
An Overlay Network Providing ApplicationAware
Multimedia Services

Maarten Wijnants†‡ Bart Cornelissen†‡ Wim Lamotte† Bart De Vleeschauwer∗‡

†Hasselt University ‡Interdisciplinary institute ∗Department of Information Technology (INTEC)
Expertise Centre for Digital Media for BroadBand Technology Ghent University -IMEC

and transnationale Universiteit Limburg (IBBT) Gaston Crommenlaan 8 bus 201
Wetenschapspark 2, BE-3590 Diepenbeek B-9050 Gent, Belgium

firstname.lastname@uhasselt.be bart.devleeschauwer@intec.ugent.be

ABSTRACT

Real-time streaming of multimedia content is increasingly becom-
ing a crucial part of networked applications. A logical consequence
of this evolution is a growing demand for services that can be ap-
plied on these multimedia streams. In this paper, we present our
overlay network which provides such multimedia services. Al-
though these services are application-aware and can thus exploit
application-specific knowledge, the overlay network itself is com-
pletely generic. Consequently, multiple applications can take ad-
vantage of the overlay network, even concurrently. Furthermore,
the overlay network is highly extensible, meaning additional ser-
vices can be added to it easily. Besides describing the architecture
of the software component of our overlay network, we also dis-
cuss the implementation of two example multimedia services. The
first service mixes multiple audio streams into a single stream to
enable lightweight voice communication in a Networked Virtual
Environment. The second service applies face detection on a video
stream to generate meaningful avatars in a meeting system called
iConnect. The experimental results produced by these two services
clearly demonstrate that our overlay network is capable of provid-
ing valuable services for a wide range of networked multimedia
applications.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Network communications, Network topology;
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network monitoring; C.2.4 [Computer-Communication Net-

works]: Distributed Systems

General Terms

Design, Experimentation, Human Factors, Performance

Keywords

Real-time multimedia streaming, overlay network, proxy server,
application-aware service provision, Quality of Experience

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAAIDEA ’06 October 10, 2006, Pisa, Italy
Copyright 2006 ACM 1595935053 ...$5.00.

1. INTRODUCTION AND RELATED WORK
Many of today’s networked applications incorporate functional-

ity to stream multimedia content such as digital audio and/or video
in real-time. This functionality is mainly provided to allow distrib-
uted users to communicate in an efficient and natural manner. For
instance, many on-line computer games as well as instant messag-
ing applications support real-time voice communication between
users. However, there also exist networked applications which use
digital audio and/or video streaming for purposes other than simple
user communication. One such application is Linden Lab’s Second
Life, a 3D Networked Virtual Environment (NVE) built entirely by
its residents [16]. Besides many other features, Second Life allows
its users to stream music into the virtual world, hereby enabling
musically-minded people to share their creations with other Sec-
ond Life users. We believe this non-trivial use of audio and video
streaming will only increase in future networked applications. For
instance, we envision games with a persistent virtual world period-
ically streaming audio or video bulletins to clients to inform them
about remarkable events that have occurred in the virtual world.

However, as streaming of multimedia content becomes more pop-
ular, the demand for services that can be performed on these streams
is likely to increase proportionally. The driving factor behind this
evolution is the continuously diversifying market of end-user com-
putation devices. Handheld devices such as PDAs and smartphones
are rapidly increasing in popularity. In addition, these devices are
being equipped with ever more extensive networking capabilities
like, for instance, Wi-Fi and Bluetooth. As a result, users want to
start using networked applications on their handheld devices. How-
ever, since the hardware capabilities of these devices differ heavily
not only from each other but also from those of a standard PC, ser-
vices are needed which can adapt multimedia streams so that they
match the specific capabilities of the receiving end-user device. Be-
sides end-users, the applications themselves sometimes also want
to perform operations on multimedia streams. In an on-line com-
puter game, for instance, effects or filters could dynamically be
added to an audio stream to increase the realism and feeling of im-
mersion for gamers.

To achieve optimal results and to maximize efficiency, these ser-
vices should be implemented at some location inside the network,
in the delivery path between the sender and the receiver of the mul-
timedia stream. By choosing an in-network location, it suffices
for senders to transmit only one version or quality of a multime-
dia stream, other versions or qualities which receivers may request
will be generated by the in-network service on-the-fly. As a result,
senders never need to waste bandwidth on sending multiple ver-
sions of the same multimedia content. Receivers on the other hand
always receive the version or quality which they have requested

or that best matches the capabilities of their device, so no receiver
bandwidth is wasted either. Other possible locations to apply mul-
timedia services is at sender-side or at receiver-side, but these ap-
proaches are clearly not as flexible nor do they minimize the band-
width usage as well as is possible with in-network located services.

In [19], we introduced our overlay network (there more gener-
ally termed networking middleware) consisting of a number of in-
terconnected proxy servers and described its capabilities to intel-
ligently manage user bandwidth in networked multimedia appli-
cations. In this paper, we shift the focus away from user band-
width management and towards multimedia services. In particular,
we demonstrate that our overlay network can be used to concur-
rently provide powerful multimedia services for various types of
networked applications. This is due to the fact that our overlay
network supports services that are application-aware and can thus
exploit specific knowledge of the application they are serving. We
present the implementation and the evaluation of two such services
which are each targeted at a completely different networked appli-
cation. However, these are only example services and additional
services for other applications can be added to our overlay network
easily.

A number of other proxy-based systems that provide services
which can be performed on real-time multimedia streams have been
described in the literature. Many of these systems focus on im-
proving the end-to-end delivery or streaming of content by dynam-
ically transcoding the content inside the network before it reaches
the requesting user. Examples include TranSquid [9], Mocha [14],
Intel’s discontinued Quick Web technology [4], the AMPS frame-
work [21], the transcoding middleware providing pervasive geospa-
tial intelligence access described in [7], the context-aware decision
engine described in [8], the video transcoding gateways presented
in [6] and [1] and the adaptive QoS framework described in [15]. A
more general approach is for instance taken by the Media Services
Architecture (MSA) presented in [3]. However, our overlay net-
work distinguishes itself from the cited systems by its application
awareness. As will be discussed later on in this paper, the proxy
servers of our overlay network combine a generic base layer with
application-aware plug-ins (which in this case each implement a
particular service). This design ensures that our overlay network
can be integrated in a wide variety of networked multimedia appli-
cations and can provide valuable and efficient services in all these
different situations. Of course, the overlay network could also pro-
vide more generic services that can be exploited by groups of appli-
cations, but the focus of this paper is on application-aware services
targeted at a specific application.

The remainder of this paper is organized as follows. In section 2
we describe the general software architecture of our proxy servers.
Section 3 describes two novel plug-ins for our overlay network
which implement specific multimedia services for two completely
different networked applications. An evaluation of these two ser-
vices is provided next in section 4. Finally, we present our con-
clusions and suggest possible future research directions in section
5.

2. SOFTWARE ARCHITECTURE
Our proxy servers run on the GNU/Linux operating system. We

chose this operating system for its extensive networking support
in general and for its packet filtering and packet mangling func-
tionality in particular. This latter functionality is provided by the
Linux netfilter framework [10]. For each network protocol, netfil-
ter defines a set of hooks for which kernel modules and userspace
processes can register interest. Each hook is in fact a well-defined
point in a packet’s traversal of a particular network stack. As an

Figure 1: Netfilter IPv4 packet traversal diagram.

example, the different hooks which netfilter defines for the IPv4
network stack are shown in figure 1. This figure illustrates, for in-
stance, that an incoming IPv4 packet destined for a local process
will always first pass the prerouting hook and subsequently the in-
put hook before it is handed over to the receiving application.

Each time a packet arrives at a certain hook, netfilter checks
whether a kernel module or a userspace process has registered in-
terest for this hook and network stack. If this is the case, the packet
is transferred to this kernel module or userspace process, which
can subsequently inspect the packet and process it, if necessary.
After processing is complete, the (possibly modified) packet must
be reinserted in the network stack together with a verdict to in-
form netfilter what should happen with the packet. The most im-
portant verdicts are accept and drop, which respectively inform
netfilter that a packet should continue its traversal normally, and
that a packet should be dropped at its current location in the net-
work stack. Suppose for instance that a kernel module, which is-
sues a drop verdict for certain packets based on some classifica-
tion scheme, registers interest for the IPv4 input hook. As a result,
packets matching the rules in the classification scheme will never
be delivered to the local process for which they were originally des-
tined.

With this background information about the netfilter framework
in mind, we now move on to explain the general software architec-
ture of our proxy servers, which is illustrated in figure 2. As can be
seen in this figure, our proxy servers operate entirely in userspace.
Although there is a small speed penalty associated with transfer-
ring packets from the kernel to a userspace process, we still pre-
ferred this approach over a kernel module. After all, the phrase
“in kernelspace, a single wild pointer can wipe out your entire
file system” unfortunately still applies, making it nearly impossi-
ble to implement applications as complex as our proxy server in
kernelspace. Figure 2 also illustrates that our userspace process
consists of two major subsystems. The first subsystem is a generic
base layer which is completely application independent. The sec-
ond subsystem is a plug-in mechanism through which additional
functionality can be added to the proxy. The responsibilities of
these two subsystems are described next.

The generic base layer first of all provides basic user manage-
ment functionality. In particular, the base layer allows clients to
connect to and communicate with our proxy server. Secondly, the
base layer is responsible for receiving packets from kernelspace and
for reinjecting packets in the kernel after they have been processed
by our userspace process. As can be seen in figure 2, an incom-
ing packet is only transferred to userspace if the packet belongs to
a stream the proxy server is actually interested in. Other packets
simply flow through our proxy servers without ever leaving ker-
nelspace. To control which packets should be transferred to the
userspace process, the generic base layer exploits the functional-
ity provided by iptables, a packet selection system built on top of
the netfilter framework [10]. Finally, the generic base layer is ca-

Figure 2: Schematic overview of the software architecture of the proxy servers.

pable of gathering information about the current state of the trans-
portation network and about the relative importance of individual
network streams (from a client’s point of view). In [19], we de-
scribed how our overlay network exploits this compound knowl-
edge to intelligently manage user bandwidth in networked applica-
tions. However, since this is not the topic of this paper, we will
not elaborate on it here but instead would like to refer interested
readers to our previous work.

The main component of the plug-in subsystem is the plug-in

manager which enables and manages the installation of plug-ins

on our proxy servers. Firstly, plug-ins can register interest for cer-
tain network streams with the plug-in manager. The plug-in man-
ager stores this information and relays a description of the stream
to the generic base layer, which subsequently translates it to an
appropriate iptables command to ensure packets belonging to the
specified stream are transferred to userspace. Secondly, when a
packet is actually transferred to userspace, it is the responsibility
of the plug-in manager to hand it over to the the plug-in which has
registered interest for the stream this packet belongs to. If more
than one such plug-in is installed, the plug-in manager sequentially
passes the packet to all these plug-ins, hereby following the order
in which they have registered interest for the stream. After a plug-
in has finished processing a packet, it needs to return the (possibly
modified) packet to the plug-in manager and specify a verdict for
it. The plug-in manager subsequently only continues the traversal
of the other interested plug-ins if the previous plug-in returned an
accept verdict. Otherwise, the packet is immediately dropped. Fi-
nally, when the last plug-in in the sequence of interested plug-ins
is reached, the packet and the verdict returned by this plug-in are
reinserted into kernelspace.

To further clarify the operation of the plug-in manager, consider
the example scenario which is depicted in figure 2. As can be seen
in this figure, two separate plug-ins (i.e. the highlighted plug-ins X
and Y) have registered interest for the stream the incoming packet
belongs to. However, plug-in X on the left was the first to do so.
Consequently, the plug-in manager starts traversing the sequence
of interested plug-ins by handing the packet to plug-in X. After
processing is complete, plug-in X returns the packet together with

an accept verdict. As a result, the plug-in manager subsequently
transfers the packet to plug-in Y on the right. Since this is the last
plug-in which has registered interest, the packet and the verdict re-
turned by this plug-in are reinserted into the kernel. This example
scenario clearly demonstrates that our plug-in manager allows mul-
tiple plug-ins to collaborate on a single network stream. Of course,
collaborating plug-ins have to be carefully geared to each other. For
instance, if plug-in X had returned drop instead of accept, plug-in
Y would never receive the packet, even though it has registered
interest for it.

It is important to notice that although the plug-ins physically re-
side on the proxy servers, they are conceptually part of the applica-
tions the overlay network is serving. Consequently, in contrast to
the generic base layer, the plug-ins are application-aware and can
thus exploit application-specific knowledge and functionality. For
instance, in [20] we presented a video transcoding plug-in for our
overlay network which belongs to an NVE application. This NVE
application supports real-time video communication between users
but requires them, for reasons of scalability, to send out not just one
but three predefined qualities of the video stream captured by their
webcam [12]. The video transcoding plug-in was implemented to
relieve NVE clients from this burden. In particular, this plug-in
generates the two other video qualities required by the NVE by on-
the-fly transcoding the highest quality version of a user’s webcam
stream. As a result, scarce client upstream bandwidth is saved since
it now suffices for NVE clients to transmit only this latter version
of their video stream.

To summarize, our proxy servers consist of a generic base layer
on top of which application-aware plug-ins can be installed. As
will be demonstrated in the next section, this design enables our
overlay network to provide powerful and efficient multimedia ser-
vices for a wide range of networked applications. In other words,
the software architecture of our proxy servers eliminates the need
for deploying and managing a separate overlay network for each
distinct networked application. Once our overlay network has been
set up, providing a service for a certain application boils down to
implementing and installing a plug-in and ensuring that the overlay
network is sufficiently capacitated. Of course, if performance is of

Figure 3: Screenshot of the EDM NVE framework running on

a desktop PC.

outmost importance, deploying a dedicated overlay network might
still be preferable.

3. EXAMPLE SERVICES

3.1 Sound mixer plugin
The first novel plug-in for our overlay network provides a sound

mixing service for the NVE framework developed at the Exper-
tise Centre for Digital Media. This NVE framework divides the
virtual world into a number of regions, which each are assigned a
set of unique multicast addresses. These multicast addresses are
used to exchange different types of information and thus serve as
the communication channel for the region they are associated with.
For instance, there is a separate multicast address associated with
each region to exchange state information of objects located in this
region, while another multicast address is used to disseminate the
audio (e.g. voice) streams originating from the region. The frame-
work’s awareness manager selects the regions a client should be
aware of and only the multicast addresses associated with these re-
gions are subsequently joined, hereby limiting the amount of data
clients need to receive and process. A detailed description of the
NVE framework can be found in [12], and a screenshot is shown in
figure 3.

Although the NVE framework was originally developed for the
PC platform, it was recently adapted for use on mobile devices (i.e.
PDAs) [13]. However, due to the limited bandwidth and process-
ing power of these devices, some sacrifices had to be made during
the porting process. Probably one of the most drastic changes was
the decision to limit the number of audio streams a mobile client
can receive to one. This means that while a desktop user receives
the audio streams sent out by all clients currently residing in the
regions he is interested in, a mobile user only receives the audio
stream of the object (e.g. avatar) he has selected on his screen. This
decision was made based on the high bandwidth and processing re-
quirements associated with receiving and decoding multiple audio
streams simultaneously. Furthermore, received audio streams need
to be mixed together locally to obtain the final output signal, which
again requires processing power.

The above discussion clearly indicates that a substantial differ-
ence exists between the audio experience available to respectively
desktop and mobile users of the NVE framework. The sound mixer
plug-in was designed to bridge this gap without increasing the band-
width or processing requirements for the mobile device. A high-
level overview of the operation of this plug-in is illustrated in figure
4. As can be seen in this figure, the sound mixer plug-in maintains a
separate mixing unit for every client it serves and subscribes to the

Figure 4: The sound mixer plug-in.

correct multicast addresses to ensure it receives all necessary input
audio streams. Incoming audio streams are decoded and subse-
quently only transferred to the mixing units associated with clients
that are actually interested in this stream. As a result, a unique
audio mix is created for each client served by the plug-in. Further-
more, since the mixing units also take positional information into
account, they produce an output stream in which the contributing
audio sources are correctly localized in 3D space. The sound mixer
plug-in relies on JVOIPLIB [5] for the mixing of the audio streams
and on the Speex library [17] for compressing the mix result.

3.2 iConnect plugin
The second plug-in belongs to a meeting system called iCon-

nect. The overall goal of this project is to enable both collocated
and geographically dispersed participants to meet in an efficient
manner [2]. To achieve this goal, a computer-augmented meeting
room has been set up at our research institute containing a touch-
sensitive whiteboard. This whiteboard acts as a shared workspace

since it allows users to simultaneously interact with the data pre-
sented on it. Furthermore, the iConnect project also supports the
notion of personal workspaces by allowing participants who phys-
ically attend the meeting to bring along their personal devices and
connect them to the iConnect system through a wireless network.
Once connected, participants can easily transfer files from their per-
sonal device to the shared workspace and vice versa through an in-
tuitive drag-and-drop interaction technique. For instance, a partic-
ipant could copy a document which is currently under discussion
and thus displayed on the shared whiteboard to his personal de-
vice, alter or annotate it locally, and subsequently transfer the mod-
ified document back to the whiteboard to share his changes with
the other meeting participants.

People who are restrained from physically attending the meeting,
for instance due to excessive traveling costs, can still participate
by remotely connecting to the iConnect system through a PC. In
this case, the shared workspace is displayed on the screen of their
workstation. Remote participants have disposal of the same col-
laboration possibilities as the participants in the iConnect meeting
room. In addition, the iConnect system provides both audio and
video conferencing support to allow remote and physically attend-
ing participants to communicate in an efficient manner.

An example iConnect meeting is shown in figure 5(a). In this
meeting, an Adobe PDF document and a Microsoft Powerpoint
slideshow are simultaneously being discussed. Furthermore, this
snapshot also illustrates that each iConnect meeting participant is
represented by an avatar at the top of the shared whiteboard. While
physically attending participants are always represented by a sta-
tic image, remote participants can also be represented by a video

(a) Snapshot of the shared whiteboard during an example iConnect
meeting

(b) Comparison of the video conferencing stream of a remote par-
ticipant and his automatically generated video avatar

Figure 5: The iConnect meeting system.

avatar. In this latter case, the avatar consists of a low-resolution
and low-framerate live video stream of the participant’s face. The
fourth avatar in figure 5(a) belongs to a remote participant and is
video-based. Notice that the video avatars are always displayed on
the shared whiteboard, while the visualization of a remote partici-
pant’s video conferencing stream can be turned on and off dynam-
ically by the meeting moderator (i.e. the person standing at the
whiteboard).

The video avatars representing remote participants are not sent
out directly by these users but instead are automatically generated
by the iConnect plug-in for our overlay network. In particular, this
plug-in intercepts the video conferencing streams transmitted by
remote participants, decodes them and applies face detection on
them. The result is subsequently encoded at a much lower reso-
lution and framerate (compared to the original video stream), and
transmitted to the shared whiteboard in the iConnect meeting room.
The differences between a remote participant’s video conferencing
stream and his video avatar, both in terms of encoding parameters
and of image content, are illustrated in figure 5(b). The iConnect
plug-in exploits the algorithms and functionality provided by the
Open Computer Vision Library [11] to perform the face detection,
and uses FFMPEG’s codec library libavcodec [18] to decode in-
coming video streams and to encode the video avatars.

4. EVALUATION

4.1 Sound mixer plugin
To demonstrate the sound mixer plug-in, we performed an exper-

iment which involved three audio transmitting clients. The audio
network traffic generated by these clients is shown in the first three

Figure 6: Audio network traffic generated during the sound

mixer experiment. The horizontal axes represent the time (in

seconds), the vertical axes the bit count (in Kilobits).

graphs in figure 6. The first audio transmitting client was a con-
tinuous audio source which was shut down approximately 30 sec-
onds after the experiment had started. The two other audio streams
were generated by two verbally communicating NVE users, which
resulted in alternating bursts of voice data (see graphs 2 and 3).
The audio output of these three clients was processed by the sound
mixer plug-in and the mix result was subsequently transmitted to a
fourth client. The audio network traffic received by this latter client
is shown in the bottom graph in figure 6, which indicates that the
sound mixer plug-in successfully combined the audio output of the
three audio transmitting clients into a single stream. Notice that the
bit counts in figure 6 were measured per one-second time interval,
which is rather coarse. Consequently, narrow peaks at the sender,
caused by a burst of audio data in between the bounds of one time
interval, often resulted in smaller but wider peaks at the receiver if
the data reception crossed the time interval boundary.

The experimental results presented in the previous paragraph
demonstrate that the sound mixer plug-in is capable of improving
the audio experience provided to mobile NVE users. In particu-
lar, instead of being limited to receiving the audio stream of a sin-
gle remote client, mobile users now receive a single audio stream
which contains all audio data they are interested in. This means
that the sound mixer plug-in successfully eliminates the difference
that existed between the audio experience available to respectively
desktop and mobile users of the NVE framework. Furthermore,
no additional bandwidth or processing requirements are introduced
at client-side, since mobile users still need to receive and process
only a single audio stream. A minor disadvantage of the sound
mixer service is that it introduces a small amount of additional de-
lay since the plug-in needs to buffer incoming audio streams for a

Figure 7: Visualizing the video streams of remote participants

can consume a lot of space on the shared whiteboard.

short period of time so that they can be mixed together. This ex-
tra delay (less than 1 second) will however be negligible in most
networked applications. Also note that although the sound mixer
plug-in was described and explained from the point of view of mo-
bile users, it can just as well be exploited by desktop users of the
NVE framework.

4.2 iConnect plugin
The iConnect plug-in for our overlay network in many cases

eliminates the need for displaying the video conferencing stream of
remote participants on the shared whiteboard. This is mainly true
for situations in which only limited cooperation is required from
these participants. In such situations, visualizing their full-blown
video stream adds very little value, since the feedback provided
by the video avatars will normally suffice to guarantee meeting ef-
fectiveness. As an example, consider the use case in which the
iConnect meeting system is used to give a presentation or a lecture.
The speaker, who is standing next to the shared whiteboard, has di-
rect face-to-face contact with the other physically attending partici-
pants. The video avatars on the other hand also provide the speaker
with facial feedback from remote participants. Consequently, dis-
playing the video streams of remote participants becomes super-
fluous since the speaker can already quickly determine whether his
presentation is understood by meeting participants, either attending
or remote.

By eliminating the need for displaying the video streams of re-
mote meeting participants, the iConnect plug-in saves screen space
on the shared whiteboard. This is an important advantage, since
whiteboard screen space is a scarce resource. After all, although
the whiteboard has a large form factor, content needs to be dis-
played on it large enough so that it can be perceived clearly by all
participants in the meeting room. For instance, figure 7 illustrates
the screen space required to visualize the video streams of three
remote participants. This is already a substantial amount, which
will only increase as the number of remote participants rises. The
iConnect plug-in is capable of freeing up some of this screen space,
which can subsequently be used to display other content.

It is important to note that the service provided by the iCon-
nect plug-in could also be implemented at client-side or at server-
side. However, one of the design goals for the iConnect project
was to keep the client software as lightweight as possible in or-
der to maximize the number of devices through which users can

Table 1: Performance evaluation of the implemented services.

Average CPU Maximum CPU
utilization utilization

Sound mixer plug-in 1,5 % 4 %

iConnect plug-in 7,5 % 20 %

Both plug-ins loaded 9,5 % 22 %
simultaneously

remotely connect to the iConnect system. Although the client soft-
ware currently only runs on PCs, the iConnect research group is
investigating whether it can be ported to handheld devices. By
supporting handheld devices, the iConnect system could address
new user groups like, for instance, people on the move carrying a
PDA. However, handheld devices are limited in terms of process-
ing power, which makes it impractical to implement services such
as the one provided by our iConnect plug-in at client-side. The
iConnect server on the other hand already has a large number of
responsibilities, which results in a high server processor load. Con-
sequently, we decided an in-network location was the best position
to implement the iConnect service.

4.3 Performance evaluation
We tested the performance of the two described plug-ins by in-

stalling them on a single proxy server and measuring both the av-
erage and the maximum proxy CPU usage when performing the
experiments described in sections 4.1 and 4.2. To recapitulate,
the sound mixer experiment involved mixing together the audio
streams of three NVE clients, while during the iConnect experi-
ment the video avatars of three remote iConnect participants were
generated. Furthermore, we also registered the proxy CPU utiliza-
tion when both experiments were performed simultaneously. The
results, measured on an Intel Pentium D 3 Ghz without any ded-
icated hardware and running linux kernel 2.6.14, are summarized
in table 1. This table illustrates that when both plug-ins were ac-
tive simultaneously, the proxy CPU usage approximately equalled
the sum of the CPU usages when the two plug-ins were active sep-
arately. This indicates that the simultaneous loading of plug-ins
introduces nearly no overhead.

5. CONCLUSIONS AND FUTURE WORK
We have presented our overlay network consisting of intercon-

nected proxy servers. Each proxy server combines a generic base
layer with a plug-in mechanism which enables the installation of
additional functionality. However, besides ensuring extensibility,
this plug-in mechanism also provides our overlay network with ap-
plication awareness since plug-ins are application-aware and can
thus exploit application-specific knowledge and functionality. This
software architecture enables our overlay network to provide not
only generic services but also high-performance services targeted
at specific networked multimedia applications. As a result, the need
for deploying and managing a separate overlay network for each
distinct networked application is eliminated. This is confirmed by
the experimental results produced by two example plug-ins that
were also described in this paper. In particular, these plug-ins each
provide a specific multimedia service for a completely different net-
worked application.

It is important to note that our overlay network is a work in
progress. As a result, we intend to improve it in several ways in the
near future. For instance, we plan to implement an overlay rout-
ing plug-in which would enable our proxy servers to route network

packets around congested or broken network links. This plug-in
could, for instance, be added at the end of the list of loaded proxy
plug-ins and could subsequently register interest for every network
stream that passes through the proxy server. As a result, the ser-
vices provided by the other plug-ins would become less sensitive
to network failure. Furthermore, we are going to continue integrat-
ing our work into the iConnect system to be able to perform some
more extensive experiments.

6. ACKNOWLEDGMENTS
We wish to thank the members of both the NVE and the iConnect
research group at the Expertise Centre for Digital Media for their
help and support.

7. REFERENCES

[1] P. Aghera, A. Dixit, R. Oliveira, and V. Samanta. Wireless
Middleware: Dynamic Video Transcoding. Project Report
CS211, Computer Science Department, UCLA, 2003.

[2] M. Cardinaels, G. Vanderhulst, M. Wijnants, C. Raymaekers,
K. Luyten, and K. Coninx. Seamless Interaction between
Multiple Devices and Meeting Rooms. In Proceedings of the

CHI’06 Workshop on Information Visualization and

Interaction Techniques for Collaboration across Multiple

Displays (IVITCMD’06), Montreal, Canada, April 2006.

[3] M. Harville, M. Covell, and S. Wee. An Architecture for
Componentized, Network-Based Media Services. In
Proceedings of the IEEE International Conference on

Multimedia & Expo (ICME’03), pages 333–336, Baltimore,
Maryland, July 2003.

[4] Intel News Release: New Intel Technology Speeds Delivery
of Web Pages. http://www.intel.com/
pressroom/archive/releases/IN092597.HTM.

[5] JVOIPLIB Homepage. http://research.edm.
uhasselt.be/jori/jvoiplib/.

[6] Z. Lei and N. Georganas. Video Transcoding Gateway for
Wireless Video Access. In Proceedings of the IEEE

Canadian Conference on Electrical and Computing

Engineering (CCECE’03), Montreal, May 2003.

[7] C.-Y. Lin, A. Natsev, B. Tseng, M. Hill, J. Smith, and C.-S.
Li. Content Transcoding Middleware for Pervasive
Geospatial Intelligence Access. In Proceedings of the IEEE

International Conference on Multimedia & Expo (ICME’04),
Taipei, Taiwan, June 2004.

[8] W. Y. Lum and F. Lau. A Context-Aware Decision Engine
for Content Adaptation. IEEE Pervasive Computing,
1(3):41–49, 2002.

[9] A. Maheshwari, A. Sharma, K. Ramamritham, and
P. Shenoy. TranSquid: Transcoding and Caching Proxy for
Heterogenous E-Commerce Environments. In Proceedings of

the 12th IEEE International Workshop on Research Issues in

Data Engineering (RIDE’02), pages 50–59, San Jose,
California, February 2002.

[10] Netfilter/IPTables Project Homepage.
http://www.netfilter.org/.

[11] Open Computer Vision Library Homepage. http://
sourceforge.net/projects/opencvlibrary/.

[12] P. Quax, C. Flerackers, T. Jehaes, and W. Lamotte. Scalable
Transmission of Avatar Video Streams in Virtual
Environments. In Proceedings of the IEEE International

Conference on Multimedia & Expo (ICME’04), Taipei,
Taiwan, June 2004.

[13] P. Quax, T. Jehaes, M. Wijnants, and W. Lamotte. Mobile
Adaptations for a Multi-User Framework Supporting
Video-Based Avatars. In Proceedings of the 9th International

Conference on Internet & Multimedia Systems &

Applications (IMSA’05), pages 412–417, Hawaii, USA,
August 2005.

[14] R. Rejaie and J. Kangasharju. Mocha: A Quality Adaptive
Multimedia Proxy Cache for Internet Streaming. In
Proceedings of the 11th International Workshop on Network

and Operating System Support for Digital Audio and Video

(NOSSDAV’01, pages 3–10, Port Jefferson, NY, USA, June
2001.

[15] S. Rho, E. Hwang, and M. Kim. An Implementation of QoS
Adaptive Multimedia Content Delivery. In Proceedings of

the 9th International Conference on Internet & Multimedia

Systems & Applications (IMSA’05), pages 316–321, Hawaii,
USA, August 2005.

[16] Second Life Homepage. http://secondlife.com/.

[17] Speex Homepage. http://www.speex.org/.

[18] The FFMPEG Homepage.
http://ffmpeg.sourceforge.net/.

[19] M. Wijnants and W. Lamotte. Audio and Video
Communication in Multiplayer Games through Generic
Networking Middleware. In Proceedings of the 7th

International Conference on Computer Games

(CGAMES’05), pages 52–58, Angoulême, France,
November 2005.

[20] M. Wijnants, P. Monsieurs, P. Quax, and W. Lamotte.
Exploiting Proxy-Based Transcoding to Increase the User
Quality of Experience in Networked Applications. In
Proceedings of the 1st International Workshop on Advanced

Architectures and Algorithms for Internet DElivery and

Applications (AAA-IDEA’05), Orlando, Florida, June 2005.

[21] X. Zhang, M. Bradshaw, Y. Guo, B. Wang, J. Kurose,
P. Shenoy, and D. Towsley. AMPS: A Flexible, Scalable
Proxy Testbed for Implementing Streaming Services. In
Proceedings of the 14th International Workshop on Network

and Operating System Support for Digital Audio and Video

(NOSSDAV’04), pages 116–121, Kinsale, Ireland, June 2004.

