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I. INTRODUCTION 
 
In the 1950’s, O.J. Smith [1] developed the Smith predictor structure to compensate systems with time 
delay, which are a feature of many industrial processes. The Smith predictor structure utilises a 
mathematical model of the process in a minor feedback loop. One of its advantages is that the Smith 
predictor approach for a SISO system may be directly extended to the MIMO system with the same 
delay. 
Since the Smith Predictor structure was proposed, many modifications have been proposed to improve 
the servo response, the regulator response or both. Modifications were accomplished to adapt the 
structure to stable, integrative or unstable systems. This paper reviews the modifications to the Smith 
predictor proposed in the literature, proposes a generalised form of the predictor and presents a new 
modified Smith predictor structure. 
 
II. EXISTING MODIFIED SMITH PREDICTOR STRUCTURES 

 
a) Stable processes 

 
The modified Smith predictor structures may be classified into three types: Disturbance rejection 
improvement structures, Two degrees of freedom structures and Other structures. Hang and Wong [2], 
in their fast disturbance detector structure, interchange the model dead time and the process model, so 
the detector does not experience the dead time in the closed loop. In Watanabe et al.’s [3] structure, a 
dynamical compensator is included in the main feedback loop. The same structure is used by 
Romagnoli et al. [4-5], but instead of a compensator, the authors use a filter designed to obtain pole-
zero cancellation. Palmor and Blau [6] develop tuning rules for this structure. Palmor and Powers [7] 
elaborate a structure, which improves the regulatory response for measurable disturbances. Ferreira [8] 
develops two structures to maximise the disturbance rejection if the disturbance consists of few-time-
independent frequency components. This “disturbance accommodation controller” employs a 
disturbance observer with a predictor into the main feedback path, while the “disturbance predictor 
filter” uses a filter instead of the disturbance observer. In their modification, Huang et al. [9] include a 
compensator between the main feedback loop and the minor feedback loop to approximate the inverse 
of the dead time at low frequencies in the feed-forward path.  
The second type of modified Smith predictor structure for stable systems is the two degrees of freedom 
structure, which decouples the servo and regulatory problems (i.e. each response has its associated 
controller, which permits a separate design). To do so, Datsych [10] includes a controller to optimise 
the regulator response into a feedback path coming back at the input of the process model. This 
structure, labelled the “disturbance detector structure”, was used by Hang and Wong [2] for unstable 
processes. Gorecki and Jekielek [11-12] modify the Smith predictor structure to obtain a new structure 



   

 

labelled a “simplifying controller”. In this structure, the process model and the model time delay are 
fed-back directly to the input without being compared to the output signal. In their structure, labelled 
the “double controller structure”, Tian and Gao [13-14] feed back the load controller signal before the 
disturbance input signal. In [15], Tian and Gao implement this structure in a thermoplastic injection-
modelling example. This structure is modified by Vrecko et al. [16] by adding an extra network 
including a tuneable delay τx. By adding an extra network to the Smith predictor structure modified by 
Astrom et al. [17], Vrancic et al. [18] obtain a new structure called the “flexible Smith predictor”. The 
load controller is tuned to the process model delayed by a time τx. In [19], the authors extend the tuning 
rules for the flexible Smith predictor. In their structure, Zhang et al. [20] feedback the load controller 
signal before the disturbance input signal, and the process model output signal is not fed-back to the 
input. Debelak and Rutherford [21] develop a structure called “partitioned error control”, which 
belongs to the family of model-based controllers. Guo and Jutan [22] propose a multi-controller 
structure, which consists of a set-point controller, two load controllers and a feed-forward controller. 
Normey-Rico and Camacho [23] add a set-point tracking controller before the main feedback loop. 
This structure may be used for the control of integrative processes. Sung and Lee [24] propose a 
complex modified version of the Smith predictor structure, which is suitable for integrative and 
unstable processes. Majhi and Atherton [25] add a complex network onto the Smith predictor structure, 
which contains three controllers. This structure may be used to control stable, integrative or unstable 
processes. 
Some modified Smith predictor structures are difficult to classify because their aims may be wider than 
one objective or their structure does not correspond to a specific form (one-degree or two degrees of 
freedom). Hang and Wong [2] for example, include a filter in the feedback path to overcome the 
problem of performance degradation due to the noise. The authors call this structure the “open-loop 
filter structure”, as a simple first order filter is sufficient to improve the performance. Chiang and 
Durbin [26] consider the variable gain control of a Smith predictor structure to track changes in the 
process gain. The authors use a second order lag plus dead time process model. They develop a 
procedure for model gain control, which employs a reference model. Kantor and Andres [27] include 
two proportional controllers, one in the forward path and the other in the feedback path of the minor 
loop. This modified structure permits the elimination of the steady state servomechanism offset, and the 
regulation errors. A few authors (Durbin [28], Smith [29-30], Kaya [31]) combine the advantage of the 
Smith predictor structure with the advantage of a cascade structure. Mitchell [32] modifies the Smith 
predictor structure by adding a scaling filter between the two feedback loops and a predictive element 
in the main feedback path. The predictive element counteracts the effect of the delay. Deshpande [33-
34] includes PID terms and a lead/lag network into the Smith predictor structure. He considers that the 
disturbance may be modelled by a first order lag plus dead time system. Benouarets and Atherton [35] 
suggest that a compensator modelling the time delay mismatch may be defined and included in a 
further feedback path from either the process or model output to the error signal position of the Smith 
predictor structure. In their modification, Al-Sunni and Al-Nemer [36] combine a Smith predictor 
structure with fuzzy logic, which is used to auto-tune the PI primary controller when the Smith 
predictor structure compensates for the dead time. Hang et al. [37] develop tuning rules for the Smith 
predictor structure and they use a second order system plus dead time form for the process and the 
model transfer functions. Tan et al. [38] present an equivalent representation of the Smith predictor 
structure. The authors explain that this representation shows that the Smith predictor structure contains 
an inherent phase-compensated element in the feedback loop and that the single loop controller can be 
viewed as a special mismatched Smith predictor system. 
 

b) Integrative processes 
 

The modified Smith predictor structures may be classified and two types can be identified: dependent 
structures and two-degrees of freedom structures. First the dependent structures will be discussed. 
Watanabe and Ito [39] include a constant in the major feedback path and re-design the model transfer 
function. Normey-Rico and Camacho [40] include a filter at the input of Watanabe and Ito’s [39] 
structure. Matausek and Micic [41-42] modify the Smith predictor structure by adding a feedback path 
from the difference of the process output and the model output signals. The primary controller used is a 
proportional controller. In [42], the authors change the proportional controller into a lead/lag controller. 
As for stable systems, it is possible to obtain two degrees of freedom structures for integrative systems. 
Astrom et al. [17] construct the major feedback loop between the controller and the disturbance input; a 
compensator is included in the feedback loop. Zhang and Sun [43] extend Astrom et al.’s [17] modified 
Smith predictor to control a general integrator/time delay process by developing a new transfer function 
for the load controller. Leonard [44] extends this structure to improve the system performance; the 



   

 

authors also develops primary controller tuning rules. Tian and Gao [45] propose a new structure, 
which contains a local proportional feedback to pre-stabilize the process, a proportional controller for 
set-point tracking and a PD controller for load disturbance rejection. Kwak et al. [46] add a controller 
outside the main loop to obtain the desired trajectory, and a controller fed-back before the disturbance 
input signal to optimise the regulator response. The signal going through the load controller is the 
difference between the output signal and the signal coming out from the trajectory controller. Using the 
same structure, Kwak et al. [47] employ an unstable system to model an unstable process. Chien et al. 
[48] re-design the model to avoid an offset problem during load disturbance. They use two controllers: 
one after the input signal to optimise the servo response and a second fed-back after the servo 
controller. 
 
III. GENERALISED FORM OF SMITH PREDICTOR STRUCTURE 
 
The general form of the Smith predictor is obtained by combining several structures ([1-6], [9-10], [13-
15], [23], [32], [43-44]), which have common points in one general structure. A number of structures 
were considered but not included into the general structure due to their complexity ([16], [18-19], [25], 
[27], [41-42], [45]). 
The requirements specified for the general structure are to obtain perfect response for the servo 
response and the regulator response (i.e. 1=

R
Yp and 0=

L
Yp ) and that the controller transfer functions are 

only expressed in terms of the model parameters. It turns out that three primary controllers need to be 
specified: one to optimise the servo response, one to optimise the regulator response and one to 
eliminate the mismatch between the process and the model. Figure 1 shows the generalised form. In the 
different cases, Gc1, Gc5 and Gc6 are equal to 1, and Gc2, Gc4 and Gc3 are equal to 0 when they are not 
used. After calculating each possible triplet of primary controllers, only three cases are considered, as 
their controller transfer functions are of the simplest form to limit any necessary approximations. In this 
paper, only one case will be considered, as the space is limited. The other cases will be presented at the 
conference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CASE STUDIED 
 
This structure is similar to the structure used by Astrom et al. [17], Tian and Gao [13], Zhang and Sun 
[43] and Leonard [44]. As can be noticed from the equations (1) and (2), Gc3 will optimise the servo 
response, Gc1 will optimise the regulator response and Gc2, will eliminate the mismatch between the 
process and the model. 
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To eliminate the mismatch term, the controller Gc2 must be equal to zero. The following expressions 
may be calculated for Gc1 and Gc3 by designing for perfect servo and regulator responses. 
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ms
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 (4) 

If the non-delayed model is represented by equation (5) below, then equations (3) and (4) become 
equations (6) and (7), respectively. 
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The controllers are impossible to implement with real systems, so approximations are used. It was 
decided to add an integrator to both controllers to allow the steady state servo response to be unity and 
the steady state regulator response to be zero. The inverse of the delay (equation (7)) cannot be 
implemented, so the approximation developed by O’Dwyer [49] is used: 
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Expressions (10) and (11) are the realisable controller forms. 
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The absolute values of the controllers are used in equations (10) and (11) to maintain system stability. 
 
V. SIMULATION 
 
To use the Smith predictor structure, a primary controller must be designed to achieve perfect 
responses (i.e. 1=

R
Yp and 0=

L
Yp ). This gives a primary controller of the following form (equation (12)) 

and its implementable approximation is given by equation (13). 
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The expression for the controller GC3 in the modified Smith predictor (equation (11)) becomes equation 
(14). 
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Table 1 presents tuning rules developed for each controller and the range of possible values for α and p 

depending on the index 
m

m
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The full panorama of simulation results cases covered by seven benchmark processes and their models 
show that it is possible to achieve both better servo and regulator responses using the modified Smith 
predictor proposed instead of using the Smith predictor in the vast majority of cases. For example, if 
system performance is evaluated using the Integral Absolute Error (IAE) index, the servo responses of 
the modified Smith predictor are better than those of the Smith predictor in 20 of 21 simulations taken. 
The regulator responses of the modified Smith predictor are better than those of the Smith predictor in 
all 21 of the simulations taken. Thus, the modified Smith predictor gives more favourable results 
overall in 41 out of 42 (or 97.62%) of the simulations taken. One representative simulation result for 

Table 1:Tuning rules and the range of values for α and p 
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VI. CONCLUSION 
 
After an extensive literature review, a generalised Smith predictor structure is developed. A modified 
Smith predictor structure is subsequently developed with the aim of achieving excellent servo and 
regulator responses. From the simulations of our implementation of this structure, it may be concluded 
that better servo and regulator responses are achieved in the vast majority of cases when the modified 
Smith predictor is used instead of the corresponding Smith predictor. Further work will concentrate on 
the development of an autotuning strategy for the modified Smith predictor. 
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