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Abstract—Influence maximization (IM) is a representative and
classic problem that has been studied extensively before. The
most important application derived from the IM problem is viral
marketing. Take us as a promoter, we want to get benefits from
the influence diffusion in a given social network, where each
influenced (activated) user is associated with a benefit. However,
there is often competing information initiated by our rivals
diffusing in the same social network at the same time. Consider
such a scenario, a user is influenced by both my information and
my rivals’ information. Here, the benefit from this user should
be weakened to certain degree. How to quantify the degree of
weakening? Based on that, we propose an overall evaluations
on benefits of influence (OEBI) problem. We prove the objective
function of the OEBI problem is not monotone, not submodular,
and not supermodular. Fortunately, we can decompose this
objective function into the difference of two submodular functions
and adopt a modular-modular procedure to approximate it
with a data-dependent approximation guarantee. Because of the
difficulty to compute the exact objective value, we design a group
of unbiased estimators by exploiting the idea of reverse influence
sampling, which can improve time efficiency significantly without
losing its approximation ratio. Finally, numerical experiments
on real datasets verified the effectiveness of our approaches
regardless of performance and efficiency.

Index Terms—Overall evaluations, Influence maximization,
Submodularity, Modular-modular proceduce, Sampling tech-
niques, Social networks, Approximation algorithm

I. INTRODUCTION

THE online social media, such as Twitter, Facebook,
Wechat, and LinkedIn, were booming prosperously in the

recent decade and become a dominating method to contact
with others and make friends [1]. People are more inclined to
share their comments about some hot issues at every moment
in these platforms. By the end of December 2019, there are
more than 3.725 billon users active in these social media. The
relationships among the users on these social platforms can
be denoted by social networks. A large number of messages
can be shared rapidly over the networks. Subsequently, in-
fluence maximization (IM) [2] was formulated to focus on
a problem that selects a small subset of users (seed set) for
an information cascade to maximize the expected follow-up
adoptions (influence spread). It is a natural generalization
for viral marketing. The IM problem was based on the two
influence diffusion models, independent cascade model (IC-
model) and linear threshold model (LT-model), and they can
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be summarized into the trigger model. Besides, they [2] proved
the expected influence spread is monotone and submodular,
thereby a (1 − 1/e)-approximation can be obtained by the
greedy algorithm implemented by the Monte-Carlo (MC)
simulations.

Since this seminal work, it derives a series of optimization
problems, such as profit maximization (PM) [3] [4] [5],
competitive IM [6] [7], and rumor blocking [8] [9]. Consider
us as a promoter to initiate an information cascade, we aim
to get benefits from the influence spread started from our
selected seed set in a social network. If a user is activated
during the influence diffusion, we can get a benefit associated
with her. Suppose it exists cost needed to pay when selecting a
seed set, the profit is defined by the total benefits of influence
spread minus the cost of this seed set, where the PM problem
aims to maximize the expected profit. However, this is only
an idealized state, where there is no competitor diffusing its
cascade simultaneously. Generally, more than one type of
information can flood the same network. In the competitive
IM problem, there are multiple information cascades diffusing
their respective influence independently, where it assumes a
user can only be activated by one cascade successfully. It
aims to select a seed set to maximize our own expected
influence spread or to minimize the influence spread from
other competing cascades (rumor blocking).

Combining the PM and competitive IM problem together,
it formulates the competitive PM problem that maximizes
our own expected profit when there are multiple information
cascades. However, this model has a crucial drawback because
each user can only be activated by one cascade. Actually, for
a user in a social network, she may be influenced by multiple
cascades from different promoters. If a user is activated by
our cascade but activated by rivals’ cascades contemporarily,
the benefit we can get from her will be weakened, even be
negative. Let us consider the following example.

Example 1. Take us as an Apple carrier, we want to popular-
ize a new iPhone across a given network by influence diffusion.
If a user is influenced by us, we can get a benefit from her
according to her appraisal about our product. When there is a
rival, such as Samsung, existing, it will promote its phone by
diffusing the influence as well. If a user is influenced by both
Samsung and us, its appraisal about our product is very likely
to be reduced after comparing it with Samsung. The benefit
associated with her will be reduced even to be negative.

Based on this realistic scenario, we propose an overall
evaluations on benefit of influence (OEBI) problem, where
we define how to quantify and maximize the benefits of
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influence because of the rival’s disturbance. We show that the
OEBI problem is NP-hard and its objective function is not
monotone, not submodular, and not supermodular. Because
there is no direct approach to approximate it with a theo-
retical bound, we decompose this objective function into the
difference of two monotone and submodular functions. Then,
we adopt a modular-modular procedure [10] that replaces the
first submodular function with one of its lower bound and
the second submodular function with one of its upper bound.
Then, a data-dependent approximation ratio can be obtained
by this procedure. Moreover, it is #P-hard to compute the exact
objective value under the IC-model [11] and LT-model [12].
Even though we can estimate our objective value by use of
MC simulations, the terrible time inefficiency is unavoidable,
which restricts its scalability to larger networks. Based on the
idea of reverse influence sampling (RIS) [13], we design a
group of unbiased estimators to estimate the value of our
objective function. If the number of samplings is large enough,
its estimation error is neglectable. Next, we take this estimator
as the input of modular-modular procedure, which reduces
the running time greatly while maintaining the approximation
guarantee. Finally, we conduct several experiments to evaluate
the superiority of our proposed method to other heuristic
algorithms, where they support the effectiveness and efficiency
of our method strongly.

Organization: Sec. II surveys the-state-of-art works. Sec.
III is dedicated to introduce diffusion model, background,
and define the OEBI problem formally. The monotonicity,
submodularity, and computability are presented in Sec. IV.
Sec. V is the main contributions, including algorithm design,
sampling techniques, and approximation guarantee. Numerical
experiments and performance analysis are presented in Sec.
VII and VIII is the conclusion for this paper.

II. RELATED WORKS

Influence Maximization: Kempe et al. [2] came up with
the IC-model and LT-model, formulated IM problem as a
monotone submodular maximization problem, and gave a
greedy algorithm that achieves (1 − 1/e − ε)-approximation
implemented by MC simulations. Chen et al. proved it is
#P-hard to compute the expected influence spread given a
seed set under the IC-model [11] and LT-model [12]. Besides,
they devised two efficient heuristic algorithms to solve the
IM problem and evaluate their scalability. Contemporarily, a
series of heuristic algorithms emerged, such as cost-effective
lazy forward strategy [14] and degree discount heuristics [15].
Brogs et al. [13] made a breakthrough. They proposed the
concept of RIS to estimate the expected influence spread,
which is scalable in practice and has a theoretical bound at
the same time. Then, a series of researchers designed more
efficient algorithms that achieve (1− 1/e− ε)-approximation
based on the RIS. Tang et al. [16] [17] proposed TIM/TIM+
algorithms first and then develop a more efficient IMM based
on the martingale analysis. Besides, it was improved further
by SSA/DSSA [18] and OPIM [19].

Competitive IM and Profit Maximization: Bharathi et
al. [6] studied the competitive IM first and generalized it

as a game of influence diffusion with multiple competing
cascade. Lu et al. [20] created a comparative IC-model that
includes all settings of influence propagation from competition
to complementarity. Tong et al. [21] proposed an independent
multi-cascade model and studied a multi-cascade IM problem
under this model systematically, where they designed effi-
cient algorithm and obtained a data-dependent approximation
guarantee. In the classic PM problem [3] [22], they usually
considered the cost of a seed set is modular with respect
the seed node in this seed set, which implies the profit
function is still submodular but not monotone. It can be
generalized as the unconstrained submodular maximization
problem, which can be addressed by the double greedy al-
gorithm within (1/3)-approximation and randomized double
greedy algorithm within (1/2)-approximation [23]. Tong et al.
[24] considered the coupon allocation in the PM problem, and
designed efficient randomized algorithms to achieve (1/2−ε)-
approximation with high probability. Guo et al. [25] proposed
a budgeted coupon problem whose domain is constrained and
provided a continuous double greedy algorithm with a valid
approximation. However, in our model, the formulation of
competitiveness and definition of benefit are different from
one of the above works.

Non-submodular Maximization: However, many realistic
problems derived from the IM do not satisfy the submodu-
larity. For a monotone non-submodular function, we can use
the supermodular degree [26] and curvature [27] to analyze the
approximation of greedy algorithm to maximize it. Then, Lu et
al. [20] devised a sandwich approximation framework, which
can obtain a data-dependent approximation ratio by maximiz-
ing its submodular upper and submodular lower bounds, the
return the solution that can maximize the original objective
function as the final result. However, our objective function of
the OEBI problem is not monotone. For a non-monotone non-
submodular function, it can be decomposed into the difference
of two submodular functions [28], which can be approximated
effectively by the submodular-supermodular procedure [28]
and modular-modular procedure [10]. In this paper, we design
an efficient randomized algorithm to solve our OEBI problem
with a satisfactory approximation guarantee based on the RIS
and modular-modular procedure.

III. PROBLEM FORMULATION

In this section, we introduce the diffusion model first and
then formulate the OEBI problem.

A. Diffusion Model and Realization

Let G = (V,E) be a directed graph that represents a social
network where where V = {v1, v2, · · · , vn} is the set of n
users, E = {e1, e2, · · · , em} is the set of m directed edges.
For each directed edge (u, v) ∈ E, it models their friendship
where u (resp. v) is an incoming neighbor (resp. outgoing
neighbor) of v (resp. u). Moreover, the set of incoming
neigbhbors (resp. outgoing neighbors) of node u ∈ V is
denoted by N−(v) (resp. N+(v)).

Given a seed set S ⊆ V , the influence diffusion model is
a discrete-time stochastic process started from the seed nodes
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(a) The initial state (b) A realizating g ∼ Ωp (c) A realization g′ ∼ Ωr (d) The final state

Fig. 1. This is an example to demonstrate the diffusion precess caused by a positive cascade and a negative cascade, where the green nodes, yellow nodes,
and blue nodes are activated by the positive cascade, rival cascade, and both positve and rival cascades.

in S. In the beginning, all nodes in the seed set S are active,
but the other nodes are inactive. At time step ti, we denote
by Si the current active node set. Thereby we have S0 := S
at t0. Under the IC-model [2], there is a diffusion probability
puv ∈ (0, 1] associated with each edge (u, v) ∈ E. At time
step ti for i ≥ 1, we have Si := Si−1 first; then, each new
activated node u ∈ (St−1\St−2) in the last time step has
one chance to activate its each inactive outgoing neighbor
v with the probability puv . We add v into Si if u activates
v successfully. The influence diffusion stops when no node
can be activated further. The problems we will discuss in the
subsequent sections are defaulted on the IC-model, but they
can be extended to other influence models easily.

Here, a specific IC-model based on graph G can be defined
as Ω = (G,P ) where P = {pe1 , pe2 , · · · , pem} is the set of
m edge probabilities. Given a specific IC-model Ω, we define
g ∼ Ω as a realization sampled from Ω, which is an instance
of influence diffusion on this probabilistic graph. Under the
IC-model, a realization is residual graph built by removing
each edge (u, v) ∈ E with probability 1 − puv . Thereby we
have Pr[g] =

∏
e∈E(g) pe

∏
e∈E(G)\E(g)(1 − pe) and there is

2m potential realizations in total.
Given a seed set S ⊆ V and a realization g, we denote

by Ig(S) the set of nodes that can be reachable from at
least one node in this seed set. Thus, the expected number of
active nodes over all potential realizations (expected influence
spread) can be expressed as

σΩ(S) = Eg∼Ω [|Ig(S)|] =
∑

g∈G(Ω)

Pr[g] · |Ig(S)| (1)

where G(Ω) is the collection of all possible realizations
sampled from Ω. The IM problem is to select a seed set S ⊆ V
where |S| ≤ k such that the expected influence spread σ(S)
can be maximized. Given a set function h : 2V → R and
any two sets S, T ⊆ V , it is monotone if h(S) ≤ h(T )
when S ⊆ T ⊆ V , submodular if h(S ∪ {u}) − h(S) ≥
h(T ∪ {u}) − h(T ) when S ⊆ T ⊆ V and u /∈ T , and
supermodular if h(S ∪ {u}) − h(S) ≤ h(T ∪ {u}) − h(T )
when S ⊆ T ⊆ V and u /∈ T . Based on that, we have the
expected influence spread σ(·) is monotone non-decreasing
and submodular under the IC-model [2].

B. Problem Definition

Consider a company, it wants to promote its new product by
starting a cascade diffusing over the social network. Obviously,

the expected influence spread is the benefit it can obtain.
However, this is only in an ideal world because it does not
consider whether there is the other cascade representing a
competing product started by a rival company that diffuses
over the social network at the same time. Thus, we can no
longer evaluate this company’s benefit only by the expected
influence spread due to the rival’s disturbance.

Given a social network G = (V,E), there are multiple
cascades diffusing on this network simultaneously. A user
is referred as C-active if she is activated by cascade C.
Consider such a scenario, we define a positive cascade Cp
which represents the influence diffusion for the new product
we want to promote over the network. It exists a rival cascade
Cr represents the influence diffusion for a competing product
started by some rival company. Now, due to the existence of
this competing cascade, our benefit from the influence spread
of cascade Cp will be disturbed and impaired to some extent.
Given a rival seed set Sr, we need to find a positive seed set
Sp and start this positive cascade such that it can avoid the
negative effects of the rival cascade started from Sr as much
as possible.

Next, we discuss how to quantify the disturbance caused
by the rival cascade to our benefit. Given a social network
G = (V,E), we consider a positive cascade Cp diffuses
under the IC-model Ωp = (G,PP ) and a rival cascade Cr
diffuses under the IC-model Ωr = (G,PR), where PP (resp.
PR) is an edge probability distribution of Ωp (resp. Ωr).
These two cascades diffuse over the network G respectively
and independently. Then, we suppose each node u ∈ V is
associated with a benefit weight p(u) ∈ R+, which implies the
benefit can be obtained from the fact that u is Cp-active but
not Cr-active. In other words, it is the earning from activating
user u by our positive cascade but not activating it by the rival
cascade. Moreover, we suppose each node u ∈ V is associated
with a disturbed benefit weight q(u) ∈ R with q(u) ≤ p(u),
which implies the earning can be obtained from the fact that u
is Cp-active and Cr-active. Here, the disturbed benefit weight
describes the degree of disturbance caused by the rival cascade.
For a user u ∈ V , her degree of disturbance caused by the
rival cascade rests with its disturbed benefit weight q(u). If
q(u) ∈ [0, p(u)], it means that the rival cascade will not cause
a negative effect on this node u even though it cuts down the
benefit can be obtained from activating this node by positive
cascade. If q(u) ∈ (−∞, 0), it means that the rival cascade
will cause a negative effect on this node. Thus, this q controls
the degree of disturbance caused by the rival cascade.
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Given a rival seed set Sr ⊆ V , the expected overall benefit
from our positive seed set Sp can be defined as

f(Sp) = Eg∼ΩpEg′∼Ωr [fg,g′(Sp)] (2)

=
∑

g∈G(Ωp)

Pr[g]
∑

g′∈G(Ωr)

Pr[g′] · fg,g′(Sp) (3)

where f(Sp) is the expectation over the realizations sampled
from the IC-model Ωp and Ωn. Given the two realizations
g ∼ Ωp and g′ ∼ Ωr, the overall benefit of influence diffusion
can be defined as

fg,g′(Sp) =
∑

u∈Ig(Sp)\Ig′ (Sr)

p(u) +
∑

u∈Ig(Sp)∩Ig′ (Sr)

q(u) (4)

where the first term is the benefit from nodes activated only
by Cp and the second term is the disturbed benefit from nodes
activated by both Cp and Cr.

Let us look at an example shown in Fig. 1. Shown as Fig.
1(a), the positive seed set is Sp = {v1} and the rival seed
set Sr = {v2} in the beginning. Then, the influence spread
started from Sp is shown as Fig. 1(b), which is a realization
sampled from its IC-model Ωp. Similarly, the influence spread
started from Sr is shown as Fig. 1(c), which is a realization
sampled from its IC-model Ωr. From here, we can see that they
diffuse respectively and independently. Finally, node v2 and v5

are activated by both the positive and rival cascades, thereby
we have Ig(Sp) ∩ Ig′(Sr) = {v2, v5} shown as Fig. 1(d).
Therefore, we have the overall benefit under this realization is
fg,g′(Sp) = p(v1)+p(v4)+p(v6)+q(v2)+q(v5). The overall
evaluations on benefit of influence (OEBI) problem is

Problem 1 (OEBI). Given a social network G = (V,E), a
rival seed set Sr, and a budget k, the OEBI problem is aimed
at finding a positive set set Sp ⊆ V , where |Sp| ≤ k, such
that its expected overall benefit f(Sp) can be maximized, that
is S∗p = arg max|Sp|≤k f(Sp).

IV. FURTHER DISCUSSIONS ABOUT OEBI

In this section, we analyze the properties of OEBI first and
introduce how to decompose its objective function.

A. The Properties

Given the rival seed set Sr = ∅, the OEBI problem can be
reduced to the classical IM problem if we assume p(u) = 1
for each u ∈ V . Thus, the OEBI problem is NP-hard through
inheriting the NP-hardness of IM problem [2] under the IC-
model. Moreover, it is #P-hard to compute the expected overall
benefit because of the #P-hardness to compute the expected
influence spread under the IC-model [11]. Next, we will
analyze the monotonicity, submodularity, and supermodularity
of the expected overall benefit function f(Sp) with respect to
Sp step by step.

Theorem 1. The objective function of the OEBI problem
f(Sp) is not monotone with respect to Sp.

Proof. We consider the simplest case where the graph G has
only one node. Here, we have V = {v} ands E = ∅. Given a
rival seed set Sr = {v}, the expected overall benefit f({v}) =

q(u) and f(∅) = 0. Subsequently, we have f({v})−f(∅) ≥ 0
if q(u) ≥ 0; and f({v}) − f(∅) ≤ 0 if q(u) ≤ 0. Thus, the
monotonicity of f(Sp) depends on the definition of dusturbed
earning weights.

Theorem 2. The objective function of the OEBI problem
f(Sp) is not submodular with respect to Sp and not super-
modular with respect to Sp.

Proof. Take a counterexample to prove it, we assume p = p(u)
and q = q(u) for each node u ∈ V with q ∈ (−∞,−p).
Shown as Fig. 2, we can see that f({v2, v4}) = 2p − q and
f({v1, v4}) = 5p − q. First, we have f({v2, v4}) − f(v4) =
p+ q < f({v1, v2, v4})− f(v1, v4) = 0, thereby f(Sp) is not
submodular with respect to Sp. Then, we have f({v4, v5})−
f(v4) = 2p > f({v1, v4, v5})− f(v1, v4) = 0, thereby f(Sp)
is not supermodular with respect to Sp.

(a) Sp = {v2, v4} (b) Sp = {v1, v4}

Fig. 2. This is an example to demonstrate the submodularity and supermod-
ularity in Theorem 2.

B. Decomposition of Our Objective Function

From the above subsection, the expected overall bene-
fit is non-monotone, non-submodular, and non-supermodular,
therefore, it is hard to get an effective solution with an
approximation ratio. Narasimhan et al. [28] proposed a DS
decomposition, which pointed out any set function can be de-
composed into the difference of two submodular set functions.
Even that, whether such two submodular set functions can be
found in polynomial time is still unknown. Look at the (4),
the overall benefit fg,g′(Sp) under the g ∼ Ωp and g′ ∼ Ωr

can be re-arranged as

fg,g′(Sp) =
∑

u∈Ig(Sp)

p(u)−
∑

u∈Ig(Sp)∩Ig′ (Sr)

(p(u)−q(u)) (5)

Thus, we can decompose the expected overall benefit as
f(Sp) = w(Sp)− z(Sp), where w(Sp) and z(Sp) are defined
as follows, that is

w(Sp) = Eg∼Ωp

[∑
u∈Ig(Sp)

p(u)

]
(6)

z(Sp) = Eg∼ΩpEg′∼Ωr

[∑
u∈Ig(Sp)∩Ig′ (Sr)

l(u)

]
(7)

where we denote l(u) = p(u) − q(u). Similarly, we denote
wg(Sp) =

∑
u∈Ig(Sp) p(u) under the g ∼ Ωp and zg,g′(Sp) =∑

u∈Ig(Sp)∩Ig′ (Sr) l(u) under the g ∼ Ωp and g′ ∼ Ωr.

Theorem 3. The function w(Sp) is monotone non-decreasing
and submodular with respect to Sp.
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Algorithm 1 Modular-modular
Input: A set function f : 2V → R

1: Initialize: Xt ← ∅, t← 0
2: while Xt+1 6= Xt do
3: Selects a permutation αt that contains Xt where the

element in Xt are ranked ahead
4: Xt+1 ← arg max|Y |≤k

{
hwXt,αt(Y )−mz

Xt(Y )
}

5: t← t+ 1
6: end while
7: return Xt

Proof. The function w(Sp) is the objective function of
weighted IM problem. It can be reduced to weighted maximum
set cover problem, which is monotone non-decreasing and
submodular since p(u) ≥ 0 for any u ∈ V .

Theorem 4. The function z(Sp) is monotone non-decreasing
and submodular with respect to Sp.

Proof. Given a rival seed set Sr, realization g ∼ Ωp, and g′ ∼
Ωr, we consider the monotonicity and submodularity based on
zg,g′(Sp). First, it is apparent that zg,g′(Sp) is monotone non-
decreasing with respect to Sp. Then, there are two positive
seed set S1

p and S2
p with S1

p ⊆ S2
p . For any node in Ig′(Sr),

if it is reachable from node v but is not reachable from S2
p ,

it must not be reachable from S1
p since S1

p ⊆ S2
p . Thereby

we have zg,g′(S
1
p ∪ {v}) − zg,g′(S

1
p) ≥ zg,g′(S

2
p ∪ {v}) −

zg,g′(S
2
p) because of l(u) ≥ 0 for any u ∈ V , which implies

that zg,g′(Sp) is submodular with respect to Sp. Besides, y(Sp)
is a linear combination of zg,g′(Sp), thus z(Sp) is monotone
non-decreasing and submodular.

Therefore, the expected overall benefit f(Sp) has been
decomposed into the difference of two monotone submodular
functions w(Sp) and z(Sp) definitely.

V. ALGORITHM DEGISN AND SPEEDUP

From the last section, our objective function is not mono-
tone, not submodular, and not supermodular. Fortunately, it
can be decomposed into the difference of two monotone
submodular functions. Iyer et al. [10] proposed a modular-
modular procedure to minimize the difference between two
submodular functions approximately. First, we need to define
the modular upper bound and modular lower bound for a given
submodular function.

A. Modular-modular Procedure

Given a submodular function b(·), it has two modular upper
bounds based on a given set X ⊆ V , that is

mb
X,1(Y ) = b(X)−

∑
j∈X\Y

b(j|X\j) +
∑

j∈Y \X

b(j|∅) (8)

mb
X,2(Y ) = b(X)−

∑
j∈X\Y

b(j|V \j) +
∑

j∈Y \X

b(j|X) (9)

where b(S|T ) = b(S ∪ T ) − b(T ), mb
X,1(Y ) ≥ b(Y ), and

mb
X,2(Y ) ≥ b(Y ). They are tight at set X , so we have

mb
X,1(X) = mb

X,2(X) = f(X).

Algorithm 2 ModularMax
Input: A permutation αt and a set Xt

1: Initialize: a map unitV alue = {}
2: Initialize: a set Xt+1 ← ∅
3: zero← hwXt,αt(∅)−mz

Xt(∅)
4: for each u ∈ V do
5: unitV alue[u]← hwXt,αt({u})−mz

Xt({u})− zero
6: end for
7: for i = 1 to k do
8: Select u∗ ∈ maxu∈V \Xt+1 unitV alue[u]
9: if unitV alue[u∗] < 0 then

10: Break
11: end if
12: Xt+1 ← Xt+1 ∪ {u∗}
13: end for
14: return Xt+1

Given a set X ⊆ V , we define a permutation α of V as α =
{α(1), α(2), · · · , α(n)} where η’s chain contains X . Denote
by Sαi = {α(1), α(2), · · · , α(i)}, we have Sα|X| = X , in other
words, we put all the elements in X prior to the elements in
V \X . Then, we define

hbX,α(α(i)) = b(Sαi )− b(Sαi−1) (10)

where hbX,α(Y ) =
∑
v∈Y h

b
X,α(v) and hbX,α(Y ) ≤ b(Y ) for

any Y ⊆ V . Here, hbX,α(Y ) is a lower bound of b(Y ). It is
tight at set X , wo we have hbX,α(X) = b(X).

From the (6) and (7), we adopt the modular-modular pro-
ceduce to solve it is formulated in Algorithm 1.

Theorem 5. The objective function f(Xt) is monotone non-
decreasing with respect to t. If the hwXt,αt(Y ) −mz

Xt(Y ) in
line 4 of Algorithm 1 reaches a local maximum under the
O(n) different permutations αt and both upper bounds, then
the f(Y ) is a local maximum.

Proof. Regardless of what the upper bound we use, at any
round t, we have f(Xt+1) = w(Xt+1) − z(Xt+1) ≥
hwXt,αt(Xt+1) − mz

Xt(Xt+1) ≥ hwXt,αt(Xt) − mz
Xt(Xt) =

w(Xt) − z(Xt) = f(Xt) since the definitions of the upper
and lower bounds and the tightness at set Xt.

Suppose the Algorithm 1 converges at Xt+1 = Xt, we
consider the O(n) different permutations αt which are placed
with different elements at position αt(|Xt|) and αt(|Xt+1|).
First, we have hwX,α(Sαi ) = w(Sαi ), mz

Xt,1(Xt\j) =
z(Xt) − z(j|Xt\j) = z(Xt\j), and mz

Xt,2(Xt ∪ j) =
z(Xt) + z(j|Xt) = z(Xt ∪ j). At the convergence, we
have hwXt,αt(Xt) − mz

Xt(Xt) ≥ hwXt,αt(Y ) − mz
Xt(Y ) for

any Y ⊆ V under the O(n) different permutations αt and
both upper bounds. Given a αt with αt(|Xt|) = i and
αt(|Xt| + 1) = j, we have f(Xt) = w(Xt) − z(Xt) =
hwXt,αt(Xt)−mz

Xt,1(Xt) ≥ hwXt,αt(Xt\i)−mz
Xt,1(Xt\i) =

f(Xt\i) and f(Xt) = w(Xt) − z(Xt) = hwXt,αt(Xt) −
mz
Xt,2(Xt) ≥ hwXt,αt(Xt ∪ j)−mz

Xt,1(Xt ∪ j) = f(Xt ∪ j).
Therefore, f(Xt) is a local maximum at the convergence.

At each iteration in this algorithm, we need to maximize a
modular function shown as in line 4 of Algorithm 1, which
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can be implemented easily. For example, we can compute the
objective value for each node u ∈ V and then select all those
which has a non-negative objective value. At the iteration t,
given a permutation αt and a set Xt, the algorithm that selects
a set Y where |Y | ≤ k to maximize the modular function
hwXt,αt(Y ) −mz

Xt(Y ) is shown in Algorithm 2. The update
rule in Algorithm 2 is according to h(u|S) = h(u|T ) = h(u|∅)
for any set S, T ⊆ V if h(·) is a modular function.

As for how to select a permutation αt at each iteration Xt,
the optimal solution is to select a permutation α∗ such that
αt∗ ∈ arg maxαt max|Y |≤k{hwXt,αt(Y ) −mz

Xt(Y )}, however
it is very difficult to execute. There are n! permutations in
total. Thus, a heuristic choice is to order the permutation αt

according to the magnititude of objective value for each node
u ∈ V . We will compare the impact of different permutations
on algorithm performance in later experiments.

According to the (8) and (9), we have two upper bounds
for a submodular function. Thereby the upper bound of the
optimal value of our expected overall benefit f(S∗p) can be
defined as follows:

π(X) = max
|Y |≤k

{min{mw
X,1(Y ),mw

X,2(Y )} − hzX,α(Y )} (11)

where min{mw
X,1(Y ),mw

X,2(Y )} is aimed to make this up-
per bound tighter. It can be solved similar to the process
of Algorithm 2. Then, for any set X , we have π(X) ≥
max|Y |≤k f(Y ). Denote by S◦p the seed set returned by
Algorithm 1, we have π(S◦p) ≥ f(S∗p), then we are able to
estimate the approximation ratio by f(S◦p)/π(S◦p).

B. Sampling Techniques

Given a seed set Sp, we adopt the technique of reverse influ-
ence sampling (RIS) to estimate f(Sp) due to its #P-hardness.
Consider the IM problem under the IC-model Ω = (G,P ), we
introduce the concept of reverse reachable set (RR-set) first. A
random RR-set R can be generated by three steps: (1) selecting
a node u ∈ V uniformly; (2) sampling a realization g ∼ Ω; and
(3) collecting those nodes in g can reach u and putting them
into R. A RR-set rooted at node u is a collection of nodes that
are likely to influence u. A larger expected influence spread
a seed set S has, the higher the probability that S intersects
with a random RR-set is. Given a seed set S and a random
RR-set R, we have σΩ(S) = n · Pr[R ∩ S 6= ∅].

Back to our OEBI problem, the expected overall benefit can
be denoted by f(Sp) = w(Sp) − z(Sp). Thus, given a seed
set Sp, we require to estimate w(Sp) and z(Sp) respectively.
Here, we define p(V ) =

∑
v∈V p(v) and l(V ) =

∑
v∈V l(v)

respectively for convenience. For the w(Sp), a random RR-
set Rw can be generated by (1) selecting a node u ∈ V with
probability p(u)/p(V ); (2) sampling a realization g ∼ Ωp;
and (3) putting those nodes in g can reach u into Rp. Given
a seed set Sp and a random RR-set Rw, we have w(S) =
p(V ) · Pr[Rw ∩ Sp 6= ∅]. For the z(Sp), a random RR-set
Rz can be generated by (1) selecting a node u ∈ V with
probability l(u)/l(V ); (2) sampling a realization g ∼ Ωp and
a realization g′ ∼ Ωr independently; and (3) putting those
nodes in g can reach u into Rz,1 and those nodes in g′ can
reach u into Rz,2 where Rz = (Rz,1, Rz,2).

Lemma 1. Given a seed set Sp, a rival seed set Sr, and a
random RR-set Rz = (Rz,1, Rz,2), we have

z(Sp) = l(V ) · Pr [Sp ∩Rz,1 6= ∅ ∧ Sr ∩Rz,2 6= ∅] (12)

Proof. We denote by Rz,1(g, u) the RR-set rooted at node
u under the realization g ∼ Ωp. From the (7), we
have z(Sp) = Eg∼ΩpEg′∼Ωr [

∑
u∈Ig(Sp)∩Ig′ (Sr) l(u)] =∑

u∈V Prg∼Ωp,g′∼Ωr [Sp∩Rz,1(g, u) 6= ∅∧Sr∩Rz,2(g′, u) 6=
∅] · l(u) = l(V ) ·

∑
u∈V Prg∼Ωp,g′∼Ωr [Sp ∩ Rz,1(g, u) 6=

∅ ∧ Sr ∩ Rz,2(g′, u) 6= ∅] · (l(u)/l(V )) = l(V ) ·
Prg∼Ωp,g′∼Ωr,u[Sp∩Rz(g, g′, u) 6= ∅∧Sr∩Rz(g, g′, u) 6= ∅].
The (12) is establish equivalently.

As mentioned above, we have to generate two collections
of RR sets, Rw = {R1

w, R
2
w, · · · , Rλw} to estimate w(Sp) and

Rz = {R1
z, R

2
z, · · · , Rµz } to estimate z(Sp). Them we define

the following two estimations

FRw
(Sp) =

1

λ
·
λ∑
i=1

I[Sp ∩Riw 6= ∅] (13)

FRz
(Sp) =

1

µ
·
µ∑
i=1

I[Sp ∩Riz,1 6= ∅ ∧ Sr ∩Riz,2 6= ∅] (14)

the fraction of RR-sets covered by Sp where I[·] is an indicator
such that I[Sp ∩ Riw 6= ∅] = 1 if Sp ∩ Riw 6= ∅] = 1, or else
I[Sp∩Riw 6= ∅] = 0. Then, we have ŵ(Sp) = p(V ) ·FRw

(Sp),
ẑ(Sp) = l(V ) · FRz

(Sp), and f̂(Sp) = ŵ(Sp)− ẑ(Sp). Next,
to bound the gap between ground-truth and estimator, we
introduce the Chernoff-Hoeffding inequality.

Lemma 2 (Chernoff-Hoeffding). Let X1, X2, · · · , Xθ be a
series of random variables sampled from a distribution X
with expectation E[X] independently and identically in the
set {0, 1}. Given an error ε > 0, we have

Pr

[∑θ

i=1
Xi − θ · E[X] ≥ +ε

]
≤ exp

(
−2ε2

θ

)
(15)

Pr

[∑θ

i=1
Xi − θ · E[X] ≤ −ε

]
≤ exp

(
−2ε2

θ

)
(16)

According to the Lemma 2, we can get the relationship
between FRw

(Sp) and its real value w(Sp).

Lemma 3. Given a collection of RR-sets Rw with |Rw| = λ
and any δ ∈ (0, 4), we have

Pr

[
w(Sp) ≥ ŵ(Sp)− p(V )

√
1

2λ
ln

(
4

δ

)]
≥ 1− δ

4
(17)

Pr

[
w(Sp) ≤ ŵ(Sp) + p(V )

√
1

2λ
ln

(
4

δ

)]
≥ 1− δ

4
(18)

Proof. To the (17), it is equivalent to prove Pr[w(Sp) <
ŵ(Sp) − p(V ) ·

√
(1/(2λ)) ln(4/δ)] ≤ δ/4. Then, we have

Pr[w(Sp) < p(V ) · FRw
(Sp)− p(V ) ·

√
(1/(2λ)) ln(4/δ)] =

Pr[λ · FRw
(Sp) − λ · w(Sp)/p(V ) >

√
(λ/2) ln(4/δ)] ≤

exp(−2 · (λ/2) ln(4/δ)/λ) = δ/4 based on the (15).
Similarly, to the (18), it is equivalent to prove Pr[w(Sp) >

ŵ(Sp) + p(V ) ·
√

(1/(2λ)) ln(4/δ)] ≤ δ/4. Then, we have
Pr[w(Sp) > p(V ) · FRw

(Sp) + p(V ) ·
√

(1/(2λ)) ln(4/δ)] =
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Pr[λ · FRw
(Sp) − λ · w(Sp)/p(V ) < −

√
(λ/2) ln(4/δ)] ≤

exp(−2 · (λ/2) ln(4/δ)/λ) = δ/4 based on the (16).

Given an unbiased estimator ŵ(Sp), an upper bound and
a lower bound of w(Sp) can be defined with at least 1 −
δ/4 probability. Given an unbiased estimator ŵ(Sp), an upper
bound and a lower bound of w(Sp) can be defined with at
least 1− δ/4 probability. That is

wu(Sp) = ŵ(Sp) + p(V ) ·
√

(1/(2λ)) ln(4/δ) (19)

wl(Sp) = ŵ(Sp)− p(V ) ·
√

(1/(2λ)) ln(4/δ) (20)

Given a collection of RR-sets Rz with |Rz| = µ, any
δ ∈ (0, 4), and an unbiased estimator ẑ(Sp), an upper bouand
and a lower bound of z(Sp) can be defined at least 1 − δ/4
probability in the same way. That is

zu(Sp) = ẑ(Sp) + l(V ) ·
√

(1/(2µ)) ln(4/δ) (21)

zl(Sp) = ẑ(Sp)− l(V ) ·
√

(1/(2µ)) ln(4/δ) (22)

Based on the (19)−(21), we can derive a lower bound for our
objective value f(Sp) naturally.

Lemma 4. Given any seed set Sp ⊆ V , we can take wu(Sp)−
zl(Sp) as an upper bound of f(Sp) with at least 1 − δ/2
probability and wl(Sp) − zu(Sp) as a lower bound of f(Sp)
with at least 1− δ/2 probability.

Proof. To estimate the f(Sp), we have Pr[f(Sp) ≤ wu(Sp)−
zl(Sp)] ≥ Pr[(w(Sp) ≤ wu(Sp)) ∧ (z(Sp) ≥ zl(Sp))] =
(1−δ/4)·(1−δ/4) ≥ 1−δ/2. Similarly, we have Pr[f(Sp) ≥
wl(Sp) − zu(Sp)] ≥ Pr[(w(Sp) ≥ wl(Sp)) ∧ (z(Sp) ≤
zu(Sp))] = (1− δ/4) · (1− δ/4) ≥ 1− δ/2.

Next, we are going to discuss how to compute the up-
per bound of our objective value π(S◦p) according to the
solution S◦p returned by Algorithm 1. The value of π̂(Sp)

can be obtained by f̂(Sp), which has been decomposed
as f̂(Sp) = ŵ(Sp) − ẑ(Sp). Here, ŵ(Sp) and ẑ(Sp) are
monotone and submodular with respect to Sp as well since
they can be reduced to the set coverage problem. Therefore,
for any set X , we have π̂(X) ≥ max|Y |≤k f̂(Y ). From the
Lemma 4, the objective value f(Sp) is upper bounded by
wu(Sp) − zl(Sp) with a high probability. Thereby we have
the following conclusion.

Lemma 5. Given the solution S◦p returned by Algorithm 1,
for any seed set Sp ⊆ V and any δ ∈ (0, 4), we have

f(Sp) ≤ π̂(S◦p)

+ p(V )

√
1

2λ
ln

(
4

δ

)
+ l(V )

√
1

2µ
ln

(
4

δ

)
(23)

holds with at least 1− 2/δ probability.

Proof. According to the Lemma 4, we have
Pr[f(Sp) ≤ wu(Sp) − zl(Sp)] ≥ 1 − δ/2. Then,
f(Sp) ≤ wu(Sp) − zl(Sp) = ŵ(Sp) − ẑ(Sp) + p(V ) ·√

(1/(2λ)) ln(4/δ) + l(V ) ·
√

(1/(2µ)) ln(4/δ) = f̂(Sp) +
p(V ) ·

√
(1/(2λ)) ln(4/δ) + l(V ) ·

√
(1/(2µ)) ln(4/δ) ≤

π̂(S◦p)+p(V )·
√

(1/(2λ)) ln(4/δ)+l(V )·
√

(1/(2µ)) ln(4/δ),
which holds with at least 1− δ/2 probability.

Theorem 6. The approximation guarantee achieved by the
solution S◦p returned by Algorithm 1 satisfies as follows:
f(S◦p)/max|Sp|≤k f(Sp) ≥

wl(S
◦
p)− zu(S◦p)

π̂(S◦p) + p(V )
√

1
2λ ln

(
4
δ

)
+ l(V )

√
1

2µ ln
(

4
δ

) (24)

holds with at least 1− δ probability.

Proof. Based on the Lemma 4, we have f(S◦p) ≥ wl(S
◦
p) −

zu(S◦p) holds with at least 1− δ/2 probability. Then based on
the Lemma 5, we have max|Sp|≤k f(Sp) ≤ π̂(S◦p) + p(V ) ·√

(1/(2λ)) ln(4/δ) + l(V ) ·
√

(1/(2µ)) ln(4/δ) holds with at
least 1 − δ/2 probability. Thereby the approximation (24) is
established with at least 1− δ probability.

VI. NUMERICAL EXPERIMENTS

In this section, we carry out several experiments on dif-
ferent datasets to validate the performance of our proposed
algorithms. It aims to test the efficiency of modular-modular
procedure, shown as Algorithm 1, and its effectiveness com-
pared to other heuristic algorithms. All of our experiments are
programmed by python, and run on Windows machine with a
3.40GHz, 4 core Intel CPU and 16GB RAM. There are four
datasets used in our experiments: (1) NetScience [29]: a co-
authorship network, co-authorship among scientists to publish
papers about network science; (2) Wiki [29]: a who-votes-on-
whom network, which comes from the collection Wikipedia
voting; (3) Bitcoin [30]: a who-trusts-whom network of people
who trade using Bitcoin on a platform called Bitcoin Alpha.
The statistics information about these four datasets is repre-
sented in Table I. For an undirected graph, each undirected
edge is replaced with two reversed directed edges.

TABLE I
THE DATASETS STATISTICS (K = 103)

Dataset n m Type Avg.Degree
Netscie 0.40 K 1.01 K undirect 5.00

Wikivot 1.00 K 3.15 K directed 6.20

Bitcoin 4.00 K 25.1 K directed 12.5

A. Experimental Settings

The diffusion process is based on the IC-model by default.
Under the IC-model, we set the diffusion probability puv =
1/|N−(v)| for each (u, v) ∈ E as the inverse of v’s in-degree,
which has been given by many existing researches about the
IM problem. For each node u ∈ V , there is a benefit weight
and a disturbed wight associated with it. We sample its benefit
weight p(u) from [0, 1] uniformly and sample its disturbed
benefit weight q(u) from [−1, p(u)] uniformly.

Consider the modular-modular procedure, we have to define
a modular lower bound for the function w(·) and a modular
upper bound for the function z(·). Here, we denote “modmod-
1” to imply that we use the first upper bound mz

X,1(Y ) defined
in (8) and “modmod-2” to imply that we use the second upper



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) Netscie, modmod-1 (b) Netscie, modmod-2 (c) Wikivot, modmod-1 (d) Wikivot, modmod-2

Fig. 3. The performance comparison of four permutation selections under the different datasets and upperbounds.

(a) Netscie, θ = 5K (b) Netscie, θ = 10K (c) Netscie, θ = 15K (d) Netscie, θ = 20K

Fig. 4. The performance comparison with other heuristic algorithms under the Netscie dataset.

bound mz
X,2(Y ) defined in (9). Then, we need to compare our

modular-modular procedure with other heuristic algorithms,
especially for the greedy algorithm. The greedy algorithm
is shown in Algorithm 3, which selects the node with the
maximum marginal expected overall benefit at each iteration
until there is no positive marginal gain can be obtained. Other
heuristic algorithms are shown as follows: (1) Random: it
selects k nodes uniformly from the node set; (2) MaxDegree:
it selects k nodes with the largest out-degree; and (3) InfMax:
it is similar to the greedy algorithm, but substitutes the overall
benefit f(·) with benefit w(·). They are all estimated on the
same group of RR-sets, where the number of random RR-set
Rw and Rz is denoted by θ = λ = µ.

Algorithm 3 Greedy
Input: A set function f : 2V → R

1: Initialize: Sp ← ∅
2: for i = 1 to k do
3: Select u∗ such that u∗ ∈ arg maxu∈V \Sp

f(u|Sp)
4: if f(u∗|Sp) < 0 then
5: Break
6: end if
7: Sp ← Sp ∪ {u∗}
8: end for
9: return Sp

To get a lower bound, the optimal permutation selections
is very hard, thus we give several heuristic strategies to get
that efficiently. For the permutation αt that contains Xt at
each iteration, there are four heuristic selection strategies.
They are (1) Alpha-1: rearrange Xt and V \Xt randomly

and respectively, and then concatenate them together as a αt;
(2) Alpha-2: sort Xt and V \Xt respectively from largest to
smallest according to the expected overall benefit f(u) for
each u ∈ V , and then concatenate them together as a αt;
(3) Alpha-3: sort Xt and V \Xt respectively from largest
to smallest according to the expected benefit w(u) for each
u ∈ V , and then concatenate them together as a αt; and
(4) Alpha-4: sort Xt and V \Xt respectively from smallest
to largest according to the z(u) for each u ∈ V , and then
concatenate them together as a αt.

B. Experimental Results

1) Permutation selections: Fig. 3 shows the performance
comparison of modular-modular procedure under the afore-
mentioned four permutation selections. Shown as Fig. 3, the
solution achieved under the Alpha-2 that permutates according
to the expected overall benefit has the best performance. Thus,
in the follow-up experiments, we default that modular-modular
procedure is implemented under the Alpha-2. The performance
under the Alpha-3 is slightly worse that under the Alpha-
2. The performance under the Alpha-4 is extremely worse,
which implies this heuristic selection is invalid. Moreover, the
random permutation selection Alpha-1 is unstable, which is
sometimes good sometimes bad.

2) Performance of different algorithms: Fig. 4, Fig. 5, and
Fig. 6 show the performance comparison with other heuristic
algorithms under the different datasets. In these figures, we
test the algorithms under the different number of RR-sets.
Obviously, the estimations will be more and more accurate as
the number of RR-sets increases, but the gap looks inconspic-
uous from these figures. Then, we have several observations
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(a) Wikivot, θ = 5K (b) Wikivot, θ = 10K (c) Wikivot, θ = 15K (d) Wikivot, θ = 20K

Fig. 5. The performance comparison with other heuristic algorithms under the Wikivot dataset.

(a) Bitcoin, θ = 5K (b) Bitcoin, θ = 10K (c) Bitcoin, θ = 15K (d) Bitcoin, θ = 20K

Fig. 6. The performance comparison with other heuristic algorithms under the Bitcoin dataset.

TABLE II
APPROXIMATION OF MODULAR-MODULAR PROCEDUCE WHEN k = 20

Netscie Wikivot Bitcoin

θ md-1 md-2 md-1 md-2 md-1 md-2

5 K 0.51 0.51 0.44 0.44 0.31 0.41

10K 0.50 0.50 0.47 0.47 0.31 0.42

15K 0.50 0.51 0.50 0.50 0.32 0.42

20K 0.52 0.53 0.51 0.51 0.32 0.45

TABLE III
RUNNING TIME OF MODULAR-MODULAR PROCEDUCE WHEN k = 20

Netscie Wikivot Bitcoin

θ md-1 md-2 md-1 md-2 md-1 md-2

5 K 09 28 24 083 255 0935

10K 17 53 44 154 232 1190

15K 23 64 65 410 445 2587

20K 27 57 82 285 535 2481

as follows. First, the expected overall benefit increases as the
budget increases at least on a budget less than 30. Then, the
performances achieved by greedy and modmod-2 algorithms
are very close under all datasets. The performances achieved
by modmod-1 are unstable under the different datasets, which
has good results under the Netscie and Wikivot datasets but
a bad result under the Bitcoin dataset. It implies that the

selection of upper bound is a critical factor that affects the
results of the modular-modular procedure.

C. Approximation and Running Time:

The approximation and running time of modular-modular
procedure when k = 20 are shown in Table II and Table III.
Here, we set the parameter δ = 0.1, which means that the
approximation ratio shown as II can be satisfied with at least
0.9 probability. From the Table II, we can see that the ap-
proximation ratio improves as the number of RR-sets increases
since the estimation errors in (23) can be reduced. From the
table III, the running time increases as the number of RR-sets
increases generally because the modular maximization process
shown as Algorithm 2 is more time-consuming. However, it
is still uncertain since the number of iterations varies under
different circumstances, where modmod-2 needs to update Xt

more times than modmod-1.

VII. CONCLUSIONS

In this paper, we consider the disturbance of rival’s influence
on our benefits we can get from the social networks and
propose an OEBI problem formally, which is a generalization
for a number of realistic scenarios. Then, we quantify this
disturbance, define its objective function, and show its prop-
erties. To solve it, we decompose it into the difference of two
submodular functions and apply modular-modular procedure
to get a solution according to their lower bound and upper
bound. Then, we design an efficient unbiased estimate to
approximate it with a data-dependent approximation guarantee
but reduce running time significantly. These results are verified
by numerical simulations based on real-world datasets.
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