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Abstract

Background: The infantile onset form of Neuronal Ceroid Lipofuscinoses (INCL) is the earliest

and most severe form of NCL, with neurological symptoms that reflect massive neurodegeneration

in the CNS and retina. INCL is due to recessively inherited mutations at the CLN1 locus. This locus

encodes the evolutionarily conserved enzyme palmitoyl-protein thioesterase 1 (PPT1), indicating

an essential role for protein palmitoylation in normal neuronal function.

Results: To begin to elucidate the specific role that Ppt1 plays in neuronal cells, we have developed

a Ppt1 over-expression system in Drosophila. We report that over-expression of DmPpt1 in the

developing Drosophila visual system leads to the loss of cells through apoptotic cell death. This

DmPpt1 over-expression phenotype is suppressed by DmPpt1 genomic deficiencies. Moreover,

over-expression of DmPpt1S123A, which bears a catalytic site serine 123 to alanine mutation, does

not lead to the severe eye phenotype observed with over-expression of wild-type DmPpt1. Thus,

cell loss in DmPpt1 flies is directly related to the dosage of wildtype DmPpt1.

Conclusions: Although INCL is due to the loss of PPT1; increased levels of DmPpt1 also lead to

neurodegeneration possibly via a detrimental effect on some aspect of PPT1's normal function. This

suggests that the precise levels of PPT1 activity are important for neuronal cell survival. The

Drosophila DmPpt1 over-expression system provides a resource for genetic experiments that aim

to identify the processes by which PPT1 regulates the palmitoylation-state of its essential protein

substrates.

Background
The most common of the pediatric neurodegenerative dis-
eases (1 in 12,500 births) are a set of primarily recessive
disorders termed Neuronal Ceroid Lipofuscinoses (NCLs)
due to the loss of central nervous system neurons and the
accumulation of auto-fluorescent lipopigment [1]. While
most cells contain inclusions, neurons are primarily
affected leading to symptoms that include loss of vision,
motor dysfunction, intellectual decline, and seizures [2].
Each NCL subtype is classified by its characteristic mem-

brane/protein lysosomal inclusion pathology and age of
onset [2]. Genetic analysis of the NCLs has identified 8
loci, CLN1-8, that are associated with the differing ages of
onset of the disorders. Six of the eight loci have been
mapped showing that CLN1 and CLN2 encode soluble
enzymes with known functions while CLN 3, 5, 6, and 8
are putative transmembrane proteins of unknown func-
tion [2].
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Infantile onset NCL (INCL) is the earliest and most severe
form of NCL with symptoms that include loss of vision,
motor dysfunction, intellectual decline, and seizures due
to massive neurodegeneration in the CNS and retina [2].
INCL is caused by mutations in the CLN1 gene which
encodes palmitoyl-protein thioesterase 1 (PPT1), suggest-
ing that there is an important role for the regulation of
palmitoylation in normal neuronal function [3]. This
post-translation modification is the addition of a palmi-
tate fatty acid chain to proteins. PPT1 is one of the
enzymes that catalyze the removal of palmitoyl groups
from specific protein targets. Unlike permanent fatty-acid
chain additions, such as myristolation, palmitoylation is
dynamic and very little is known about its role in the reg-
ulation of protein function [4].

Histochemical and biochemical analysis of PPT1 has
shown that it appears to be present within the endo-lyso-
somal compartment and possibly in the cytoplasm [5–8].
Consistent with an important role for PPT1 in neurons,
the protein is found with synaptic vesicles and synapto-
somes in neuronal cell culture [9,10]. A model of excito-
toxicity in the rat brain confirms a presynaptic localiza-
tion for the protein and suggests that PPT1 may be neuro-
protective during an excito-toxic event [11]. Finally, over-
expression of PPT1 in a neuronal cell line protected cells
from the induction of apoptosis suggesting that de-palmi-
toylation of p21Ras and other substrate proteins may play
a role in the regulation of neural death [8]. While this
recent work is beginning to shed light on the protein's
function, there is still little understanding of the role PPT1
plays in different cellular compartments, including tissue
specific substrates and signaling pathways that it may
modulate.

Drosophila has been an important model system for the
study of human disease and has made important contri-
butions to the understanding of several kinds of neuronal
degeneration including Huntington's, Parkinson's, Alzhe-
imer's, and Machado-Joseph Diseases [reviewed in
[12,13] and references therein]. The powerful genetic
tools available in Drosophila as well as the high degree of
conservation of gene function between Drosophila and
higher vertebrates makes it an ideal system to study the
cellular function of PPT1. The adult visual system in par-
ticular has been especially useful for characterizing
human disease genes in Drosophila and for identifying
modifiers of their function. In this study we present the
development of an over-expression system for the study of
the Drosophila Ppt1 gene.

Results
Generation of DmPpt1 Over-expression Lines

The Drosophila PPT1 homolog (DmPpt1) is ~55% identical
and ~74% similar to the human protein at the amino acid

level [14]. The DmPpt1 transcript appears to be expressed
ubiquitously at low levels during embryonic and larval
development (data not shown). Consistent with the levels
of mRNA, DmPpt1 enzymatic activity is present at varying
levels in all tissues that have been tested [14]. In order to
produce a Drosophila model to study PPT1 function, we
generated 10 independent UAS:DmPpt1 insertion lines
and used the GMR-Gal4 driver line to over-express
DmPpt1 in the developing visual system. The GMR Gal4
driver expresses GAL4 in all cell types including neuronal
photoreceptors as the eye differentiates during the larval
and pupal stages [15]. We confirmed that the
UAS:DmPpt1 overexpression lines did indeed over-express
DmPpt1 message by performing in situ hybridizations on
third instar eye imaginal discs (data not shown). Expres-
sion of the DmPpt1 transgene was consistent with the pre-
viously described GMR GAL4 expression pattern [15]. We
were not able to analyze the levels of protein produced or
subcellular localization of the over-expressed protein due
to the lack of a specific antibody reagent.

We analyzed the surface of the eyes in DmPpt1 over-
expression adults with scanning electron microscopy (Fig-
ure 1) and at the light microscope level and found a range
of morphological defects, both weak (Figure 1C) and
strong (Figure 1D) depending on the UAS-DmPpt1 inser-
tion line. The eyes show a change in size, a disruption of
the individual ommatidia number and spacing as well as
an absence of some sensory bristles (Figure
1A,1B,1C,1D), suggesting that there was cell loss occur-
ring during the development of each ommatidium. Fur-
thermore, when examined under the light microscope, the
DmPpt1 over-expressing eyes contain black ommatidia
(Figure 1I). These black spots do not form progressively
over the life of the fly. Quantitative counting experiments
over a 15 day period indicates that the number present at
eclosion, while variable from fly to fly, is constant
throughout the life of the individual fly (data not shown).
The black spots, therefore, appear to be indicative of a
degeneration event later in development once the eye has
fully differentiated.

DmPpt1 Over-expression Induces Cell Death

To determine whether the underlying cellular architecture
of the eye was compromised, we preformed semi-thin sec-
tions on several over-expression lines, one showing a
weak phenotype and one showing a strong phenotype,
along with control lines (GMR:Gal4 and UAS insertion
lines alone). These analyses revealed a striking loss of
photoreceptors and other cell types that was correlated
with the severity of the external eye morphology. Photore-
ceptor cell loss was quantified in the weak phenotypic line
(GMR:Gal4/UAS:DmPpt18.1) by counting individual rhab-
domeres per ommatidia in semi-thin retinal sections. This
quantification showed that the eyes had an average of
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5.08 +/- 1.20 rhabdomeres/ommatidia (n= 266). This was
compared to a GMR:Gal4/CyO control line with an aver-
age of 6.97 +/- 0.16 (n = 341) and to a UAS:DmPpt1/CyO
control line with 7 rhabdomeres/ommatidia (n = 301)

(Figure 1J). As indicated by the quantification, the weak
phenotypic line, UAS:DmPpt18.1, showed less than the full
complement of 7 rhabdomeres visible in a section of con-
trol eyes (Figure 1J). Furthermore, those photoreceptor

Analysis of DmPpt1 over-expression phenotypesFigure 1
Analysis of DmPpt1 over-expression phenotypes. A-D, Scanning Electron Micrographs showing the external surface of control 
and DmPpt1 over-expression eyes (200×). E-H, Semi-thin sections through fixed retinal tissue showing the internal structure of 
control and DmPpt1 over-expression retinas. Scale bar = 2 µm. A and E, GMR:Gal4/CyO. B and F, UAS:DmPpt18.1/CyO. C and G, 
GMR:Gal4/UAS:DmPpt18.1. D and H, GMR:Gal4/UAS:DmPpt12.1. I, A light microscope image of a GMR:Gal4/UAS:DmPpt18.1 eye 
showing the black ommatidia present in the fully differentiated eye. J. Quantification of the loss of rhabdomeres in GMR:Gal4/
UAS:DmPpt18.1 eyes in relation to the GMR:Gal4/CyO and UAS:DmPpt18.1/CyO controls. *p < .00001 using Ttest.
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cells that were missing rhabdomeres appeared highly pig-
mented suggesting they were undergoing cell death [16].
The strong phenotypic line, UAS:DmPpt12.1, was not ana-
lyzed in this manner due to the severity of the defects and
the fact that almost all rhabdomeres were missing, pre-
cluding reliable quantification.

We further analyzed the ultrastructure of the degenerating
photoreceptor neurons with transmission electron micro-

scopy (TEM) focusing on sections of the weak
UAS:DmPpt18.1 line, the strong UAS:DmPpt12.1 line, and a
control insertion alone line. TEM sections of UAS:DmPpt1
over-expression lines showed photoreceptor neurons that
had become highly vacuolized with rhabdomeres in vari-
ous stages of degeneration (Figure 2A,2B,2C). In a strong
phenotypic line, this abnormal neuronal cell phenotype
was more pronounced, with almost all ommatidia
appearing highly pigmented, full of vacuoles and missing

DmPpt1 over-expressing eyes undergo apoptotic cell deathFigure 2
DmPpt1 over-expressing eyes undergo apoptotic cell death. A-C, Transmission electron micrographs. A, UAS:DmPpt18.1/CyO 
control showing normal ommatidial structure. Scale bar = 2 µm. B, An image of GMR:Gal4/UAS:DmPpt18.1 over-expression 
ommatidium showing individual degenerating photoreceptors (labeled with an asterisk). Scale bar = 1 µm. C, An image of 
GMR:Gal4/UAS:DmPpt12.1over-expression ommatidium showing all photoreceptor undergoing cell death with no rhabdomeres 
present. Scale bar = 1 µm. D, Scanning electron micrograph (200×) of a GMR:Gal4, UAS:DmPpt18.1/+; UAS:DmPpt12.1/+ eye. E, 
Scanning electron micrograph (200×) of a GMR:Gal4, UAS:DmPpt18.1/pGMR:p35 ; UAS:DmPpt12.1/+ eye.
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all of their rhabdomeres. This type of ultrastructural
appearance is indicative of photoreceptors undergoing
programmed cell death [16].

To further test the idea that the defects we observed in eye
development were the result of apoptotic cell death, we
examined whether the eye morphology phenotype is
altered by the presence of the baculoviral anti-apoptotic
protein p35 [17]. Co-expression of p35 and DmPpt1 using
the GMR promoter significantly reduced the rough eye
defects associated with DmPpt1 over-expression (Figure
2D,2E). This suggests that, consistent with our TEM anal-
ysis, the defects we see are due in large part to cells dying
through apoptosis.

DmPpt1 Over-expression Mechanism

We took two approaches to address whether the abnormal
eye phenotypes are a result of increased levels of wildtype
DmPpt1 or are due to an ectopic, non-wildtype function of
the protein. First, two independent deficiency chromo-
somes that remove the genomic region containing the
DmPpt1 locus were crossed into the DmPpt1 over-expres-
sion background. The rough eye defects were suppressed
when the dose ofwildtype DmPpt1 was decreased (Figure
3). This suggests that the defects are produced by
increased levels of wildtype DmPpt1.

In a second approach, we changed the catalytic serine at
amino acid 123 to alanine (S123A) through site directed
mutagenesis of the DmPpt1 cDNA. A similar mutation in
the homologous amino acid in Bovine PPT1 produces an
enzyme with severely reduced catalytic activity in vitro
[18]. We isolated several independent UAS:DmPpt1-
S123A insertion lines to test whether enzyme activity is
required for the rough eye and black spot phenotypes
observed with DmPpt1 over-expression. We confirmed
that the transgenic lines overexpressed DmPpt1-S123A
message by in situ hybridization of eye imaginal discs
(data not shown). Over-expression of three UAS:DmPpt1-
S123A lines with GMR-Gal4 yielded no observable abnor-
mal phenotypes when analyzed with SEM (Figure 4A,4B).
We further compared two of these lines to wild-type
DmPpt1 over-expression by analyzing semi-thin sections
of UAS:DmPpt1-S123A over-expressing eyes (Figure
4C,4D). For quantification, the number of rhabdomeres
in each ommatidia of UAS:DmPpt1-S123A lines and the
weak UAS:DmPpt18.1 phenotypic line were compared (Fig-
ure 4E). Our analysis of the two catalytic mutant lines,
S123A1 and S123A4, showed that they possessed 6.54 +/-
0.86 (n = 369) and 6.09 +/- 1.07 (n = 292) rhabdomeres
per ommatidia, respectively. These data demonstrate that
over-expression of DmPpt1 catalytic domain mutants
slightly decreases the number of rhabdomeres per omma-

Deficiency chromosome suppression of the DmPpt1 over-expression phenotypeFigure 3
Deficiency chromosome suppression of the DmPpt1 over-expression phenotype. A-C, Scanning electron micrographs (200×). 
A, +/+; GMR:Gal4, UAS:DmPpt18.1/+; UAS:DmPpt12.1/+ control. B, Df(1) RA2/+; GMR:Gal4, UAS:DmPpt18.1/+; UAS:DmPpt12.1/+. C, 
Df(1) KA12/+; GMR:Gal4, UAS:DmPpt18.1/+; UAS:DmPpt12.1/+.
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Analysis of DmPpt1S123A catalytic mutant over-expressionFigure 4
Analysis of DmPpt1S123A catalytic mutant over-expression. A-B, Scanning electron micrographs (200×). C-D, Light microscope 
images of semi-thin retinal sections. Scale bar= 2 µm. A and C, GMR:Gal4/UAS:DmPpt1S123A1. B and D, GMR:Gal4/
UAS:DmPpt1S123A4. E. Quantification of the number of rhabdomeres per ommatidia in DmPpt1S123A over-expression eyes 
compared to DmPpt18.1 over-expression eyes. *p < .00001 by Ttest.
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tidia compared to control eyes, but is not nearly as severe
as even a weak DmPpt1 line. This, along with the DmPpt1
deficiencies, indicates that a majority of the abnormal
DmPpt1-associated phenotypes that we observe are due to
increased levels of DmPpt1 message that likely leads to
increased wildtype protein activity.

Discussion
In this study, we have presented and characterized the first
system to study the function of the Infantile Neuronal
Ceroid Lipofuscinosis (INCL) gene, CLN1/Ppt1, in Dro-
sophila. This is also the first Drosophila model system
designed to characterize the cellular function of a lyso-
somal enzyme. Specifically, we have shown that targeted
over-expression of DmPpt1 in the developing Drosophila
visual system leads to the loss of cells through apoptotic
cell death both early in eye development (rough eye) and
also after ommatidial differentiation has finished, yield-
ing black ommatidial spots. This phenotype is directly
related to the increased dosage of wildtype DmPpt1mRNA.
First, the DmPpt1 over-expression phenotypes were sup-
pressed by two genomic deficiencies that remove one
copy of the endogenous DmPpt1 locus. Moreover, the
over-expression of a DmPpt1 catalytic mutant, shown to
have reduced catalytic activity [18], produces only a mild
eye phenotype rather than the dramatic degeneration seen
in wildtype DmPpt1 over-expression. The mild eye pheno-
type associated with the expression of the S123A catalytic
mutant suggests that this mutation is not a null but
instead severely reduces DmPpt1 function. Thus, while
over-expression may lead to non-specific consequences,
our data suggests that the eye phenotypes in DmPpt1 over-
expression flies are primarily a result of over-expression of
wild-type DmPpt1, implying a detrimental effect of
increased catalytic activity on processes that are normally
regulated by DmPpt1.

PPT1 is involved in the de-palmitoylation of substrate
proteins. This function is clearly important to neuronal
cells since loss of PPT1 function leads to massive degener-
ation of neurons in the central nervous system of INCL
patients [2] and Ppt1 knock-out mice [19]. The presence of
lipofuscin and the build-up of endo-lysosomal inclusions
suggest that PPT1's function may lie in the regulated sub-
cellular trafficking and degradation of palmitoylated pro-
teins. While these pathological defects associated with
loss of PPT1 in humans and mice have been thoroughly
characterized, there is very little functional data about the
specific cell biological role that this protein plays.

The protein was initially purified through its ability to de-
palmitoylate p21Ras [5]. In vitro, PPT1 has been shown to
de-palmitoylate specific peptides suggesting that GAP43,
the Gα subunit of heterotrimeric G-proteins, and rho-
dopsin are possible in vivo targets [20]. Further evidence

that p21Ras may be an endogenous target was shown by
the ability of over-expressed PPT1 to block apoptosis
through a p21Ras-Akt-Caspase pathway in neuroblastoma
cells [8]. This inhibition was coincident with a decreased
presence of p21Ras at the membrane suggesting that PPT1
may regulate p21Ras signaling by modulating its palmi-
toylation state [8]. This suggests that Drosophila Ras may
be a candidate modifier of the DmPpt1 over-expression
phenotype.

Conclusions
Our findings indicate that, while recessive mutations that
severely decrease PPT1 cause neuronal cell death in INCL
patients, increased levels of PPT1 can also lead to neuro-
degeneration, revealing that the precise level of PPT1 is
important for neuronal cell survival. A deeper understand-
ing of PPT1's normal cellular function may therefore be
necessary to the success of treatment strategies that aim to
replace PPT1 in INCL patients. The over-expression sys-
tem that we have developed in Drosophila will provide an
opportunity to elucidate the role of DmPpt1 in neuronal
and non-neuronal cells. The identification of genetic
modifiers of this visual system phenotype will facilitate
the identification of in vivo substrates and signaling path-
ways that DmPpt1may modulate. The insights gained
from these results will further the understanding of PPT1
function and the molecular etiology of INCL.

Methods
Fly Husbandry

All crosses were performed at 25°C on standard Dro-
sophila media.

Transgenic Line

The full length Ppt1 cDNA was obtained from Research
Genetics. It was initially identified as the EST GM14257
using the BDGP EST database. The cDNA was cloned into
the EcoRI and XhoI sites of the pUAST expression vector
[21]. Transgenic flies were produced by standard methods
using the pP{Wc ∆2,3} helper plasmid. Transformants
were identified using the white marker gene contained in
the pUAST vector. We further confirmed that the transgen-
ics lines were over-expressing DmPpt1 message through in
situ hybridization on third instar eye imaginal discs. We
used the GM14257 cDNA to in vitro transcribe sense and
anti-sense RNAs that were then used as probes on fixed
eye imaginal disc tissue.

Ppt1 mutagenesis

To produce the Serine 123 to Alanine mutation, we used
PCR to change the Serine codon CTC to the Alanine
codon CGC. We designed overlapping primers that con-
tained the point mutation and used them in conjunction
with two flanking primers to incorporate the mutation at
Serine 123. The primers used were (the point mutation is
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indicated in bold): S123A1:CGCCTTGCGCGAATC-
CGATG; S123A2:CATCGGATTCGCGCAAGGCG.

Scanning Electron Microscopy

Newly eclosed adults of the specified genotypes were col-
lected and aged for several days in a yeast-free food vial.
These flies were then taken through a series of ethanol
dehydration steps. They were first placed in 25% ethanol
and after a 12-hr incubation time they were moved to
50% ethanol. This process continued, through the follow-
ing dilutions: 50, 75, 95, and 2 incubations in 100% eth-
anol. They were left in 100% ethanol and taken to the
Northeastern Electron Microscopy facility to be critical
point dried and sputter coated for scanning electron
microscopy.

Sectioning and Transmission Electron Microscopy

Newly eclosed adults of the specified genotypes were col-
lected, their heads were removed and then placed in a fix-
ative solution (1% gluturaldehyde, 2% Paraformaldehyde
0.1 M Na Phosphate pH 7.4) for 1 hour at room temper-
ature. The heads were then washed three times in 0.1 M
Na Phosphate and post fixed in osmium tetroxide (2%
OsO4, 0.1 M Na Phosphate pH 7.4) for 1 hour. Following
the post fixation step, the heads were washed three times
for 10 minutes each in 0.1 M Na Phosphate. They were
then dehydrated with an ethanol series consisting of 5
minute incubations in 30%, 50%, 70%, 85%, 95% etha-
nol and 2 incubations in 100% ethanol for 10 minutes
each. The heads were embedded in plastic. Semi-thin plas-
tic sections were mounted and stained with Toludine
blue. Thin EM sections were stained, mounted on grids
and analyzed using a Transmission Electron Microscope.

Photoreceptor Quantification

For each genotype, the number of rhabdomeres present in
each ommatidia were counted for semi-thin sections of 2
independent eyes per genotype. The following genotypes
were used in the analyses: GMR:Gal4/CyO,
UAS:DmPpt18.1/CyO, GMR:Gal4/UAS:DmPpt18.1,
GMR:Gal4/UAS:DmPpt1S123A1, and GMR:Gal4/
UAS:DmPpt1S123A4. All slides were blinded before
scoring.

p35 and Deficiency Suppression

To determine the effect of p35 expression on the DmPpt1
over-expression phenotype we compared GMR:Gal4,
UAS:DmPpt18.1/+; UAS:DmPpt12.1/+ (n = 12) to
GMR:Gal4, UAS:DmPpt18.1/pGMR:p35 ; UAS:DmPpt12.1/+
(n = 11). To determine the effect of removing one copy of
the DmPpt1 genomic locus on the over-expression pheno-
type, we obtained two deficiencies, Df(1)KA12 and
Df(1)RA2, from the Bloomington Stock Center. We con-
firmed that they both removed the Ppt1 locus by perform-
ing quantitative southern blots using the DmPpt1 cDNA as

a probe (data not shown). For the analysis, we collected
and compare the following genotypes +/+; GMR:Gal4,
UAS:DmPpt18.1/+; UAS:DmPpt12.1/+ (n = 6), Df(1)KA12/+;
GMR:Gal4, UAS:DmPpt18.1/+; UAS:DmPpt12.1/+ (n = 5),
and Df(1)RA2/+; GMR:Gal4, UAS:DmPpt18.1/+;
UAS:DmPpt12.1/+ (n = 5). Newly eclosed adults of the spe-
cific genotypes for both experiments were collected and
analyzed by SEM as described above.
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