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Abstract. Let R(t) = P (t)/Q(t) be a quotient of real polynomials. We show
that

�
exp(iR(t)) dt/t has a uniform bound with a bound depending only on

the degrees of P and Q and not on their coefficients. Also Lp esimates are
obtained for certain associated singular integral operators.

1. Introduction

In [4] Stein and Wainger proved the following uniform oscillatory integral estimate:

∣∣∣p.v.
∞∫

−∞

eiP (t) dt

t

∣∣∣ ≤ Cd

where P is a real polynomial of degree d and Cd does not depend on the coefficients
of P . As a consequence one sees that the singular integral operator

Hγf(x) = p.v.

∞∫

−∞

f(x− γ(t))
dt

t

is bounded on L2(Rn). Here γ(t) = (P1(t), ..., Pn(t)) and each Pj is a real polyno-
mial. Lp(Rn) bounds for Hγ , when 1 < p < ∞, are also known to hold, see e.g.,
[5]. In this short note we extend this result to rational functions R(t) = P (t)/Q(t)
where P and Q have real coefficients. More precisely we have

Theorem 1.1.

∣∣∣p.v.
∞∫

−∞

eiR(t) dt

t

∣∣∣ ≤ A (1)

where A depends only on the degrees of P and Q and not on their coefficients.

Remark 1.2. One thing we can do with rational functions that we cannot do with
polynomials is multiply numerator and denominator by the same quantity without
changing matters. For instance, we may assume that P and Q defining the rational
function R do not have a constant term. Also by multiplying the numerator and
denominator by a small positive parameter ε, we may assume that any norm of the
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coefficients of P and Q is less than 1. Hence if the integral in (1) is a continuous
function of the coefficients of R, then Theorem 1.1 follows by compactness.

As a corollary to Theorem 1.1 the singular integral operator Hγ is bounded on
L2(Rn) where γ(t) = (R1(t), ..., Rn(t)) and each Rj is a real rational function.
When γ(t) = (t, R(t)) is a plane curve, we extend the L2 estimate to Lp estimates.

Theorem 1.3.

Tf(x, y) = p.v.

∞∫

−∞

f(x− t, y −R(t))
dt

t

is bounded on Lp(R2), 1 < p <∞ with bounds independent of the coefficients of R.

In [2] it was observed that Theorem 1.1 does not extend to higher dimensions yet
there are certain classes of rational phases which do extend.

In the next section we state and prove the main lemma which we need for the proofs
of Theorems 1.1 and 1.3; the proof of Theorem 1.1 is then given in section 3 and
the proof of Theorem 1.3 is given in the final section.

Notation: Let A,B be complex-valued quantities. We use A . B or A = O(B) to
denote the estimate |A| ≤ Cd,d′ |B| where d and d′ denote the degrees of P and Q.
We use A ∼ B to denote the estimates A . B . A.

2. Preliminaries

The key lemma in the proofs of Theorems 1.1 and 1.3 is a simple variant of a lemma
in [1].

Lemma 2.1. Let P (t) = D
∏m
j=1(t−tj) =

∑m
j=0 pjt

j and Q(t) = E
∏n
k=1(t−sk) =∑n

k=0 qkt
k be two nonconstant polynomials of degrees m and n, whose roots are

ordered such that |t1| ≤ ... ≤ |tm| and |s1| ≤ ... ≤ |sn|.

Then there exists a C = C(m,n) such that for any A ≥ C(m,n) and for any
nonempty I = [A|tj |, A−1|tj+1|] ∩ [A|sk |, A−1|sk+1|],

i) |P (t)| ∼ |pj ||t|j and |Q(t)| ∼ |qk||t|k for all |t| ∈ I (hence pj , qk 6= 0);

ii) if j 6= k, then for |t| ∈ I,
∣∣∣P ′(t)/P (t)−Q′(t)/Q(t)

∣∣∣ ∼ 1/|t|;

iii) if j 6= k and j 6= k + 1, then for |t| ∈ I,
∣∣(P/Q)′′(t)

∣∣ ∼ |P (t)/Q(t)|
[
1/|t|2

]
.
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Proof Clearly for |t| ∈ I (and any A > 1),

(1− 1/A)m|D|[
m∏

`=j+1

|t`|] ≤ |P (t)|/|t|j ≤ (1 + 1/A)m|D|[
m∏

`=j+1

|t`|]

and similarly for |Q(t)|. Hence to prove i) it suffices to show

|D|
m∏

`=j+1

|t`| ∼ |pj | and |E|
n∏

`=k+1

|s`| ∼ |qk|.

In fact pj = (−1)jD
∑
`1<···<`m−j t`1 · · · t`m−j

= (−1)jD
∑

`1<...<`m−j
`1≤j

t`1 · · · t`m−j + (−1)jD tj+1 · · · tm

= I + II

and hence since |t`| ≤ (1/A)|t`′ | whenever ` ≤ j ≤ `′ − 1,

A|I | . |D| |tj+1| · · · |tm| = |II |.
Therefore for A > 1 large enough,

|pj | ∼ |II | = |D|
m∏

`=j+1

|t`|. (2)

In exactly the same way we also have |qk| ∼ |E|
∏n
`=k+1 |s`| finishing the proof of

i).

To prove ii) we use the formula

P ′(t)
P (t)

− Q′(t)
Q(t)

=
m∑

`=1

1

t− t`
−

n∑

`=1

1

t− s`

= −
k∑

`=j+1

1

t− s`
+

j∑

`=1

t` − s`
(t− t`)(t− s`)

+
∑

`>j

1

t− t`
−
∑

`>k

1

t− s`
. (3)

Here we are assuming without loss of generality that k > j, and we will only
concentrate on the lower bound for |P ′/P − Q′/Q| (the upper bound being much
easier). For ` > j we have |t− t`| ≥ (1− 1/A)|t`| ≥ A(1− 1/A)|t| and so

∣∣∣
∑

`>j

1

t− t`

∣∣∣ . 1

A(1− 1/A)

1

|t| .

Similarly ∣∣∣
∑

`>k

1

t− s`

∣∣∣ . 1

A(1− 1/A)

1

|t| .

Also for ` ≤ j, |t− s`|, |t− t`| ≥ (1− 1/A)|t|, and so

∣∣∣
j∑

`=1

t` − s`
(t− t`)(t− s`

∣∣∣ ≤ 1

(1− 1/A)2|t|2
j∑

`=1

|t` − s`|

. 1

A(1− 1/A)2

1

|t| .
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Finally for t > 0,

∣∣∣
k∑

`=j+1

1

t− s`

∣∣∣ ≥
k∑

`=j+1

Re
[ 1

t− s`
]

=
k∑

`=j+1

t−Res`
|t− s`|2

≥ (1− 1/A)

(1 + 1/A)2

1

t

and similarly for t < 0, giving us for any |t| ∈ I ,

∣∣∣
k∑

`=j+1

1

t− s`

∣∣∣ ≥ (1− 1/A)

(1 + 1/A)2

1

|t| .

These estimates, together with (3), show
∣∣∣P
′(t)
P (t)

− Q′(t)
Q(t)

∣∣∣ & (1− 1/A)

(1 + 1/A)2

1

|t|
for all |t| ∈ I , if A > 1 is chosen large enough, completing the proof of part ii) of
the lemma.

The proof of iii) is similar to ii). Again we will only prove the harder lower bound.
However now the symmetry between P and Q is lost and we cannot necessarily
assume j < k. In fact in order to see explicitly why we need to impose j 6= k+ 1 as
well as j 6= k in this part, we will concentrate on the case j > k+ 1 (the case j < k
being slightly easier). We have

(P/Q)′(t) = P (t)/Q(t)
[P ′(t)
P (t)

− Q′(t)
Q(t)

]
= P (t)/Q(t)

[ m∑

`=1

1

t− t`
−

n∑

`=1

1

t− s`

]

and so

(P/Q)′′(t) = P (t)/Q(t)
{[ m∑

`=1

1

t− t`
−

n∑

`=1

1

t− s`
]2

+
m∑

`=1

1

(t− s`)2
−

n∑

`=1

1

(t− t`)2

}
.

The proof of part ii) showed

m∑

`=1

1

t− t`
−

n∑

`=1

1

t− s`
=

j∑

`=k+1

1

t− t`
+ O(1/A|t|).

Similarly

m∑

`=1

1

(t− s`)2
−

n∑

`=1

1

(t− t`)2
= −

j∑

`=k+1

1

(t− t`)2
+ O(1/A|t|2).

Therefore

(P/Q)′′(t) = P (t)/Q(t)
[( j∑

`=k+1

1

t− t`
)2 −

j∑

`=k+1

1

(t− t`)2
+ O(1/A|t|2)

]

= P (t)/Q(t)
[
2

∑

k+1≤`1<`2≤j

1

t− t`1
1

t− t`2
+ O(1/A|t|2)

]
.

Note that the main term in the brackets vanishes if j = k + 1. As in ii)
∣∣∣

∑

k+1≤`1<`2≤j

1

t− t`1
1

t− t`2

∣∣∣ ≥
∑

k+1≤`1<`2≤j
Re
[ 1

t− t`1
1

t− t`2
]
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=
∑

k+1≤`1<`2≤j

t2 − tRe(t`1 + t`2) +Re(t`1t`2)

|(t− t`1)(t− t`2)|2 & 1/t2

for |t| ∈ I , which as before completes the proof of part iii) the lemma.

Remarks 2.2. Lemma 2.1 i) shows that with respect to P , R+ can be decomposed

R+ = ∪M`=1G` ∪ ∪M−1
`=1 D`

into disjoint intervals (M = O(1)) which depends on the choice of A where the D`

are dyadic in the sense that if D` = [a, b), b/a = O(1). On the complementary
intervals G` (which we call “gaps”), if |t| ∈ G`, |P (t)| ∼ |pj` ||t|j` for some j` ≥ 0
(and of course pj` 6= 0). See [1].

Lemma 2.1 ii) gives the bounds
∣∣(P/Q)′(t)

∣∣ ∼ |P (t)/Q(t)|
[
1/|t|

]

for |t| ∈ I while Lemma 2.1 iii) gives analogous bounds on the second derivative of
P/Q.

In Lemma 2.1 either P or Q (not both) can be allowed to be constant (various sums
in the proof are then zero). However, according to the remark after the statement
of Theorem 1.1, we may assume that both P and Q are both nonconstant from the
outset.

Simple examples show that it is necessary to assume j 6= k in part ii) and addition-
ally j 6= k + 1 in part iii) of Lemma 2.1.

We now state a very useful estimate for one dimensional oscillatory integrals, known
as van der Corput’s lemma. A proof can be found in [5].

Lemma 2.3. Suppose φ is real-valued and smooth on (a,b), and that |φ(k)(t)| ≥
λ > 0 for all t ∈ (a, b). Then

∣∣∣∣∣

∫ b

a

eiφ(t)dt

∣∣∣∣∣ ≤ Ckλ
−1/k

holds when either k ≥ 2, or k = 1 and φ′(t) is monotonic.

3. Proof of Theorem 1.1

Recall that we seek to bound

p.v.

∞∫

−∞

eiP (t)/Q(t) dt

t
.

We invoke Lemma 2.1 with respect to Q(t) =
∑n
j=0 qjt

j and decompose the integral
into corresponding gaps and dyadic intervals according to the first remark after the
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proof of Lemma 2.1 and thus it suffices to concentrate our attention on a single gap
G, ∫

|t|∈G

eiP (t)/Q(t) dt

t
.

Let us suppose |Q(t)| ∼ |qk||t|k for |t| ∈ G. We would be in trouble with estimating
this integral if the derivative of P/Q, (P ′Q − PQ′)/Q2, behaves like 1/t over a
long interval. Remarkably this does not happen; Lemma 2.1 tells us that this could
only occur on an interval where |P (t)| ∼ ak|t|k. However on such an interval,
the numerator P ′Q − PQ′ possesses some cancellation. To see this, set D(t) =
qkP (t)− pkQ(t) =

∑
d`t

`. Note that dk = 0. We now invoke Lemma 2.1 again but
now with respect to D and split R+ into gaps and dyadic intervals adapted to D.
Hence we may reduce ourselves to bounding

eipk/qk
∫

|t|∈G∩H

ei[P (t)/Q(t)−pk/qk ] dt/t = eipk/qk
∫

|t|∈G∩H

eiD(t)/qkQ(t) dt/t

where H is a gap for D, say |D(t)| ∼ |dj ||t|j for |t| ∈ H . According to Lemma 2.1
i), j 6= k since dk = 0. Note that

d

dt

( D

qkQ

)
=

D

qkQ

(D′
D
− Q′

Q

)

and so by ii) of Lemma 2.1 we see that

∣∣∣ d
dt

( D
qkQ

)
(t)
∣∣∣ & (|dj |/q2

k)|t|j−k−1 (4)

on G∩H since k 6= j. We consider the two cases k > j and k < j. When k ≤ j− 1
we split the integral
∫

|t|∈G∩H
eiD(t)/qkQ(t) dt

t
=

∫

|t|∈G∩H
|t|≥Θ

eiD(t)/qkQ(t) dt

t
+

∫

|t|∈G∩H
|t|≤Θ

eiD(t)/qkQ(t) dt

t

I + II

where Θ satisfies q2
k/|dj | = Θj−k (recall that qk 6= 0 and dj 6= 0).

By van der Corput’s lemma we see that I = O(1) (since we are using Lemma 2.3
with k = 1, we need to first split the integration in I into O(1) intervals where the
derivative of the phase is monotone). For II we estimate

|II | =
∣∣∣
∫

|t|∈G∩H
|t|≤Θ

(eiD(t)/qkQ(t) − 1)
dt

t

∣∣∣

. 1

|qk|

∫

|t|∈G∩H
|t|≤Θ

|D(t)|/|Q(t)|dt/t . |dj |/q2
k

∫

|t|≤Θ

|t|j−k−1 dt = O(1),

which completes the estimate when k ≤ j − 1. The case k ≥ j + 1 is similar and
this finishes the proof of Theorem 1.1.
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4. Proof of Theorem 1.3

Here we proceed in a similar fashion as in the proof of Theorem 1.1, first decom-
posing R+ into gaps and dyadic intervals with respect to Q, reducing ourselves to
bounding the operator

TGf(x, y) =

∫

|t|∈G

f(x− t, y − P (t)/Q(t))
dt

t

where |Q(t)| ∼ |qk||t|k for |t| in the gap G. We will need to estimate the second
derivative of P/Q and so (see part iii) of Lemma 2.1) we need to do more than
subtract pk/qk from P/Q, i.e., conjugating TG with a translation. Conjugating
TG with the invertible linear transformation L(x, y) = (x, x − Cy) for a suitable
C 6= 0 followed by a translation allows us to subtract from P (t)/Q(t) any linear
polynomial α+βt, β 6= 0, without affecting the Lp operator norms of TG. The idea
is to choose α and β appropriately so that in the difference

P (t)/Q(t)− α− βt = (P (t)− [α+ βt]Q(t))/Q(t),

the numeratorN(t) = P (t)−[α+βt]Q(t) =
∑
j njt

j has vanishing kth and (k+1)th

coefficients, i.e., nk = nk+1 = 0, putting us in a position to use part iii) of Lemma
2.1. A little linear algebra shows that this can be achieved if and only if q2

k 6=
qk−1qk+1.

We will now see that this is indeed the case since G is a gap, i.e., the kth root
sk of Q is separated from the (k + 1)th root sk+1. Recall that G is of the form
[A|sk|, 1/A|sk+1|] and the kth coefficient qk of Q is related to the roots of Q by the
bounds in (2), |qk| ∼ |E|

∏n
`=k+1 |s`|; hence

q2
k ∼ E2

n∏

`=k+1

|s`|2. (5)

For qk−1qk+1 we have

qk−1qk+1 = E2
[ ∑

`1<...<`n−k+1

s`1 · · · s`n−k+1

][ ∑

`1<...<`n−k−1

s`1 · · · s`n−k−1

]

= E2
∑

`1<...<`n−k+1

`′1<...<`
′
n−k−1

s`1 · · · s`n−k+1
s`′1 · · · s`′n−k−1

.

Since in each summand defining qk−1, |s`1 | ≤ |sk| ≤ (1/A2)|sk+1|, we have

|s`1 · · · s`n−k+1
s`′1 · · · s`′n−k−1

| ≤ 1

A2

n∏

`=k+1

|s`|2.

Therefore by (5)

|qk−1qk+1| .
1

A2
E2

n∏

`=k+1

|s`|2 = O(
1

A2
q2
k)

and we see that q2
k 6= qk−1qk+1 if A is chosen large enough.
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Hence we can choose α and β such that the kth and (k+ 1)th coefficients nk, nk+1

of N(t) = P (t)− (α+ βt)Q(t) vanish. We note here that if the resulting β is zero,
then translation by α = pk/qk alone gives nk = nk+1 = 0. As noted above it suffices
for us to prove Lp bounds for

SGf(x, y) =

∫

|t|∈G
f(x− t, y −N(t)/Q(t))

dt

t
.

We decompose R+ further into gaps and dyadic intervals adapted to N reducing
ourselves to estimating the operator

SG,Hf(x, y) =

∫

|t|∈G∩H

f(x− t, y −N(t)/Q(t))
dt

t

where |N(t)| ∼ |nj ||t|j for |t| ∈ H say. Also j 6= k and j 6= k+1 since nk = nk+1 = 0.
By conjugating SG,H with a dilation we may assume that qk = nj = 1. We will use
Theorem 5.1 in [3] to see that SG,H has uniform Lp bounds with 1 < p <∞.

In fact, using the notation in [3], SG,H is a convolution operator with convolution

kernelK =
∑
`∈Z µ

(`)
` where µ

(`)
` is the (x, y)→ (2`x, 2`(j−k)y) dilate of the measure

µ(`) defined by

µ(`)(φ) =

∫

|s|∈2−`(G∩H)∩[1,2]

φ(s,R`(s))
ds

s
.

Here R`(s) = 2`(k−j) N(2`s)/Q(2`s) and since R`(s) = O(1) by Lemma 2.1 part i),
the family of measures µ(`) is uniformly supported in a fixed compact set. In this
context, Theorem 5.1 in [3] takes the following form:

Proposition 4.1. Suppose that the uniform decay estimate

|µ̂(`)(ζ)| ≤ C |ζ|−ε (6)

holds for some C, ε > 0 independent of `. Then f → f∗K is bounded on Lp(R2), 1 <
p <∞ with bounds depending only on p, ε and C.

We remark that it is important that k 6= j in the dilations (x, y) → (2`x, 2`(j−k)y)
defining K; otherwise, the application of Theorem 5.1 in [3] would require the
additional cancellation µ̂`(0, η) ≡ 0 which is simply not the case here.

Thus it suffices to verify (6) with C independent of ` and the coefficients of the
rational function R. In fact we will show

|µ̂(`)(ζ)| . |ζ|−1/4 (7)

where

µ̂(`)(ζ) =

∫

|s|∈I

ei[ξs+ηR`(s)]
ds

s

and I = 2−`(G ∩H) ∩ [1, 2].

Lemma 2.1, part iii) implies that |R′′` (s)| & 1 for |s| ∈ I (recall that qk = nj = 1).
Thus van der Corput’s lemma shows that (7) holds whenever |ξ| ≤ |η|2. On the
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other hand, when |η|2 ≤ |ξ|, we can write eiξs = 1/iξ(d/ds)(eiξs) and integrate by
parts, using the fact R′`(s) = O(1) (Lemma 2.1, part ii) ) to see that in this case,

|µ̂(`)(ζ)| . |η|/|ξ| . |ζ|−1/2,

establishing (7).

This completes the proof of Theorem 1.3.
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