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Abstract—In this paper, elliptically contoured (EC) distribu-
tions are used to model outlier-contaminated measurement noises.
Exploiting a heuristic approach to introduce an unknown param-
eter, we present an analytical update form of the joint posterior
probability density function of the state vector and auxiliary
random variable, from which a novel robust EC distributions-
based Kalman filtering framework is first derived. To illustrate
the effectiveness of the proposed framework, the convergence,
robustness, optimality and computational complexity analyses of
the proposed method are then given. In addition, to cope with
complex noise environments, the interaction multiple model is
employed to achieve the adaptive selection of EC distributions
such that well-behaved estimation performance can be obtained
for different noise cases. Simulation results demonstrate the
validity and superiority of the proposed algorithm.

Index Terms—Kalman filter, non-Gaussian heavy-tailed noise,
fixed-point iteration, elliptically contoured distribution, interac-
tion multiple model

I. INTRODUCTION

A. Background

THE Kalman filter (KF) has been widely used in many
practical situations, such as navigation, localization and

target tracking [1]. The KF can provide an optimal estimate
in the sense of minimum variance when both the state and
measurement noises are Gaussian distributed in the case of
a linear state space model. However, the measurement noise
often exhibits a heavy-tailed characteristic due to unknown
measurement outliers in practical engineering applications [2].
In this case, the Gaussian assumption inherent in the KF is
violated, which generally results in poor performance of the
KF for such non-Gaussian heavy-tailed measurement noises.

B. Relevant works

To address the state estimation problem of a state-space
model with non-Gaussian heavy-tailed measurement noise,
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many robust KFs have been presented. For example, the
Huber-based KF and the Entropy-based KF are two typical
robust M-estimate based KFs, where the former is derived
by minimizing a mixture of l1 and l2 norms that is named
as the Huber cost function [3]–[6], and the latter is designed
by maximizing a correntropy cost function [7] or minimizing
an error entropy cost function [8]. These two M-estimators,
however, do not exploit the heavy-tailed features of the noises,
which degrades their accuracy. To improve this point, recently,
a statistical similarity measure based KF (SSMKF) has been
proposed which maximizes the statistical similarity measure to
obtain a Gaussian approximation of the non-Gaussian posterior
PDF [9].

As a representative heavy-tailed distribution, the Student’s
t-distribution has been successfully used to design many robust
Kalman filters. For example, in the existing outlier-robust KF
based on the variational Bayesian approach (ORKF-VB), the
measurement noise is modelled as Student’s t-distributed, and
the state vector and the auxiliary random variable are jointly
inferred based on the VB approach [10]. Unfortunately, the
existing ORKF-VB exhibits poor estimation performance in
the case of large prior uncertainty in the state noise which
may be induced by severe manoeuvres of an agile target
[11]. Another application of the Student’s t-distribution is the
existing robust Student’s t-based KF (RSTKF) [12] where both
the one-step prediction PDF and the measurement noise PDF
are modelled as Student’s t-distributed, and the approximate
joint inference solution is obtained by using the VB approach
or the KLD minimization method [12]–[14]. Subsequent study
has extended the RSTKF to skewed noises [15]. Recently, an
interesting work about a pairwise Markov model (PMM) based
Student’s t filter has been developed where the independence
assumptions are relaxed by using a PMM instead of a Hidden
Markov model [16]. Nevertheless, the problems inherent in
the existing Student’s t filter are still inevitable. In the existing
Student’s t filter, the prior state PDF and the likelihood PDF
of the Student’s t filter share the same degree of freedom
(dof) parameter, which indicates that the prior state PDF
and likelihood PDF require to be contaminated by the same
degree of outliers and thereby could be well captured by the
Student’s t distributions with the same dof parameter [12]. This
condition may seldom be satisfied in practice and thus this
problem is inevitable in the existing Student’s t filter. Except
for the Student’s t-distribution, the Laplace distribution has
also been used for modeling non-Gaussian heavy-tailed noises
in the case of uncertain parameters [17]–[19]. However, lack
of tuning parameters for the tails of the Laplace distribution
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results in limited estimation performance in non-stationary
noise environments.

For non-stationary environments with outliers, some mixture
densities based works have been put forward. For example,
[20] has proposed a mixture of two Gaussian distributions
based robust KF, where a nominal covariance with a high
probability and an adaptive larger covariance with a low
probability are simultaneously used to accommodate unknown
non-stationary heavy-tailed noises. However, the use of the
Bernoulli distribution for the selection of distributions means
that the algorithm can only switch between two distributions
and cannot accommodate more complex cases. In [21], a novel
robust KF has been proposed with the state and measurement
noises modeled as Gaussian-Gamma mixture distributed, but
it needs to learn too many unknown parameters from limited
measurement data.

Multiple model methods are also effective in the case of
non-Gaussian noises. The Gaussian sum filter can address
the non-Gaussian filtering problem by modeling the heavy-
tailed noises as a set of weighted Gaussian distributions [23].
However, exponential growing model order leads to its imprac-
ticality. Based on this, the switching KF [24] and the Gaussian
mixture KF [25] utilize the expectation-maximization method
to solve the exponential model order growth problem. The
interaction multiple model (IMM) runs parallel sub-filters and
mixes the results initially to achieve model interaction, which
leads to a computationally efficient solution [26]. The above
methods are all based on multiple Gaussian distributions.
In fact, it is difficult for the Gaussian mixture distributions
with limited number to model the time-varying non-Gaussian
heavy-tailed noises. Therefore, [27] has applied the IMM
on the dof parameter selections of the Student’s t filter and
derived a Student’s t IMM filter. However, fusing multiple
Student’s t distributions into one Student’s t is required to
obtain a closed-form solution, which is a severe approximation
and may cause accuracy degradation [28]. Hence, [28] has
employed the maximum Versoria criterion (MVC) to mitigate
this problem. Nonetheless, the Student’s t IMM filter will
inherit the defects of the Student’s t filter which requires the
state and measurement outliers to occur concurrently and have
the same magnitude, which limits their performance.

C. Motivations for the paper

As a family of generalized distribution, the EC distribu-
tion includes Gaussian, Student’s t and many other useful
distributions as its special cases. Additionally, due to their
flexible density generator functions, the EC distributions can
theoretically present arbitrary heavy-tailed features if suitable
density generator functions are selected, and thus are widely
used in robust statistics. Hence, the EC distribution is superior
to the Student’s t distribution in the case of time-varying and
intricate noises. Thus, we aim to utilize the EC distribution to
derive a generalized outlier-robust filtering framework.

Nevertheless, only deriving a closed-form solution of the
framework as in [15] cannot deal with the time-varying and
intricate environment in a real sense, because the sub-filter
still employs fixed dof parameters. Although the VB-based

methods have speciality for dealing with this problem by three
typical steps, i.e., constructing auxiliary parameters, seeking
conjugate distributions for the auxiliary parameters and jointly
inferring these parameters by VB methods based on the mean-
field hypothesis, this process may encounter the following
problems
• VB-based methods are required to construct more param-

eters to deal with more complex scenarios. In this case,
they need to seek more appropriate conjugate distribution-
s to promote the joint inference process. However, finding
appropriate conjugate distributions might be difficult, and
the derivations would be complicated.

• In VB-based methods, all learned parameters are updated
together in the same iteration, which may make the
parameter updating process unstable. Once there is a
deviation in the learning of one specific parameter, it will
affect the learning process of other parameters, resulting
in the overall performance deterioration of the algorithm.

Motivated by the above considerations, we firstly develop
an EC-based robust Kalman filtering framework based on a
heuristic idea without using the VB method. Then the IMM
approach1 is exploited to achieve an adaptive selection of
different EC distributions to accommodate time-varying and
intricate noise environments.

D. Contributions and organization of paper

The proposed robust Kalman filtering framework with the
measurement noise modeled as EC distributed (RECKF) pro-
vides a new fixed prior covariance-based iterative method,
which turns out to be more accurate in the case of only
measurement outliers and computationally efficient, as will
be detailed in the later simulation study. Furthermore, the
proposed IMM-based RECKF is quite generalized, since it
can be used for switching not only different types of EC
distributions, but also different parameters of a fixed EC
distribution, such as a Student’s t-distribution with different
dof parameters. This paper is an extension of our previous
work [29]. In contrast with [29], the contributions of this paper
are summarized as follows.
• The analyses of the convergence, optimality, robustness

and computational complexity of the proposed RECKF
are specified to illustrate the effectiveness.

• An adaptive switching method of EC distributions is
presented by exploiting the IMM approach, such that the
well-behaved estimation performance can be obtained for
different noise cases.

• A series of simulation comparisons under time-varying
and complex environments are carried out to verify the
validity and superiority of the proposed algorithm.

The remainder of this paper is structured in the following
manner. The problem statement is presented in Section II. The
proposed outlier-robust KF is developed in Section III. The

1In contrast with learning all switching parameters to achieve mode switch-
ing in VB-based methods, the IMM is more stable because each sub-filter is
executed independently and the model fusion is only performed in the initial
mixing procedure. Thus, the IMM is expected to have better performance in
complex scenarios where the parameter learning process could be susceptible.
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Acronyms and Nomenclatures

Notations Definitions
EC(·;µ,Σ, g(·)) Multivariate EC PDF with mean vector µ,

shape matrix Σ and density generator function g(·)
N(·;µ,P) Multivariate Gaussian PDF with mean

vector µ and covariance matrix P
(·)−1, | · | Inverse operation and determinant operation
E{·} Mathematical expectation operation
tr{·}, (·)T Trace operation and transpose operation
‖ · ‖F Frobenius norm operation
In,0n Identity matrix and null matrix of dimension n× n

theoretical analyses of the new filtering algorithm are provided
in Section IV. The IMM-based RECKF is derived in Section V.
Simulation results and comparisons are conducted in Section
VI. This paper is concluded in Section VII.

II. PROBLEM STATEMENT

A. Linear discrete-time state space model

The state-space model (SSM) for a linear discrete-time
system is shown as follows{

xk = Fkxk−1 + wk

zk = Hkxk + vk
(1)

where xk ∈ Rn denotes the state vector, and zk ∈ Rm
represents the measurement vector, and Fk ∈ Rn×n and Hk ∈
Rm×n are, respectively, the state transition and measurement
matrices, and wk and vk are the state and measurement noise
vectors, respectively. In this paper, the state noise is assumed
to be zero mean Gaussian distributed with covariance matrix
Qk, i.e., wk ∼ N(wk; 0,Qk), but the measurement noise is
assumed to be non-Gaussian heavy-tailed distributed, which
is normally caused by modeling errors or outliers. To model
such noise, the EC distribution will be introduced in detail in
the next subsection.

B. EC distribution

The PDF of an EC distributed random variable x is written
as [22]–[31]

pEC(x) = EC(x;µ,Σ, g(·))
= cg|Σ|−0.5 exp

{
g((x− µ)TΣ−1(x− µ))

} (2)

where µ and Σ denote the mean vector and shape matrix,
respectively, and g(·) denotes a density generator function that
determines the form of the EC distribution. For instance, if
g(t) = −0.5ν+p

ν+t , the EC distribution becomes the Student’s
t distribution, where p denotes the dimension of the random
vector x, and ν denotes the dof parameter of the Student’s
t distribution. As shown in (2), the EC PDF relies on the
quadratic form (x−µ)TΣ−1(x−µ) completely. Therefore, if
Σ is a positive definite matrix, the region with constant PDF
will form an elliptical area in volume, which explains why the
distribution with the PDF in (2) is called an EC distribution. To
better model the measurement noise contaminated by outliers,
the selection of the density generator function g(t) should fulfil
several conditions as follows
`1 : g(t) is the third order differentiable on [0,+∞).
`2 : g(t) is monotonically decreasing on [0,+∞).
`3 : ġ(t) is monotonically increasing on [0,+∞).
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Fig. 1: Influence curves of different EC distributions.

TABLE I: Particular EC distributions and parameter settings.

EC distributions g(t)
Parameter

settings

GEC (Gaussian) −0.5t \
LEC (Student’s t) −0.5(ν + p) log(1 + t

ν
) p = 2, ν = 5

EEC σ2 exp(p−t2σ2 ) p = 2, σ = 5

`4 : g̈(t) is monotonically decreasing on [0,+∞).
`5 : ġ(p) = −0.5.
`6 : lim

t→+∞
g(t)/t > −0.5.

Based on these conditions, Fig. 1 and Table I give three
typical EC distributions and their parameter settings, where
|IF| denotes the value of the influence function, and |x| denotes
the norm of the random vector x2.

Remark 1. It can be seen from Fig. 1 that the influence curve
of the EEC distribution is very close to the GEC distribution
when x is small, indicating that the EEC distribution might
behave similarly to the Gaussian distribution when there are
no outliers. In addition, it can be also observed that the
influence curve of the EEC distribution goes down quickly,
indicating that it has the strongest ability to suppress large
outliers. Similarly, we can basically conclude that the LEC
distribution performs well in the case of small outliers while
poorly suppressing large outliers relative to the EEC distribu-
tion.

Among these conditions, `2 guarantees the PDF p(x) won’t
increase as ‖x‖2 increases which is consistent with a real
situation, i.e., p(x) should be smaller when x is further away
from its mean; `6 guarantees that the selected EC distributions
have heavier tails than Gaussian. `3, `4, `5 are required in sub-
sequent robust Kalman filter design. Next, the EC distributions
will be used to model the heavy-tailed measurement noise, and
the problems encountered in the filter design will be detailed.

C. Problem of filter design based on the EC distribution

The likelihood PDF and the prior PDF of the state vector
are modeled as Gaussian and EC distributed, respectively, i.e.,

p(zk|xk) = EC(zk; Hkxk,Rk, g(·)) (3)
p(xk|z1:k−1) = N(xk; x̂k|k−1,Pk|k−1) (4)

2Note that µ = 0,Σ = I for succinctness here.
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where the prior mean vector x̂k|k−1 and the prior error
covariance matrix Pk|k−1 are the same as the time-update
results of a traditional KF.

According to Bayes’ rule and using (3)-(4), the posterior
PDF p(xk|z1:k) is calculated as

p(xk|z1:k) ∝ EC(zk;Hkxk,Rk, g(·))N(xk; x̂k|k−1,Pk|k−1)
(5)

Unfortunately, an analytical and closed-form solution for
the posterior PDF of the state vector is not available because
the general EC distribution and Gaussian distribution are not
conjugate. To address this problem, a heuristic idea will be
proposed to achieve an approximate solution of the posterior
PDF in the next section, from which a robust Kalman filter
based on the EC distribution (RECKF) will be derived.

III. A ROBUST KALMAN FILTERING FRAMEWORK BASED
ON EC DISTRIBUTIONS

To address the above problem, in this section, the likelihood
PDF in (3) is formulated as a hierarchical Gaussian form
first and an auxiliary random variable is introduced. Then, the
state vector and auxiliary random variable are inferred jointly
based on an equivalent transformation for the prior PDF of the
state vector. Afterwards, an approximate method is proposed
to obtain the posterior PDFs of the state vector and auxiliary
random variable. Finally, the proposed RECKF is derived.

A. A hierarchical Gaussian form for the likelihood PDF

Inspired by the idea of the ORKF-VB [10] that the Stu-
dent’s t-distribution can be formulated as a Gaussian-Gamma
hierarchical form and then the joint posterior PDF can be
approximately calculated using the VB approach, an intuitive
idea is to represent an EC distribution as a Gaussian scale
mixture form which will be shown next. Before presenting
our idea, an important Lemma is given first.

Lemma 1. If a random vector y obeys an EC distribution,
i.e., p(y) = EC(y;µ,Σ, g(·)), then p(y) can be expressed as
a Gaussian scale mixture form as follows [32]

p(y) = EC(y;µ,Σ, g(·)) =

∫
N(y;µ,Σ/λ)Pg(λ)dλ (6)

where λ and Pg(λ) are, respectively, an auxiliary random
variable and an unknown PDF of λ relying on g(·).

Employing Lemma 1, the likelihood PDF is formulated as
the following hierarchical Gaussian form

p(zk|xk, λk) = N(zk; Hkxk,Rk/λk), p(λk) = Pg(λk) (7)

where p(zk|xk, λk) denotes the conditional likelihood PDF
and will be used in the following analytical joint update.

B. Analytical joint update

According to Bayes’ rule and using (4) and (7), the joint
posterior PDF p(xk, λk|z1:k) can be written as

p(xk, λk|z1:k) ∝ p(xk, zk|z1:k−1, λk)p(λk) (8)

To obtain the posterior PDF of the state vector, we need to
marginalize λk on the joint posterior PDF in (8), i.e.,

p(xk|z1:k) ∝
∫

N(

[
xk
zk

]
;

[
x̂k|k−1

Hkx̂k|k−1

]
,Pk|k−1)Pg(λk)dλk (9)

where Pk|k−1 =

[
Pk|k−1 Pxz

k|k−1

(Pxz
k|k−1

)T Pzz
k|k−1

]
denotes the joint prior

covariance matrix, and Pxz
k|k−1

= Pk|k−1HT
k and Pzz

k|k−1
=

HkPk|k−1HT
k + Rk/λk denote the cross-covariance matrix and

innovation covariance matrix, respectively.

Remark 2. Although the integral in (9) is similar to that in
(6), they are essentially different because the shape matrix
Σ is entirely scaled by the auxiliary random variable λ,
while Pk|k−1 is only partially scaled, i.e., Rk in Pzz

k|k−1
. Thus,

to make the integral (9) analytically solvable, an equivalent
transformation for (4) will be introduced next.

Motivated by the fact that if the prior covariance Pk|k−1 in
(9) is scaled by λk, then the joint covariance matrix Pk|k−1

will be also scaled by λk, which makes the integral in (9)
able to be analytically calculated by employing (6). To this
end, we introduce an equivalent transformation for the prior
PDF in (4) as follows{

pθk(xk|z1:k−1, λk) ≈ N(xk; x̂k|k−1,
θk
λk

Pk|k−1)

s.t. θk = E{λk}
(10)

where pθk(·) represents the PDF depending on the parameter
θk. Note that the prior PDF in (10) is approximately identical
to that in (4). The introduction of the undetermined parameter
θk is only to simplify the derivations.

Employing (3) and (10), (8) is reformulated as

pθk (xk, λk|z1:k) ∝ N(

[
xk
zk

]
;

[
x̂k|k−1

Hkx̂k|k−1

]
,
P̆k|k−1

λk
)Pg(λk)

(11)

where P̆k|k−1 =

[
θkPk|k−1 θkP

xz
k|k−1

θk(P
xz
k|k−1

)T P̆zz
k|k−1

]
and P̆zz

k|k−1
=

HkθkPk|k−1HT
k +Rk denote the modified joint prior covariance

matrix and the modified innovation covariance matrix, respec-
tively, and the measurement likelihood can be calculated as
follows

pθk(zk|z1:k−1) =

∫ ∫
pθk(xk, zk, λk|z1:k−1)dxkdλk (12)

Theorem 1. The joint posterior PDF can be analytically
calculated as follows

pθk(xk, λk|z1:k) = pθk(xk|z1:k, λk)p(λk|z1:k)

= N(xk; x̂′k|k(θk),P′k|k(θk)/λk)p(λk|z1:k)
(13)

where the mean vector x̂′k|k(θk) and the covariance matrix
P′k|k(θk) are, respectively, calculated as

x̂′k|k(θk) = x̂k|k−1 + Kk(θk)(zk − ẑk|k−1)

P′k|k(θk) = (In −Kk(θk)Hk)θkPk|k−1

ẑk|k−1 = Hkx̂k|k−1

Pzz
k|k−1(θk) = HkθkPk|k−1H

T
k + Rk

Kk(θk) = θkPk|k−1H
T
k (Pzz

k|k−1(θk))−1

(14)

where Kk(θk) denotes the Kalman gain, and ẑk|k−1 denotes
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the predicted measurement vector, and Pzz
k|k−1(θk) denotes the

modified innovation covariance matrix, and pθk(xk|z1:k, λk)
is defined as the modified posterior PDF of the state vector,
and p(λk|z1:k) denotes the posterior PDF of λk.

Proof. See Appendix A.

Remark 3. Note that x̂′k|k(θk) and P′k|k(θk)/λk in (14) are
not the state estimate and covariance we need exactly due to
λk and θk in pθk(xk|z1:k, λk). Next, the marginal posterior
PDF of the state vector will be derived by using Theorem 1.

C. An approximate solution for the posterior PDF

In this part, the analytical solution for the posterior PDF of
the state vector is derived. Before that, we first provide the
marginal posterior PDF of the auxiliary random variable.

Proposition 1. The marginal posterior PDF of the auxiliary
random variable p(λk|z1:k) in (13) can be formulated as
follows

p(λk|z1:k) =
N(zk; ẑk|k−1,P

zz
k|k−1(θk)/λk)Pg(λk)

pθk(zk|z1:k−1)
(15)

Proof. See Appendix B.

Equation (15) shows that the posterior PDF of the auxiliary
random variable λk is uncorrelated with the posterior state
PDF, which means that it can be updated only using the
measurement data without the participation of the posterior
state PDF. We will show this operation can improve the
stability of posterior updates but at the cost of a little accuracy
degradation in Section IV-A. Employing (15), the posterior
state PDF can be calculated by integrating λk from (13) as

pθk (xk|z1:k) =

∫
N(xk; x̂

′
k|k(θk),

P′k|k(θk)

λk
)pθk (λk|z1:k)dλk

(16)
Following (10), p(λk|z1:k) is approximated as a Dirac delta

function at the posterior mean of λk, i.e.,

p(λk|z1:k) ≈ δ(λk − E{λk|z1:k}) (17)

where

E(λk|z1:k) =

∫ +∞

0

λkp(λk|z1:k)dλk (18)

Remark 4. (17) is a crucial approximation in this paper,
which makes it possible for us to deal with the unknown density
associated with λk. It is seen from (16) that although the
update form of the posterior PDF of λk has been obtained,
the posterior PDFs of λk and xk are still unavailable due
to the unknown PDF Pg(λk). Therefore, an approximation
for p(λk|z1:k) is inevitable. This paper uses the simplest ap-
proximation, i.e., the Dirac delta function, which is similar to
the approximation in [15]. However, the form of the auxiliary
parameters in [15] is very complex due to the heavy coupling
with other parameters and the state vector (refer to (27) and
(28) in [15]), which increases the error of approximating the
complicated density into a Delta dirac function. Nevertheless,
the form of λk in this paper is much simpler as (15) shows.
Besides, the detailed rationality of this approximation will be
discussed in Section IV-C.

Using (17), (16) can be approximated as

pθk(xk|z1:k) ≈ N(xk; x̂′k|k(θk),P′k|k(θk)/E(λk)) (19)

It is clear to see from (17) and (19) that both the posterior
PDFs of the state vector and auxiliary random variable only
rely on the posterior expectation of λk after the approximation
in (17). Hence, the unknown posterior expectation of λk needs
to be determined to obtain θk, whereby the required posterior
PDFs can be achieved. Next, an approximate estimate of the
expectation of λk will be derived based on a fixed-point
iteration method.

D. Determination of the unknown expectation of λk

We still use θk = E{λk|z1:k} to simplify the derivations. It
can be observed from (10) that the unknown parameter θk is
identical to the expectation of λk, i.e.,

θk ≈
∫ +∞

0

λkp(λk|z1:k)dλk (20)

Next, θk will be determined with the help of pθk(zk|z1:k−1).

Proposition 2. The measurement likelihood PDF in (12) can
be written as EC distributed, i.e.,

pθk(zk|z1:k−1) = EC(zk; ẑk|k−1,P
zz
k|k−1(θk), g(·)) (21)

Proof. The result can be obtained by integrating xk into (12)
using the Gaussian integral formula and Lemma 1.

By exploiting (21), an ingenious trick will be introduced to
attain the solution for θk (i.e., E{λk|z1:k}).

Proposition 3. θk satisfies the following equation

θk = −2ġ(tr{P̃zz
k|k−1(Pzz

k|k−1(θk))−1}) (22)

where P̃zz
k|k−1 denotes the second-order moment sample of the

innovation, which satisfies

P̃zz
k|k−1 = (zk − ẑk|k−1)(zk − ẑk|k−1)T (23)

Proof. See Appendix C.

It can be observed that (22) is a nonlinear equation due to
the form of Pzz

k|k−1(θk) in (14). Thus, it is very difficult to
derive an analytical solution. To solve this problem, we utilize
a fixed-point iteration approach to obtain an approximate
solution for the unknown parameter θk. That is to say, the
unknown parameter θk is updated as θ(i+1)

k at the (i+ 1)− th
iteration by employing θk = θ

(i)
k in (22) to calculate the

auxiliary function ġ(·) approximately, i.e.,

θ
(i+1)
k = −2ġ(tr{P̃zz

k|k−1(Pzz
k|k−1(θ

(i)
k ))−1}) (24)

where

Pzz
k|k−1(θ

(i)
k ) = Hkθ

(i)
k Pk|k−1H

T
k + Rk (25)

To correspond to the situation without outliers which means
no corrections to the MNCM, the unknown parameter θk is
initialized as 1, i.e,

θ
(0)
k = 1 (26)



6

Algorithm 1: One-time step of the proposed RECKF.
Inputs: x̂k−1|k−1,Pk−1|k−1,Fk,Hk, zk,Qk,Rk,
ε, Nmax.
Time-update of the state vector:
1. x̂k|k−1 = Fkx̂k−1|k−1

2. Pk|k−1 = FkPk−1|k−1F
T
k + Qk

3. ẑk|k−1 = Hkx̂k|k−1

4. P̃zz
k|k−1 = (zk − ẑk|k−1)(zk − ẑk|k−1)

T

Fixed-point iteration of the unknown parameter θk:
5. Initialize θ(0)k = 1
for i = 0 : Nmax − 1

6. Pzz
k|k−1(θ

(i)
k ) = Hkθ

(i)
k Pk|k−1H

T
k + Rk

7. θ(i+1)
k = −2ġ

(
tr{P̃zz

k|k−1(P
zz
k|k−1(θ

(i)
k ))−1}

)
8. If (|θ(i+1)

k − θ(i)k |)/θ
(i)
k ≤ ε, terminate the iteration

end for
Analytical measurement update of the state vector:
9. θ̂k = θ

(Nmin)
k

10. Kk(θ̂k) = θ̂kPk|k−1H
T
k (P

zz
k|k−1(θ̂k))

−1

11. x̂k|k = x̂k|k−1 + Kk(θ̂k)(zk − ẑk|k−1)

12. Pk|k = (In −Kk(θ̂k)Hk)Pk|k−1

Outputs: x̂k|k and Pk|k

After the fixed-point iteration converges, the estimate of the
unknown parameter θk is given by θ̂k = θ

(Nmin)
k , where θ̂k

denotes the approximate estimate for the unknown parameter
θk, and Nmin denotes the minimum number of fixed-point
iterations to guarantee convergence. The convergence will be
illustrated in the next section. Substituting θ = θ̂k into (14),
the required posterior state estimate and covariance can be
approximated as

x̂k|k = x̂′k|k(θ̂k), Pk|k = (In −Kk(θ̂k)Hk)Pk|k−1 (27)

The proposed RECKF is composed of the fixed-point it-
eration in (24)-(26) and the analytical update in (27). The
implementation pseudo code of the proposed RECKF is listed
in Algorithm 1, where ε and Nmax, respectively, represent
the iterative threshold and the maximum number of iterations.
We can see from step 6-step 7 that the iterative process of
the proposed algorithm is self-related, thus we will denote the
iteration of the proposed algorithm as self-iteration.

IV. THEORETICAL ANALYSES OF THE PROPOSED RECKF

Up to now, we have completed the analytical joint update
and obtained the analytical solution for the posterior PDFs.
In addition, the proposed RECKF is established as shown in
Algorithm 1. In this section, four properties will be analyzed to
prove the reliability of the RECKF. The convergence analysis
of the iterative process is presented in Section IV-A, and the
robustness analysis of the proposed RECKF is specified in
Section IV-B, and the rationality of the approximation in (17)
is discussed in Section IV-C, and the computational complexity
analysis is specified in Section IV-D.

Before the theoretical analyses of the proposed RECKF, two
useful assumptions are given first.

Assumption 1. If there is a measurement outlier at time k,
the following approximated equality holds

tr
{

P̃zz
k|k−1

(
HkPk|k−1H

T
k + Rk

)−1
}
≈ m (28)

Assumption 2. If there is a measurement outlier at time k,
the following inequality holds

tr
{

P̃zz
k|k−1

(
HkPk|k−1H

T
k + Rk

)−1
}
> m (29)

In general, if there are no measurement outliers at
time k, the second-order moment sample of the innova-
tion P̃zz

k|k−1 (named instantaneous innovation covariance ma-
trix) is close to the theoretical innovation covariance matrix(
HkPk|k−1H

T
k + Rk

)
. However, if there is a measurement

outlier at time k, the difference between the measurement and
the predicted measurement will enlarge, which can increase the
instantaneous innovation covariance matrix. Thus, Assumption
1 and 2 are reasonable in theory. In fact, we find that (28) and
(29) hold for more than 97% of time steps in our simulation.

A. Convergence analysis of the iterative process

In this part, the convergence of the proposed fixed-point it-
eration approach will be proved through confirming the bound-
edness and monotonicity of the iterative sequence {θ(i)k }

+∞
i=1 .

Theorem 2. The proposed fixed-point iteration method can
achieve global convergence.

Proof. See Appendix D.

Theorem 2 reveals that the iterative process can achieve a
unique solution regardless of the initial value. Nevertheless,
we should highlight that the global convergence point is not
guaranteed to be the global optimal point because the global
convergence point is just a point that the algorithm ‘thinks’ is
best. Thus, a numerical simulation will be carried out next to
verify the quality of the convergent value of the RECKF.

B. Robustness analysis of the proposed RECKF

In this part, the robustness of the proposed RECKF is proved
first. Then we carry out a numerical simulation to compare the
robustness of the proposed RECKF and the VB-based method
(represented by the ORKF-VB [10]). To prove the robustness
of the proposed RECKF, a useful theorem is given first.

Theorem 3. If there are measurement outliers, the iterative
sequence fulfills the following constraint

0 < θ
(i+1)
k < θ

(i)
k < 1, for ∀i > 0 (30)

Proof. See Appendix E.

Substituting θk = θ
(i+1)
k and θk = θ

(i)
k into (14) and

employing Theorem 3, we can easily obtain
∥∥∥Kk(θ

(i+1)
k )

∥∥∥
F
<∥∥∥Kk(θ

(i)
k )
∥∥∥
F

in the presence of outliers. This result illustrates
that the proposed filter can identify the measurement outliers
adaptively, and then reduce the level of confidence on the
measurement innovation and thereby confirms the robustness
of the proposed RECKF.

Next, the difference between the ORKF-VB and the pro-
posed RECKF is illustrated in detail. To be clearer, we
select the LEC (i.e., Student’s t) distribution to represent the
proposed RECKF to be consistent with [10]. It is not hard
to observe that both the ORKF-VB (refer to Algorithm 1 in
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Fig. 2: Iterative mechanisms of the ORKF-VB and the pro-
posed algorithm (SELF).

[10]) and the proposed RECKF (refer to step 10 in Algorithm
1) put less confidence in the possible measurement outlier by
enlarging the measurement noise covariance matrix (MNCM)
(i.e., decreasing the scalar divided by the nominal MNCM),
whereby the robustness can be achieved. The scalar estimates
of the ORKF-VB and the proposed algorithm are given as
follows [10] (time subscripts are omitted)

θ
(i+1)
V B = f(tr{[(z−Hx̂(i))(z−Hx̂(i))T + HP̂(i)HT ]︸ ︷︷ ︸

D(i)

R−1})

(31a)
θ
(i+1)
Self = f(tr{[(z−Hx̄)(z−Hx̄)T︸ ︷︷ ︸

P̃z

][θ
(i)
SelfHP̄HT + R︸ ︷︷ ︸

=:θ
(i)
Self

P
(i)
z

]−1}) (31b)

where f(t) = ν+p
ν+t , and Di denotes the second-moment

order sample of the residual, and x̄ and x̂(i), P̂(i) denote
the prior state estimate and the posterior state estimate and
covariance at the i-th iteration, respectively, where the detailed
expression can be found in [10]. It is worth noting that the only
difference in algorithm execution of these two methods lies in
their iteration process. Specifically, the ORKF-VB adjusts the
scalar estimate according to the difference between Di and
the nominal MNCM R, as shown in (31a), while (31b) shows
that the proposed method executes this adjustment based on
the difference between the instantaneous innovation covariance
matrix, i.e, P̃z, and the theoretical innovation covariance
matrix (which will be θ

(i)
SelfP

(i)
z in our case). The iterative

mechanisms of the ORKF-VB and the proposed RECKF are
shown in Fig. 2, where the blue lines refer to the KF process
and the red lines denote the update process of θ(i).

Fig. 2 shows that the ORKF-VB requires loop iterations
between the posterior x̂(i), P̂(i) and θ(i), whose purpose is
to improve the estimation accuracy of θ by utilizing more
accurate posterior state information. In this setting, the updates
of the state estimate and auxiliary variable in the ORKF-VB
are tightly coupled, leading to a better estimation of θ but
more computation burden. In contrast, the proposed algorithm
performs self-iterations3 of the auxiliary variable θ, which is
decoupled from the posterior state and covariance updates and
gives rise to the computational efficiency of the proposed
algorithm. Although the proposed algorithm does not take
advantage of posterior information, it can bring about other
benefits, as explained next. Note that in the remainder, we

3In the self-iteration, we mainly refer that the update process of θ is directly
self-relevant rather than requiring the intervention of posterior information.

represent the iterative approaches in the ORKF-VB and the
proposed algorithm as the coupling-iteration and the self-
iteration, respectively. The advantage of the proposed self-
iteration is illustrated in detail next.

Proposition 4. Under Assumption 2 and the condition that the
initial values of the coupling-iteration and the self-iteration
are equal, the following equality holds

θ
(1)
V B = f

(
tr

{
R(P

(0)
z )−1P̃z(P

(0)
z )−1 + R(P

(0)
z )−1 + (θ(0))Im

(θ(0))2

})
(32a)

θ
(1)
Self = f

(
tr
{

P̃z(P
(0)
z )−1/(θ0)2

})
(32b)

where θ0
V B = θ0

Self = θ0.

Proof. Proposition 4 can be proved by substituting θ0
V B =

θ0
Self = θ0 into (31a) and (31b).

Employing Assumption 2, we can easily obtain the follow-
ing two results by subtracting (32a) from (32b)
• The first value obtained by the self-iteration is smaller

than that by the coupling-iteration in the case of a
measurement outlier, i.e., θ(1)

V B ≥ θ
(1)
Self .

• The first value obtained by the self-iteration is larger
than that by the coupling-iteration in the case of no
measurement outliers, i.e., θ(1)

V B ≤ θ
(1)
Self .

With these results, the following corollary can be attained.

Corollary 1. Under the condition of the same iterative
number, the self-iteration can achieve a smaller θ than the
coupling-iteration in the case of measurement outliers, and
a bigger θ than the coupling-iteration in the case of no
measurement outliers.

Proof. Due to the monotonicity of both iterations, θ(i+1)
V B ≤

θ
(i)
V B and θ(i+1)

Self ≤ θ
(i)
Self will hold in the case of measurement

outliers. Assuming that θ(i)
Self ≤ θ

(i)
V B holds for i = j and

setting θ
(i)
V B = θ

(i)
Self , we can obtain similar results with

Proposition 4, i.e, θ(i+1)
Self ≤ θ

(i+1)
V B .

Corollary 1 indicates that the self-iteration adopts a more
conservative strategy than the coupling-iteration when there
are measurement outliers, which is beneficial to the filter in the
case of outliers. We carry out a numerical simulation to make
this corollary more convincing. The values obtained by the
coupling-iteration and the self-iteration are compared under
the same initial conditions, i.e., the same z, x̄, P̄, R, H and
θ

(0)
V B = θ

(0)
Self = 1 in (31b). In addition, the measurement at the

current time is contaminated by Gaussian noise with enlarged
covariance matrix, i.e., v ∼ N(0, UR). 1000 Monte Carlo runs
are executed and both iterations are performed 50 times. The
results are shown in Fig. 3, where the reciprocals of baselines
are the true MNCMs. It can be seen from Fig. 3 that the values
from the self-iteration are generally less than the coupling-
iteration, except for the case without measurement outliers,
which is consistent with our previous analyses. This mech-
anism helps self-iteration further approach the baselines and
achieve better robustness. Moreover, although the self-iteration
may suffer from accuracy degradation due to overconfidence
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Fig. 3: Iteration results of the coupling-iteration and the self-
iteration under different measurement outlier intensities.

in the outlier-free scenarios, this accuracy degradation is trivial
compared with the improvement brought about in the case of
measurement outliers, as will be shown in Section VI-A.

C. The rationality of the approximation in (17)

The rationality of the approximation (17) is demonstrated
in both the outlier case and outlier-free case. Firstly, the
rationality in the outlier case is illustrated in Proposition 5.

Proposition 5. As the iteration proceeds, the variance of
the auxiliary random variable λk reduces gradually in the
presence of measurement outliers, i.e.,

V ar(i+1)(λk) < V ar(i)(λk) for ∀i ≥ 0 (33)

where V ar(i)(λk) denotes the variance of λk at the (i)− th
iteration.

Proof. See Appendix F.

It is worth noting that when there are outliers, V ar(λk)
will decrease, indicating that λk will tend to its mean. In the
other case, the likelihood PDF p(zk|z1:k−1) should degrade
into Gaussian, which means λk = 1 holds for the conditional
likelihood PDF. Therefore, using condition `5 and Assumption
1, we can obtain θ̂k ≈ 1 according to the mathematical
induction method, which indicates no corrections for the
measurement noise and thus is consistent with the theoretical
case. Hence, the approximation in (17) is rational whether
there are measurement outliers or not.

D. Computational complexity analysis

In this part, the computational complexity of the proposed
algorithm is compared with the existing ORKF-VB algorith-
m which has relatively low complexity. The computational
complexities include the floating point operations required by
the multiplications of matrices and vectors, the multiplications
of matrices, and the inverse of a positive definite matrix.
The computational complexities of the existing ORKF-VB
and the proposed filter in one-time step can be, respectively,
formulated as follows

flV B = (N + 2)n3 +N [4mn2 +m3

+ 3nm2 + 2O(m3) + 3mn+m2]
(34)
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Fig. 4: Floating point difference fld.

flnew = 3n3 +N [mn2 +m3 + nm2

+O(m3)] + 2mn2 + nm2 +O(m3)
(35)

where flV B and flnew denote the total floating point op-
erations of the existing ORKF-VB and the proposed filter,
respectively. Subtracting (35) from (34) yields

flV B − flnew = (N − 1)n3 + (3N − 2)mn2

+NO(m3) + (2N − 1)nm2
(36)

Considering that the number of iterations N is always larger
than 1, i.e., N ≥ 1, the existing ORKF-VB always has
larger computational complexity than the proposed algorithm,
especially in the scenario where the dimension of the state
vector is large, such as in an integrated navigation system.
Additionally, with the number of iterations increasing, the ex-
isting ORKF-VB becomes more computationally burdensome
than the proposed algorithm. Therefore, flV B ≥ flnew holds.

Fig. 4 illustrates the difference between the floating point
operations flV B and flnew, where the dimension of the
measurement vector is set as m = 2, and the x-axis is the
number of iterations N , the y-axis is the state dimension n,
and the z-axis is the floating point difference fld that is defined
as fld = flV B−flnew. It is clear to observe from Fig. 4 that
the floating point difference fld gradually increases as the state
dimension n and the number of iterations N enlarges from 1
to 100, which is consistent with the above analysis.

V. AN IMM-BASED ADAPTIVE SELECTION OF EC
DISTRIBUTIONS

So far, the effectiveness and the advantages of the RECKF
have been proved. Thus, as mentioned in Section II-B, under
the premise that the true heavy-tailed feature has been known,
the proposed filter can deal with the measurement noise with
an arbitrary thick tail. Nevertheless, two significant factors
make the premise unattainable, as listed below.
• The extent of the thick tail of the measurement noise is

usually unknown in practice which leads to difficulty in
the selection of the EC distributions.

• In engineering applications, outliers are often time-
varying and unpredictable, so it is unreasonable to se-
lect a fixed EC distribution to model the non-stationary
measurement noise.
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Therefore, how to circumvent the prior knowledge of out-
liers and find a general method that can accommodate all
cases (even in an outlier-free scenario) is worthy of further
investigation. In this paper, to address the above problems,
multiple EC distributions with different extent of thick tails
are considered to deal with the unknown measurement noise
features under the practical environment. Then, to adapt to the
time-varying and non-stationary outliers, the IMM approach is
exploited to adaptively select EC distributions, from which an
IMM-based RECKF will be derived.

A. Special SSM design with measurement outliers

Based on (1), we consider the following jump Markov linear
discrete-time SSM {

xk = Fkxk−1 + wk

zk = Hkxk + v(ξk)
(37)

where ξk ∈ {1, 2, ..., N} denotes the mode state. In this paper,
v(ξk) is assumed to obey an EC distribution selected for the
mode state ξk.

The time behavior of the mode state ξk ∈ {1, 2, ..., N}
is modeled as a homogeneous (time invariant) Markov
chain with transition probability matrix (TPM) H =[
Hij , P{ξk = i|ξk−1 = j}

]
. The TPM denotes the proba-

bility of the model j transferring to the model i.

B. Derivation of the IMM-based RECKF

In this subsection, the IMM-based RECKF will be derived
within four steps.
Step 1: Mixing

Firstly, the TPM is employed to make a prediction of the
probability for mode i, i.e.,

P{ξk = i|z1:k−1} =

N∑
j=1

HijP{ξk−1 = j|z1:k−1} (38)

where P{ξk = i|z1:k−1} is defined as the mixed prior
probability matched to ξk = i, and N denotes the number
of models.

Define p(xk−1|ξk = i, z1:k−1) as the mixed prior PDF of
the state vector matched to ξk = i, which will be used in the
time-update of the IMM-based RECKF for the state vector.
The mixed prior PDF of xk−1 can be formulated as follows

p(xk−1|ξk = i, z1:k−1) =

N∑
j=1

Hij
p(xk−1|ξk−1 = j, z1:k−1)

P{ξk = i|z1:k−1}
(39)

In that the (i) − th model at time k could be transformed
from any model at time k − 1, the mixed prior PDF will
participate in the time-update of the RECKF at time k instead
of the posterior PDF matched to time k− 1. The mixed prior
PDF is approximated as

p(xk−1|ξk = i, z1:k−1) ≈ N(xk−1; x̂
0i
k−1|k−1,P

0i
k−1|k−1) (40)

where the merged mean x̂0i
k−1|k−1 and covariance P0i

k−1|k−1

are obtained by moment matching.
Step 2: Parallel RECKFs

In this step, N parallel RECKFs are performed using
the corresponding merged mean x̂0i

k−1|k−1 and covariance
P0i
k−1|k−1 as inputs, and each parallel RECKF obtains a

different result by employing Algorithm 1 which will be used
in the fourth step.

Step 3: Posterior probability calculation

The posterior probability for mode i is a necessity before
all estimates and covariances are fused in probability to obtain
a comprehensive result. Employing the Bayes’ rule, which can
be calculated as

P{ξk = i|z1:k} =
P{ξk = i|z1:k−1}p(zk|ξk = i, z1:k−1)

p(zk|z1:k−1)
(41)

where p(zk|ξk = i, z1:k−1) denotes the measurement likeli-
hood PDF for mode i, and p(zk|z1:k−1) is written as

p(zk|z1:k−1) =

N∑
i=1

P{ξk = i|z1:k−1}p(zk|ξk = i, z1:k−1) (42)

Based on (21), the measurement likelihood PDF for mode
i can be formulated as

p(zk|ξk = i, z1:k−1) = cig

√
|Pi,zz

k|k−1(θk)| exp(gi(∆i
k)) (43)

where ∆i
k = (zk− ẑik|k−1)T (Pi,zz

k|k−1(θk))−1(zk− ẑik|k−1) and
Pi,zz
k|k−1(θk), ẑik|k−1 and cig denote the innovation covariance

matrix, predicted measurement vector and normalized constant
of the (i)− th model, respectively. Exploiting (38), (42) and
(43), the posterior probability for mode i can be obtained.

Remark 5. Note that the measurement likelihood PDF for
mode i is related with parameter θk. In this paper, θ̂k is chosen
as a reasonable approximation for θk because it would be
difficult to track changes in parameter θk at every moment to
match the likelihood of each mode, such approximation results
in inevitable but acceptable errors.

Remark 6. The core of the proposed IMM-based RECKF is
the weight calculation of respective RECKFs, which depends
on the likelihood calculation in (43). This creates a problem
because the constant coefficient cg of an EC distribution is un-
known. Although the coefficients of some special analytic EC
distributions like the Gaussian or Student’s t are known, many
more are unknown, and some are not even densities (EEC
distribution). In this case, numerical integration can be used
to calculate the normalized coefficients of EC distributions. In
short, based on the property that the integral of the density
in (21) is 1, a massive number of samples of the theoretical
innovation covariance matrix and the second-order moment of
the innovation are utilized to calculate cg .

Step 4: Overall estimate and covariance calculation
Employing (41), the overall posterior estimate and covari-

ance can be combined as follows,

x̂k|k =

N∑
i=1

x̂ik|kP{ξk = i|z1:k} (44)

Pk|k =

N∑
i=1

P{ξk = i|z1:k}
[
Pi
k|k + (x̂ik|k − x̂k|k)(x̂

i
k|k − x̂k|k)

T
]
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Fig. 5: The scheme of the IMM-based RECKF.

Algorithm 2: One-time step of the IMM-based RECKF.

Inputs:
{

x̂i
k−1|k−1

,Pi
k−1|k−1

, µik−1

}N
i=1

,Fk,Hk, zk,Qk,Rk .
Mixing:
Calculate:
for i = 1 : N
1. the mixed prior probability P{ξk|z1:k−1} in (38)
3. the merged mean and covariance x̂0i

k−1|k−1
,P0i

k−1|k−1
in (40)

Parallel RECKFs:
4. the posterior estimate and covariance x̂i

k|k,P
i
k|k in (44)

Posterior probability:
5. the measurement likelihood PDF p(zk|ξk = i, z1:k−1) in (43)
end for
6. the overall measurement likelihood PDF p(zk|z1:k−1) in (42)
7. the posterior probability P{ξk|z1:k} in (41)
Fusion
7. the overall posterior information x̂k|k,Pk|k in (44)

Outputs: x̂k|k and Pk|k,
{

x̂i
k|k,P

i
k|k, µ

i
k

}N
i=1

where x̂ik|k and Pi
k|k denote the estimate state and estimate

error covariance matrix of the (i) − th model, respectively.
The scheme of the proposed IMM-based RECKF algorithm is
drawn in Fig. 5 where µik = P{ξk = i|z1:k}.

The implementation pseudo code of the proposed RECKF
is listed in Algorithm 2. In summary, the IMM-based RECKF
performs well for dealing with unknown and time-varying
measurement noise by comprehensively considering every
model in the model set. That is to say, instead of picking
the most suitable model at every moment, it uses every model
in the model set, but with different probability. Additionally,
the IMM-based RECKF executes parallel RECKFs in time,
and determines the probability for each mode state according
to its likelihood probability. The likelihood probability of
a mode state in essence represents the matching magnitude
of the measurement (produced by the real model) to the
model corresponding to the current mode. Advantage and
disadvantage discussions are given next.

Remark 7. For the non-interactive RECKF, the first advantage
lies in its low computational complexity, as analyzed in Section
IV-D. The underlying reason is that the proposed RECKF
adjusts the covariance matrix by changing a scalar parameter
θ. The proposed algorithm is more effective when the measure-
ment outliers affect the whole dimension of the measurement,
but when the measurement outliers have different effects on

different dimensions, the performance of the RECKF algorithm
will degrade, as will be shown in the simulation.

For the IMM-based RECKF, the advantage is that it provides
a feasible method to adaptively select the EC distributions
in time-varying and unknown environments. Adaptively ad-
justing the weights of the pre-selected distributions makes
the proposed IMM-based RECKF accommodate the environ-
ments quickly. However, when the environment is constant
or changing slowly, the performance of the proposed IMM-
based RECKF will degrade. For example, in an outliers-free
scenario, the traditional KF is optimal, and the pre-selected
linear EC distribution will play a decisive role in all selected
distributions. Nevertheless, the weight of the linear EC dis-
tribution is not exactly 1 because other selected distributions
will be assigned some weights as well. That is to say, the
IMM-based RECKF is essentially a suboptimal filter.

C. Discussions about the existing IMM filters

Finally, some discussions are conducted to reveal the differ-
ences among the proposed IMM-based RECKF, the Gaussian
IMM filter [26] and the Student’s t IMM filter [27]. On one
hand, the Gaussian IMM filter is limited to its nominal MNCM
settings. Its estimation accuracy will deteriorate significantly
with a relatively adventurous nominal MNCM. To be more
specific, when the true MNCM is larger than any of its nominal
MNCM settings, large errors will be induced. Although a
conservative nominal MNCM setting (i.e., selecting a model
with a very large nominal MNCM) can alleviate this problem,
poor performance can be achieved in the case of a mild
environment. Therefore, the performance of the Gaussian IMM
filter depends heavily on the accuracy of the prior knowledge
of the environment, which will be shown in Section VI-B.

On the other hand, each sub-filter of the Student’s t IMM
filter is a Student’s t filter, which avoids the adventurous
MNCM setting problem to some extent because the Student’s
t distribution has heavier tails than Gaussian with a large
covariance matrix. Hence, each sub-filter can resist outliers
itself rather than relying heavily on the nominal MNCM
settings. However, the moment matching strategy adopted
to ensure the posterior analytical and multiple Student’s t
fusion4 brings about unavoidable estimation errors. Although
[28] can address the latter problem, the former problem is
still unsolvable. Additionally, the inherent problem of the
Student’s t distribution mentioned in Section I-B limits its
accuracy in the case of only measurement outliers. Thus,
the proposed IMM-based RECKF has theoretical advantages
over the Gaussian IMM filter and the existing Student’s t
IMM filter, as will be shown in Section VI-B. In contrast,
the proposed RECKF is essentially a Gaussian approximation
filter whose posterior state density is Gaussian. This feature
enables the proposed IMM-based RECKF to avoid the problem
of large approximation error induced by multiple Student’s
fusion [28].

4In [27], fusing multiple Student’s t distributions into one Student’s t
distribution is required in calculating mixed prior PDF, similarly to (40).
According to [28], these approximation errors are very large. Nonetheless,
the error of approximating multiple Gaussian distributions as one Gaussian
distribution will remain bounded [35].
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Remark 8. Although the proposed RECKF can theoretically
perform better than some VB-based methods in the case of
measurement outliers as illustrated in Section IV-E, it will be
difficult to extend it to address state uncertainty like a VB-
based robust algorithm. As a matter of fact, most VB-based
algorithms identify the state outlier by using the difference
between the posterior state estimate and the prior state
estimate. However, due to abandoning using the posterior
information, the proposed RECKF cannot resist state outliers,
which means the proposed algorithm can only apply in some
scenarios where the state uncertainty is mild, for example,
where the vehicle is equipped with an INS or an odometry
[36]. Nevertheless, we would like to emphasize that being rid
of the ability to deal with state outliers can bring about better
ability to address measurement outliers because the IMM tech-
nique can be utilized to improve the performance in complex
environments. In some existing VB-based methods which can
resist the state and measurement outliers simultaneously, the
IMM approach cannot be used to improve performance in
complex environments because their measurement likelihood
PDF is not analytical (not Student’s t or Gaussian). Overall,
the proposed algorithm gives up the ability to deal with
state outliers, but obtains better suppression of measurement
outliers in return.

VI. SIMULATIONS

In this section, a target tracking example is utilized to
demonstrate the effectiveness and superiority of the proposed
IMM-based RECKF. The state vector is composed of the po-
sitions and velocities, and the state transition matrix and mea-

surement matrix are, respectively, set as Fk =

[
I2 ∆tI2

02 I2

]
and Hk =

[
I2 02

]
, where ∆t = 1s denotes the sampling

interval. The Gaussian distributed state and non-Gaussian
heavy-tailed distributed measurement noises are generated aswk ∼ N(0,Q)

vk ∼
{

N(0,R) w.p. p
N(0, UR) w.p. 1− p

(45)

where the notation w.p. denotes “with probability”, and U, p
denote the scale factors and normal probabilities of state
and measurement noises, respectively, and Q and R denote
the state nominal and MNCMs, respectively, and they are

selected as Q =

[
∆t3

3 I2
∆t2

2 I2
∆t2

2 I2 ∆tI2

]
and R = I2, respectively.

Some measurement sensors like lidar, can achieve such high
measurement accuracy. Note that high accuracy measurement
data are useful for some measurement-based learning algo-
rithms. The simulation is segregated into two cases to illustrate
the validity and advantages of the proposed algorithm. 1000
Monte Carlo runs are executed and the simulation time is
chosen as 200s and 1000s for two cases, respectively, at each
Monte Carlo run. The noise parameters setting for two cases
are listed in Table II, and all outlier parameters are selected
empirically because it’s often difficult to quantify outliers,
however, it makes intuitive sense that ‘100’ is relatively
smaller than ‘100000’. The root mean square errors (RMSEs),

TABLE II: Parameter settings of noises.

Case Periods Noise parameters
Case 1 \ U=1000, p=0.9

Case 2

Period 1 (1∼200s) U=100, p=0.75
Period 2 (201∼400s) U=1000, p=0.85
Period 3 (401∼600s) U=1, p=1

Period 4 (601∼800s)

601∼605s U=100000, p=1
606∼700s U=100, p=0.85
701∼705s U=100000, p=1
706∼800s U=100, p=0.85

Period 5 (801∼1000s) U=500, p=0.75

TABLE III: Parameter settings of all filters in case 1.

Filters Parameter settings
ORKF-VB dof parameter ν = 5
HKF Tuning parameter γ = 1.345
MCKF Kernel size σ = 5
RSTKF Tuning parameter τ = 5
SSMKF Similarity function sqrt
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Fig. 6: RMSEs of the position and velocity for Algorithm 1.

average RMSEs (ARMSEs) of position and velocity, normal-
ized estimation squared (NEES) and average NEES (ANEES)
are selected as performance metrics to compare the estimation
accuracy and consistency, whose definition can be found in
[12, 34].

A. Case 1: Non-interactive RECKF

1) Validity verification: In this case, our purpose is to
demonstrate the validity of the proposed RECKF, and when
the proposed RECKF is superior to the VB-based method. The
LEC distribution is selected to implement the proposed RECK-
F algorithm. We conduct the comparisons among the proposed
algorithm, the existing ORKF-VB [10], HKF [4], MCKF [7],
RSTKF [12], SSMKF [9], and standard KF with true noise
covariance matrices (KFTNCM) which is used as the accuracy
reference. The parameter settings for all filters in this case are
listed in Table III. Note that some compared algorithms can
handle both state outliers and measurement outliers. Therefore,
to be fair, the parameter adjustment function associated with
the state error covariance in these algorithms is shielded and
all filters adopt the accurate state noise covariance matrix to
implement the filtering work.

The simulation results for case 1 are shown in Figs. 6 and
Table IV. It can be seen from Fig. 6 that the proposed algorith-
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TABLE IV: ARMSEs of position (AP) and velocity (AV) and
ANEESs of all filters for Algorithm 1.

Filters AP(m) AV(m/s) ANEESs Times (0.1ms)
KFTNCM 1.4936 1.5300 4.0030 0.0978
ORKF-VB 2.5387 1.6578 7.1436 1.2533

HKF 3.3222 2.1451 10.9128 1.2942
MCKF 6.0876 2.7448 23.6304 1.3462
RSTKF 1.9395 1.6000 4.6417 9.0704
SSMKF 3.9826 2.5259 12.7442 1.0419
RECKF 1.7756 1.5888 4.5415 1.0403

TABLE V: The percentage gain of accuracy of all algorithms
in the case of multi-outliers for Algorithm 1.

Filters AP-1 AP-2 PgAP AV-1 AV-2 PgAV
KFTNCM 1.4936 1.3635 8.71% 1.5300 1.4863 2.86%
ORKF-VB 2.5387 2.3715 6.59% 1.6578 1.6505 0.44%

HKF 3.3222 2.4812 25.31% 2.1451 1.8162 15.33%
MCKF 6.0876 4.4073 27.60% 2.7448 2.1748 20.77%
RSTKF 1.9395 2.3378 -20.54% 1.6000 1.6249 -1.56%
SSMKF 3.9826 3.3905 14.87% 2.5259 2.2864 9.48%
RECKF 1.7756 1.9276 -8.56% 1.5888 1.6015 -0.80%

m performs better than the existing RSTKF and ORKF-VB,
and the position estimation accuracy is improved by 30.06%
and 4.16% with respect to ORKF-VB, 46.55% and 25.93%
with respect to HKF, 70.83% and 42.12% with respect to M-
CKF, 8.45% and 0.70% with respect to RSTKF, together with
55.42% and 37.10% with respect to SSMKF, respectively. It
can also be seen from Table IV that HKF and MCKF performs
relatively poorly, because these two algorithms do not take
the statistics of the state vector into account. Additionally, it
is worthy noting that although the accuracy of the proposed
algorithm in velocity estimation is not outstanding compared
to ORKF-VB and RSTKF, the running times are reduced by
17.00% and 88.53%, respectively, which is in concert with our
previous analysis on the computational complexity. Besides,
the caveat is that the consistency5 of the proposed algorithm
is also the best except for KFTNCM.

2) Multidimensional outliers verification: Next, the simu-
lation results in the case of multidimensional outliers, i.e.,
the measurement outliers have different effects on different
dimensions, are shown in Table V, where AP-1 denotes the
AP in Table V, and AP-2 denotes the AP in the case of mul-
tidimensional outliers, and PgAP denotes the percentage gain
of AP, and AV-1, AV-2 and PgAV are similarly defined. For
simplicity, these effects are simulated by only contaminating
the first dimension of the measurement with small outliers,
where the definition of ‘small’ can be found in Table III.

From the PgAP and PgAV in Table V, it is shown that both
HKF and MCKF have significant improvements in the case
of multidimensional outliers because the robust M-estimate
based KFs take into account the fact that the outliers may
have different influence on different dimensions, which results
in their advantage in the case of multidimensional outliers.
However, the actual estimation accuracy (AP-2 and AV-2) of
the robust M-estimate based KFs is limited by their inherent

5An estimate is called consistent if its theoretical covariance is not smaller
than the actual covariance, and then its NEES is not greater than the state
dimension. The closer the NEES gets to the state dimension, the better
consistency is achieved.

defect that the randomness of the estimate is ignored. Note
that the proposed RECKF still has the best accuracy, which is
due to its efficient iteration, as discussed in Section IV-B.

3) Robustness comparisons with VB-based methods: We
can observe from Fig. 6 that VB-based methods suffer from
instability occasionally. Therefore, the iterative process of a
typical time segment of the ORKF-VB and the proposed
RECKF will be singled out to analyze the potential instability
of the VB-based methods. The T (θ) − θ curves of two
algorithms during this time segment are plotted in Fig. 7-d,
where T (θ) = f(θ)− θ. Note that the purpose of Fig. 7-d is
to show how many local convergence points exist currently.

Fig. 7-a shows the position estimation errors of the two
algorithms. It is obvious that the ORKF-VB has poor es-
timation performance during 91s − 93s. Besides, Fig. 7-b
plots the relationship of the convergent θ estimates among
the RECKF, the ORKF-VB and true θ, In 7-b, the black dots
denote the theoretical θs which is 0.001 for a measurement
outlier and 1 for a normal measurement in this case. We
can see from Fig. 7-b that the proposed RECKF can well
capture the variation of θ during this time segment. However,
the ORKF-VB misjudged the quality of the measurement at
91s and was cheated by this measurement outlier. We attribute
this result to a large state uncertainty caused by consecutive
measurement outliers at previous steps, i.e., 89 ∼ 90s. It
is easy to imagine that the state uncertainty will increase
dramatically if the consecutive measurements do not provide
useful information, which is manifested by a large state error
covariance matrix. As such, the algorithm will tend to trust the
measurement at the next step at the first iteration regardless
of a measurement outlier or a normal measurement, because
the nominal MNCM is small relative to the large state error
covariance matrix6. With this result, Fig. 7-c and 7-d can
explain the reason why the ORKF-VB was cheated by the
measurement outlier while the RECKF was not. Fig. 7-c gives
the iteration values of two iterations and Fig. 7-d shows the
T (θ)−θ curves of the self-iteration and the coupling iteration
at 91s. As explained previously, both the first iteration values
obtained by the self-iteration and the coupling iteration are
close to 1 due to a large prior state uncertainty (For the self-
iteration, refer to (32b)). Nevertheless, note from Fig. 7-c
and 7-d that the RECKF converged unimpeded to a unique
solution due to the monotonicity of the self-iteration, which is
consistent with Section IV-A. However, the coupling-iteration
was stuck at the local convergent point which is far away from
the ideal convergent value considering that the scale factor is
set as U = 1000 (i.e., the optimal θ is 0.001). This explains
why the ORKF-VB performed worse than the RECKF at this
segment. Further, the more serious the parameter coupling of
the algorithm is, the more complex the coupling-iteration may
be, and the algorithm may have more local optimal points,
which is a disadvantage of VB-based methods.

More interestingly, the state uncertainty will be greatly
reduced due to the incorrect measurement update, leading
to the overconfidence of the algorithm so that it mistakenly

6The KF essentially balances the prior estimate and measurement by the
magnitude of prior uncertainty and MNCM.
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Fig. 8: Position ARMSEs under different parameters.

regards the next good measurement (at 92s) as an outlier
(because the estimated state has deviated far from the true
state), which further leads to the poor performance of the
ORKF-VB. This will happen almost every time the outlier
is incorrectly taken as a good measurement.

Overall, the proposed RECKF is expected to show its advan-
tages in the case of large state uncertainty, which can be caused
by consecutive measurement outliers (large outlier probability)
or a large state noise covariance. To verify this point, the
position ARMSEs of all algorithms under different outlier
probabilities and different state noise covariance matrices are
given in Fig. 8-a and 8-b. It is clear that estimation accuracy of
the VB-based methods indeed deteriorate in the case of large
outlier probability or large state uncertainty, which proves
the previous conjecture that the estimation accuracy of VB-
based methods will degrade when the measurement outlier
probability or the state uncertainty is large.

B. Case 2: IMM-based RECKF

In this case, we focus on the overall performance of the
existing filters in predetermined time-varying environments
during five periods, which are listed in Table II. Two periods
of five time steps were continuously interfered by large mea-
surement outliers to simulate the anti-interference performance
of the algorithm in the case of system failure. However, in
order to be more consistent with the actual situation, these two
periods are not included in the calculations of the ARMSEs
and ANEESs. The comparisons are split into two parts, where
one part compares the proposed IMM-based RECKF with
some existing non-interactive algorithms, and the other part
aims to compare the proposed IMM-based RECKF with the
existing typical interactive algorithms. The GEC distribution,
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TABLE VI: ARMSEs of position (AP) and velocity (AV) and
ANEESs of all filters for Algorithm 2.

Filters AP(m) AV(m/s) ANEESs Times (0.1ms)
KFTNCM 1.694 1.582 3.997 0.25
ORKF-VB 3.666 1.896 8.681 1.37

HKF 3.867 2.357 15.052 1.80
MCKF 7.013 3.299 39.211 1.58
RSTKF

(GSMRKF)
3.249 1.769 6.320 10.53

SSMKF 4.383 2.733 17.529 1.18
RECKF 2.577 1.731 5.503 2.48

LEC distribution and EEC distribution are selected to im-
plement the proposed IMM-based RECKF for the following
reasons.
• The GEC distribution plays a dominant rule when there

are no measurement outliers.
• The LEC distribution is used to deal with light measure-

ment outliers and improve the robustness and accuracy
of the system.

• The EEC distribution is an insurance in the case of system
failure where large outliers may be induced.

1) Part 1: In this part, the performance of the proposed
IMM-based RECKF (abbreviated as IMM-EC) is compared
with the existing ORKF-VB, HKF, MCKF, RSTKF, SSMKF,
KFTNCM, together with the GSMRKF [15]. Note that the
position RMSE curves are shown in Fig. 9 in the logarithm
form to be clearer, and all ARMSEs, ANEESs and execution
time are listed in Table VI.

It can be seen from Fig. 9 that the proposed IMM-EC always
has the best estimation accuracy except for Period 3. The
IMM-EC is inferior to HKF and MCKF during this period,
the underlying reason has been elaborated in Section VI. The
performance of the RSTKF and the GSMRKF is similar, which
is reasonable because the GSMRKF is essentially an extended
version of the RSTKF to deal with skewed noises. Moreover,
benefiting from the strong robustness of the EEC distribution,
the proposed IMM-EC retains stability and accuracy in the
case of consecutive large measurement outliers, which shows
the usefulness of the EEC distribution.

Additionally, in terms of the overall performance without
the large outliers during two segments, the estimation accu-
racy of position and velocity is improved by 29.71% and
8.70% with respect to ORKF-VB, 33.36% and 26.57% with
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respect to HKF, 63.25% and 47.53% with respect to MCKF,
21.30% and 2.15% with respect to RSTKF and GSMRKF,
together with 41.66% and 36.66% with respect to SSMKF,
respectively. Besides, the consistency of the proposed IMM-
based algorithm is also the best except for KFTNCM, which
is shown in Table VI. It is worth noting that the number of
iterations is set as 50 for all the comparison algorithms to
guarantee the convergence of these algorithms except for the
proposed IMM-based RECKF. The number of iterations of
the proposed algorithm is set as 2 because with the number
of iterations increasing, the proposed algorithm will bear a
relatively huge computational burden due to the interactions
among the pre-selected RECKFs. Fortunately, reducing the
number of iterations still results in a satisfactory accuracy.
Thus, the proposed algorithm can achieve a satisfactory result
at the cost of a slightly larger computational complexity. The
reason why the proposed algorithm has priority in such an
intricate noise environment can be found in Fig. 10.

The weight curves in Fig. 10 denote the average weights
of respective EC distributions-based RECKFs with respect to
Monte Carlo runs. According to Table II, small outliers appear
during Periods 1,2 and 4. Theoretically, the RECKF based on
the LEC distribution performs best in this period, and as can be
seen from Fig. 10, the RECKF based on the LEC distribution
has the highest weight in these periods, and it turns out that
the interaction works successfully, which indicates that the
approximation error mentioned in Remark 5 is acceptable.
Note that, nonetheless, there are no outliers during Period 3,
the weight of the RECKF based on the GEC distribution is not
exactly 1, but the highest. Moreover, the high weight of the
RECKF based on the EEC distribution during the in Period 4
verifies the validity of EEC distribution in the case of large
outliers.

2) Part 2: In this part, the proposed IMM-EC is compared
with the existing Gaussian IMM filter with different model
numbers and different model parameters and the Student’t
IMM filter, represented by the IMM-MVC algorithm [28]. The
parameter settings in this part are listed in Table VII, where
M denotes the magnification of the MNCM used in each
model relative to nominal MNCM. Note that the parameters
chosen by IMM-Gauss-1, 2 and 3 are accurate, adventurous
and conservative, and the parameters chosen by IMM-Gauss-
4, 5, 6 and 7 are all conservative. The results are shown in
Fig. 11-a and 11-b.

Notice from Fig. 11 that the IMM-MVC has poor perfor-
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Fig. 11: Comparison with the IMM-MVC and IMM-Gauss.

mance in our simulation because it is specially designed for
simultaneous state and measurement outliers. In the IMM-
MVC, the state noise and the measurement noise require to
be contaminated by the same degree of outliers as mentioned
in Section I-B. However, only measurement outliers exist in
our simulation, leading to the poor performance of the IMM-
MVC.

Besides, we can observe from Fig. 11-a that the IMM-
Gauss-1 with accurate parameters has the best performance
overall. The IMM-Gauss-2 with adventurous parameters per-
forms well when the model parameters are close to the true
parameters, i.e., Periods 1 and 4. Nonetheless, it has poor
performance during Periods 2, 4 and 5 where the model
parameters are much smaller than the true parameters. On the
other hand, the IMM-Gauss-3 does not have large errors like
IMM-Gauss-2, which benefits from its conservative parameter
settings, but this also leads to its poor accuracy as a whole.

Next, some discussions are conducted to verify the influence
of the model number on the Gaussian IMM filter. Conservative
parameters are set for all four Gaussian IMM filters. We can
observe from Fig. 11-b that the Gaussian IMM filter cannot
obtain an equivalent accuracy under the same model number
with the proposed IMM-EC. It is also worth noting that the
Gaussian IMM filter with four or more models will con-
sume more computation than the IMM-EC. In conclusion, the
proposed IMM-EC has better performance than the existing
Gaussian IMM filter and existing Student’s t IMM filter in the
case of complex environments.

It is also worth noting that the advantage of the EEC
distribution not only lies in its ability to resist extremely
large measurement outliers, but also helps in an outlier-free
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TABLE VII: Parameter settings of all filters in case 2.

Filters Parameter settings
IMM-Gauss

(different
parameters)

IMM-Gauss-1 M11=1, M12=500,M13=100000
IMM-Gauss-2 M21=0.1, M22=10,M23=50
IMM-Gauss-3 M31=10, M32=3000,M33=1000000

IMM-Gauss
(different

model numbers)

IMM-Gauss-4 M41=0.1, M42=1000000
IMM-Gauss-5 M51=0.1, M52=3000, M52=1000000

IMM-Gauss-6
M61=0.1, M62=20

M63=4500, M64=1000000

IMM-Gauss-7
M71=0.1, M72=10,M73=750
M74=50000, M75=1000000

IMM-MVC dof1=3, dof2=10, dof3=100

case. Due to the similarity of influence functions of the EEC
distribution and the Gaussian distribution, they have similar
performance when there are no measurement outliers, as can
be seen from the similar weights of the EEC curve and the
GEC curve during 400 ∼ 600s in Fig. 10. Thus, the EEC
distribution can also improve the performance of the proposed
algorithm in an outlier-free scenario.

VII. CONCLUSION

In this paper, we firstly proposed a novel outlier-robust
Kalman filtering framework with measurement noise modeled
as EC distributed. Then some properties of the proposed
algorithm are specified. Additionally, a method using IMM
for adaptively selecting EC distributions to accommodate time-
varying and intricate noise environment is given. Simulation
results have demonstrated that the proposed non-interactive
RECKF has slightly better accuracy but less computations
than the existing algorithms, and the proposed IMM-based
RECKF has a significant accuracy advantage but slightly
heavier computational burden than the existing algorithms in
the case of time-varying and intricate noise environments.

VIII. APPENDICES

A. Proof of Theorem 1
The conditional measurement likelihood PDF can be calcu-

lated by employing the Gaussian integral formula [33] as

pθk(zk|z1:k−1, λk) = N(zk; ẑk|k−1,P
zz
k|k−1(θk)/λk) (46)

where ẑk|k−1 and Pzz
k|k−1(θk) are calculated as (14).

Therefore, using (7), (10) and (46), the modified posterior
PDF of the state vector can be analytically calculated as (14).

B. Proof of Proposition 1
Using Bayes’ rule, we can easily attain

p(zk|xk, λk)pθk(xk|z1:k−1, λk)

= pθk(zk|z1:k−1, λk)pθk(xk|z1:k, λk)
(47)

Utilizing (7), (10), (14) and (46), the modified posterior PDF
can be formulated as

pθk(xk, λk|z1:k)

=
N(xk; x̂′k|k(θk),

P′k|k(θk)

λk
)N(zk; ẑk|k−1,

Pzz
k|k−1(θk)

λk
)Pg(λk)

pθk(zk|z1:k−1)
(48)

By integrating xk into (48), the marginal posterior PDF of
λk can be calculated as (15).

C. Proof of Proposition 3

Taking the derivative of both (12) and (21) with respect to
zk and using (18), we can obtain

− E(λk)(Pzz
k|k−1(θk))−1(zk − ẑk|k−1)

= 2ġ(∆k)(Pzz
k|k−1(θk))−1(zk − ẑk|k−1)

(49)

where ∆k = (zk − ẑk|k−1)T (Pzz
k|k−1(θk))−1(zk − ẑk|k−1).

The underlined expression is an m by 1 non-zero vector and
the first term on the left-hand side is the expectation of λk.
Therefore, using (20), (22) can be obtained.

D. Proof of Theorem 2

It is observed from (14) and (23) that both the matrices
Pzz
k|k−1(θk) and P̃zz

k|k−1 are positive semi-definite when θk >
0. Also, it is observed from `2 that for all t ∈ [0,+∞), ġ(t) <

0, which causes θ
(i)
k > 0 for arbitrary i. Moreover, under

condition `3, for all t ∈ [0,+∞), ġ(t) > ġ(0), thus −2ġ(t) <

−2ġ(0), so θ
(i)
k < −2ġ(0), therefore, the iterative sequence

{θ(i)
k }

+∞
i=1 is bounded, i.e., 0 < θ

(i)
k < −2ġ(0). Then, we will

study the monotonicity of the iterative sequence.
Define f(θk) = −2ġ(tr{P̃zz

k|k−1(Pzz
k|k−1(θk))−1}). Then

taking the derivative of f(θk) with respect to θk, we can attain

ḟ(θk) = 2g̈(tr{(P̃zz
k|k−1(Pzz

k|k−1(θk))−1)}P̃zz
k|k−1

× (Pzz
k|k−1(θk))−1

(
HkPk|k−1H

T
k

)
(Pzz

k|k−1(θk))−1
(50)

Since the matrices P̃zz
k|k−1,HkPk|k−1H

T
k ,P

zz
k|k−1(θk) are

all positive semi-definite symmetric matrices and g̈(t) > 0, we
can obtain ḟ(θk) > 0, which means that f(θk) is a monoton-
ically increasing function. That is to say, if θ(1)

k > θ
(0)
k , the

iteration converges to the upper bound and vice versa. As a
result, the iterative sequence {θ(i)

k }
+∞
i=1 is able to converge to

a unique limit, i.e.,

lim
i→+∞

θ
(i)
k = θ̂k (51)

E. Proof of Theorem 3

Employing (24) and (26), we can obtain

θ
(1)
k = −2ġ(tr{P̃zz

k|k−1

(
Pzz
k|k−1(θ

(0)
k )
)−1

}) (52)

Using the condition `3 and Assumption 2, we can obtain
θ

(1)
k < θ

(0)
k = 1. If θ(i+1)

k < θ
(i)
k holds when i = j, i.e.,

θ
(j+1)
k < θ

(j)
k . Then we can obtain

tr{P̃zz
k|k−1(P

zz
k|k−1(θ

(j+1)
k ))−1} > tr{P̃zz

k|k−1(P
zz
k|k−1(θ

(j)
k ))−1}

(53)
Then, exploiting (24), (53) and condition `3, we can obtain

θ
(j+2)
k < θ

(j+1)
k . According to the mathematical induction

method, θ(i+1)
k < θ

(i)
k holds for an arbitrary i ≥ 0. Thus,

the inequality (30) holds for an arbitrary i ≥ 0.

F. Proof of Proposition 5

The variance of λk is calculated as

V ar(λk) =

∫ +∞

0

λ2
kpθk(λk|z1:k)dλk−[E(λk)]2 (54)
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Define

P̃1(θk) = (Pzz
k|k−1(θk))−1P̃zz

k|k−1(Pzz
k|k−1(θk))−1 (55)

P̃2(θk) = (zk−ẑk|k−1)T (Pzz
k|k−1(θk))−1(zk−ẑk|k−1) (56)

Similarly, taking the derivatives of (12) and (21) with
respect to zTk and using (54), we can obtain

(V ar(λk) + [E(λk)]2)P̃1(θk)− (E(λk))(Pzz
k|k−1(θk))−1

= 4ġ2(P̃2(θk))P̃1(θk) + 4g̈(P̃2(θk))P̃1(θk)

+ 2ġ(P̃2(θk))(Pzz
k|k−1(θk))−1 (57)

Utilizing (18) and (22), (57) can be reformulated as follows

V ar(λk)P̃1(θk) = 4g̈(P̃2(θk))P̃1(θk) (58)

where P̃1(θk) is an m × m non-zero matrix. Therefore,
(58) can transform into V ar(λk) = 4g̈(P̃2(θk)). Employing
Theorem 3 and condition `4, we can obtain (33).
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