
for de�ning a ommon NodeOS interfae.
Deiding to separate the NodeOS and the EEs is only

the �rst step; the seond step is to deide where the
EE/NodeOS boundary should be drawn. Generally speak-
ing, the NodeOS is responsible for multiplexing the node's
resoures among various paket ows, while the EE's role is
to o�er AAs a suÆiently high-level programming environ-

2

ment. This is loosely analogous to the distintion between
an exokernel and an OS library [13℄. Beyond this general
goal, the NodeOS interfae is inuened by both a set of
high-level design goals, and our experienes implementing
the interfae on a olletion of OS platforms. The rest of
this setion identi�es the high-level design deisions that
gave the interfae its general shape, while Setions IV{VI
disuss how various implementation fators inuened par-
tiular details of the interfae.
The �rst, and most important design deision was that

the interfae's primary role is to support paket forward-
ing, as opposed to running arbitrary omputations. As
a onsequene, the interfae is designed around the idea
of network paket ows [6℄: paket proessing, aount-
ing for resoure usage, and admission ontrol are all done
on a per-ow basis. Also, beause network ows an be
de�ned at di�erent granularities|e.g., port-to-port, host-
to-host, per-appliation|the interfae annot presribe a
single de�nition of a ow.
Seond, we do not assume that all implementations of

the NodeOS interfae will export exatly the same feature
set|some implementations will have speial apabilities
that EEs (and AAs) may want to take advantage of. The
interfae should allow aess to these advaned features.
One important feature is the hardware's ability to forward
ertain kinds of pakets (e.g., non-ative IP) at very high
speeds. Said another way, pakets that require minimal
proessing should inur minimal overhead. A seond fea-
ture is the ability to extend the underlying OS itself, i.e.,
extensibility is not reserved for the EEs that run on top
of the interfae. The NodeOS interfae must allow EEs
to exploit these extensions, but for reasons of simpliity,
eÆieny, and breadth of aeptable implementations, the
NodeOS need not provide a means for an EE to extend the
NodeOS diretly. Exatly how a partiular OS is extended
is an OS-spei� issue.
Our �nal design deision was a pragmati one: whenever

the NodeOS requires a mehanism that is not partiularly
unique to ative networks, the NodeOS interfae should
borrow from established interfaes, suh as POSIX.

III. Arhiteture

The NodeOS interfae de�nes �ve primary abstrations:
thread pools, memory pools, hannels, �les, and domains

[1℄. The �rst four enapsulate a system's four types of re-
soures: omputation, memory, ommuniation, and per-
sistent storage. The �fth abstration, the domain, is used
to aggregate ontrol and sheduling of the other four ab-
strations. This setion motivates and desribes these �ve
abstrations, and explains the relationships among them.
Of the �ve abstrations, domains and hannels are the most
novel (NodeOS-spei�), threads and memory are varia-
tions on traditional designs, and �les are mostly standard.

A. Domains

The domain is the primary abstration for aounting,
admission ontrol, and sheduling in the system. Domains
diretly follow from our �rst design deision: eah domain

ontains the resoures needed to arry a partiular paket
ow. A domain typially ontains the following resoures
(Figure 2): a set of hannels on whih messages are re-
eived and sent, a memory pool, and a thread pool. Ative
pakets arrive on an input hannel (inChan), are proessed
by the EE using threads and memory alloated to the do-
main (dotted ar), and are then transmitted on an output
hannel (outChan).

Note that a hannel onsumes not only network band-
width, but also CPU yles and memory bu�ers. The
threads that shepherd messages aross the domain's han-
nels ome from the domain's thread pool and the yles
they onsume are harged to that pool. Similarly, the I/O
bu�ers used to queue messages on a domain's hannels are
alloated from (and harged to) the domain's memory pool.
In other words, one an think of a domain as enapsulat-
ing resoures used aross both the NodeOS and an EE on
behalf of a paket ow, similar to resoure ontainers [4℄
and Sout paths [25℄.

Domain

in
C

h
an

o
u

tC
h

an

NodeOS

EE

Fig. 2. A domain onsists of hannels, memory, and threads needed
for EE-spei� proessing.

A given domain is reated in the ontext of an existing
domain, making it natural to organize domains in a hier-
arhy, with the root domain orresponding to the NodeOS
itself. Figure 3 shows a representative domain hierarhy,
where the seond level of the hierarhy orresponds to EEs
and domains at lower levels are EE-spei�. In this ex-
ample, the EE implemented in Domain A has hosen to
implement independent paket ows in their own domains
(Domain C through Z), while the EE running in Domain
B aggregates all pakets on a single set of hannel, mem-
ory, and thread resoures. The advantage of using domains
that orrespond to �ne-grained paket ows|as is the ase
with the EE ontained in Domain A|is that the NodeOS is
able to alloate and shedule resoures on a per-ow basis.
(Domain A also has its own hannels, whih might arry
EE ontrol pakets that belong to no spei� sub-ow.)

The domain hierarhy is used solely to onstrain domain
termination. A domain an be terminated by the domain
itself, by the parent domain that reated it, or by the
NodeOS beause the domain has violated some resoure
usage poliy. Domain termination auses the domain and
all its hildren to terminate, the domain's parent to be noti-

3

...

Domain A

Domain Z

Domain B

outChan

inChan

outChan

inChan
outChan

Domain C

inChan

inChan
outChan

NodeOS

Fig. 3. Domain hierarhy.

�ed, and all resoures belonging to the terminated domains
are returned to the NodeOS.
Eah parent domain ontains a handler that is invoked

just before a hild domain is terminated by the NodeOS.
This \imminent termination" handler allows the parent do-
main (generally running the EE) to reonile any state it
may have assoiated with the dying domain and free any re-
soures it may have alloated on the hild domain's behalf.
The handler is invoked in the ontext of a thread in the
parent domain; thus the parent domain pays for leaning
up an errant hild domain. The handler is given a small,
�xed amount of time to omplete its leanup. If the thread
exeeds this limit, it, and the domain in whih it runs, are
terminated.
In ontrast to many hierarhial resoure systems (e.g.,

stride CPU shedulers [28℄), the domain hierarhy is in-
dependent of resoure alloation. That is, eah domain is
alloated resoures aording to redentials presented to
the NodeOS at domain reation; resoures given a hild
domain are not deduted from the parent's alloation, and
resoures belonging to a hild domain are not returned to
the parent domain when the hild terminates. This design
was based on the observation that requiring resoures to
be alloated in the same hierarhial manner as domains
results is an overly restritive resoure model. For exam-
ple, suppose an ANTS EE runs in a domain and reates
new (sub)domains in response to inoming ode apsules.
These new domains should be given resoures based solely
on their redentials (identity). They should not be re-
strited to some subset of the ANTS EE's resoures, whih
they would be if resoures followed the domain hierarhy.

B. Thread Pool

The thread pool is the primary abstration for ompu-
tation. Eah domain ontains a single thread pool that is
initialized when the domain is reated. Several parame-
ters are spei�ed when reating a thread pool, inluding
the maximum number of threads in the pool, the sheduler
to be used, the yle rate at whih the pool is allowed to
onsume the CPU, the maximum length of time a thread
an exeute between yields, the stak size for eah thread,
and so on.
Beause of our deision to tailor the interfae to support

paket forwarding, threads exeute \end-to-end"; that is,
to forward a paket they typially exeute input hannel
ode, EE-spei� ode, and output hannel ode. Sine a
given domain uts aross the NodeOS and an EE, threads
must also ut aross the NodeOS/EE boundary (at least
logially). This makes it possible to do end-to-end aount-
ing for resoure usage. Note that from the perspetive of
the NodeOS interfae, this means that the thread pool pri-
marily exists for aounting purposes. Whether or not a
given NodeOS pre-alloates the spei�ed number of threads
is an implementation issue. Moreover, even if the NodeOS
does pre-alloate threads, these threads may not be able
to handle all omputation that takes plae on behalf of the
thread pool; for example, they may not be allowed to run
in supervisor mode. Any thread running on behalf of the
thread pool, no matter how its implemented, is harged to
the pool.
The fat that a thread pool is initialized when a do-

main is reated, and threads run end-to-end, has two im-
pliations. First, there is no expliit operation for reating
threads. Instead, threads in the pool are impliitly ati-
vated, and sheduled to run, in response to ertain events,
suh as message arrival, timers �ring, and kernel exep-
tions. Seond, there is no expliit operation for terminating
a thread. Should a thread misbehave|e.g., run beyond its
CPU limit|the entire domain is terminated. This is ne-
essary sine it is likely that a thread running in an EE
has already exeuted hannel-spei� ode, and killing the
thread might leave the hannel in an inonsistent state.
As just desribed, threads are short-lived, \data driven"

entities with no need for expliit identities. While this
is suÆient for many environments, our experiene with
Janos, detailed in Setion V, indiates that some EEs re-
quire \system" threads that are long-lived and not assoi-
ated with any partiular paket ow. For example, a JVM-
based EE might have a global garbage olletion thread
that, when it runs, needs to �rst stop all other threads until
it is done. To support these environments, the API de�nes
a small set of pthread-inspired operations for expliit thread
manipulation: sending an interrupt, bloking and unblok-
ing interrupts, hanging a sheduler-interpreted priority
value, and attahing thread-spei� data.

C. Memory Pool

The memory pool is the primary abstration for memory.
It is used to implement paket bu�ers (see Setion III-D)
and hold EE-spei� state. A memory pool ombines the
memory resoures for one or more domains, making those
resoures available to all threads assoiated with the do-
mains. Adding domains to a pool inreases the available
resoures while removing domains dereases the resoures.
The amount of resoures that an individual domain an
ontribute to a pool is either embodied diretly in the do-
main's redentials or expliitly assoiated with the domain
at reation time. The many-to-one mapping of domains
to memory pools aommodates EEs that want or need
to manage memory resoures themselves. For example, as
illustrated in Setion V-A, this mapping is needed by a

4

JVM-based EE that shares objets and JIT'ed ode be-
tween domains.
Memory pools have an assoiated allbak funtion that

is invoked by the NodeOS whenever the resoure limits of
the pool have been exeeded (either by a new alloation
or by removing a domain from the pool). The allbak
funtion is registered when a memory pool is reated by an
EE. The NodeOS relies on the EE to release memory when
asked; i.e., the NodeOS detets when a pool is over limit
and performs a allbak to the EE to remedy the situation.
If the EE does not free memory in a timely manner, the
NodeOS terminates all the domains assoiated with the
pool. The rationale for these semantis is similar to that for
domain termination give above: the EE is given a hane to
lean up graefully, but the NodeOS has fallbak authority.
Memory pools an be arranged hierarhially to allow

onstrained sharing between pools. The hierarhy of mem-
pools is not used to ontrol the propagation of resoures;
rather, it is intended as an aess ontrol mehanism.
Spei�ally, a \hild" mempool does not inherit its memory
resoures from its \parent"; those resoures ome from do-
mains that are attahed to the pool. Instead, the mempool
hierarhy allows for sharing of memory between pools: a
parent may see all of a hild's memory while limiting what
the hild may see of its own. The semantis of the mempool
hierarhy are motivated by the desire to support multiple
address spaes.

D. Channels

Domains reate hannels to send, reeive, and forward
pakets. Some hannels are anhored in an EE; anhored
hannels are used to send pakets between the exeution
environment and the underlying ommuniation substrate.
Anhored hannels are further haraterized as being ei-
ther inoming (inChan) or outgoing (outChan). Other han-
nels are ut-through (utChan), meaning that they forward
pakets through the ative node|from an input devie to
an output devie|without being interepted and proessed
by an EE. Clearly, hannels play a entral role in support-
ing our ow-oriented design. We rystallize this role at the
end of this subsetion; �rst we desribe the various types
of hannels in more detail.
When reating an inChan, a domain must speify several

things: (1) whih arriving pakets are to be delivered on
this hannel; (2) a bu�er pool that queues pakets wait-
ing to be proessed by the hannel; and (3) a funtion to
handle the pakets. Pakets to be delivered are desribed
by a protool spei�ation string, an address spei�ation
string, and a demultiplexing (demux) key. The bu�er pool
is reated out of the domain's memory pool. The paket
handler is passed the paket being delivered, and is exe-
uted in the ontext of the owning domain's thread pool.
When reating an outChan, the domain must speify (1)

where the pakets are to be delivered and (2) how muh link
bandwidth the hannel is allowed to onsume (guaranteed
to get). Paket delivery is spei�ed through a protool
spei�ation string oupled with an address spei�ation
string. The link bandwidth is desribed with an RSVP-

like QoS spe [34℄.
Cut-through hannels both reeive and transmit pak-

ets. A utChan an be reated by onatenating an exist-
ing inChan to an existing outChan. A onveniene funtion
allows an EE to reate a utChan from srath by giving
all the arguments required to reate an inChan/outChan
pair. Cut-through hannels, like input and output han-
nels, are ontained within some domain, that is, the yles
and memory used by a utChan are harged to the ontain-
ing domain's thread and memory pool. Figure 4 illustrates
an example use of ut-through hannels, in whih \data"
pakets might forwarded though the ut-through hannel
inside the NodeOS, while \ontrol" pakets ontinue to be
delivered to the EE on an input hannel, proessed by the
EE, and sent on an output hannel.

Domain

in
C

h
an

o
u

tC
h

an

cutChan

NodeOS

EE

Fig. 4. A domain with a ut-through hannel.

The protool and address spei�ations for inChans and
outChans are similar, and are largely adapted from Sout's
path abstration (Setion IV). The protool spei�ation
is omposed of modules built into the NodeOS. For exam-
ple, \ip", \udp", or \anep". Components are separated
in the spei�ation string by the '/' harater. Inluded at
one end of a protool spei�ation is the interfae on whih
pakets arrive or depart. Thus, a minimal spei�ation is
\if" (for all interfaes) or \ifN" where N is the identi�er of
a spei� interfae. For example \if0/ip/udp/anep" spe-
i�es inoming ANEP pakets tunneled through IP, while
\ip/if" spei�es outgoing IP pakets. The address spei�-
ation de�nes destination addressing information (e.g., the
destination UDP port number). The format of the address
is spei� to the highest level protool in the protool spei-
�ation (e.g., desribing UDP addresses). utChan protool
spei�ations have an idential syntax with the addition of
a 'j' symbol to denote the transition from inoming paket
proessing to outgoing paket proessing; e.g., example,
\ip/udpjudp/ip".
Simply speifying the protool and addressing informa-

tion is insuÆient when an EE wants to demultiplex multi-
ple paket ows out of a single protool (e.g., from a single
UDP port). The demux key passed to the inChan spei�es
a set of (o�set, length, value, mask) 4-tuples. These tu-
ples are ompared in the obvious way to the \payload" of
the protool. The \payload" is de�ned as the non-header

5

portion of the paket for whatever protool spei�ation
was given. For example, with a raw \if" spei�ation, the
payload is everything after the physial headers; with an
\if/ip/udp" spei�ation the payload is the UDP payload.
Conveniene funtions are provided for reating �lters that
math well-known headers.
Note that demux keys and protool spei�ations logi-

ally overlap. The distintion is in the proessing done on
the pakets by the NodeOS. For example, an EE an re-
eive UDP port 1973 pakets by reating an inChan with a
protool of \if0" and demux key that mathes the appro-
priate IP and UDP header bits, or by reating an inChan
with a protool of \if0/ip/udp". The important and ritial
distintion is that the former ase will not ath fragments
at all, while the latter will perform reassembly and deliver
omplete UDP pakets. Additionally, the former will pro-
vide the IP and UDP headers as part of the reeived paket
where the latter will not.
We onlude our desription of hannels by revisiting our

design goals. First, it is orret to view hannels and do-
mains as olletively supporting a ow-entri model: the
domain enapsulates the resoures that are applied to a
ow, while the hannel spei�es what pakets belong to the
ow and what funtion is to be applied to the ow. The
pakets that belong to the ow are spei�ed with a ombi-
nation of addressing information and demux key, while the
funtion that is to be applied to the ow is spei�ed with a
ombination of module names (e.g., \if0/ip/udp") and the
handler funtion.
Seond, ut-through hannels are primarily motivated by

the desire to allow the NodeOS to forward pakets without
EE or AA involvement. Notie that a utChan might or-
respond to a standard forwarding path that the NodeOS
implements very eÆiently (perhaps even in hardware), but
it might also orrespond to a forwarding path that inludes
an OS-spei� extension. In the former ase, the EE that
reates the utChan is able to ontrol the hannel's be-
havior, similar to the ontrol allowed by API de�ned for
programmable networks [12℄, [16℄. In the latter ase, the
EE that reates the utChan is able to name the exten-
sion (e.g., \if0/ip/extension/if1") and speify parameters
aording to a standard interfae, but exatly how this ex-
tension gets loaded and its interfae to the rest of the ker-
nel is an OS-spei� issue; the NodeOS interfae does not
presribe how this happens. In other words, ut-through
hannels allow EEs to exploit both performane and exten-
sibility apabilities of the NodeOS.

E. Files

Files provide persistent storage and oarse-grained shar-
ing of data. Beause we did not view ative networks as
requiring novel �le system support, we adopted an inter-
fae that loosely follows POSIX 1003.1. Eah EE sees a
distint view of the persistent �lesystem, rooted at a dire-
tory hosen at on�guration time. In other words, \/" for
the ANTS EE is rooted at /ANTS. This insulates EEs from
eah other with respet to the persistent �lesystem names-
pae. In order to aommodate environments in whih EE

�le sharing is desirable, however, we expet to add an in-
terfae that allows EEs to aess the shared portion of the
namespae.
EEs may share information through the use of shared

memory regions, whih are reated with a ombination of
shm open and mmap operations. A non-persistent �le ob-
jet is �rst reated with shm open, whih allows the spei�-
ation of a name, as well as aess rights and other options.
One the �le objet is reated, EEs may then mmap the ob-
jet to reate a region of memory that is either private (not
shared), or shared among the EEs mapping that �le objet.

IV. Implementation I: Sout

We have implemented the NodeOS in the Sout oper-
ating system, whih enapsulates the ow of I/O data
through the system|from input devie to output devie|
in an expliit path abstration [21℄. This similarity to the
NodeOS interfae allows Sout to implement both the tra-
ditional and ative forwarding servies using exatly the
same mehanism. This makes it possible to integrate the
NodeOS interfae into a Sout-based router in a way that
does not negatively impat our ability to forward non-
ative pakets.

A. Overview

Sout is a on�gurable system, where an instane of
Sout is onstruted from a set of modules. For exam-
ple, Figure 5 shows a portion of the module graph for an
ative router. Modules TCP, UDP, IP, and ANEP eah
implement a ommuniation protool. Modules JVM and
NodeOS eah implement an API|the former implements
the Java Virtual Mahine (see [10℄) and the latter imple-
ments the NodeOS.

IP

TCP

JVM

UDP

ANEP

NodeOS

. . .

Fig. 5. Module Graph for an Ative Router

Sout paths support data ows through the module
graph between any pair of devies. When on�gured to
implement a router, Sout supports network-to-network
paths, whih we all forwarding paths. For example, Fig-
ure 6 depits a forwarding path that implements an FTP
proxy.
The entity that reates a forwarding path spei�es three

piees of information: (1) the sequene of modules that de-
�ne how the path proesses messages, (2) a demultiplexing
key that identi�es what pakets will be proessed by the

6

if ip tcp
proxy

tcp
ip if

Fig. 6. Example Forwarding Path

path, and (3) the resoure limits plaed on the path, inlud-
ing how many pakets an be bu�ered in its input queue,
the rate at whih it is allowed to onsume CPU yles, and
the share of the link's bandwidth it may onsume. This
same information is required by the NodeOS: a domain is
a ontainer for the neessary resoures (hannels, threads,
and memory), while a hannel is spei�ed by giving the
desired proessing modules and demultiplexing keys. As
a onsequene, the NodeOS module is able to implement
domain, hannel, thread, and memory operations as simple
wrappers around Sout's path operations.

if ip udp
anep

nodeos

anep
udp

ip if

Fig. 7. In and Out Channels Conneting the NodeOS to the Network

More interestingly, a ut-through hannel is simply im-
plemented by a Sout forwarding path that does not pass
through the NodeOS module (similar to the one shown in
Figure 6), while in and out hannels map onto a Sout
path that does inlude the NodeOS module (as shown in
Figure 7). In the latter ase, the inChan orresponds the
portion of the forwarding path to the left of the NodeOS
module, while the outChan orresponds to the portion of
the forwarding path to the right of the NodeOS module.

The only issue is how to implement demultiplexing. In
Sout, eah module implements two funtions: one that
proesses pakets as they ow along a path, and one that
demultiplexes inoming pakets to selet whih path should
proess the paket. Paket lassi�ation is aomplished
inrementally, with eah module's demux funtion making
a partial lassi�ation deision using module-spei� infor-
mation. This approah to lassifying pakets auses two
ompliations.

First, the NodeOS module's demux funtion must im-
plement a programmable pattern mather that reognizes
appliation-spei�ed keys. (Its proessing funtion sim-
ply implements the wrappers desribed above.) Thus, to
math a paket to an inChan that delivers \if/ip/udp/anep"
pakets for a spei� ANTS protool (e.g., protool `8'),
the interfae's demux looks for type=IP, IP's demux would
look for protnum=UDP, UDP's demux would look for the
well-known ANEP port, and ANEP's demux would look
for ANTS's well-known EE number. If we assume the
ANTS protool and apsule type �elds are eah four bytes,
the NodeOS's demux would then math the pattern (3, 5,
x08x00x00x00x02, xFFx00x00x00x02) to selet the path that
delivers pakets to this spei� ANTS protool (i.e., to a
spei� ative appliation running in the ANTS exeution

environment).
Seond, the NodeOS does not tightly ouple the demul-

tiplex keys with the proessing modules. Thus, it is possi-
ble to say that pakets mathing a ertain IP address and
TCP port numbers should be proessed by just the IP mod-
ule. This happens, for example, with transparent proxies.
Sout, however, ouples the two: reating a path with mod-
ules \if/ip/tp" implies that both the demultiplexing and
proessing funtions of all three modules are involved. Our
experiene implementing the NodeOS interfae has aused
us to hange Sout so that proessing and demultiplexing
are not so tightly oupled. That is, path reation now takes
two sets of module lists, one that identi�es how the path
proesses pakets and one that spei�es how pakets are
lassi�ed.

B. Integrated Perspetive

The goal of the Sout-based router is to provide a single
framework for vanilla IP forwarding, kernel extensions to
IP forwarding, and ative forwarding [14℄. From Sout's
perspetive, we an view a forwarding path as being on-
struted from a ombination of system modules and user

modules. Systems modules orrespond to native Sout
modules, whih have two important attributes: (1) they
are trusted and an be safely loaded by verifying a digital
signiture, and (2) they assume the same programming envi-
ronment (they are written in C and depend on Sout inter-
faes). In ontrast, user modules are untrusted and an be
implemented in any programming environment. For exam-
ple, an appliation that wants to establish a virtual private
network might reate a forwarding path that inludes a
VPN module running over IP tunnels: \if/ip/[vpn℄/ip/if",
where we braket VPN to denote that it is a user module.
Of ourse, the key to being able to run suh user modules

is to exeute them in a wrapper environment, whih in our
ase is provided by the NodeOS interfae. The NodeOS,
in turn, allows user-provided modules to de�ne their own
internal paradigm for extending router funtionality. For
example, the VPN module might be implemented in the
ANTS exeution environment. ANTS happens to depend
on Java, whih is an exeution environment in its own right.
In e�et, if one were to \open" the user-provided VPN in
this example, one might see the omponents shown in Fig-
ure 8, where VPN is one of possibly many ative applia-
tions that ANTS might support at any given time. The
only restrition on suh nested environments is that the
NodeOS is at the outermost level.
Given this perspetive, we omment on several attributes

of our design. First, some forwarding paths onsist en-
tirely of Sout modules; the vanilla IP forwarding path is a
prime example. This makes it possible to implement high-
performane paths that are not enumbered by the over-
heads of the NodeOS or Java wrapper environments. In
fat, we expet that popular user-provided modules will be
re-written as system modules, and migrate into the kernel
over time. More generally, being able to run both system
and user modules gives us a two-tier seurity model, al-
lowing both trusted system adminsitrators and untrusted

7

if ip [vpn]

ip if

NodeOS

JVM

ANTS

VPN

. . .
. . .

Fig. 8. Internal Struture of a User-Provided Module

users to extend a router's funtionality.

Seond, a Sout forwarding path ontains at most one
user module, but by being able to name the system mod-
ules that make up the rest of path, the user module is able
to exploit legay network modules. For example, in on-
trast to the overlay extension illustrated in Figure 8 that
logially runs on top of the fully-onneted Internet, one
ould implement an extensible IP user module|think of
this module as implementing IP version n|that depends
only on the ability to send and reeive pakets over the
raw interfae. The important point is that user-provided
funtionality an be inserted at any level of the network
stak.

Third, there are two reasons for deiding to reate a new
forwarding path. One is that you want to bind a partiu-
lar paket ow to a unique set of modules. For example,
our router typially runs two vanilla IP forwarding paths:
one that implements the fast path that onsists of a single
module that is optimized for moving option-free datagrams
between a pair of similar devies, and a general forward-
ing path that deals with exeptional ases suh as IP op-
tions and arbitrary interfaes. The seond reason is that
you want to treat a partiular ow speially with respet
to resoure alloation. For example, there might be two
forwarding paths onsisting of the modules \if/ip/if" with
one given best e�ort servie and the other given some QoS
reservation.

Fourth, forwarding paths exist in both the ontrol and
data plane, with ontrol paths typially reating and on-
trolling data paths. For example, a path onstruted
from modules \if/ip/udp/[rsvp℄/udp/ip/if" might reate
the \if/ip/if" path desribed in the previous paragraph,
and in doing so, set the amount of link and CPU resoures
that the ow is allowed to onsume.

C. Performane

We have implemented several forwarding paths, inlud-
ing ones that span the NodeOS. Table I reports the perfor-
mane of these paths on a 450MHz Pentium-II proessor
with three Tulip 100Mbps ethernet interfaes. For eah
type of forwarding path, we give the aggregate rate, mea-
sured in pakets-per-seond (pps) at whih the router an

forward minimim-sized pakets over that path.

Forwarding Path Rate (Kpps)

IP Fast Path 290.0
General IP 104.5
Ative IP 92.5
Transparent Kernel Proxy 85.5
Transparent Ative Proxy 84.9
Classial Kernel Proxy 77.1
Classial Ative Proxy 75.5

TABLE I

Paket forwarding rates for various paths, measured in

thousands of pakets-per-seond (Kpps).

The �rst three forwarding paths implement the standard
IP forwarding funtion under three di�erent senarios. The
IP Fast Path represents the minimal work a Sout-based
router an do to forward IP pakets. It is implemented
by a single Sout module that is optimized for a spei�
soure/sink devie pair. The General IP path inludes
option proessing and handling other exeptional ases.
This path is onstruted from three separate Sout mod-
ules: the input devie driver, IP and the output devie
driver. Finally, the Ative IP path implements IP as a
user module, wrapped in the NodeOS environment. The
di�erene between this and the previous path measures the
overhead of the NodeOS module.

The next pair of paths implement a transparent UDP
proxy. The �rst (Transparent Kernel Proxy) inludes
a null Sout proxy module, while the seond (Transpar-
ent Ative Proxy) inludes a null proxy running on top
of the NodeOS interfae. In pratie, suh proxies might
apply some transformation to a paket ow without the
knowledge of the end points. Sine the numbers reported
are for null proxies, they are independent of any partiular
transformation.

The �nal two paths are for lassial proxies, suh as an
FTP proxy that establishes an external TCP onnetion,
reeives a �le name, and then establishes a internal TCP
onnetion to the appropriate server. As before, we mea-
sure a null lassial proxy running in both the kernel (Clas-
sial Kernel Proxy) and on top of the NodeOS interfae
(Classial Ative Proxy)

Note that all of the numbers reported for the NodeOS
assume the ative ode (user module) is written in C and
ompiled to the native arhiteture. It does not inlude the
overhead of Java or some exeution environment. We are
urrently porting the JVM and ANTS to the latest NodeOS
interfae, but based an implementation of the JVM and
ANTS running on an earlier version of the interfae, we
expet an ative Java module to add 3.5 �se of proess-
ing time to eah paket, and ANTS to add an additional
37.5 �se to eah paket. This would redue the ative IP
forwarding rates, for example, to approximately 60.7k and
18.5k pps, respetively.

8

V. Implementation II: Janos

Our seond example implementation is Janos, a \Java-
oriented Ative Network Operating System." Janos has
two primary researh emphases: (1) resoure management
and ontrol, and (2) �rst lass support for untrusted ative
appliations written in Java. Toward these goals, Janos
neessarily enompasses both the EE and NodeOS layers
of the anonial ative network arhiteture [2℄. As Fig-
ure 9 shows, Janos is a layered arhiteture with three om-
ponents: ANTSR, the Janos Virtual Mahine (JanosVM),
and Moab. Though this setion is primarily onerned with
Moab, the Janos NodeOS, we introdue the other layers to
provide a bit of ontext. A omplete disussion of the Janos
arhiteture, fousing on other issues, appears elsewhere in
this journal [27℄.

AA3 AA4AA1

OSKit
Moab

Execution
Environment
(EE)

Active

(AAs)
Applications

NodeOS

}
}

}

AA2

Janos Virtual Machine

ANTSR

Janos Java NodeOS Bindings

Fig. 9. The Janos Arhiteture and the orresponding DARPA A-
tive Network Arhiteture.

Ative appliations for Janos are written to use the
ANTSR Java runtime environment. ANTSR, or \ANTS
with Resoure management," exports to ative appliations
essentially the same API as that exported by the standard
ANTS ative network runtime [30℄. However, ANTSR is
re-arhiteted to take advantage of NodeOS and JanosVM
servies, and to support preise resoure ontrol. ANTSR
runs atop the JanosVM, an extended Java Virtual Mahine
(JVM). In addition to providing the standard JVM ser-
vies neessary for exeuting Java byteode (e.g., thread-
ing, garbage olletion, and JIT ompilation), we have ex-
tended the JVM to support multiple namespaes and mul-
tiple heaps, providing independene between onurrently
exeuting Java appliations. The JanosVM also exports
Java bindings for the NodeOS API, making it a potential
host platform for other Java-based EEs. Together, ANTSR
and the JanosVM form the EE layer of the ative network
arhiteture.
Underneath the JanosVM is Moab, a multi-threaded,

fully-preemptible single-address-spae operating system
implementing the NodeOS abstrations. Moab is built us-
ing the OSKit [9℄, a toolkit of omponents for building sys-
tems software. The OSKit inludes suites of devie drivers,
numerous �lesystems, a networking stak, and a thread im-
plementation, as well as a host of support ode for boot-
ing, remote debugging, memory management, and enabling
hosted exeution on UNIX systems.
The remainder of this setion disusses our experienes

with the NodeOS interfae in Janos. We start by desrib-

ing the integration of the NodeOS interfae into Janos from
two perspetives. First, we look at the part of Janos above
the interfae boundary, disussing how the requirements
of the JanosVM inuened the design of the interfae and
how we leverage the resulting design in the JanosVM im-
plementation. Seond, we look below the boundary, briey
desribing some of the issues involved with implementing
the NodeOS interfae on top of the OSKit. We onlude
by presenting and briey disussing some preliminary per-
formane results for Moab.

A. NodeOS Design Issues

The JanosVM has two key properties that inuened the
design of the NodeOS spei�ation: its JVM heritage whih
strongly inuenes memory management, and its tight ou-
pling with the NodeOS. In the following paragraphs we
explore these properties and how the NodeOS design sup-
ports them.
Memory management: Fundamentally, the JanosVM,

like typial high-level language runtimes, needs to do its
own memory management. Not only does the VM al-
low the sharing of ode and data between domains, but
it also maintains separate per-domain garbage-olleted
heaps. While it might be possible to use per-domain,
NodeOS-enfored memory limits, at best these would be
redundant mehanisms and at worst they would severely
restrit how the JanosVM an use memory. Thus, the
ability to aggregate memory from multiple domains into a
single memory pool is essential to the JanosVM. This abil-
ity is enabled in the NodeOS interfae by deoupling the
domain and memory pool abstrations, allowing a memory
pool to be spei�ed expliitly at domain reation time. In
the JanosVM, a single memory pool is reated and all do-
mains are assoiated with it. When a domain is reated, its
resoures are added to this global pool. The JanosVM is re-
sponsible for making per-domain alloation deisions from
this pool and enforing per-domain memory limits. When
a domain terminates, the memory pool's allbak funtion
is invoked, informing the JanosVM that it must return an
amount of memory equal to that domain's share. The key
point is that, with a single memory pool, the JanosVM is
free to deide whih memory pages are to be taken from the
pool. Were there to be one memory pool per domain, the
JanosVM would be fored to return the spei� memory
that was alloated to the terminated domain.
While the single memory pool enables the JanosVM to

aount for expliit alloations, one issue remains. In or-
der for the JanosVM to aurately trak all memory re-
soures, it must also have a way to aount for memory
alloated within Moab on behalf of domains; that is, the
impliitly alloated memory used for the internal state
of NodeOS-provided objets. To aomplish this obje-
tive, the NodeOS interfae was designed to provide \zero-
mallo" objet reation API alls in whih the aller sup-
plies pre-alloated memory for the NodeOS to use for the
objet state. Another advantage to this approah is that it
allows the EE to embed atual NodeOS objets (as opposed
to objet referenes) in EE-provided objets, thus simpli-

9

fying the ode for managing these objets. The JanosVM
exploits this feature by embedding NodeOS objets in the
orresponding Java wrapper objets that are exposed to
the ANTSR runtime via the Java NodeOS bindings. A
�nal bene�t of pre-alloation of objet memory is that
it makes objet reation alls more preditable|they will
never blok for memory alloation or throw a memory ex-
eption.
Tight oupling: Another aspet of the JanosVM that had

inuene on the NodeOS interfae is that the JanosVM and
Moab are tightly oupled, with NodeOS API alls being im-
plemented as diret funtion alls rather than as \system
alls." The ability to share memory between the NodeOS
and EE via diret pointers during objet reation alls is
an example of how the NodeOS interfae is designed to
eÆiently support this model; that is, in an implementa-
tion where the NodeOS \trusts" an EE. The interfaes are
designed to allow diret manipulation of all the NodeOS
objets by the EE, making it possible, for example, to ag-
gressively inline API alls in the EE ode.
Another manifestation of the tight oupling of the EE

and NodeOS is the way in whih NodeOS exeption ondi-
tions are handled. The NodeOS defers to the EE, via all-
baks, whenever a domain terminates, faults, or exhausts
some resoure. The EE is expeted to reover or lean up
and destroy any a�eted state. Only if the EE doesn't re-
spond in a timely manner will the NodeOS intervene, and
then only in a very diret, albeit heavy-handed, way: by
terminating the EE and relaiming its resoures. Grae-
ful exeption handling is the responsibility of the EE. This
design is neessary beause, as explained above under mem-
ory management, the EE has private knowledge of ertain
per-domain information.
Finally, the onsious e�ort to borrow from interfaes

suh as POSIX when designing the NodeOS interfae is
leveraged to great e�et in the JanosVM. As the JanosVM
is derived from Ka�e [31℄, a POSIX-hosted JVM, the sim-
ilarity of the NodeOS thread, synhronization, and �le in-
terfaes to those in POSIX made porting the JanosVM to
Moab muh easier than it would otherwise have been.

B. NodeOS Implementation Issues

The OSKit was designed for building operating system
kernels, making it an obvious hoie for onstruting the
Moab NodeOS. The rihness of the OSKit environment
gave us not only the ability to run diretly on two di�erent
hardware platforms (x86 and StrongARM) and on top of
various UNIX-like OSes (Linux, FreeBSD and Solaris), but
also provided development tools for debugging, pro�ling,
and monitoring. Its support for standard interfaes suh
as POSIX threads and �les made mapping the analogous
NodeOS interfaes straightforward. On the other hand,
not all OSKit interfaes were well suited to the task. The
base memory interfae was too low-level, its generi nature
hindering preise ontrol of memory resoures. The net-
working interfae was too high-level, its oarse granularity
limiting the options for hannel omposition. In the fol-
lowing paragraphs we desribe the Moab implementation

of three NodeOS abstrations that best illustrate the good
and bad harateristis of the OSKit as a NodeOS base.

Threads: The implementation of thread pools and the
threading interfae in Moab was, for the most part,
straightforward due to the similarity between the NodeOS
and POSIX (pthread) APIs. Just as this similarity helped
\above" when mapping the JanosVM onto the API, it
helps from \below" when implementing the API on top
of the OSKit pthreads omponent. Most of the thread and
synhronization primitives in the API mapped diretly to
pthread operations. There was one obvious performane
problem aused by the diret mapping of NodeOS threads
to pthreads: the NodeOS thread-per-paket model of exe-
ution led to reation and destrution of a pthread for ev-
ery paket passing through the NodeOS. This was avoided
by reating and maintaining a ahe of ative pthreads in
every thread pool.

Memory: Memory pools represent one area where using
the OSKit has made the implementation diÆult. Trak-
ing memory alloated and freed within OSKit omponents
suh as the network stak is easy, but identifying the orret
memory pool to harge or redit for that memory is not. In
partiular, all alloations in OSKit omponents eventually
funnel down to a single interfae. By providing the imple-
mentation of that interfae within Moab, we have ontrol
over all memory alloated anywhere in the system. How-
ever, that interfae inludes no spei� information about
what the memory is being used for, nor any expliit indi-
ation as to the prinipal involved. We are left with the
hoie of harging either the memory pool of the urrent
thread (harge the \urrent user") or the \root" memory
pool (harge \the system"). At the moment, Moab harges
all OSKit alloations to the root pool. The solution we are
pursuing is to evolve the OSKit memory interfaes, either
by exposing more domain spei� alloation interfaes or
by passing down the neessary information to the generi
interfaes.

Channels: Channels were by far the most hallenging
of the NodeOS abstrations to implement using urrent
OSKit omponents. Anhored hannels in Moab are im-
plemented in one of two ways orresponding to the proto-
ol spei�ation used: raw interfae (\if") hannels deliver
pakets diretly from the devie driver to Moab (and on to
the JanosVM) while all others use a soket interfae to de-
liver UDP or TCP pakets from the devie driver, through
the OSKit networking stak, and up to Moab. In both
ases, the OSKit's enapsulated legay-ode omponents
don't math well with the NodeOS networking model.

Raw interfae hannels are implemented diretly above
the OSKit's enapsulated Linux devie drivers using the
standard OSKit network devie interfae. We modi�ed the
OSKit devie driver glue ode to use speialized \paket
memory" alloation routines to avoid the previously de-
sribed problems aused by the low-level generi memory
interfaes. Our only remaining onern is the inherent per-
formane limitations aused by using stok Linux devie
drivers. This is disussed further in Setion V-C.

All other anhored hannels are implemented diretly

10

on a BSD soket-style OSKit interfae, allowing UDP/IP
or TCP/IP protool spei�ations. This provides only a
limited subset of what the NodeOS interfae supports|in
partiular, it does not support \IP-only" hannels. To ad-
dress this drawbak, we are reimplementing these hannels
using Clik [15℄ routers. Clik, a router omponent toolkit
from MIT, provides a set of �ne-grained elements| small
omponents representing a unit of router proessing| and
a on�guration language for ombining these elements into
router on�gurations. By using Clik, we will be able
to do the �ne-grained protool omposition allowed by
the NodeOS spei�ation. Currently, we have a proto-
type implementation of Clik-based UDP/IP inChans and
outChans.
Cut-through hannels are urrently implemented as an

unoptimized onatenation of NodeOS inChan/outChan
pairs and an perform no additional protool proessing.
Again, the oarse granularity of the OSKit networking in-
terfae does not allow aess to individual protools from
within Moab. As with anhored hannels, we have done
preliminary work to make use of Clik graphs to implement
a more exible form of ut-through hannel. urrently as an
extension to the NodeOS interfae. With Clik utChans,
the protool spei�ation is a Clik router desription. The
Clik router elements used to instantiate the graph run in-
side Moab with standard devie driver elements replaed by
elements to read from an inChan and write to an outChan.

C. Performane

Our primary goals to date have been the implementa-
tion of the NodeOS abstrations and API in Moab and the
integration of Moab with the JanosVM. With those goals
largely met, we have now begun to look into measuring
and improving the performane of Moab. In the following
paragraphs we present the results of some simple paket-
forwarding tests to haraterize that performane.
All testing used the failities of emulab.net, the Utah

Network Emulation Testbed [8℄. Testbed nodes are
600MHz PentiumIII PCs using ASUS P3B-F motherboards
with 128MB of PC100 SDRAM and 5 Intel EtherExpress
Pro/100+ 10/100Mbit PCI Ethernet ards all onneted
to a Ciso 6509 swith. Our experiment onsisted of three
nodes, onneted in a linear arrangement: a paket pro-
duer node was onneted by a private VLAN to the paket
router node, whih in turn was onneted via a seond pri-
vate VLAN to a paket onsumer node. The produer and
onsumer nodes ran ustom OSKit-based kernels while the
router node ran one of three routers as desribed below.
The test was to generate and send 18-byte UDP (64-byte

Ethernet) pakets at inreasing rates to disover the maxi-
mum paket forwarding rate of the router node as measured
at the onsumer node. As in the Sout IP Fast Path exper-
iment, only minimal IP proessing was performed on the
router node. The results are summarized in Table II.
The OSKit experiment establishes a performane base-

line by measuring the raw paket forwarding rate of a sim-
ple OSKit-based router. This router has a single funtion
whih reeives a paket pushed from the input interfae

Forwarding Path Rate (Kpps)

OSKit 75.7
Moab utChan 48.7
C-based EE 45.0

TABLE II

Paket forwarding rates at various levels of the Janos

arhiteture, in thousands of pakets-per-seond (Kpps).

driver, performs IP proessing, and pushes the paket out
on the output interfae. This result represents the upper-
bound on performane of a system based on OSKit inter-
faes built on top of stok, interrupt-driven Linux devie
drivers. Given the di�erenes in hardware on�gurations,
the reorded 75,700 pakets-per-seond (pps) is ompara-
ble to the 84,000 the Clik team reported for similar stok
Linux devie drivers. The Clik work[15℄ as well as the
Sout team's experiene also demonstrated the enormous
improvement|exeeding a fator of three|in the forward-
ing rate of generi pakets that polled devie drivers pro-
vide. Based on those reports, onverting Moab to use
polled drivers should improve performane dramatially.

We then measured Moab using a utChan to forward
pakets between the interfaes (Moab utChan). The re-
sult was a 35% degradation of the OSKit forwarding rate,
down to 48,700 pps. The bulk of the slowdown is at-
tributable to the urrent unoptimized implementation of
Moab utChans. Sine they are now implemented as a
simple onatenation of an inChan and outChan, an a-
tual Moab thread is dispathed for eah arriving paket.
This thread runs the utChan funtion whose sole purpose
is to send the paket on the outChan and release the paket
bu�er. Avoiding this senerio is the purpose of ut-through
hannels, and we will optimize our implementation in the
near future.

Finally, in C-based EE, we measured the performane
of a C-language EE running on Moab using the NodeOS
API. The EE onsists of a domain with a single thread
reeiving pakets on an inChan, performing the IP proess-
ing, and sending the paket on the outChan. This is exatly
what the Moab utChan forwarder does, only running out-
side the NodeOS API boundary. Hene, this test au-
rately demonstrates the overhead involved in rossing the
API boundary. As one of the goals of Janos is the tight ou-
pling of the EE and NodeOS, this result is important. In
this on�guration, there was an 8% drop to 45,000 pps. In
absolute terms, the EE-level hannel reeive funtion took
an average of 9,300 yles (15.5 �s) per all versus 6,900
(11.5 �s) per all for the NodeOS-level funtion when re-
eiving at a rate of 40,000 pps. Eah EE-level invoation
requires six API boundary rossings, for an average added
ost of 400 yles per rossing. This ost, whih is some-
what high, will be redued in the near future as we take
further steps to optimize the implementation.

11

VI. Implementation III: AMP

Our third implementation, alled AMP, is layered on top
of the exokernel (xok) and its POSIX-like libEXOS library
OS [13℄. AMP's goal is to provide a seure platform upon
whih EEs and ative appliations an run, without unduly
ompromising eÆieny. As illustrated in Figure 10, AMP
onsists of library ode (libAMP), and four trusted servers,
that jointly provide the NodeOS interfae to an EE. One
of our self-imposed design onstraints was to avoid intro-
duing new abstrations or mehanisms into xok, as we
attempt to demonstrate that a seure system may be on-
struted entirely above an exokernel.

Comparing AMP to Janos, the same AAs and ANTSR
EE are layered on the Janos Java NodeOS bindings. How-
ever, AMP implements its own sublasses of the NodeOS
bindings, speialized to use the Java native method inter-
fae to make alls to the libAMP routines implemented
in C. The Ka�e virtual mahine has been ported to, but
not speialized in any signi�ant way for, the exokernel.
LibAMP follows the exokernel library OS design approah
of plaing a opy of the OS in the same address spae as
the appliation. To provide protetion of system-wide state
information, portions of NodeOS abstrations are imple-
mented within separate trusted servers, and libAMP in-
vokes proteted operations via ross-address spae RPC.
Trusted servers implement proteted portions of these
NodeOS abstrations: domains (Seurity Writer Daemon,
SWTD), input hannels (Dynami Paket Filter Daemon,
DPFD), output hannels (Network Transmission Control
Daemon, NTCD), and shared memory (Shared Memory
Daemon, SHMD).

AMP shifts muh of the protetion burden away from
the Janos VM and onto the trusted servers. There are two
onsequenes of this design deision. First, AMP forgoes
many of the opportunities for performane optimizations
possible by exploiting a single-address spae system. In
partiular, ontext swithing osts related to RPC is a po-
tentially signi�ant performane bottlenek. Seond, AMP
is able to aomodate a wide range of EE implementations
and languages. Beause there is relatively little trust that
must be plaed in a given EE, AMP an limit the resoures
and operations that an EE is granted aess to, thereby al-
lowing more exibility in on�guring EEs to run within the
system.

AA3 AA4AA1 AA2

Xok

Kaffe Virtual Machine

ANTSR

Janos Java NodeOS Bindings

LibAMP

Trusted Servers

SHMD

NTCD

DPFD

SWTD

Fig. 10. The AMP Arhiteture.

A. Design Issues

The exokernel provides a minimal set of abstrations
above the raw hardware. Ideally, only those mehanisms re-
quired to ontrol aess to physial resoures and kernel ab-
strations are provided. All other OS abstrations are im-
plemented in user spae. Exokernel implementations utilize
library operating systems o-loated in the address spae
of eah appliation, as opposed to proteted OS servers ex-
euting in their own address spaes. This implementation
hoie redues one of the well known problems of miro-
kernel arhitetures, namely, the high diret and indiret
osts of invoking servies via RPC [18℄. However, the ex-
okernel also provides eÆient support for RPC, whih we
have used extensively in our design and implementation.

AMP's inuene on the NodeOS interfae is reeted in
the simpliity of the interfae API with respet to seu-
rity arguments. In fat, there is preisely one point, at do-
main reation, where redentials are passed to the NodeOS.
These redentials represent the prinipal authorizing the
domain's reation, and are used to determine limits on both
resoures and operations. By determining all rights for a
domain exatly one, and at exatly one entry point in the
NodeOS interfae, this design failitates the enforement
of seurity poliies. AMP maps a domain's authorization
to primitive protetion mehanisms in the xok as desribed
below.

The key to exokernel protetion is the uniform support
for hierarhially-named apabilities (CAPS). CAPS are
more akin to an extensible Posix UID/GID mehanism
than to apabilities, in that CAPS are heked against a-
ess ontrol lists rather than naming and granting rights
diretly. Two properties of CAPS are essential to building
a seure AMP system above xok:

� Kernel ontrol over reation and use|xok maintains all
CAPS in the system, ontrolling when new CAPS are re-
ated, assoiated with a proess (environment abstration
in xok), and passed from one environment to another.
� Ubiquitous and exlusive use throughout the system all
interfae|every system all takes exatly one CAP as an
argument to determine if the requesting entity has suÆient
rights to perform the operation.

Together, these two properties provide the initial basis
for assuring that the AMP system and its seurity meh-
anisms are tamperproof, non-bypassible, and interept or
enfore deisions on all requests for resoures or servies.
By implementing the NodeOS abstrations and AMP seu-
rity mehanisms above xok, development time is redued,
modularity is enhaned, and seurity requirements an be
addressed in a straightforward manner.

B. NodeOS Interfae and Trusted Servers

Eah NodeOS resoure abstration must be ontrolled
in order to ensure separation between the various domains
instantiated in the system. The domain abstration is the
ontainer that holds other resoures, along with the reden-
tials that authorize the domain's ations. Trusted servers
provide ontrol over the NodeOS resoures by enforing

12

the urrent poliy. These servers are rightly viewed as ex-
tended parts of the operating system implemented in user
spae. As suh, they have powers granted to them at boot
time as trusted software in order to arry out their fun-
tion. They enfore aess to their resoures in essentially
the same manner as the xok system all enforement meh-
anism. An xok CAP is passed as an argument of eah RPC
to a trusted server, and used to hek that the request is
allowed. In explaining the implementation details of eah
node OS abstration in AMP, we fous on the onsequenes
of layering above xok.

Paket Forwarding: Unlike a typial monolithi kernel,
xok does not inlude IP routing funtionality in the ker-
nel. Instead, a dediated, non-ative IP forwarder running
in user spae mimis the funtionality provided within the
kernel on other systems. One onsequene is that IP for-
warding is essentially idential to any other Ative Network
EE implementation running on the system. Our hoie of
a C implementation with support for a stati IP forward-
ing funtion ould easily be replaed by any EE ported to
AMP, on�gured to run an AA that implements an appro-
priate IP forwarding funtion. However, this means that
AMP an be expeted to be somewhat slower forwarding
IP pakets than a orresponding Unix system, beause of
the additional osts of opying all pakets up to user spae
and then bak down for transmission.

Domains: The trusted server diretly involved in man-
aging domains, SWTD, interprets high-level poliy, traks
domains and their assoiated redentials, and informs the
other servers regarding what system resoures are autho-
rized to domains. Domains are established via an RPC
to SWTD, whih relies on a Credential Servie (not de-
sribed) to retrieve, validate and ahe redentials. SWTD
reates one xok CAP for eah domain in the system. Sine
a CAP is passed on every system RPC to a trusted server,
the CAP is atually used as an authentiated name for the
domain. CAPs are never manipulated in user spae, sine
they are passed by referene and maintained in the ker-
nel. The redentials supplied with the domain reate oper-
ation are used to determine the spei� resoures or servies
that the domain is granted aess to. Our design alls for
a exible poliy language, but our initial implementation
hands out stati poliy mediation diretives to eah of the
other trusted servers. For example, if a domain is reated
with the right to open ertain input hannels, then the
poliy mediation diretives passed from SWTD to DPFD,
whih mediates inChan reation operations, would ontain
a anonial representation of the paket �lter �elds that
must be spei�ed by any inChan reated by the domain.

There are several onsequenes to layering the domain
abstration above xok in this way. First and foremost, the
kernel knows nothing about domains, but rather traks the
CAPS assoiated with domains. This means that other ab-
strations an be added to the domain ontainer by imple-
menting additional trusted servers, and informing them of
the CAP and poliy mediation diretives assoiated with
a domain. Sine trusted servers are only speial by dint of
their possession of CAPS, and beause they reeive priv-

ileged ommuniations from SWTD, it would not be dif-
�ult to extend the system. In fat, an EE or AA ould
play the role of trusted server with respet to ontrol of
an additional abstration. Seond, even though the do-
main hierarhy and CAP hierarhy were designed to be
isomorphi, this property is not exploited at the trusted
server level. The NodeOS interfae allows parent domains
to ontrol their hildren domains; in theory, this ould be
implemented in AMP by having the parent use a CAP with
the power of all its hildren's CAPs. Xok provides this ex-
at funtionality, but AMP an diretly add the additional
rights granted to eah hild domain to the parent's set of
allowed operations at reation time.

Channels: The hannel implementation in AMP is split
aross three address spaes: DPFD, the libAMP ode o-
loated with the EE, and NTCD. DPFD enfores the poliy
regarding what paket �ltering rules may be installed into
the xok DPF mehanism by a domain, thereby guarantee-
ing strong separation of domains with respet to pakets
reeived over the network. NTCD plays a similiar, but
not quite symmetri role for transmission of pakets over
output hannels. The libAMP hannel ode does all the
proessing for ANEP, UDP and IP. (TCP is urrently un-
supported.) Output hannels use a set of bu�ers mapped
into the address spae of NTCD to pass pakets along for
transmission, and NTCD selets the orret physial inter-
fae based on the destination IP address, and onstruts
the Ethernet header. NTCD an optionally enfore both
transmission limits and header ontent ontrols on pak-
ets. Transmission limits on a domain an be enfored by
diretly ontrolling how many pakets or bytes are sent per
seond.

The DPF mehanism is reused in NTCD to limit the val-
ues of header �elds in transmitted pakets. NTCD lones
both the DPF implemented in xok, and the paket �lter
mediation funtion (from DPFD) used to ontrol whih �l-
ters are inserted into the DPF set. We observe that there
is no need for a tight-oupling between the EE/libAMP
hannel implementation that establishes an outChan and
the DPF rules used to ontrol paket transmission. A small
hange to the NodeOS interfae would allow other imple-
mentations, inluding ones in whih trusted AAs separately
supplied the �ltering rules.

Threads: Our prototype uses the Ka�e implementation,
for whih we have developed a thread pakage alled xok-
jthreads. Xok only supports proesses, while providing
primitive mehanisms useful for implementing threads in
user spae. The xok-jthreads pakage is used by Ka�e for
reating its own threads, as well as by the hannel stak.
Our prototype does not migrate a thread from the inChan
into the EE, but rather delivers the paket and allows Ka�e
to shedule one of its own threads to proess the paket
through the EE and AA. As threads are user spae enti-
ties, we have designed (but not yet implemented) the ma-
hinery needed to limit CPU onsumption by domains. In
this design, a sheduler daemon ats as a �rst-level hierar-
hial sheduler, as well as ontrols all free sheduler time-
slies (quantums). Xok provides an interfae to ontrol,

13

alloate, and preempt quantums sheduled using a simple
round-robin poliy. The seond-level sheduler inside eah
xok-jthreads implementation determines whih thread in-
side the EE is run.

Files: CFFS is the native �lesystem in AMP. Its oper-
ations are implemeted via a trusted server that is part of
the original exokernel distribution. Our only design hange
is to ontrol whih portions of the �le namespae are vis-
ible to the individual EEs. However, this is not adequate
to assure the strong separation of di�erent portions of the
global �lespae, sine symlinks and shared inodes may ob-
sure when sharing is taking plae. The NodeOS sharing
abstration implemented via shm open() and mmap() is
intentionally restritive in order to simplify the seurity
aspets of ontrolling shared memory. The key restrition
is that a shared region may only have a single writer. This
obviates the need for ontrolling write aess, implement-
ing write loks, and relaiming orphaned loks at domain
termination. Moreover, it eliminates entirely the seurity
poliy and on�guration that would be required to spe-
ify whih entities had aess to these anillary operations.
Instead, the shared memory daemon (SHMD) needs only
hek that read or write aess for the shared region is per-
mitted. Memory is provided by the writer, out of their
mempool. Mempools urrently exist only at the level of
the entire EE|resoure limits ontrol the entire amount
of memory used by the EE and all sub-domains.

C. Performane

We report on the forwarding rates for AMP at vari-
ous layers in the arhiteture for minimum sized ethernet
pakets. Channelized IP orresponds to a C implemen-
tation of a forwarding proess layered above the NodeOS
hannel abstration. This proess neessarily runs in user
spae, as the xok kernel does not diretly implement for-
warding. The limited performane reets the osts of
two opies and four CPU ontext swithes required per
eah paket. The next two entries orrespond to im-
plementations that proess ANEP pakets enapsulated
within UDP/IP. The minimal ANEP header does not arry
any options, suh as those requiring CPU intensive ryto-
graphi operations. The rough doubling of performane
between the two ases reets the bene�t of a utChan
over a separate inChan/outChan pair anhored in a Java
EE. The �nal entry measures the rate at whih a mini-
mal ANTSR apsule is forwarded. All numbers were mea-
sured on a testbed onsisting of three 750MHz Pentium-
III PCs with Intel EtherExpress Pro/100+ Mbit Ethernet
ards onneted to a Netgear FS516 swith.

VII. Disussion

It is interesting to note how the di�erenes between the
three base systems impated the way in whih the domain
abstration was implemented. In Sout, the prinipal ab-
stration is the path, whih essentially bundles a domain
plus an inChan/outChan pair. In Moab, domains are losely
assoiated with the JanosVM's abstrations for separate
memory heaps and namespaes. Moab's support of threads

Forwarding Path Rate (Kpps)

Channelized IP 22.1
C hannelized ANEP 17.5
Java hannelized ANEP 6.9
ANTSR forwarder 1.2

TABLE III

Paket forwarding rates for various software layers,

measured in thousands of pakets-per-seond (Kpps).

as a �rst-lass abstration, oupled with the advantage of
a single address spae for memory, provide the right de-
gree of support to allow the virtual mahine to isolate and
separately aount for the resoures used by ative appli-
ations. In ontrast to both of these, the exokernel allows
AMP to map domains one-to-one with the fundamental
protetion mehanism of the system: hierarhially-named
apabilities. This translates into the exokernel's notion of
a domain as an owner of more primitive resoures. A do-
main, in the eyes of exokernel, is roughly the resoures it
is permitted to alloate, and operations it is permitted to
invoke.

Turning to the hannel abstration, the di�erenes be-
tween the Sout and AMP implementations illustrate how
underlying system struture impats the design hoies,
and permeates the system in subtle ways. Sout's han-
nel implementation onsists of a number of system for-
warding modules strung together into a protool stak.
AMP adopts a similar arhiteture. However, Sout im-
plements inChan demultiplexing rules by distributing the
pattern mathing funtions aross the layers of the protool
stak, while AMP entralizes the demultiplexing funtion
by onstruting and downloading the pattern into the ker-
nel. The Sout implementation allows individual system
modules a great deal of exibility, while the AMP imple-
mentation failitates the imposition of higher-level seurity
poliy by heking inChan demultiplexing �lters for onfor-
mane with the poliy before they are downloaded into the
kernel.

With the memory pool abstration, the entral imple-
mentation issue hinges on how to treat an EE's internal use
of memory, versus the memory used by the NodeOS while
performing an operation on behalf on a domain. Here,
Moab assigns a single mempool to the entire JanosVM,
and relies on the spei� properties of that losely-oupled
virtual mahine to limit the memory used by individual do-
mains within the EE. Most of the remaining work involves
restruturing the memory alloation mehanisms below the
Moab kernel interfaes to properly assoiate memory use
with domains. AMP, on the other hand, has the goal of
supporting EEs using di�erent language tehnologies. As-
soiating memory usage by spei� domain is diÆult, and
requires modi�ation of the EE implementations to reate
and manage mempools orresponding to separate virtual
address spaes with both shared and private page ranges.
As a simple step toward this goal, AMP inludes a shared-

14

memory abstration that supports the inlusion of a set
of physial pages into multiple virtual address spaes. Be-
low the NodeOS interfae, AMP has a relatively easy way
to trak memory. Beause eah domain has an assigned
CAP, and every memory alloation operation requires that
a CAP be provided, individual domain usage an be di-
retly traked.

VIII. Related Work

The �rst known ative network, Softnet[33℄, imple-
mented a programmable paket radio network in 1983. It
built upon what one ould all the �rst NodeOS/EE, a
Forth environment alled MFORTH [32℄. This environ-
ment is onsistent with the ontemporary pattern of using
speial languages to program the network.
A more reent system, RCANE [19℄, de�nes a resoure

ontrolled framework for ative network servies. It sup-
ports the OCaml programming language [23℄, is imple-
mented on the Nemesis operating system [17℄, and is in-
teroperable with PLAN [11℄. RCANE supports resoure
reservations for network bandwidth, memory use and om-
putation, muh like the NodeOS. The primary di�erene
between RCANE and the NodeOS is the NodeOS's ex-
ible ommuniation abstration. RCANE uses Nemesis's
network, and allows only link layer ommuniation, while
the NodeOS allows any supported protool to be used.
(RCANE's link layer may be a virtual network imple-
mented on top of UDP; nevertheless, RCANE does not
allow the exibility that the NodeOS provides.) Other dif-
ferenes inlude RCANE's reliane on a safe language to
guarantee seurity.
Three reent router implementations|SuezOS [22℄,

Clik [15℄, and Router Plugins [7℄|allow some degree of ex-
tensibility. In eah system, router funtionality an be ex-
tended by on�guring safe extensions into the kernel. This
is similar to the use of system modules to extend the for-
warding paths in the Sout kernel. In ontrast, the NodeOS
separates the ore OS from the EE, thereby allowing dif-
ferent EEs to safely implement di�erent programming en-
vironments on the same router.
Bowman[20℄, whih runs on top of Solaris, was the �rst

NodeOS that targeted the same ommunity-developed a-
tive network and NodeOS arhitetures that we target.
Bowman was developed in the early days of the spei�-
ation, and therefore implements a subset of the interfae.
It also does not provide resoure ontrols sine it runs on
a generi Unix substrate.

IX. Conlusion

We have desribed an interfae that allows ative ap-
pliations to aess the resoures available on an ative
router, and reported our experienes implementing the in-
terfae using three di�erent operating systems. The in-
terfae is novel in how it is optimized to support paket
forwarding, allows for �ne-grain resoure managment, and
supports seure extensions. The three implementations not
only demonstrate the feasibility of the interfae, but per-
haps more importantly, they also strongly inuened the

design of the interfae in the �rst plae.

Aknowlegements

We are indebted to the many members of the ative
network ommunity who ontributed to the ollaborative
design e�ort that resulted in the DARPA ative network
arhitetural douments. We are grateful to the anony-
mous reviewers and our shepherd, David Wetherall, for
their many helpful omments.

Referenes

[1℄ Ative Network NodeOS Working Group. NodeOS interfae
spei�ation. Available as http://www.s.prineton.edu/nsg/-
papers/nodeos.ps, January 2000.

[2℄ Ative Network Working Group. Arhitetural framework
for ative networks, version 1.0. Available from http://-
www.darpa.mil/ito/researh/anets/Ardos.html, July 1999.

[3℄ D. Sott Alexander, Marianne Shaw, Sott M. Nettles, and
Jonathan M. Smith. Ative bridging. In Proeedings of the ACM
SIGCOMM '97 Conferene, pages 101{111, September 1997.

[4℄ Gaurav Banga, Peter Drushel, and Je�rey Mogul. Resoure
ontainers: A new faility for resoure management in server
systems. In Proeedings of the 3rd Symp. on Operating System
Design and Impl., pages 45{58, February 1999.

[5℄ Samrat Bhattaharjee, Ken Calvert, and Ellen Zegura. Conges-
tion ontrol and ahing in CANES. In ICC '98, 1998.

[6℄ David Clark. The design philosophy of the DARPA Internet
protools. In Proeedings of the SIGCOMM '88 Symposium,
pages 106{114, August 1988.

[7℄ Dan Deasper, Zubin Dittia, Guru Parulkar, and Bernhard Plat-
tner. Router plugins: A software arhiteture for next generation
routers. In Proeedings of the ACM SIGCOMM '98 Conferene,
pages 229{240, September 1998.

[8℄ Flux Researh Group, University of Utah. University of Utah
Network Testbed and Emulation Faility Web site. http://-
www.emulab.net/ and http://www.s.utah.edu/ux/testbed/.

[9℄ Bryan Ford, Godmar Bak, Greg Benson, Jay Lepreau, Albert
Lin, and Olin Shivers. The Flux OSKit: A substrate for OS and
language researh. In Proeedings of the 16th ACM Symp. on
Operating Systems Priniples, pages 38{51, St. Malo, Frane,
Otober 1997.

[10℄ John Hartman, Larry Peterson, Andy Bavier, Peter Bigot,
Patrik Bridges, Brady Montz, Rob Piltz, Todd Proebsting,
and Oliver Spatshek. Experienes building a ommuniation-
oriented JavaOS. Software|Pratie & Experiene, 2000.

[11℄ Mihael Hiks, Pankaj Kakkar, Jonathan T. Moore, Carl A.
Gunter, and Sott Nettles. PLAN: A paket language for a-
tive networks. In ICFP 98, pages 86{93, September 1998.

[12℄ IEEE P1520 Working Group. IEEE P1520: Proposed IEEE
standard for appliation programming interfaes for networks {
web site. http://www.ieee-pin.org/.

[13℄ M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, He-
tor Brieno, Russell Hunt, David Mazieres, Thomas Pinkney,
Robert Grimm, John Jannotti, and Kenneth Makenzie. Ap-
pliation performane and exibility on exokernel systems. In
Proeedings of the 16th ACM Symp. on Operating Systems Prin-
iples, pages 52{65, St. Malo, Frane, Otober 1997.

[14℄ Sott Karlin and Larry Peterson. VERA: An extensible router
arhiteture. In IEEE OPENARCH 01, Anhorage, AK, April
2001.

[15℄ Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Clik modular router. ACM Transa-
tions on Computer Systems, 18(4), November 2000.

[16℄ Tal Lavian, Robert Jaegeer, and Je�rey Hollingsworth. Open
programmable arhiteture for java-enabled network devies. In
Pro. of the Seventh IEEE Workshop on Hot Interonnets,
Stanford University, CA, August 1999.

[17℄ I. M. Leslie, D. MAuley, R. J. Blak, T. Rosoe, P. R. Barham,
D. M. Evers, R. Fairbairns, and E. A. Hyden. The design and
implementation of an operating system to support distributed
multimedia appliations. IEEE Journal on Seleted Areas in
Communiations, 14(7):1280{1297, September 1996.

[18℄ Johen Liedtke. Improving IPC by kernel design. In Proeedings
of the 14th ACM Symp. on Operating Systems Priniples, pages
175{187, Asheville, NC, Deember 1993.

15

[19℄ Paul Menage. RCANE: A Resoure Controlled Framework for
Ative Network Servies. In Proeedings of the First Int. Work-
ing Conf. on Ative Networks, volume 1653 of Let. Notes in
Comp. Si., pages 25{36. Springer-Verlag, July 1999.

[20℄ S. Merugu, S. Bhattaharjee, E. Zegura, and K. Calvert. Bow-
man: A node OS for ative networks. In Proeedings of the 2000
IEEE INFOCOM, Tel-Aviv, Israel, Marh 2000.

[21℄ David Mosberger and Larry L. Peterson. Making paths expliit
in the Sout operating system. In Proeedings of the 2nd Symp.
on Operating System Design and Impl., pages 153{167, Otober
1996.

[22℄ Prashant Pradhan and Tzi-Cker Chiueh. Computation frame-
work for an extensible network router: Design, implementation
and evaluation. SUNY Stony Brook ECSL TR, 2000.

[23℄ Projet Cristal. The Caml language. URL:
http://pauilla.inria.fr/aml/index-eng.html, 2000.

[24℄ Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Murphy,
Hilarie K. Orman, and Larry L. Peterson. Ativating networks:
A progress report. IEEE Computer, 32(4):32{41, April 1999.

[25℄ Oliver Spatshek and Larry Peterson. Defending against denial
of servie attaks in Sout. In Proeedings of the 3rd Symp.
on Operating System Design and Impl., pages 59{72, February
1999.

[26℄ David Tennenhouse and David Wetherall. Towards an ative
network arhiteture. InMultimedia Computing and Networking
96, January 1996.

[27℄ Patrik Tullmann, Mike Hibler, and Jay Lepreau. Janos: A
Java-oriented OS for ative network nodes. In IEEE Journal on
Seleted Areas in Communiations, Ative and Programmable
Networks, 2001.

[28℄ Carl A. Waldspurger. Lottery and Stride Sheduling: Flexible
Proportional-Share Resoure Management. PhD thesis, Mas-
sahusetts Institute of Tehnology, September 1995.

[29℄ David Wetherall. Ative network vision and reality: lessons from
a apsule-based system. In Proeedings of the 17th Symp. on
Operating Systems Priniples, pages 64{79, Deember 1999.

[30℄ David Wetherall, John Guttag, and David Tennenhouse. ANTS:
A toolkit for building and dynamially deploying network proto-
ols. In IEEE OPENARCH 98, San Franiso, CA, April 1998.

[31℄ Tim Wilkinson. Ka�e|a virtual mahine to ompile and inter-
pret Java byteodes. http://www.transvirtual.om/ka�e.html.

[32℄ J. Zander. MFORTH { programmer's manual. Tehnial Report
LiTH-ISY-I-0660, Linkvping University, Dept of EE, April 1984.

[33℄ J. Zander and R. Forhheimer. Softnet { An approah to high
level paket ommuniation. In Pro. Seond ARRL Amateur
Radio Computer Networking Conferene (AMRAD), San Fran-
iso, CA, Marh 1983.

[34℄ Lixia Zhang, Steve Deering, Debra Estrin, Sott Shenker, and
D. Zappala. RSVP: A new resoure reservation protool. IEEE
Network, 7(9):8{18, September 1993.

Larry Peterson (SM'95) reeived the B.S. degree in omputer si-
ene from Kearney State College in 1979, and the M.S. and Ph.D. de-
grees in omputer siene from Purdue University in 1982 and 1985,
respetively. He is a Professor of Computer Siene at Prineton Uni-
versity. His researh fouses on end-to-end issues related to omputer
networks, he has been involved in the design and implementation of
x-kernel and Sout operating systems, and he is a o-author of the
textbook Computer Networks: A Systems Approah. Dr. Peterson is
the Editor-in-Chief of the ACM Transations on Computer Systems,
has been on the editorial boards for IEEE/ACM Transations on
Networking and the IEEE Journal on Seleted Areas in Communia-
tion, and has served on program ommittees for SOSP, SIGCOMM,
OSDI, and ASPLOS. He is also a member of the Internet's End-to-
End researh group, and a fellow of the ACM.

Yitzhak Gottlieb reeived a S.B. in Applied Mathematis{
Computer Siene from Brown University in 1998. He is urrently
a graduate student in Computer Siene at Prineton University.

Mike Hibler reeived B.S. (1980) and M.S. (1983) degrees in om-
puter siene from New Mexio Teh. He is a researh sta� member
with the Flux researh group in the Shool of Computing at the Uni-
versity of Utah. His researh interest is operating system design and
implementation inluding virtual memory systems, network support
and seurity. He was a major ontributor to the original BSD projet
and has been involved with the design and implementation of the
Mah4, Fluke and Moab researh operating systems. He is arguably
the best known omputer siene researher from Truth or Conse-
quenes, New Mexio, lives in Utah despite the snow, and is an avid
mountain biker.

Patrik Tullmann reeived the B.S. degree in omputer siene
from the University of Vermont in 1995 and the M.S. degree in om-
puter siene from the University of Utah in 1999. He is a researh
assoiate in the Flux researh group in the Shool of Computing at
the University of Utah. His researh interests lie at the intersetion
of operating systems and high-level languages, and he has worked on
the Fluke, Alta, and Moab operating systems in the Flux researh
group. He is a member of the Usenix Assoiation.

Jay Lepreau heads the Flux Researh Group at the University of
Utah's Shool of Computing. He has interests in many areas of soft-
ware systems, most of them originating in operating systems issues,
although many go far a�eld. Those disparate areas inlude infor-
mation and resoure seurity, networking, programming and non-
traditional languages, ompilers, omponent-based systems, and even
a pinh of software engineering and formal methods. In 1994 he
founded the highly suessful and prestigious OSDI onferene series,
one of the two premier OS onferenes. His urrent servie e�orts are
foused on developing a large-sale, reon�gurable, network emula-
tion testbed that is universally available to remote researhers.

Stephen Shwab reeived a B.S. degree in EECS from U.C. Berke-
ley in 1987, and a M.S. degree in omputer siene from Carnegie
Mellon University in 1990. He is a senior researh sientist at NAI
Labs, the seurity researh division of Network Assoiates, In., where
he manages projets investigating high-speed �rewall tehnology and
ative networking. He has been involved in the development and ap-
pliation of tehnology in the areas of operating systems, seurity,
high-performane networking and parallel omputing, and is a mem-
ber of the ACM.

Hrishikesh Dandekar reeived the B.S degree in omputer engi-
neering from the University of Pune, India in 1996 and the M.S. in
omputer siene from the University of Southern California in 1998.
He is urrently a researh sientist at NAI Labs, the seurity researh
division of Network Assoiates, In., where he has been involved in
implementing the NodeOS interfae for ative routers using the ex-
okernel system. His researh interests are in the areas of omputer
networking and operating systems.

Andrew Purtell is a researh engineer at NAI Labs, the seurity
researh division of Network Assoiates, In., where he has developed
high-speed �rewall and ative network prototypes. His researh inter-
ests lie at the intersetion of programming language tehnology and
embedded operating systems. He is a member of the ACM.

John Hartman (M'95) reeived the S.B. degree in omputer siene
from Brown University in 1987, and the M.S. and Ph.D. degrees in
omputer siene from the University of California, Berkeley, in 1990
and 1994, respetively. He has been an Assistant Professor in the
Department of Computer Siene, University of Arizona sine 1995.
His researh interests inlude distributed systems, operating systems,
and �le systems. Dr. Hartman is a member of the ACM.

