
An Overlay MAC Layer for 802.11 Networks

Ananth Rao
UC Berkeley

Ion Stoica
UC Berkeley

Abstract
The widespread availability of 802.11-based hard-
ware has made it the premier choice of both researchers
and practitioners for developing new wireless networks
and applications. However, the ever increasing set of
demands posed by these applications is stretching the
802.11 MAC protocol beyond its intended capabilities.
For example, 802.11 provides no control over allocation
of resources, and the default allocation policy is ill-suited
for heterogeneous environments and multi-hop networks.
Fairness problems are further exacerbated in multi-hop
networks due to link asymmetry and hidden terminals. In
this paper, we take a first step towards addressing these
problems without replacing the MAC layer by presenting
the design and the implementation of an Overlay MAC
Layer (OML), that works on top of the 802.11 MAC
layer. OML uses loosely-synchronized clocks to divide
the time in to equal size slots, and employs a distributed
algorithm to allocate these slots among competing nodes.
We have implemented OML in both a simulator and on
a wireless testbed using the Click modular router. Our
evaluation shows that OML can not only provide better
flexibility but also improve the fairness, throughput and
predictability of 802.11 networks.

1 Introduction

In recent years, the popularity of the 802.11 protocol has
made it the de facto choice for developing and deploy-
ing a multitude of wireless networks and applications. In
addition to the traditional model of a last-hop wireless
link to an access point, 802.11 networks are used to setup
wireless infrastructures in corporate networks, long-haul
links using directional antennae in rural areas [31], and
more recently multi-hop networks for broadband Internet
access, e.g., rooftop or mesh networking [5, 20].
Despite making deployment easier, the 802.11 proto-
col does pose serious limitations in addressing the differ-
ent demands of these emerging applications. The 802.11
MAC protocol was carefully engineered for the wireless
LAN environment [27] and many of the underlying as-
sumptions may not hold in the new environments. Several
problems have been reported in earlier research [23]. We
illustrate more problems through a careful performance
study of the MAC using statistics collected from the de-
vice driver and packet-sniffing tools [1, 2]. In particular,
we show that link asymmetry or hidden terminals can ei-
ther cause (a) poor fairness, sometimes even shutting off

all flows through a node or (b) excessive collisions, lead-
ing to poor performance. In addition, we consider several
scenarios where the default allocation of the medium by
802.11 is far from being optimal.
Two main approaches have been proposed in the lit-
erature to address these problems. The first approach
is to build workarounds in the routing or transport lay-
ers to avoid the cases where the MAC layer performs
badly [5, 20, 22, 38]. The second approach focuses on
replacing the MAC layer with new protocols [10, 16] and
standards such as 802.16 (WiMax) and 802.11e. The first
approach is more easily deployable as the functionality of
both the routing and transport layers is fully implemented
in software, so it is relatively easy to modify. However,
as we will show in this paper, the 802.11 MAC layer suf-
fers from certain limitations, such as unfairness due to
asymmetric interference, that cannot be fully addressed
through changes only to the higher layers. In contrast,
the second approach is far more powerful since modify-
ing the MAC layer can directly address all the 802.11
limitations, but it is much harder to implement and ex-
periment with. The MAC layer is implemented partly
in hardware, partly in firmware, and partly in the device
driver of the Network Interface Card (NIC). Thus, chang-
ing the MAC layer can require hardware and firmware
changes, a highly expensive proposition.
In this paper, we propose a third approach that com-
bines power of changing the MAC layer and the ease of
deployability of modifying only the higher layers. In par-
ticular, we propose the design of an Overlay MAC layer
(OML) on top of the 802.11 MAC layer. OML performs
access control and scheduling, and does not require any
changes to the 802.11 MAC hardware or the 802.11 stan-
dard. Our approach is inspired by the success of the
“Overlay” networks, which have been used in the past
few years to study new network protocols and implement
new functionality without any modifications to the under-
lying IP layer. In the context of the MAC layer, using an
overlay offers the following three advantages. First, it
provides an immediately useful piece of software which
can be used in 802.11 networks while waiting for newer
standards to become more widespread. Second, the ad-
ditional flexibility of having the MAC layer in software
allows better integration with routing and application re-
quirements. Third, it allows research on new protocols to
be conducted on any of the numerous, already-deployed
802.11 testbeds. However, these advantages do not come
for free. Like many overlay approaches, OML suffers

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 135

some additional overhead compared to implementing the
same changes at the MAC layer. In addition, the design
of OML is limited by the interface exposed by the 802.11
MAC layer. For example, OML cannot carrier sense the
communication channel since 802.11 network cards do
not typically export the channel status to higher layers.
Despite such limitations, we believe that the advantages
of the our overlay approach make it a valuable alternative
to modifying the MAC layer.
To address the previously mentioned limitations of
the 802.11 MAC layer, OML uses loosely synchronized
clocks to divide the time in equal size slots, and then
uses a distributed algorithm to allocate these slots across
the competing nodes. In addition to preventing unfavor-
able interaction between senders at the underlying MAC
layer, OML also allows users to implement application-
specific resource allocation in the same way overlay net-
works allow application-specific routing. The slot allo-
cation algorithm of OML, called Weighted Slot Alloca-
tion (WSA), implements the weighted fair queueing pol-
icy [19], where each of the competing nodes that has traf-
fic to send receives a number of slots proportional to its
weight.
The main contribution of this paper is the architecture
and implementation of the Overlay MAC Layer. We be-
lieve this is the first time such an approach has been pro-
posed to improve the performance and flexibility of the
MAC layer. Because of the ease of deployability of the
overlay approach, we are able to demonstrate these im-
provements through a real implementation of OML on a
testbed. OML not only offers better flexibility than the
802.11 MAC layer, it also improves throughput and pre-
dictability by minimizing losses due to contention.
The rest of the paper is organized as follows. Section 2
presents the related work, and Section 3 uses experimen-
tal results to motivate the need for an overlay MAC pro-
tocol. Section 4 describes the challenges in designing
OML. Section 5 describes the hardware and software of
our testbed. Sections 6 and 7 present simulation and ex-
perimental results. Finally, Section 8 discusses the open
issues and limitations, and Section 9 concludes the paper.

2 Related Work

802.11 MAC Limitations: Many researchers have re-
ported problems with the 802.11 MAC protocol. Heusse
et al. have described how senders with heteroge-
neous data rates can affect the system throughput ad-
versely [23]. The Roofnet and Grid projects [4, 5] have
reported a variety of problems with 802.11 multi-hop
testbeds such as low throughput and unpredictable per-
formance. We add to the set of the problems reported in
these studies, by showing that asymmetric interference at
the MAC layer can cause significant unfairness.

MAC Layer Improvements: A plethora of MAC pro-
tocols have been proposed to improve the predictabil-
ity and the resource management capabilities of wire-
less networks. Many of these solutions use either so-
phisticated back-off protocols [12] or slot allocation al-
gorithms [10, 11] to implement more flexible allocation
policies such as Weighted Fair Queueing [19]. Other so-
lutions achieve this goal by using a combination of both
back-off and slot allocation algorithms [16,30]. All these
protocols work at the MAC layer and assume full con-
trol over the hardware and the physical layer. In contrast,
we assume that OML can use only the limited interface
exposed by most 802.11 cards to control packet transmis-
sion.
Routing and Transport Layer Improvements: Some
recent proposals use mechanisms above the MAC layer
to improve the fairness of 802.11 networks. Gamrioza
et al. [22] propose to explicitly limit the sending rate of
the flows nodes, while Yi and Shakkottai [38] propose to
implicitly limit the TCP flow rates by delaying the TCK
ACKs at intermediate nodes to achieve fair bandwidth al-
location. However, as we show in Section 3.2, controlling
only the sending rate is not enough to avoid all undesir-
able interaction between competing flows.
Our work is complementary to several proposals that
aim to improve the performance of 802.11 multi-hop net-
works. For example, Couto et al. [18] propose a new rout-
ing metric to improve network throughput. OML can be
used in conjunction or integrated with such routing pro-
tocols to improve the throughput or other network met-
rics. Extremely Opportunistic Routing [13] (ExOR) pro-
poses a modification to the 802.11 MAC so that any eli-
gible node that receives a packet without errors can send
an ACK and forward the packet. Since OML schedules
transmissions based on the sender only, and not on the
destination of a packet, we believe that OML can be used
on top of ExOR to obtain better performance.
Distributed Slot Allocation: The Weighted Slot Allo-
cation (WSA) algorithm that we propose in this paper is
based on the Neighborhood-awareContention Resolution
(NCR) protocol, which was previously proposed by Bao
and Garcia-Luna-Aceves [10, 11]. WSA extends NCR
in two aspects. First, unlike OML, NCR assumes that
the interference graph in a multi-hop network consists of
isolated, easily identifiable cliques, i.e., if node A inter-
feres with B and B with C, then A interferes with C. Sec-
ond, while NCR uses pseudo-identities to support integer
weights, WSA can support arbitrary weights.
Overlay Networks: Our solution is similar in spirit to
the overlay network solutions that aim to improve routing
resilience and performance in IP networks [8, 9, 15, 36].
Overlay networks try to overcome the barrier of modi-
fying the IP layer by employing a layer on top of the
IP to implement the desired routing functionality. Simi-

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association136

larly, OML runs on top of the existing 802.11 MAC layer,
and its goal is to enhance the MAC functionality without
changing the existing MAC protocols.

3 Motivation

In this section, we motivate our approach of building an
Overlay MAC Layer for 802.11 networks. Briefly, our
motivation stems from the following three factors:
1. Due to asymmetric interaction between flows and
an inflexible default allocation policy, the efficiency
and fairness of the 802.11 MAC suffer in a number
of scenarios.

2. Solutions that only modify layers above the MAC,
though applicable in certain cases, are of limited use
in addressing certain undesirable interactions at the
MAC layer.

3. The additional flexibility, the low cost and the imme-
diate deployability of an overlay solution makes it
an attractive alternative for developing a new MAC
layer or modifying an existing one.
Next, we substantiate the first two factors by conduct-
ing experiments on a six node wireless testbed using
802.11a radios. In Section 3.1, we illustrate the limita-
tions of 802.11 in the form of asymmetric interference
and the inflexible default allocation policy, and in Sec-
tion 3.2 we argue that these limitations cannot be fully
addressed at layers above MAC. For more details on our
testbed, please refer to Section 5.

3.1 Limitations of 802.11 MAC Layer

In this section, we illustrate two specific limitations of the
802.11 MAC protocol using simple experiments:
1. Asymmetric interactions: Interference between two
flows either at the senders or at the receivers can
cause one flow to be effectively shut-off.

2. Sub-optimal default allocation: As other researchers
have pointed out [23], we show that the default al-
location of the transmission medium by the MAC
layer fails to meet the requirements of some appli-
cations.

3.1.1 Effect of Asymmetric Interaction

In this section, we take a closer look at the impact of in-
terference on performance at the MAC layer. Interfer-
ence has been often cited as being the cause for poor
performance in other testbeds [5]. Here, we try to un-
derstand and quantify the effect of interference through
experiments on a multi-hop testbed. To avoid any com-
plex interaction between the MAC, routing, and transport
layers, we restrict our experiments to two simultaneous

1-hop UDP flows. Figure 1 shows the location of ma-
chines in our testbed in relation to the floor plan of our
office building. We also show the signal strength of each
link in either direction as reported by the device driver of
the wireless card. The topology of the testbed resembles
a chain and we study how simultaneous transmissions
along two links in the chain interfere with each other.
1. Asymmetric sender interaction: Because of asym-
metry in radio propagation, one sender may be able
to carrier sense transmissions from the other sender,
but not vice-versa. This can lead to starvation of the
first sender.

2. Asymmetric receiver interaction: Hidden terminal
problems can completely shut-off flows in the net-
work, particularly in the presence of other flows
which do not experience similar problems.

Asymmetric Carrier Sense: We conduct our first set of
experiments using broadcast packets only. This allows us
to better understand the interaction between senders, as
broadcast communication abstracts away the ACKs and
packet retransmissions at the MAC layer. We make the
two senders continuously send broadcast UDP packets
and measure the sending rate of each sender averaged
over 1 minute. The sending rate of each node depends
only on whether it can carrier sense transmissions from
the other node.
We conducted this experiment for each of the 15 pairs
of nodes in our six node testbed. As expected, nodes that
were far away (e.g., nodes 1 and 5 in Figure 1) did not
carrier sense each other and were able to simultaneously
send at about 5.1 Mbps. When the nodes are close to
each other (e.g., nodes 2 and 3), they carrier sense each
others transmissions, and hence share the channel capac-
ity to send at about 2.5 Mbps each. However, in three
cases we found than one of the nodes was transmitting
at more than 4.5 Mbps, while the other was transmitting
at less than 800 Kbps. The only possible explanation for
this asymmetric performance is that one sender can car-
rier sense the other, but not vice-versa. This can impact
all configurations of flows where both senders are active,
irrespective of who the receivers are.
Asymmetric Receiver Interaction: Now, we study the
interference at the receiver. To eliminate the effects
of sender (carrier sense) interference, we only consider
senders that are able to broadcast simultaneously at full
rate. In these cases, we conducted experiments with each
sender sending unicast UDP packets simultaneously to
receivers within their communication range at the maxi-
mum rate. We found that depending on the configuration
of the flows, either one or both receivers can be affected
by interference. For example, when the flows from node 1
to 2 and from node 3 to 4 are simultaneously active, node
2 experiences interference from node 3, whereas the latter
flow is not disrupted by transmissions from node 1. We

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 137

Fair

Good

Very Good

2

1

3
4

5

6

Figure 1: Location of the nodes and the signal strength
of each link as reported by the driver in our multi-hop
testbed

found two such cases where the sending rate of affected
sender drops by more than 60% due to the repeated back-
off at the MAC layer triggered by retransmission time-
outs. Furthermore, based on the statistics gathered from
the device driver, we found more than 85% of the packets
sent by this sender were not received at the destination. In
the second case, both flows can experience problems due
to interference, e.g.,when both nodes 1 and 3 are sending
to node 2. This case illustrates the classic hidden termi-
nal problem, where back-off at the MAC layer causes the
sending rate of both senders to drop, which in turn re-
duces the loss rate of both flows to 35%. However, in this
case, the channel utilization and hence the total system
throughput drops by about 55%.

3.1.2 Sub-optimal Default Allocation

In this section, we show two examples where the de-
fault bandwidth allocation by the 802.11 MAC is far from
ideal. These examples illustrate the need for a flexible al-
location policy which can be controlled by applications.
Heterogeneous Transmission Rates: The 802.11 MAC
allocates an equal number of transmission opportunities
to every competing node. However, as shown in previ-
ous work [23], this fairness criterion can lead to a low
throughput when nodes transmit at widely different rates.
We illustrate this behavior using a simple experiment
comprising two heterogeneous senders connected to a
single access point. We emulate heterogeneous senders
by fixing the data-rate of transmissions from Node 1 to
the access point at 54 Mbps and varying the data-rate of
Node 2 between 6 Mbps and 54 Mbps. Figure 2 shows
the average throughput of two TCP flows originated at
the two nodes. This experiment shows that while the be-

Figure 2: 802.11 throughput in the presence of heteroge-
neous data rate senders

havior is fair as nodes see equal performance irrespective
of their sending rate, it hurts the overall system through-
put. In particular, as the sending rate of Node 2 decreases
from 54 Mbps to 6 Mbps, the total system throughput
decreases from 24 Mbps to 7.2 Mbps. In addition, this
behavior leads to poor predictability. For example, if
Node 1 is the only active one, it will have a throughput
of roughly 24Mbps. However, when Node 2 starts trans-
mitting at 6 Mbps, the throughput seen by Node 1 drops
to 3.6Mbps.
Several Flows Traversing a Node: In a multihop net-
work, the fairness policy implemented by 802.11 can lead
to poor fairness. This is because in an ad-hoc network, the
fairness policy of 802.11 does not account for the traffic
forwarded by a node on the behalf of other nodes. Ide-
ally, we would like to provide higher priority to nodes
that relay traffic from a lot of flows.

3.2 Need for a MAC Layer Solution

A natural question that arises is whether the limitations
we described so far can be addressed at a layer above
the MAC layer, such as the network or transport layer.
Several proposals have tried to answer this question affir-
matively [22, 38]. In a nutshell, these proposals estimate
the capacity and interference patterns of the network, and
then use this information to limit the sending rate (usu-
ally, employing token-buckets) of each node at the net-
work layer. While these solutions may perform well in
many scenarios, our experience suggests that in certain
practical situations they fall short. For instance, consider
the problem of fair allocation as defined in [22]. In order
to achieve fair allocation, the following two requirements
should hold:
1. Every node should access the medium for only its

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association138

fair share of time.
2. When a node is transmitting data, other nodes
should not interfere with it.
By limiting the sending rate of each node according
to its fair share, we can address the first requirement.
However, this solution would work only if the underly-
ing MAC layer satisfies the second requirement. Unfor-
tunately, as discussed in Section 3.1, the 802.11 MAC
fails to satisfy this requirement quite often. As an exam-
ple, in the chain configuration of our testbed, we found
that both the first and the third link of the chain taken in
isolation had a loss rate of less than 5% and were able
to support a TCP flow at close to the channel capacity of
4.6 Mbps. But when we started simultaneous flows on
both links, one flow always received less than 100 Kbps
whereas the other flow received in the excess of 4 Mbps.
In order to mitigate this problem we tried rate limiting
both TCP flows to 2.3 Mbps. In this case we found that
the throughput of the first flow only improved to about
580 Kbps even though the other flow was only receiving
2.3 Mbps (as specified by the token bucket).
The inability of 802.11 to effectively address the sec-
ond requirement suggests that a general solution to fully
address all the 802.11 limitations requires changes to the
MAC layer.

3.3 Advantages of an Overlay Solution

Given that the 802.11 MAC limitations cannot be fully
addressed without changing the MAC layer, we propose
the use of an Overlay MAC layer as an alternative to
building a new MAC layer. We believe that the over-
lay approach offers several advantages such as low cost,
flexibility and the possibility of integration with higher
layers.
First, changing the MAC layer requires the use of ex-
pensive proprietary hardware, or waiting for a new stan-
dard and hardware to become available. In contrast, OML
can be deployed using the existing 802.11 hardware.
Second, the fact that OML is implemented in software
makes it easier to modify OML to meet the diverse re-
quirements of the ever increasing spectrum of wireless
applications [4, 5, 23, 31]. For example, in our OML im-
plementation, we support service differentiation both at
the flow and node granularity. In the case of a rooftop
network [17], one could modify OML to take advantage
of the relative stationarity of the link quality and interfer-
ence patterns.
Finally, the software implementation of OML also en-
ables us to have tighter integration between the link,
network and transport layers. For example, Jain et
al [24] show that it is possible to significantly increase the
throughput of an ad-hoc network by integrating the MAC
and routing layers. Another example is that the transport

layer can provide information about the traffic type (e.g.,
voice, ftp, web), and OML can use this information to
compute efficient transmission schedules.
Of course, these advantages do not come for free. Fun-
damentally, OML incurs a higher overhead and it is more
inefficient than a hardware implementation of the same
functionality. Furthermore, OML is limited to using only
the interface exposed by the 802.11 MAC layer as op-
posed to all the primitives that the hardware supports. We
present some of the limitations of OML in more detail in
Section 8.

4 Design

In this Section, we present our solution, an overlay MAC
layer (OML), that alleviates the MAC layer issues de-
scribed in Section 3. We first state our assumptions.

4.1 Assumptions

The primitives available for the design of OML are deter-
mined by the interface exposed by the device driver. For
the sake of generality, in this paper we make minimal as-
sumptions about this interface. In particular, we assume
that
1. The card can send and receive both unicast and
broadcast packets.

2. It is possible to set the wireless interface in promis-
cuous mode to listen to all transmissions from its
1-hop neighbors.

3. It is possible to disable the RTS-CTS handshake by
correspondingly setting the RTS threshold.

4. It is possible to limit the number of packets in the
card’s queue to a couple of packets. This is critical
for enabling OML to control packet scheduling be-
cause once the packets are in the card’s queue, OML
has no control over when these packets are sent out.
We note that these assumptions already hold or can be
enforced, eventually by modifying the device drivers in
most 802.11 cards.
While carrier-sensing is a very important primitive for
the design of a MAC protocol, we do not assume that
OML can use this primitive. This assumption reflects
the fact that most 802.11 cards do not export the cur-
rent status of the channel or the network allocation vector
(NAV)1 to the higher layers.

4.2 Solution

As noted in the previous section, the only control that
OML can exercise over packet scheduling iswhen to send
a packet to the network card. Once the packet is enqueued
at the network card, OML has no control on when the
packet is actually transmitted. Thus, ideally, we would

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 139

like that when OML sends a packet to the network card,
the network card transmits the packet immediately (or at
least with a predictable delay).
To implement this idealized scenario, we propose a so-
lution that aims to (a) limit the number of packets queued
in the network card, and (b) eliminate interference from
other nodes, which is the major cause of packet loss and
unpredictability in wireless networks. Goal (a) can be
simply achieved by reducing the buffer size of the net-
work card.
To achieve goal (b), we synchronize clocks and we use
a TDMA-like solution where we divide the time into slots
of equal size l, and allocate the slots to nodes according to
a weighted fair queueing (WFQ) policy [19]. We call this
allocation algorithm theWeighted Slot Allocation (WSA)
algorithm. WSA assigns a weight to each node, and in
every interference region2 allocates slots in proportion to
nodes’ weights. Thus, a node with weight two will get
twice as many slots as a node with weight one in the same
interference region. Only nodes that have packets to send
contend for time slots, and a node can transmit only dur-
ing its time slots. Since a time slot is allocated to no more
than one node in an interference region, no two sending
nodes will interfere with each other. This can substan-
tially increase the predictability of packet transmission,
and reduce packet loss at the MAC layer. However, in
practice, it is hard to totally eliminate interference. In an
open environment there might be other devices out of our
control (e.g., phones, microwave ovens), as well as other
nodes that run the baseline 802.11 protocol which can in-
terfere with our network. Furthermore, as we will see, ac-
curately estimating the interference region is a challeng-
ing problem.
The reason we base WSA on the WFQ policy is be-
cause WFQ is highly flexible, and it avoids starvation.
WFQ has emerged as the policy of choice for providing
QoS and resource management in both network and pro-
cessor systems [19, 28, 37]. However, note that WSA is
not the only algorithm that can be implemented in OML;
one could easily implement other allocation mechanisms
if needed.
There are three questions we need to answer when im-
plementing WSA: (a) what is the length of a time-slot, l,
(b) how are the starting times of the slots synchronized,
and (c) how are the times slots allocated among compet-
ing clients. We answer these questions in the next three
sections.

4.2.1 Slot size

The slot size l is dictated by the following considerations:
1. l has to be considerably larger than the clock syn-
chronization error.

2. l should be larger than the packet transmission time,

i.e., the interval between the time the first bit of the
packet is sent to the hardware, and the time the last
bit of the packets is transmitted in the air.

3. Subject to the above two constraints, l should be
as small as possible. This will decrease the time a
packet has to wait in the OML layer before being
transmitted and will decrease the burstiness of traf-
fic sent by a node.
In our evaluation, we chose l to be the time it takes
to transmit about 10 packets of maximum size (i.e., 1500
bytes). We found this value of l to work well in both
simulations and in our implementation.

4.2.2 Clock synchronization

Several very accurate and sophisticated algorithms have
been proposed for clock synchronization in multi-hop
networks [21, 33, 35]. We believe that it is possible to
adapt any of these algorithms to OML. However, OML
does not require very precise clock synchronization since
we use a relatively large slot time. For evaluation of
OML, we have implemented a straightforward algorithm
that provides adequate performance within the context of
our experiments on the simulator and the testbed.
We synchronize all the clocks in the network to the
clock at a pre-designated leader node. We estimate the
one-way latency of packet transmission based on the
data-rate, packet size and other parameters of the 802.11
protocol. We then use this estimated latency and a times-
tamp in the header of the packet to compute the clock
skew at the receiver.

4.2.3 Weighted Slot Allocation (WSA)

In this section, we describe the design of WSA. The chal-
lenge is to design a slot allocation mechanism that (a) is
fully decentralized, (b) has low control overhead, (c) and
is robust in the presence of control message losses and
node failures.
For ease of explanation, we present our solution in
three stages. In the first two stages, we assume that any
two nodes in the network interfere. Thus, only one sender
can be active in the network at any given time. Further-
more, in the first stage, we assume that all nodes have
unit weight. In the final stage, we relax both these as-
sumptions.

Step 1 - Network of diameter one with unit weights:
One solution to achieve fair allocation is to use pseudo-
random hash functions as proposed in [11]. Each node
computes a random number at the beginning of each time
slot, and the node with the highest number wins the slot.
The use of pseudo-random hash functions allow a node
to compute not only its random number, but the random

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association140

numbers of others nodes without any explicit communi-
cation with those nodes.
Let H be a pseudo-random function that takes values
in the interval (0, 1]. Consider c nodes, n1, n2, . . ., nc,
that compete for time slot t. Then each node computes
the value Hi = H(ni, t) for 1 ≤ i ≤ c, where H is a
pseudo-random function, and t is the index of the slot in
contention. A node nr wins slot t if it has the highest
hash value, i.e.,

arg max
1≤i≤c

Hi = r. (1)

Since Hi is a pseudo-random random number, it is
equally likely that any node will win the slot. This results
in a fair allocation of the time slots among the competing
nodes.
A node ns will incorrectly decide that it can transmit
if and only if it is unaware of another node ni such that
Hi > Hs. While the probability that this can happen can-
not be neglected (e.g.,when a node ni joins the network),
having more than one winner occasionally is acceptable
as the underlying MAC layer will resolve the contention
using CSMA/CD. As long as such events are rare, they
will not significantly impact the long term allocation.

Step 2 - Network of diameter one with arbitrary
weights: Let wi denote an arbitrary weight associated
to node i. Then we define Hi = H(ni, t)

1/wi , and again
allocate slot t to node r with the highest numberHr. The
next result shows that this allocation will indeed lead to a
weighted fair allocation.

Theorem 1. If nodes n1,. . . ,nc have weights w1,. . . ,wc,
and H is a pseudo-random function that takes values in
the range (0, 1], then

P [(arg max
1≤i≤c

Hi) = r] =
wr∑c

j=1
wj

(2)

Proof. Due to space limitations, we refer the reader to
our technical report [32] for the proof.

Step 3 - Larger diameter network: To enable frequency
reuse in networks of a larger diameter, WSAmust be able
to assign the same slot to multiple nodes as long as they
do not interfere with each other. Ideally, the decision to
allocate a new time slot should involve only nodes that in-
terfere with each other. Therefore, a given node n should
use only the hash values computed for nodes in its inter-
ference region. Note that WSA will only ensure weighted
fairness among the nodes in the same interference region.
Nodes in different interference regions can get very dif-
ferent allocations, based on the level of contention in their
regions.
Computing the set of nodes that interfere with a given
node is a hard problem, and we are not aware of any good

distributed algorithm to solve it. We get around this prob-
lem by simply assuming that a node can interfere with all
nodes within k-hop distance, where k is given. When a
node wants to contend for a slot it broadcasts its intention
to all nodes within k hops. The set of nodes form which
a node hears a broadcast message is then the set of nodes
it assumes it interferes with.
There is a clear trade-off between the probability of in-
terference and the bandwidth utilization in choosing the
value of k. As the value of k increases, both the prob-
ability of interference and the utilization decrease. The
reason why the utilization decreases is because, as k in-
creases, a k-hop region will cover more and more nodes
that do not interfere with each other in the real system. In
this paper, we assume two values of k, k=1, which repre-
sents an optimistic assumption as the interference range
is typically greater than the transmission range, and k=2,
which as we found in our experiments is a more conserva-
tive assumption. Designing better algorithms to compute
the set of nodes in a node’s interference region is a topic
of future research.
In addition to the fact that our solution only approx-
imates the real interference region, there are two other
sources of inefficiencies in the WSA algorithm. First, the
node which wins a slot may not have anything to send
during that slot. To address this problem we use a sim-
ple timer mechanism, called inactivity timer. When k=1,
each node ni initializes an inactivity timer at the begin-
ning of each time slot. Let nj be the winner of that slot.
If the timer of node ni expires, and the node still has not
heard any transmissions from nj , it assumes that the slot
is free. If ni has the next highest hash value after nj it
starts transmitting in that slot. When k=2, nodes within
one hop of nj will announce to ni that nj is silent. To
suppress multiple announcements from one-hop neigh-
bors of nj to ni, we enforce that of all the nodes within
one-hop of both ni and nj , only the node with the highest
hash value will notify ni. In practice, we set the inactivity
timer to the time it takes to transmit threemaximum-sized
packets. This helps us avoid false-positives due to packet
losses.
The second source of inefficiency is due to race con-
ditions caused by overlapping regions. Consider three
nodes ni, nj , nk such that ni and nk do not interfere with
each other, but both ni and nk interfere with nj . As-
sume the random numbers of the three nodes are such
that Hi<Hj<Hk. Then, ni will not transmit because nj

has a higher random number, and nj will not transmit be-
cause nk has a higher random number. Thus, although ni

and nk do not interfere, they would not be able to trans-
mit in the same slot. This problem is alleviated by the
technique presented in Section 4.2.4. Specifically, this
technique ensures that only a small number of nodes lo-
cated close to each other compete for a given slot.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 141

Slot time = 20ms

160ms

320ms

640ms

480ms

0

Time

1 5 6 73 4 82

Slot Index

Figure 3: Groups of slots used in the overlay MAC

4.2.4 Amortizing the cost of contention resolution

Even though our contention resolution mechanism is
fairly light-weight, it is more expensive than the hard-
ware based contention mechanisms used in 802.11,
CSMA/CD, and RTS/CTS, respectively. For example,
some fraction of a slot might be wasted due to the in-
activity timer.
Next we present a simple mechanism to amortize the
cost of the contention resolution. The idea is to form
groups of N consecutive slots as shown in Figure 3. The
index of a time-slot is defined as the position of the time-
slot within a group of N slots. If a node is allowed to
transmit in the slot with index i, the node is implicitly
allowed to transmit in the index i of the next group with
probability p. In other words, the node will relinquish slot
i with probability 1 − p. Once the node relinquishes the
slot, other nodes are allowed to compete for the slot. This
mechanism amortizes the cost of contention by a factor
of 1/(1− p).
Another advantage of this mechanism is that when a
node relinquishes a slot, only the nodes within its inter-
ference region are able to compete for the slot. Nodes
farther away are likely to be restricted from competing
since they are within range of another node that did not
relinquish this particular slot. Since contention is typi-
cally restricted to nodes within a small region, the race
condition described in the previous section is much less
likely to occur.
However, these advantages do not come for free. A
node needs now to wait for 1/(1 − p) slots on average
before it can compete. As a result it will take the sys-
tem longer (i.e., by a factor of 1/(1 − p)) to converge to
the fair allocation when a new node joins or leaves the
competition.
To address this issue, we make a slight modification to
our earlier definition of of Hi. Let si be the number of
slots owned by the node ni when contending for a time

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

o

f
sl

o
ts

Group Index

Flow 1
Flow 2
Flow 3

(a)

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

o

f
sl

o
ts

Group Index

Flow 1
Flow 2
Flow 3

(b)

Figure 4: Number of slots in every group when using (a)
default weights (wi), and (b) inflated weights (w′

i).

slot. We now redefine

Hi = H(ni, t)
W si/N

w2

i

In other words, if the true weight of node ni iswi, node
ni uses a virtual weight w′

i =
w2

i

Wsi/N instead of wi. In
steady state, si ≈

wiN
W and hence w′

i ≈ wi. Thus, w′
i

inflates a nodes weight when it has less than its fair share
of slots, but diminishes its weight when it has more than
its fair share. Thus, a new sender that becomes active will
gain about (1−p)N slots in each round and quickly ramp
up to its fair rate.
To illustrate the advantage of using an inflated weight

w′
i, we use a simple simulation involving three flows with
weights 1, 2, and 3, respectively. We assume N = 30,
and p = 0.95. Figure 4 plots the number of slots allo-
cated to each flow as a function of the group index. As
expected, when using inflated weights allow new flows to
reach their fair allocation faster. In addition, the fluctua-
tions in steady state behavior are smaller than in the case
of using the default weights.
The choice of N impacts both the short-term fairness
and the time a winner needs to wait to receive subsequent
slots without competing again. At the limit, if N = 1,
the winner is allocated 1/(1 − p) consecutive time slots,
which hurts the short-term fairness. If N = ∞, the win-
ner is allocated one slot at a time as in the baseline al-
gorithm. Based on our experimental results, we chose
N = 20.

4.2.5 Reducing the control overhead

The basic OML algorithm employs control messages to
signal (a) when a node relinquishes a slot, and (b) when

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association142

a new node enters the competition for a slot. Next, we
present two simple optimizations to reduce this signaling
overhead.
First, we make use of another pseudo-random function

H ′ to decide if a node should relinquish its slot, i.e., if
node ni owns the slot t, it will give up the slot only if
H ′(ni, t) < (1 − p). Again, H ′ is a pseudo-random
function with range (0, 1] and other nodes can compute
this value without any communication.
Second, we include the queue length at the sender in
the header of each packet. Thus, if the queue becomes
empty during the current slot, the node’s neighbors are
implicitly notified, and the remaining node with the next
highest Hi is allowed to transmit for the rest of the slot.
If on the other hand the queue of the sender is not empty
at the end of the time slot, then its one-hop neighbors will
implicitly assume that the node will compete in the next
time slot.
In summary, only nodes that join the competition need
to transmit individual control messages. All the addi-
tional information about active nodes in the interference
region is piggy-backed in the packet header. To deal with
node failures, we remove a node from the list of con-
tenders if we do not receive an update on its queue-length
for an extended period of time.

4.3 Putting everything together

Figure 5 shows the WSA pseudocode. For readability,
here we assume that the interference region is the same
as the transmission region, i.e., k = 1.
Each node maintains a list of all nodes in its interfer-
ence region that are active, and a map of which time slot
is allocated to which node. Since nodes are in promiscu-
ous mode, each node can maintain the list of active nodes
by simply inspecting the queue lengths in the headers of
the packets it receives. If a node does not hear any mes-
sage from a neighbor within a predefined interval of time,
it assumes that the neighbor is no longer competing and
removes it from its list. This allows the algorithm to be
robust in the presence of packet losses and node failures.
To implement a two hop interference region, a node
simply piggybacks the information about all its one-hop
neighbors in the packets it sends. This information is
spread across the headers of all packets it sends during
the slot to reduce the per-packet overhead. This allows
each node to learn about its two-hop neighborhood. Sim-
ilarly, when a node becomes active, it broadcasts a control
message to its two-hop neighborhood.

5 Experimental Test-bed

In order to motivate our work in Section 3, we use some
examples of actual observed performance in an 802.11

function scheduler()
while (TRUE)
getSlotIndex(&slotId, &slotIndex);
// check whether you already own the slot
if (owner[slotIndex] ! = myAddress)
setInactivityTimer();

if (H’(slotId, owner[slotIndex]) < (1 − p))
// contendForSlot updates owner[]
contendForSlot(slotId, slotIndex);

while (!endOfCurrentSlot())
if (owner[slotIndex] == myAddress)
p = getPacket(omlQueue);
if (p) send(p);

function recvPacket(p)
if (p.type == CONTEND or p.header.q size > 0)
active list.add(p.src);
// don’t content for this slot
cancelInactivityTimer();
// active list may have changed; recompute winner
computeWinner(slotId, slotIndex);

if (p.type == RELINQUISH or p.header.q size == 0)
contendForSlot(slotId, slotIndex);

if (p.header.q size == 0)
active list.remove(p.src);

if (p.type == DATA)
// deliver packet locally if this node is
// the destination; otherwise route it
processData(p);

function contendForSlot(slotId, slotIndex)
if (!isEmpty(omlQueue) and totalOwnedSlots== 0)

// other nodes may not be aware this node is active
sendContentionMessage();

computeWinner(slotId, slotIdx)

function handleInactivityTimer()
contendForSlot(slotId, slotIndex);

function cleanActiveList()
// This function is called periodically by every node
// to time-out failed nodes from the active list
for all n ∈ active list

if (curr time - n.time added > FAIL TIMEOUT)
active list.remove(n);

Figure 5: The WSA algorithm for an one-hop interfer-
ence region.

testbed. In this Section, we describe the testbed that we
use for these results. Our testbed currently consists of 6
wireless nodes based on commodity hardware and soft-
ware.
The hardware consists of small form-factor computers
equipped with a 2.4GHz Celeron processor and 256MB
of RAM. Each computer is also equipped with a Net-
gear WAG511 [6] tri-mode PCMCIA wireless Ethernet
adapter. This card is capable of operating in 802.11a,b
and g modes, but we conduct all our experiments in
802.11a mode to avoid interference with another produc-
tion 2.4GHz wireless network operating in same environ-
ment.
We have installed Linux (kernel 2.4.22) in all these
systems along with the MadWiFi [3] driver for the wire-

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 143

less cards. For routing, we use the Click software
router [26] because it provides an easily extensible mod-
ular framework. Also, the MIT Grid [4] project provides
a readily download-able implementation of DSR [25] and
AODV [29] on top of Click. More details about our im-
plementation of OML are available in [32].

6 Simulation Results

In this Section, we evaluate the benefits of OML by us-
ing Qualnet [7], a commercial packet-level wireless sim-
ulator. Our results can be summarized as follows. First,
despite the additional control overhead, the throughput of
an OML/WSA network is comparable to the throughput
of an 802.11 network. This is because the loss in through-
put due to the control overhead is offset by the fact that
OML/WSA experiences much lower contention. Second,
WSA significantly improves the fairness in a multi-hop
network. In particular, while in a multi-hop 802.11 net-
work, a significant percentage of TCP flows are shut-off,
OML/WSA completely avoids this problem.
To quantify the fairness, we use the metric defined by
Chiu and Jain in [14]. Consider a system withM flows,
with weights w1, w2, . . . , wM , each receiving a through-
put x1, x2, . . . , xM . The fairness index F is defined as

F =
(
∑

i xi/wi)
2

M
∑

i x2

i /w2

i

Note that F = 1 when each flow’s throughput is ex-
actly in proportion to its weight, and F = 1/M when
only one flow receives the entire throughput.
We next describe the simulation setting. Each node in
the simulation is equipped with an 802.11a network in-
terface operating at 6Mbps. We use the outdoor two-ray
propagation model which yields a radio range of about
350m. In all experiments, we maintain the density of the
network constant at 50 nodes per square km, and place the
nodes at random locations. The time it takes to transmit
an 1500 byte packet, including the overhead of the MAC
and physical layers is about 2 ms. Hence, we choose
a slot time of l = 10 ms, and a group with N = 20
slots. We have disabled the RTS-CTS handshake in all
simulations since this maximizes the performance of both
the baseline 802.11 and the OML networks. We use the
AODV [29] routing algorithm, and run each simulation
for one minute (simulation time).

6.1 Collisions and Throughput

As mentioned in Section 4, OML/WSA can achieve bet-
ter fairness than native 802.11 in a multi-hop network. To
evaluate the effects of this trade-off on throughput, in this
experiment we vary the size of the network from 15 to 50
nodes, and measure the throughput achieved by a number

0

10000

20000

30000

40000

50000

60000

15 20 25 30 35 40 45 50

T
o

ta
l #

 s
en

t

Nodes

Data Sent - w/o OML
Ack Sent - w/o OML

Unicast Sent - w/o OML
Data Sent - with OML
Ack Sent - with OML

Unicast Sent - with OML

Figure 6: Packet retransmissions in a multi-hop network
with 10 flows

of simultaneous UDP flows. All flows originate at differ-
ent nodes, but have the same sink. Such a traffic pattern
models a multi-hop network used to access the Internet
through a single gateway.
Figure 6 shows the effect of the size of the network
on the total number of (a) DATA packets and (b) ACKs
successfully transmitted at the data link layer, and the
(c) unicast packets successfully delivered to the destina-
tion. For each network size we consider 10 simultane-
ous UDP flows. The difference between (a) and (c) gives
the total number of packet retransmissions at the MAC
layer. Of these (a)-(b) are due to the loss of DATA pack-
ets, and (b)-(c) are due to the loss of ACK packets. Be-
cause in these simulations OML makes the conservative
assumption that all nodes in a two-hop neighborhood in-
terfere, there is less frequency reuse and the total num-
ber of transmissions attempted is lower than in 802.11.
On the other hand, since OML does not allow compet-
ing senders to be active at the same time, there is hardly
any MAC layer retransmission. In contrast, in the case of
802.11, up to 25% of the packets are retransmitted. Note
that applications that use broadcast transmissions (e.g.,
routing protocols) can greatly benefit from fewer colli-
sions since broadcast packets are not acknowledged and
retransmitted at the MAC layer.
Figure 7 plots the average throughput of 5 or 10 simul-
taneous flows both with and without OML. Even though
OML uses additional control overhead and permits less
frequency reuse, the throughput with OML is close to
the throughput without OML. Also, there is fundamen-
tal trade-off between throughput and fairness in multi-
hop networks [22] since longer flows consume more re-
sources than 1-hop flows. But by avoiding collisions and
using the medium more efficiently, OML provides much
better fairness (see Section 6.2) without sacrificing the
throughput.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association144

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Nodes

10 flows - w/o OML
10 flows - with OML

5 flows - w/o OML
5 flows - with OML

Figure 7: Average throughput in a multi-hop network
with and without OML

0

0.2

0.4

0.6

0.8

1

1.2

15 20 25 30 35 40 45 50

F
ai

rn
es

s
In

d
ex

Nodes

10 flows - w/o OML
10 flows - with OML

Figure 8: Fairness index of 10 simultaneous flows

6.2 Fairness

A well-known problem with multi-hop 802.11 networks
is that short flows, in terms of the number of hops they
traverse, receive a much higher throughput than long
flows. To show how OML/WSA can alleviate this prob-
lem, in the following experiment we set the weight of
each node to be equal to the number of unique IP source
addresses seen in its output queue; this roughly approxi-
mates having unit weight for each flow since there is only
one flow starting from each node. Thus a node that for-
wards packets fromm flows will have weightm. Within
a single node, we maintain separate queues for each IP
source address and implement round-robin scheduling
between these queues. If all nodes contend with each
other, the weight allocations and the scheduling algo-
rithm will ensure that all flows receive equal throughput
irrespective of their length.
Figure 8 shows the fairness index of 10 simultaneous
flows averaged over 10 simulation runs. This value can
vary from 0.1 (least fair) to 1 most fair in this case. The

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3 3.5 4 4.5 5

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Hops

30 nodes - w/o OML
30 nodes - with OML
50 nodes - w/o OML

50 nodes - with OML

Figure 9: Relationship between throughput and the num-
ber of hops

fairness index in the case of 802.11 is mostly below 0.5
for large networks. This is because in a large network
there are more flows with longer routes. In contrast, the
fairness index in the case of OML/WSA is above 0.8 even
for a 50 node network. The reason the fairness is not 1
is simply because because not all flows compete with all
other flows. The only way to achieve F = 1 in multi-
hop network is to constrain all flows to the throughput of
the flow experiencing the most contention, which leads to
inefficient use of the channel in the less congested areas.
Figure 9 plots the average throughput of the flows as
a function of their length. As expected, 802.11 favors
shorter flows, but OML/WSA is more fair. For example,
in the case of the 30-node network, the average through-
put of four-hop flows under 802.11 is less than 10%of the
throughput of one-hop flows. In contrast, with OML, the
average throughput of four-hop flows is more than half
the throughput of one-hop flows.

7 Results from the testbed

In this section, we evaluate OML/WSA using our exper-
imental testbed. Our main results can be summarized as
follows. Section 7.1 shows that OML/WSA can increase
the overall throughput of the system by fairly allocating
transmission time, instead of transmission opportunities
like the 802.11 protocol. Section 7.2 shows that even in a
simple chain topology involving one-hop flows, 802.11
can cause a significant number of TCP flows to expe-
rience starvation, while OML avoids this phenomenon.
Section 7.3 shows that, as expected, the starvation prob-
lem is even worse in the case of multi-hop routing, but
OML can still handle this problem. In Section 7.4, we
evaluate the allocation accuracy of WSA in a simple sce-
nario.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 145

Figure 10: 802.11 throughput in the presence of hetero-
geneous data rate senders using OML

7.1 Heterogeneous data rates

In this experiment, we reconsider the scenario described
in Section 3.1.2 where two nodes are simultaneously
sending one flow each to the access point (unlike the rest
of this section, we conduct this experiment in infrastruc-
ture mode). One node operates at 54Mbps, and the other
node operates at rates ranging from 6 to 54Mbps. We use
the WSA algorithm to allocate the bandwidth, with each
node having the same weight. This leads to each node re-
ceiving an equal channel-access time, rather than an equal
number of transmission opportunities as in 802.11. Note
that this allocation implements the temporal-sharing pol-
icy as proposed in [34]. Figure 10 shows the throughputs
of both flows. The two flows receive throughputs approx-
imately proportional to the rates they are operating at, and
the total system throughput drops less than in the case of
802.11 when the second node is operating at 6Mbps.

7.2 Chain topology

In this experiment, we configure our testbed as a five-
hop chain, and pick two random links in this chain. Fig-
ure 11 shows the CDF of the flows’ throughputs along
these links over 50 trials. We consider four scenarios: (a)
the flows are started one at a time (b) the flows are started
at the same time (i.e., simultaneous flows) using base-
line 802.11 (without OML), (c) simultaneous flows using
OML assuming one-hop interference regions (k = 1),
and (d) simultaneous flows using OML assuming two-
hop interference regions (k = 2). When using OML each
flow is assigned a unit weight.
As expected, in scenario (a) when only one flow is ac-
tive, the flows get very good throughput. In 96% of the
cases the throughput is greater than 4Mbps. However,

OML OML OML No OML
k = 1 k = 2 Oracle

Throughput 5.7742 5.1784 5.5712 5.8654
Fairness Index 0.821 0.913 0.922 0.803

Table 1: Average system throughput (Mbps) and fairness
for two simultaneous flows

in scenario (b) when the flows are simultaneously active
without OML, in 24% of the cases, one of the two flows
is not even able to establish a TCP connection. This is
shown in Figure 11, where 12% of all flows have zero
throughput. Furthermore, about 20% of all flows receive
less than 1.5 Mbps. In contrast, when using OML with
k = 2 only about 10% of the flows have a throughput be-
low 1Mbps. The results when using OML with k = 1 are
not as good: we only eliminate 6%of the starvation cases.
On the other hand, more flows achieve a higher through-
put when k = 1: around 35% of all flows have through-
puts around 4.5 Mbps. These results illustrate the trade-
off between using one-hop and two-hop interference re-
gions. Using a two-hop interference region leads to more
conservative spatial reuse of the channel. Hence, there
are cases in which two nodes cannot transmit simultane-
ously even though they do not interfere with each other.
In contrast, using a one-hop interference region leads to
higher throughput, but at the cost of hurting the fairness.
Table 1 further illustrates the trade-off between
throughput and fairness as determined by the value of
k. The table shows the average aggregate throughput
(i.e., the sum of throughput of both flows) and the av-
erage fairness index, F , over 50 trials. In addition to the
previous experiment scenarios, we consider another one,
called “OML with Oracle”. This scenario is intended to
show the best results OML can achieve when it has com-
plete information about the interference pattern. To im-
plement this scenario, we measure the interference be-
tween any two flows in advance and pre-load this infor-
mation into each node. Recall that for N = 2, F ranges
from 0.5 (least fair) to 1.0 (most fair). Not surprisingly,
in the oracle scenario we obtain the best fairness, with-
out significantly sacrificing the throughput. OML with
k = 1 comes close to the oracle in terms of throughput,
whereas OML with k = 2 comes close in terms of fair-
ness. Finally, note that native 802.11 achieves the highest
throughput, but the lowest fairness. This is because when
one link has a better signal quality than the other, it al-
lows the better link to transmit all the time at the expense
of starving the weaker link.

7.3 Multi-hop routing

In this section, we study how OML can improve the flow
throughputs in a multi-hop routing network. For this pur-

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association146

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n
 o

f
fl

o
w

s

Throughput (Mbps)

No Interference
No OML

OML - 1 hop signaling
OML - 2 hop signaling

Figure 11: CDF of throughput of 1-hop flows in the net-
work

pose, we arrange the nodes in a simple Y-shaped topology
and initiate three TCP flows. Flows A and B originate at
nodes 1 and 2, respectively, and terminate at node 4, after
being routed via node 3. Flow C is an one-hop flow from
node 5 to node 4. The weight of each node is proportional
to the number of flows it sees: the weights of nodes 1, 2,
and 5 are one, the weight of node 3 is two, and the weight
of node 4 is three. In this experiment, we use OML with
two-hop interference regions.
First we note that when only one of the three flows is
active, flows A and B receive about 2.24 Mbps, while
flow C receives 4.55Mbps, with or without OML.
Table 2 shows the throughputs of each flow when more
than one flow is active. Without OML, flow C effectively
shuts-off the two-hop flows. In contrast, OML allocates
at least 1 Mbps to each flow, when only one of the two-
hop flows is active, and at least 0.94Mbps, when all flows
are active. The reason why the throughputs of the two-
hop flows are not higher is because the two-hop interfer-
ence assumption is violated. According to this assump-
tion, transmissions from nodes 1 or 2 should not inter-
fere with with transmissions from node 5. However, this
assumption did not hold in our experiment. Let flow D
be the one-hop flow from node 1 to 3. When flows C
and D were simultaneously active, C received 4.03Mbps
whereas D received only 0.89 Mbps. This shows that
transmissions from nodes 1 and 5 do indeed interfere.

7.4 Weighted allocation

In this experiment, we evaluate the accuracy ofWSA, and
thus its ability to provide per-node service differentiation
by setting the node weights. We consider two nodes A
and B that send a TCP flow each to a third node C. We
set the weight of node A to 1, and assign a weight rang-
ing from 1 to 4 to node B. Table 3 shows the throughput
achieved by the nodes for each combination of weights.

Active Flows Throughput (Mbps)
Flow A Flow B Flow C

A&C w/o OML 0.14 4.40
A&C with OML 1.69 2.36
B&C w/o OML 0.06 4.48
B&C with OML 1.71 2.08
A&B w/o OML 1.31 1.65
A&B with OML 1.11 1.11
A,B&C w/o OML 0.11 0.03 4.42
A,B&C with OML 0.96 0.94 1.96

Table 2: Interaction of flows in an ad-hoc topology

Weight of A 1 1 1 1
Throughput of A 2.26 1.48 1.36 0.92
Weight of B 1 2 3 4
Throughput of B 2.20 2.97 3.06 3.64

Table 3: Throughput received by senders with different
weights

As expected, the ratio of throughputs obtained by the two
nodes tracks the ratio of their weights closely.

8 Open Issues and Limitations

The current design of OML should be viewed as a first
iteration. As we gathermore experience with using OML,
we expect the OML design to evolve significantly.
Though we believe that the current design of OML
does not require any changes to handle mobility, since
OML relies on neighborhood information being propa-
gated quickly, we do expect a performance penalty as mo-
bility increases. Quantifying this overhead, and further
optimizing OML if needed, remains an open problem.
OML does not work well in the presence of interfer-
ence from native 802.11 clients. In this case, all OML
nodes will receive an aggregate bandwidth equivalent to
that of a single 802.11 node. A possible solution would
be to detect the presence of competing traffic and allow
multiple OML nodes to send data in the same time slot.
Finally, in multi-hop networks the interplay between the
flow constraints and the interference constraints makes
it difficult to precisely formalize the notion of fairness
achieved by WSA. We plan on further studying how to
define and achieve weighted fairness in a multi-hop net-
work.

9 Conclusions

In this paper, we have described the design and the im-
plementation of an overlay MAC layer (OML) solution
which addresses some of the limitations of the 802.11

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 147

MAC layer. By using both simulation and experimental
evaluation, we show that while 802.11 may cause TCP
flows to experience starvation, OML can avoid this prob-
lem. In addition, we show that OML can reduce the con-
tention in the network, and provide service differentiation
among nodes, with relatively low control overhead.
The power of the OML approach is that it allows us
to implement MAC layer functionality without modify-
ing the existing 802.11 protocol. In this respect, our ap-
proach is reminiscent of the overlay network solutions
that aim to implement network layer functionality such
as resilient routing on top of the existing IP layer. Ul-
timately, OML would enable us to experiment with new
scheduling and bandwidth management algorithms, and
evaluate their benefits to the existing applications, before
implementing these algorithms in the MAC layer.

References

[1] AiroPeek NX - Wireless Network Protocol Analyzer.
http://www.wildpackets.com/.

[2] Ethereal - Network Protocol Analyzer.
http://www.ethereal.com/.

[3] MadWifi. http://madwifi.sourceforge.net/.
[4] MIT grid project. http://www.pods.lcs.mit.edu/grid/.
[5] MIT roofnet. http://www.pdos.lcs.mit.edu/roofnet/.
[6] Netgear. http://www.netgear.com/.
[7] The Qualnet Simulator from Scalable Networks Inc.
http://www.scalable-networks.com/.

[8] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Mor-
ris. Resilient overlay networks. In SOSP, 2001.

[9] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. In SIGCOMM, 2002.

[10] L. Bao and J. Garcia-Luna-Aceves. Hybrid channel access
scheduling in ad hoc networks. In ICNP, 2002.

[11] L. Bao and J. J. Garcia-Luna-Aceves. Distributed dynamic
channel access scheduling for ad hoc networks. In Journal
of Parallel and Distributed Computing, 2002.

[12] V. Bharghavan, S. Lu, and T. Nandagopal. Fair queueing
in wireless networks: Issues and approaches. IEEE Per-
sonal Communications Magazine, 1999.

[13] S. Biswas and R. Morris. Opportunistic routing in multi-
hop wireless networks. In HOTNETS, 2003.

[14] D.-M. Chiu and R. Jain. Analysis of the increase and de-
crease algorithms for congestion avoidance in computer
networks. Comput. Netw. ISDN Syst., 17(1):1–14, 1989.

[15] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end sys-
tem multicast. In SIGMETRICS, pages 1–12, Santa Clara,
CA, 2000.

[16] I. Cidon and M. Sidi. Distributed assignment algorithms
for multihop packet radio networks. IEEE Trans. Comput.,
38(10):1353–1361, 1989.

[17] Wireless networking reference -
community wiress/rooftop systems.
http://www.practicallynetworked.com/.

[18] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. In
MOBICOM, 2003.

[19] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. In SIGCOMM, 1989.

[20] R. Draves, J. Padhye, and B. Zill. Comparison of routing
metrics for multi-hop wireless networks. In SIGCOMM,
2004.

[21] J. Elson and D. Estrin. Time synchronization for wireless
sensor networks. In PDPS Workshop on Parallel and Dis-
tributed Computing Issues in Wireless Networks and Mo-
bile Computing, pages 186–186.

[22] V. Gambiroza, B. Sadeghi, and E. Knightly. End-to-end
performance and fairness in multihop wireless backhaul
networks. In MOBICOM, 2004.

[23] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and
A. Duda. Performance anomaly of 802.11b. In INFO-
COM, San Francisco, USA, March-April 2003.

[24] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu. Impact of
interference on multi-hop wireless network performance.
In MOBICOM, 2003.

[25] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The Dy-
namic Source Routing protocol for multihop wireless ad
hoc networks. In Ad Hoc Networking, 2001.

[26] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions
on Computer Systems, 18(3):263–297, 2000.

[27] L. M. S. C. of the IEEE Computer Society. Wireless LAN
medium access control (MAC) and physical layer (PHY)
specifications. IEEE Standard 802.11, 1999.

[28] A. K. Parekh and R. G. Gallager. A generalized proces-
sor sharing approach to flow control in integrated services
networks: the single-node case. IEEE/ACM Trans. Netw.,
1(3):344–357, 1993.

[29] C. Perkins. Ad hoc On demand Distance Vector (AODV)
routing. IETF Internet Draft, 1997.

[30] L. Pond and V. Li. A distributed time-slot assignment
protocol for mobile multi-hop broadcast packet radio net-
works. In MILCOM, 1999.

[31] B. Raman and K. Chebrolu. Revisiting MAC design for
an 802.11-based mesh network. In HOTNETS, 2004.

[32] A. Rao and I. Stoica. An overlay MAC layer for 802.11
networks. Technical Report UCB//CSD-04-1317, Univer-
sity of California, Berkeley, 2004.

[33] K. Romer. Time synchronization in ad hoc networks. In
Proceedings of the 2nd ACM international symposium on
Mobile ad hoc networking & computing, pages 173–182.
ACM Press, 2001.

[34] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly.
Opportunistic media access for multirate ad hoc networks.
In MOBICOM, 2002.

[35] U. Schmid and K. Schossmaier. Interval-based clock syn-
chronization. Real-Time Systems, 12(2):173–228, 1997.

[36] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. In SIGCOMM, 2002.

[37] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In Op-
erating Systems Design and Implementation, pages 1–11,
1994.

[38] Y. Yi and S. Shakkottai. Hop-by-hop congestion control
over a wireless multi-hop network. In INFOCOM, 2004.

Notes
1NAV is maintained internally in the hardware to keep track of RTS,

CTS and reservations in the packet header.
2We use the term interference region to refer to a set of nodes that

compete with each other for access to the channel.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association148

