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Abstract—A novel sum-rate outer bound for the Gaussian
interference channel with a relay is presented. The outer bound
is obtained by adapting the genie-aided approach developed for
interference channels in [1]. The cut-set bound for this channel
is also derived and is shown to be much looser than the new
bound. The new bound is also compared to an achievable rate
region we introduced in previous work. We show that the inner
and outer bounds are close in the regime of strong interference
where receivers can decode both messages. The capacity region in
strong interference for the discrete memoryless degraded channel
is also presented.

I. INTRODUCTION

Cooperation via relays that forward information in wireless

networks improves the performance in terms of rate, coverage,

reliability and energy-efficiency. Cooperative strategies for the

single-relay channel have been developed in [2], [3], [4],

and further generalized to multi-relay channels. Relay channel

models consider one communicating pair and hence do not

capture cooperation for multiple source-destination pairs. And

yet, wireless applications typically involve simultaneous com-

munications from many sources to many destinations. Such

scenarios bring in new elements not encountered in the classic

relay channel: 1) the presence of interference caused by simul-

taneous transmissions from multiple sources; 2) the opportu-

nity for joint encoding of messages at a relay; 3) forwarding

information to one node in general increases interference to

other nodes. These elements impact the optimum ways of

relaying. The different aspects of relaying for multiple sources

can be captured by considering the smallest such network,

which we refer to as the interference channel with a relay

(ICR) (see Fig. 1). The ICR model contains elements of relay,

interference, broadcast and multiaccess channels and thus

determining its capacity and associated encoding/decoding

schemes is extremely challenging. We previously analyzed

ICR communication scenarios [5], [6], [7] by mainly focusing

on special cases. We derived inner bounds on the performance,

and obtained capacity in the special case of strong interference.

We showed that in some communication scenarios, there may

be more benefit from increasing interference at the intended

destination than in using the classic approach of forwarding

desired information.

1This work was supported in part from the DARPA ITMANET program
under grant 1105741-1-TFIND, Stanford’s Clean Slate Design for the Internet
Program and the ARO under MURI award W911NF-05-1-0246.
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Fig. 1. Interference channel with a relay.

This paper presents a sum-rate outer bound on the capacity

of the Gaussian interference channel with a relay. For the

Gaussian interference channel, Kramer in [1] introduced the

idea of using a genie that provides a receiver with the

minimum information necessary to decode both messages.

This approach led to a new, improved outer bound for the

interference channel. In this work, we apply this idea to the

ICR setting. We propose a genie that gives the receiver a

noisy observation of the source and the relay channel inputs.

Unlike the interference channel in which the channel inputs

are independent, in ICRs, channel inputs of the relay and of

each encoder are dependent. In our approach, the maximum

entropy inequality will guarantee that the bound is maximized

by jointly Gaussian inputs. Our bound also applies to the

cognitive ICR, in which the relay knows a priori the messages

sent by the sources. For the cognitive ICR, two outer bounds

were developed in [8]. We show that the new bound presented

in this paper can be tighter than existing cognitive ICR outer

bounds. We also compare the new outer bound to an achievable

rate region we presented in [7]. For that encoding scheme, we

discuss strong interference conditions under which receivers

can decode both messages, in order to compare them to similar

conditions in the new outer bound. Generalizing our work

in [6], we also determine the capacity region of the discrete

memoryless degraded ICR in strong interference.

Related Work

Inner bounds to the ICR capacity were first presented in

[9]. We introduced the idea of interference forwarding and

demonstrated its gains in [5], and subsequently in [6], [7].

Works [8], [10] considered a similar channel model under



the assumption that the relay is cognitive, in the sense that

it knows a priori the messages to be sent by the two sources.

Strong interference conditions for the cognitive Gaussian case

were presented in [10]. ICRs with in-band and out-band

signaling to/from the relay were considered in [11]. A special

case of the ICR channel was considered in the context of

cellular networks with relays in [12].

The remainder of this paper is organized as follows. The

channel model is given in Section II. A new sum-rate outer

bound is presented in Section III. The cut-set bound for

the ICR is presented in Section IV. Numerical comparisons

between the new bound, the cut-set bound and an achievable

rate region are given in Section V. Section VI discusses the

strong interference regime for the ICR, and presents a capacity

result in strong interference. Section VII concludes the paper.

II. CHANNEL MODEL

The discrete interference channel with a relay consists

of three finite input alphabets X1,X2,X3, three finite out-

put alphabets Y1,Y2,Y3, and a probability distribution

p(y1, y2, y3|x1, x2, x3). Each encoder t, t = 1, 2, wishes to

send a message Wt ∈ Wt = {1, . . . , 2nRt} to decoder

t, t = 1, 2 (see Fig. 1). The channel is memoryless and time-

invariant in the sense that

p(y1,i, y2,i, y3,i|xi
1, x

i
2, x

i
3, y

i−1
1 , yi−1

2 , yi−1
3 , w1, w2)

= pY1,Y2,Y3|X1,X2,X3
(y1,i, y2,i, y3,i|x1,i, x2,i, x3,i). (1)

In most of the paper we will consider the Gaussian channel

described by the following input-output relationship:

Y1 = X1 + h12X2 + h13X3 + Z1

Y2 = h21X1 + X2 + h23X3 + Z2

Y3 = h31X1 + h32X2 + Z3 (2)

where Zt ∼ N [0, 1], E[X2
t ] ≤ Pt, t = 1, 2, 3, and N [0, σ2]

denotes the normal distribution with zero mean and variance

σ2. X1 and X2 are channel inputs at the sources and are

statistically independent.

An (R1, R2, n) code for the ICR consists of two message

sets W1 = {1, . . . , 2nR1}, W2 = {1, . . . , 2nR2}, an encoding

function at each encoder, X n
1 = f1(W1), Xn

2 = f2(W2),
an encoding function at the relay X3,i = f3,i(Y

i−1
3 ), and

two decoding functions Ŵt = gt(Y
n
t ), t = 1, 2. The

average error probability of the code is given by P e =

P
[

Ŵ1 �= W1 ∪ Ŵ2 �= W2

]

.

The capacity region of the ICR is the closure of the set

of rate pairs (R1, R2) for which receivers can decode their

messages with an arbitrarily small positive error probability.

III. A NEW SUM-RATE OUTER BOUND

We let

Y1g = d1X1 + d2X2 + d5X3 + d3Z1 + d4Z̃1 (3)

where di, i = 1, . . . , 5 are real numbers, and Z̃1 is zero-mean

Gaussian with unit variance, independent of other random

variables. The following theorem states the main result of our

paper.

Theorem 1: The capacity region of the ICR is contained in

the set of rate pairs (R1, R2) satisfying

R1 + R2 ≤ min
{di}5

i=1

I(X1, X2, X3; Y1, Y1g) (4)

where the mutual information is evaluated for Gaussian inputs

of the form p(x1)p(x2)p(x3|x1, x2) and parameters di, i =
1, . . . , 5 that satisfy

(1/h12 + β(d3 − d2/h12))
2 + (βd4)

2 ≤ 1 (5)

d5 = (h23 − αh13)/β (6)

α = (1 − βd2)/h12 (7)

for some real numbers α and β �= 0.
Proof: We consider signalling at achievable rates

(R1, R2). Each receiver t, t = 1, 2 can then reliably decode

its desired message Wt. A genie gives receiver 1 the signal

Y1g given by (3).

Receiver 1 processes its channel output and the information

obtained from the genie in the same manner as in [1]: after

decoding W1 it forms:

Ŷ1 = αY1 + βY1g + (h21 − α − βd1)X1 (8)

for some real numbers α and β �= 0. This yields

Ŷ1 = h21X1 + (αh12 + βd2)X2 + (αh13 + βd5)X3

+ (α + βd3)Z1 + βd4Z̃1. (9)

We choose:

αh12 + βd2 = 1 αh13 + βd5 = h23 (10)

which yield conditions (6)-(7). Then, (9) becomes

Ŷ1 = h21X1 + X2 + h23X3 + (α + βd3)Z1 + βd4Z̃1. (11)

Comparing (11) to the channel output at receiver 2 given by

(2), we conclude that when the equivalent noise variance in

(11) is smaller than the noise variance at receiver 2, i.e., when

(α + βd3)
2 + (βd4)

2 ≤ 1 (12)

then, since receiver 2 can decode W2, receiver 1 can decode

W2 as well. This conclusion holds regardless of what the relay

channel input is. By substituting the expression for α from (7)

into (12), we obtain (5), which is an equivalent condition to

the condition for the interference channel bound in [1].

Because receiver 1 can reliably decode both messages, we

can now bound the sum-rate using Fano’s inequality as

n(R1 + R2)

≤(a) I(W1, W2; Y
n
1 , Y n

1g)

=

n
∑

i=1

[

H(Y1i, Y1gi|Y i−1
1 , Y i−1

1g )−

H(Y1i, Y1gi|Y i−1
1 , Y i−1

1g , W1, W2)
]

≤
n

∑

i=1

[

H(Y1i, Y1gi) − H(Y1i, Y1gi|Y i−1
1 , Y i−1

1g , W1, W2)
]



≤
n

∑

i=1

[

H(Y1i, Y1gi)−

H(Y1i, Y1gi|Y i−1
1 , Y i−1

1g , X i
1, X

i
2, X

i
3, W1, W2)

]

=(b)
n

∑

i=1

[

H(Y1i, Y1gi) − H(Y1i, Y1gi|Y i−1
1 , Y i−1

1g , X i
1, X

i
2, X

i
3)

]

=(c)
n

∑

i=1

[

H(Y1i, Y1gi) − H(Y1i, Y1gi|X1i, X2i, X3i)
]

=

n
∑

i=1

I(X1i, X2i, X3i; Y1i, Y1gi) (13)

where (a) follows because receiver 1 can decode both mes-

sages; (b) follows by causality and (c) follows by the memo-
ryless property of the channel.

By introducing a time-sharing random variable in (13) as in

[13, Thm. 14.10.1], we obtain the sum-rate bound as

R1 + R2 ≤ I(X1, X2, X3; Y1, Y1g). (14)

It follows from the maximum entropy theorem [13,

Thm. 9.6.5] that Gaussian inputs maximize the mutual infor-

mation expression in (14). As the final step, we optimize this

bound over parameters di, i = 1, . . . , 5 subject to (10) and

(12).

A corresponding sum-rate bound can be obtained having a

genie at the other receiver.

By minimizing the mutual information expression in (4)

with respect to d1, we obtain the optimum value of d1 as

d∗1 =
[

(P1 + h13ρ13

√

P1P3)(h12d2P2 + d5h13P3+

(h12d5 + h13d2)ρ23

√

P2P3 + d3)

− d5ρ13

√

P1P3(h
2
12P2 + h2

13P3 + h13ρ13

√

P1P3

+ 2h12h13ρ23

√

P2P3 + 1)
]

× 1

P1(h2
12P2 + h2

13P3 + 2h12h13ρ23

√
P2P3 − h2

13ρ
2
13P3 + 1)

.

Remark 1: Evaluated for Gaussian inputs, the sum-rate

bound (14) will depend on the covariance matrix of source

and relay inputs.

Remark 2: The bound can be made more general by making

the signal given by the genie also dependent on the noise at

the relay. This would introduce one more parameter that can

be optimized in order to obtain a tighter sum-rate bound.

Remark 3: For P3 = 0, the bound reduces to the bound in

[1].

IV. THE CUT-SET BOUND FOR THE INTERFERENCE

CHANNEL WITH A RELAY

We next derive the cut-set bound [13, p. 445] for the ICR

and compare it to the sum-rate bound presented in Thm. 1.

Lemma 1: For the ICR, the cut-set bound is given by

R̃ =
⋃

p(x1)p(x2)p(x3|x1x2)

R(p(x1)p(x2)p(x3|x1x2)) (15)

where R(p(x1)p(x2)p(x3|x1x2)) denotes the set of rate pairs
that satisfy

R1 ≤ min{I(X1, X3; Y1|X2), I(X1; Y1, Y3|X2, X3)} (16)

R2 ≤ min{I(X2, X3; Y2|X1), I(X2; Y2, Y3|X1, X3)}
R1 + R2 ≤ min{I(X1, X2, X3; Y1, Y2),

I(X1, X2; Y1, Y2, Y3|X3)}
evaluated for a specified distribution p(x1)p(x2)p(x3|x1x2).
We observe that all terms in (16) are maximized by Gaussian

inputs [13].

Observe that, since the genie gives only the minimum

information that receiver 1 needs in order to decode both

messages (W1, W2), this implies that the bound of Thm. 1

is always at least as tight as the first term in the sum-rate

of the cut-set bound, I(X1, X2, X3; Y1, Y2). We next compare

the two bounds numerically.

V. NUMERICAL RESULTS

Fig. 2 shows an improvement of the sum-rate bound over

the sum-rate cut-set bound for a specific choice of channel

gains and powers. Fig. 3 shows the comparison with the outer

bounds developed for the cognitive ICR in [8, Thm. 2 and

Thm. 3], as well as with the cut-set bound (16). In all plots, the

sum-rate bound (14) is evaluated together with the individual

cut-set bounds on R1 and R2 given in (16).

Because the genie enables receivers to decode both mes-

sages, we expect the outer bound to be close to the achievable

rates in the regimes in which such decoding is actually possi-

ble, i.e., when the receivers experience strong interference.

This behavior is illustrated in Fig. 4. The achievable rate

region, originally presented in [7, Eq. (14)], is repeated in

(29). These rates are achieved by having the relay decode

both messages (W1, W2) and then jointly encode them. Both

receiver jointly decode both messages.

The gap between the achievable rates and the outer bound

in this regime is due to constraint (6) imposed in the outer
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bound. This constraint may not be always necessary in order

to allow receivers to decode both messages. We analyze the

strong interference regime in the next section.

VI. STRONG INTERFERENCE

The following rate region was shown to be achievable in

[7, Thm. 1]. Rate pairs (R1, R2) that satisfy

R1 ≤ I(X1, X3; Y1|U2, X2) (17)

R2 ≤ I(X2, X3; Y2|U1, X1) (18)

R1 + R2 ≤ I(X1, X2, X3; Y1) (19)

R1 + R2 ≤ I(X1, X2, X3; Y2) (20)

R1 ≤ I(X1; Y3|X2, X3) (21)

R2 ≤ I(X2; Y3|X1, X3) (22)

R1 + R2 ≤ I(X1, X2; Y3|X3) (23)

for any distribution

p(u1, x1)p(u2, x2)p(x3|u1, u2) (24)

are achievable.

We next show the following capacity result that generalizes

the result in [6]:

Theorem 2: Under strong interference conditions

I(X1, X3; Y1|X2) ≤ I(X1, X3; Y2|X2) (25)

I(X2, X3; Y2|X1) ≤ I(X2, X3; Y1|X1) (26)

satisfied for all distributions p(x1)p(x2)p(x3|x1, x2) and the

following degradedness condition:

p(y1, y2|y3, x3, x1, x2) = p(y1, y2|y3, x3) (27)

the achievable rate region (17)-(23) is the ICR capacity region.

Proof: (Outline). Bounds (17) and (18) can be shown by

using the same approach as in [3, Sec. 3]. This approach will

also imply the chain (24). Bounds (21)-(23) can be shown

using similar steps as in [2, Lemma 4] and the degradedness

condition (27). Sum-rate bounds (19)-(20) can be shown using
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the same approach as in [6, Thm.2]. Details of the proof are

omitted.

We next evaluate (17)-(23) for Gaussian inputs chosen as:

U1 ∼ N [0, αP1], X10 ∼ N [0, ᾱP1], X1 = X10 + U1

U2 ∼ N [0, βP2], X20 ∼ N [0, β̄P2], X2 = X20 + U2. (28)

Thus, the encoders 1 and 2 split their power between sending

new information (respectively with ᾱP1 and β̄P2) and between

cooperating with the relay. The power at the relay is split

between forwarding messages W1, W2 as:

X3 =

√

γP3

αP1
U1 +

√

γ̄P3

βP2
U2

where 0 ≤ α, β, γ ≤ 1. Parameter γ determines how the relay

splits its power for forwarding W1, W2. A higher γ results in

more power dedicated for forwarding W1.

The region (17)-(23) evaluates to [7, Eqn. (14)]:

R1 ≤ C(P1 + h2
13γP3 + 2h13

√

αP1γP3)

R2 ≤ C(P2 + h2
23γ̄P3 + 2h23

√

βP2γ̄P3)

R1 + R2 ≤ C(P1 + h2
12P2 + h2

13P3 + 2h13

√

αP1γP3

+ 2h12h13

√

βP2γ̄P3)

R1 + R2 ≤ C(h2
21P1 + P2 + h2

23P3 + 2h21h23

√

αP1γP3

+ 2h23

√

βP2γ̄P3)

R1 ≤ C(h2
31ᾱP1)

R2 ≤ C(h2
32β̄P2)

R1 + R2 ≤ C(h2
31ᾱP1 + h2

32β̄P2) (29)

where C(x) = 0.5 log(1 + x).
We next derive sufficient conditions that allow decoders

to decode both messages, when signalling with the above

inputs. When achievable rates (R1, R2) are used for signaling,
receiver 1 can decode W1, form Un

1 (W1), and with one block



delay (due to block Markov encoding) also form X n
1 (W1) in

order to evaluate:

Ŷ1 = Y1 − X1(1 − h21) −
√

γP3

αP1
U1(h13 − h23). (30)

From (2) and (30) we obtain:

Ŷ1 = h21X1 + h12X2 + h23

√

γP3

αP1
U1 + h13

√

γ̄P3

βP2
U2 + Z1

Y2 = h21X1 + X2 + h23

√

γP3

αP1
U1 + h23

√

γ̄P3

βP2
U2 + Z2.

(31)

By comparing Ŷ1 and Y2 in (31) we conclude that receiver 1
obtains a less noisy signal carrying W2 than receiver 2 if

P2+h2
23γ̄P3 + 2h23

√

βγ̄P2P3

≤ h2
12P2 + h2

13γ̄P3 + 2h12h13

√

βγ̄P2P3. (32)

Therefore, since decoder 2 can decode W2, so can receiver 1.
Similarly, receiver 2 can decode W1 when

P1+h2
13γP3 + 2h13

√

αγP1P3

≤ h2
21P1 + h2

23γP3 + 2h21h23

√

αγP1P3. (33)

Conditions (32)-(33) have to be satisfied for all α, β, γ ∈ [0, 1].
Evaluating the maximum of the left-hand side terms and the

minimum of the right hand side terms we obtain sufficient

conditions for (32)-(33) to hold as:

|h12| ≥ |1 + h23

√

P3/P2|
|h21| ≥ |1 + h13

√

P3/P1|. (34)

Therefore, in this scenario receivers can decode each other’s

message under conditions (32)-(33) without the help of a

genie. In general, in the regime of strong interference there

will be a gap between the achievable rate region and our outer

bound because, in Thm. 1, constraint (6) does not allow for

β = 0, (i.e., to turn off the genie.)

VII. CONCLUSIONS

We present a new outer bound for the interference channel

with a relay. The capacity region in strong interference for the

discrete memoryless degraded ICR is also presented. The outer

bound is obtained by adapting the approach developed for the

interference channels in [1]. The bound is significantly tighter

than the cut-set bound. One limitation of the bound is that it

requires a receiver to decode both messages. This requirement

could be relaxed by using the genie technique of [14] that

led to the sum-capacity of the interference channel in the low

interference regime [15], [16], [17]. The biggest difficulty of

this approach when applied in our scenario is in showing the

optimality of Gaussian inputs. This is one direction of our

future work. The other one is to apply the genie-approach

employed in this bound to larger networks.
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