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Abstract—In this paper, a virtual space vector (VSV)-based
overmodulation algorithm is presented for three-level neutral-
point-clamped (3L-NPC) converters in high-speed aerospace
motor drives. With the proposed inscribed polygonal-boundary
compression technique, the output voltage capability is enhanced
under a lower crossover angle and compression coefficient. As
a result, it brings an opportunity for the operation of the
studied aircraft electric starter/generator (ESG) systems easily
extending from the linear modulation range into the overmodu-
lation region. Furthermore, an active capacitor voltage balancing
control method is investigated to recover neutral-point (NP)
potential imbalance in the case of high modulation index and
low power factor operating conditions. To simplify the digital
implementation of the algorithm, a fast calculation approach
is adopted in this work. The modulation performance of the
proposed strategy is verified by both simulation and experimental
results with a 45 kW, 32 krpm ESG prototype system.

Index Terms—High-speed motor drives, more-electric-aircraft
(MEA), neutral-point voltage, overmodulation, three-level.

I. INTRODUCTION

THE concept of more-electric-aircraft (MEA) is attracting

more and more attentions in the aerospace industry due to

higher fuel efficiency, better environmental impact, suppressed

audible noise and lower maintenance cost [1]-[3]. This cutting-

edge technology aims at replacing pneumatic, hydraulic and

mechanical power-driven systems by electrical counterparts

in future aircraft [4]-[6]. An essential development for the

MEA is the electric starter/generator (ESG) system. It can

deal with several disadvantages that are common for state

of the art starter/generator (S/G) systems [7]. Nowadays, the

active rectification technology [8] opens opportunities for the

integrated aircraft ESG systems which employ new machine

types that are free from existing limitations and allow for

the novel design of high-performance S/G systems in the

MEA. The key component of the ESG system is a high-

speed machine and a bidirectional converter, as shown in
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Fig. 1. ESG system of the more-electric-aircraft.

Fig.1. A permanent magnet synchronous machine (PMSM) is

chosen since high torque-to-current ratio, high power density

and high robustness can be achieved. Despite the fact that

the efficiency of the machine can sometimes be improved

by increasing pole number, the low carrier-pulse ratio issue

becomes harsh, particularly for the converter-fed high-speed

motor drives [9]. For this reason, a 6-pole 36-slot surface-

mounted machine is chosen as the optimal candidate that

also has the lowest eddy-current losses [8]. Compared with

a typical two-level converter, the three-level neutral-point-

clamped (3L-NPC) topology, as shown in Fig.2, is selected

due to the utilization of lower blocking voltage switches, better

output harmonic performance, and reduced EMI emissions.

In the ESG system, the PMSM is mechanically coupled

to an engine shaft via a gearbox and electrically connected

with a 3L-NPC converter which interfaces the S/G system to

the onboard electric power system. In the startup process, the

converter serves as an inverter that drives the PMSM to crank

and accelerate engine shaft. Once the engine is up to a self-

sustained speed, the engine ignition activates. After that, the

ESG system goes into standby mode. When the PMSM shaft

speed approaches 20 krpm, the generation mode starts. In this

mode, the engine drives the machine to generate electrical

power, and the converter works as a rectifier to convert the

variable frequency AC into DC that supplies onboard loads.

Due to the high-speed operation of the machine, the con-

verter uses deep flux-weakening control to ensure that the

back electromotive force (EMF) is within converter limits.

However, not only large flux-weakening currents cause more

machine copper losses but also the output electromagnetic

torque capability in the constant power region is weakened

as the speed of PMSM increases, and is constrained by stator

voltage. In addition, the 3L-NPC topology has an inherent NP

potential deviation because of the split DC-link capacitor bank,

which results in extra over-stress across switching devices and

output distortion, particularly for the ESG system operating in

stringent conditions, i.e., high modulation index and low power
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Fig. 2. The structure of 3L-NPC power converter-fed PMSM drives.

factor. Consequently, these significant challenges are required

to be settled for high-performance three-level converter-fed

high-speed aerospace motor drives in MEA applications.

In recent years, numerous advanced pulse-width-modulation

(PWM) strategies have been studied to tackle the unbalanced

capacitor voltage problem in 3L-NPC converters [10]-[12].

Besides, the model predictive control (MPC)-based NP volt-

age balancing methods [13], [14] are incorporated in the

space-vector-PWM (SVM) modulator to obtain exceptional

dynamic performance of systems. Compared with the aforesaid

approaches, the nearest-three virtual space vector (NTV2)

modulation concept presented in [15] is more attractive as it

achieves inherent NP voltage balance for all loads. Although

the advantage is at the expense of additional switching losses,

more degrees of freedom by this technique can bring other

merits, such as common-mode voltage (CMV) reduction [16].

To boost the DC-link voltage utilization, a number of over-

modulation algorithms have been developed by researchers

for two-level [17]-[20], flying capacitor [21], [22], cascaded

[23], [24] and diode-clamped [25]-[32] multilevel inverters.

The existing literature about the overmodulation strategy for

the NPC topology is discussed in the following. In [25],

the authors propose an overmodulation method by calculating

three-phase modulation waves, which is beneficial for simple

implementation in digital controllers. With the help of the

neural-network, a classification SVM technique [26] in over-

modulation region has been studied for 3L-NPC converters,

which ensures a smooth linear transition and lower complexity.

It is noted that the authors employ the nearest-three space

vector (NTV) scheme and predefine a series of switching

sequences to maintain two capacitor voltages. For the high-

power applications with a low pulse-ratio, a synchronized

SVM strategy [27] is proposed to operate induction motor

drives in the overmodulation region. In order to avoid trigono-

metric computations, a duty cycle-based overmodulation strat-

egy is presented in [28], together with a dedicated NP voltage

balancing control method. In [29], a timing-correction based

algorithm is investigated to gain the output voltage under

overmodulation conditions. Also, the approach is implemented

in a field-programmable-gate-array (FPGA)-based real-time

control platform to attain the minimum computational re-

sources. With respect to low power factor loads, however,

the aforementioned methods pose a challenge for capacitor

voltage balance, as well as elimination of low-frequency NP

potential oscillation. To address these deficiencies, a hybrid

SVM strategy is introduced in [30] to operate a 3L-NPC

inverter in the overmodulation region. This approach abandons

medium vectors to mitigate voltage fluctuation in the NP,

but harmonics performance of phase current may suffer from

non-nearest-three-vectors in a higher output voltage region.

In [31], a carrier-based PWM (CBPWM) scheme for 3L-

NPC inverter-fed induction motor drive systems with dynamic

loads has been studied to extend the operating point into the

overmodulation region. Besides, the technique is capable of

keeping two capacitor voltage in a balanced state when NP

potential deviation occurs. It is worth noting that calculating

an appropriate zero-sequence voltage components is required.

The work reported in [32] discusses a novel overmodulation

scheme that achieves the balanced capacitor voltages and

alleviated low-frequency NP voltage fluctuation over the entire

range of modulation indices and power factor angles, even for

n-level NPC topologies. While the performance is desirable by

applying VSVs, maintaining capacitor voltage balanced is not

discussed when NP voltage shifts. Additionally, the presented

hexagonal compression limit may impair overmodulation ca-

pability to some extent.

In this paper, a new variant of the VSV-based PWM algo-

rithm is proposed for the operation of aircraft ESG systems

extending into the overmodulation region. Compared with the

prior method [32], the presented trajectory of the reference

voltage vector contributes to a better overmodulation capability

for converter-fed high-speed aerospace motor drives. With

the introduced NP potential balancing control strategy, two

capacitor voltages are effectively kept at a balanced state

if NP voltage drifts away. Notably, the technique is easily

implemented with a fast calculation approach, which aims to

reduce the computational complexity for the digital controller.

The rest of this paper is organized as follows. The principles

of the ESG system are briefly introduced in Section II. The

proposed capacitor voltage balancing control-based overmod-

ulation algorithm is studied in Section III. Simulation and

experimental results are presented in Section IV to evaluate

the modulation performance. Finally, the main conclusions of

this work are summarized in Section V.

II. PRINCIPLES OF ESG SYSTEM

A. PMSM Model and Operating Constrains

The PMSM mathematical model equations in the d-q coor-

dinates are expressed as follows:

Tem =
3

2
np · [ϕf · iq + (Ld − Lq) · id · iq] (1)

Vd = R · id + Ld

did
dt

− ωe · Lq · iq (2)

Vq = R · iq + Lq

diq
dt

+ ωe · Ld · id + ωe · ϕf (3)

where Tem represents the electromagnetic torque, np refers to

the number of pole pairs, ϕf is the permanent magnet flux

linkage, Vd, Vq and id, iq indicate the direct and quadrature

components of motor voltage and current, respectively, Ld and

Lq are the dq-axis inductances, ωe denotes electrical angular

frequency and R is the stator winding resistance.

For the applied surface-mounted PMSM in the ESG system,

Ld equals Lq . Hence, the electromagnetic torque of machine

is only provided by permanent magnet torque, which is the
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Fig. 3. Control blocks of the developed ESG system.

TABLE I
SWITCHING STATES AND OUTPUT VOLTAGES OF 3L-NPC CONVERTERS

Switching

States

Gating Signals

(Sx1,Sx2)

Output

Voltages

[P] (1, 1) Vdc/2

[O] (0, 1) 0

[N] (0, 0) −Vdc/2

first term in (1). Since the maximum machine stator voltage,

indicated by Vlim, is determined by DC-link voltage and PWM

strategy, the corresponding limitation can be written as:

(id +
ϕf

Ld

)2 + i2q = (
Vlim

ωeLq

)2 (4)

Considering the capacity of designed machine/converter, the

maximum current value, manifested by Imax, should fulfill:

i2d + i2q ≤ I2max (5)

The solution of (4) and (5) is an overlapped area of voltage

and current limit circle, which therefore restrict the allowable

operating points of the ESG system.

B. Control Design of ESG System

The whole system control block includes flux-weakening,

machine speed, current loop and droop control, as illustrated

in Fig.3. Speed control is activated in the startup process.

DC-link current is manipulated by droop characteristics in

the generation mode. The vector control technique is used

for machine decoupling purpose, which allows controlling

flux and torque independently. Therefore, machine torque

represented as active power is controlled by q-axis current. As

the maximum phase voltage is limited by a definite DC-link

voltage supply of 270VDC, a large negative current needs to

be injected into d-axis during the high-speed operation, which

results in a lower power factor angle.

C. Three-Level NPC Converter, SVM Strategies and NP Volt-

age Imbalance Issue

As shown in Fig.2, each phase of the converter consists of

four semiconductor devices (V Tx1∼V Tx4) and two clamping

diodes (DZx1 and DZx2), where x∈{A,B,C}. Two equal

capacitors (C1 and C2) are series-connected to form the DC-

link. V Tx1 is complimentarily switched with V Tx3. V Tx2 and

V Tx4 follow the same manner. The switching state [P] means

gating signal (Sx1,Sx2) is (1,1), which represents output volt-

age of Vdc/2. The switching state [N] manifests gating signal

TABLE II
THE MAGNITUDE OF SPACE VECTORS

Space Vectors Magnitude

Zero Vector 0

Small Vector Vdc/3

Medium Vector
√
3Vdc/3

Large Vector 2Vdc/3

1

2
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4
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Fig. 4. The space vector diagram of: (a) NTV scheme. (b) NTV2 scheme.

(Sx1,Sx2) is (0,0), which denotes output voltage of −Vdc/2,

where Vdc refers to the full DC-link voltage. Otherwise, gating

signal (Sx1,Sx2) is chosen as (0,1), the output voltage is

zero and switching state is expressed as [O]. The switching

principle of the 3L-NPC converter is detailed in Table I.

With regard to the magnitude of space vectors listed in

Table II, 27 switching states generated by the converter can be

grouped into four categories: zero, small, medium and large

vectors, wherein 12 are small ones while the number of large

and medium ones are both 6, and the rest are zero vectors.

It is assumed that the reference voltage vector is located in

the subsector 3 of Sector-I. The NTV scheme uses V1, V3 and

V4 to synthesize Vref, as shown in Fig.4(a). According to the

volts-second balance rule, (6) can be obtained:
{

Vref = V1 · d1 + V3 · d2 + V4 · d3
d1 + d2 + d3 = 1

(6)

where d1, d2 and d3 indicate the duty cycle of V1, V3 and V4,

respectively.

And then, the solution of above equations can be yielded:










d1 = 2[1−m · sin(π/3 + θ)]

d2 = 2m · sin(π/3− θ)

d3 = 2m · sin(π/3− θ)− 1

(7)

where θ represents reference voltage vector rotating angle, m

refers to the modulation index defined by:

m =
|Vref|

Vdc/
√
3

(8)

Here, the four-state synthesis approach, i.e., reference volt-

age vector is composed of four switching states from the

selected NTVs, is adopted to discuss the NP voltage imbalance

issue. For example, if Vref falls into subsector 3 of Sector-I,

the time-averaged NP current is given by:

INP = σ · donn · ia + dpon · ib + (1− σ) · dpoo · (−ia) (9)

where σ∈[0, 1] denotes a distribution factor of redundant small

vector pairs.
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Thus, the capacitor voltage deviation for each switching

period can be calculated as:

∆Vdc =
1

C

∫ t=Ts

t=0

INP · dt (10)

where C and Ts represent the DC-link capacitance and a

switching period, respectively.

By regulating σ in (9), NP currents produced by small

vectors can be used to compensate for the accumulated NP

potential rendered by medium vectors. However, it should be

pointed out that the strength of capacitor voltage balancing

becomes weak when the modulation index arises to unity and

power factor angle towards ±90◦ [12].

In contrast, the NTV2 scheme employs a series of VSVs that

is modified by basic space vectors with a specific proportion.

The definition of zero and large vectors, denoted as V0, VL1

and VL2, are the same as the NTV scheme, whereas VS1, VS2

and VM1 are virtual small and medium vectors defined by:










VS1 = (V[POO] + V[ONN])/2

VS2 = (V[PPO] + V[OON])/2

VM1 = (V[ONN] + V[PON] + V[PPO])/3

(11)

When Vref falls into subsector 4 of Sector-I, as shown in

Fig.4(b), the corresponding duty cycle is calculated as:










d1 = 3[1−m · sin(π/3 + θ)]

d2 =
√
3m · cos θ − 1

d3 =
√
3m · sin(π/6 + θ)− 1

(12)

As the polarity of NP currents associated with redundant

small vector pairs are opposite and the sum of balanced three-

phase currents is zero, VSVs have no impact on NP potential

deviation. Therefore, the NTV2 scheme achieves two balanced

capacitor voltages for all load conditions.

III. PROPOSED VSV-BASED OVERMODULATION

ALGORITHM

In accordance with the modulation index defined by (8), the

operating regions of a converter can be classified into three

parts: linear modulation (LM), overmodulation mode-I (OM-

I), and overmodulation mode-II (OM-II).

In the LM region, the reference voltage vector traces a cir-

cular trajectory inside the hexagon. Accordingly, modulation

index (0 ≤ m ≤ 1) arises with increasing magnitude of output

voltage until the trajectory is inscribed in the hexagon side.
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TABLE III
DUTY CYCLE OF VSVS FOR SUBSECTOR 1-5 OF SECTOR-I

Subsector d1 d2 d3

1 2g 2h 1−2(g+h)

2 2(1−g−2h) 2(1−h−2g) 3[2(g+h)−1]

3 2(1−2h−g) 2g+h−1 3h

4 2h+g−1 2g+h−1 3(1−g−h)

5 2(1−2g−h) 2h+g−1 3g

Within linear range, the duty cycle for each space vector can

be calculated by (6). The OM-I denotes the radius of desired

reference voltage vector is between the inscribed circle and

circumscribed circle of the hexagon, which indicates a higher

achievable modulation index (1 < m ≤ 1.05). In this mode,

the tip of modified reference voltage vector transits from a

circular trajectory and moves along the hexagon side when it

exceeds the boundary of hexagon. Thus, a crossover angle (θc)

that keeps the trajectory inside half of the sextant needs to be

controlled for obtaining adequate modulation depth, as shown

in Fig.5. To further increase modulation index, the reference

voltage vector is fixed at the vertex for a period of time, and

then jumps to the straight line of the hexagon by a holding

angle (θh). When θh equals 30◦, the discrete six-step mode

operates, which constrains mmax of OM-II at 1.1 [17].

Since the output variables of a converter steeply deteriorate

in the OM-II [18], [20], the acoustic noise and torque ripple

issues are much severe, which is not suitable for the applica-

tions of high-speed aerospace motor drives. As a result, the

scope of this study primarily focuses on the operation of OM-

I, which provides a chance to achieve higher DC-link voltage

utilization, enhance output torque capability, and reduce large-

required flux-weakening current for the aircraft ESG system.

For the purpose of simplifying PWM calculation process, the

proposed VSV-based overmodulation algorithm is carried out

in a transformed reference frame. The detailed descriptions of

each subsection are given in the following.

A. The Fast Calculation Approach

With (13), the traditional orthogonal plane can be shifted

into a sextant one for simplifying the duty cycle expression

using trigonometric functions.
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[

Vg

Vh

]

=

[

1 −1/
√
3

0 2/
√
3

]

[

Vα

Vβ

]

(13)

By projecting (6) into this frame, Vg and Vh are yielded as:
{

Vg = Xgd1 + Ygd2 + Zgd3

Vh = Xhd1 + Yhd2 + Zhd3
(14)

where (Vg,Vh), (Xg,Xh), (Yg,Yh) and (Zg,Zh) are the coordi-

nates of Vref and three VSVs in the g-h plane, respectively.

In addition, it is notable that all VSVs and Vref are normal-

ized with respect to the magnitude of large vector (2Vdc/3).

Hence, (Vg,Vh) can be conveniently expressed as (g,h) in the

following derivation. Overall, the duty cycle of each VSV in

all subsectors of the first sector is detailed in Table III, where

d1∼d3 are displayed in Fig.4(b).

B. The Inscribed Polygonal-Boundary Compression Technique

As mentioned above, before tracking circular trajectory in

linear range again, the reference voltage vector command is

programmed to coincide with the hexagon side for the purpose

of a higher fundamental component in output voltage. As seen

from Fig.5, with the geometric relationships of VSV-based

SVM, the following equations are given:


















|Vref|p.u
sin 120◦

=
g

sin(60◦ − θ)
=

h

sin θ

1

sin(120◦ − θ)
=

|Vref|p.u
sin 60◦

(15)

HBC

IPBC

Fig. 9. The 3D plot of m(θc, λ) with the HBC and IPBC technique.
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To approximate the red straight-line in Fig.5, the duty

cycle of each VSV can be easily calculated by Table III and

(15). As shown in the Appendix, however, the dwell time

of virtual medium vector (d3Ts) constantly equals zero at

that time. It means that only large vectors are used, which

therefore violates the three-level operation of the converter.

This phenomenon not only lowers the efficiency of the ESG

system but also incurs a steady-state capacitor voltage error

if NP potential imbalance initially exists. To address the

demerit, the hexagon side was scaled down by a compression

coefficient λ [32]. Thus, it makes full use of virtual medium

vector and takes its dwell time to 3(1−λ), as derived in the

Appendix. Fig.6 shows the space vector diagram of polygonal-

boundary limit, in which the red straight-line denotes the

prior hexagonal-boundary compression (HBC) limit [32] that

is formed by A(λHBC,0) and C(0,λHBC) in the first sextant.

In order to fully utilize the margin of the hexagon, not only

the tip of Vref passes through A
′

(λIPBC,0) and C
′

(0,λIPBC), but

also the middle point of hexagon side is involved, as shown in

Fig.6, which is an inscribed polygonal-boundary compression

(IPBC) limit represented by a blue dodecagon and forms the

basis of the proposed solution. For example, B(0.5,0.5) is a

turning point for Sector-I. It is worth noting that both two

boundaries gradually coincide with the hexagon side when

the compression coefficient converges to 1, and output voltage

eventually reaches the upper limit of OM-I.

For a given λ, the presented trajectory of normalized |Vref|
in a quarter cycle is given by:

|Vref|(θ) =



























σ

sin[θ + arcsinσ]
0 ≤ θ < 30◦

σ

sin[60◦ − θ + arcsinσ]
30◦ ≤ θ < 60◦

σ

sin[θ − 60◦ + arcsinσ]
60◦ ≤ θ < 90◦

(16)
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subsector 4 of Sector-I.

where σ=

√
3/4 × λ

√

λ2 − 3/2λ+ 3/4
and θ=ωt (ω is the angular fun-

damental frequency).

Given that the selected compression coefficient is 0.9,

the αβ-axis components of the proposed technique and its

counterpart under different θc are shown in Fig.7, in which red

and blue waveforms refer to Vα and Vβ generated by the HBC

and IPBC scheme. As shown, the proposed approach makes

these two components more sinusoidal. Hence, it would be

expected to attain less distortion in output voltage and current.

The introduced track of Vref with its output phase voltage

in β-axis is shown in Fig.8. The amplitude of its fundamental

component can be thus calculated by Fourier series expansion:

F (θ) =
π

4

∫

90
◦

0◦

|Vref|(θ) · sin θ · dθ (17)

With (17), the desired modulation indices with different

compression coefficients and crossover angles can be attained

and described by Fig.9 and Fig.10. As shown, the DC-link

voltage utilization of the IPBC scheme is higher than that of

the HBC scheme under the same conditions. In other words,

λ and θc of the proposed technique are allowed to be set at a

smaller value to achieve the same overmodulation capability

as the prior method. Besides, it can be seen that mmax of the

proposed approach is the same as that of the counterpart.

C. NP Voltage Balancing Control

Although the applied VSVs can maintain NP voltage nat-

urally balanced irrespective of modulation index and power

factor angle, the voltage balance between two capacitors

cannot be facilitated by itself if the initial NP potential imbal-

ance exists under overmodulation conditions. Therefore, active

capacitor voltage balancing control must be involved to handle

the divergence. When extra electric charges are accumulated

in the last control period, the capacitor voltage shifts. With

(10), the required NP electric charge for the convergence of

capacitor voltage within a sampling time can be expressed as:

0 = C ·∆Vdc +∆Q (18)

where ∆Q is defined as the compensated charge.

To meet the above requirement, a straightforward solution is

to manipulate the dwell time of space vectors that can provide

NP current with appropriate polarity. Moreover, it is known

that when the converter runs for rectifying, NP potential tends

to arise up with more participation of N-type small vectors and

vice versa. Hence, according to the operational mode of the

ESG system and DC-bias in the NP, the dwell time of these

IPBC

HBC

0 15 ° 30 ° 45 ° 60 °
Degree0

0.1

0.2

0.3

0.4

D

(a)

IPBC+

IPBC-

HBC+

HBC-

(b)

Fig. 12. The comparison of NP voltage balancing capability: (a) Active duty
cycle of VSVs. (b) ∆Q as a function of power factor φ and ωt.

vectors for composing VSVs can be regulated by an allocation

coefficient k, as given by (19), where Vdc1 and Vdc2 indicate

the upper and lower-side capacitor voltage, respectively.

k =
Vdc1

Vdc1 + Vdc2

∈ [0, 1] (19)

When Vref falls into subsector 4 of Sector-I, the modi-

fied switching intervals under overmodulation conditions are

shown in Fig.11, in which (g,h) is the real-time coordinate of

the blue line in Fig.6. To evaluate the ability of the introduced

NP voltage balancing control method, the fundamental com-

ponent of output voltage should be set at the same value. For

example, the compression coefficient of HBC and IPBC limit

are 0.98 and 0.95, respectively, and the crossover angle is set

to be 12.5◦. By doing so, the desired modulation indices are

both at 1.01, and the reference voltage vector is synthesized

in subsectors 3-5. Here, Sector-I is chosen as a representative

example to investigate. The dwell time of active VSVs and

the compensated charge ∆Q based on (10) and (18) are

illustrated in Fig.12(a) and Fig.12(b), respectively, in which

‘+’ and ‘−’ represent the maximum and minimum value

by corresponding approaches. As can be seen, although the

compensation capability of the presented IPBC technique is a

bit weak as compared to that of the prior method, it can still

resolve the NP voltage imbalance issue for all loads.

Noteworthy, the output line-to-line voltage might be dis-

torted by the modified duty cycles of small vectors to some

extent. Nevertheless, it facilitates a trade-off between capacitor

voltage balance and short-term output harmonic performance.

In addition, the distortion caused by the onsite closed-loop

control will be quickly dismissed when the NP potential is

maintained at a balanced state again.

IV. PERFORMANCE ANALYSIS

In this section, the performance of the proposed over-

modulation algorithm is validated by simulation and exper-

imentation. The 3L-NPC converter-fed PMSM drive systems

are simulated in the Simulink/PLECS environment. The ESG

system initially runs in the startup process. The flux-weakening

control is triggered at 0.5s. The power generating mode starts

by connecting a 10 kW resistive load to the DC-link at 1s.

The presented approach is activated at 1.1s. The experimental

validation is tested on a 45 kW, 32 krpm laboratory-built ESG

prototype system, as shown in Fig.13. A 150 kW prime mover

that emulates aircraft engine shaft and an oil-cooled high-

speed machine are located in an isolated room for the safety

viewpoint. The controller platform uses a TMS320C6713 chip

and an Actel FPGA-ProAsic3 A3P400 kit. The torque of the
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Fig. 14. (a) Simulated dq-axis current of the ESG system under the proposed
technique. (b) Experimental results of the dq-axis currents.

PMSM is measured by ET1303 Torquemeter. dq-axis currents

are displayed by the Graphic User Interface (GUI) software.

AC-side parameters are monitored by PPA5530 power ana-

lyzer. Since the direction of phase current changes rapidly in

light-load conditions, it weakens NP voltage balance in the

OM-I. Thus, the experimental verifications mainly focus on

the motor drives operating in the overmodulation region during

the generation mode, particularly in a light-load condition,

whereas the results in the starter mode are not presented as it

accounts for a short time compared with the whole operation

time. The system parameters are detailed in Table IV.

A. Improvement of DC-link Voltage Utilization

Without loss of generality, θc of the proposed strategy is

set at 12.5◦ and λ is chosen as 0.95. The simulation results of

dq-axis currents illustrated in Fig.14(a) describe the required

torque and flux-weakening currents for the motor drives in

entire speed range operation. As shown, id is significantly

reduced after 1.1s. It indicates that the IPBC scheme offers

a higher DC-link voltage utilization, thereby extending the
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Fig. 15. (a) Operating trajectory of the ESG system. (b) Output torque
capability curves of the 3L-NPC converter-fed PMSM drives.

operation of the ESG system into the overmodulation region,

while the ripple in iq is unavoidably increased, which trades

an enlarged converter output voltage range against output

harmonics. The experimental comparison with the same θc
is performed at a machine speed of 20 krpm, while in order

to validate the DC-link voltage utilization improvement by

the IPBC scheme and the correctness of m=f (θc, λ) shown in

Fig.10, the λ of the prior scheme and the presented one refer to

0.97 and 0.95, respectively. Besides, the test can demonstrate

that a more reduced flux-weakening current is achieved with

a lower compression factor for the IPBC scheme owing to a

higher output modulation index. As evident in the results from

Fig.14(b), both methods can lower id, whereas the provided

algorithm, contributing to further deepen 1.5% of modulation

depth, brings this value from −115A to −107.5A, as opposed

to id of −110A with the HBC scheme at the same operating

conditions. Moreover, it can be observed that the ripple of iq
by the IPBC scheme is smaller than the HBC counterpart.

B. The Operation of High-Speed Machine

The whole operating trajectory and relevant limits given by

(4) and (5) are shown in Fig.15(a). In the startup process,

denoted as the constant torque region, the maximum torque per

amp (MTPA) line is followed by point A. The flux-weakening

control activates at point B in the constant power region. Then,

the trajectory tracks the voltage limits based on the PMSM
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Fig. 16. (a) Steady-state performance. (b) Transient-state performance.

speed and current limits set by the converter. The ESG system

is in standby mode after a machine speed of 10 krpm, which is

denoted by point C. iq maintains at zero and operation status

is at point D until the generation mode starts. At that time,

the S/G systems run in the power generating region and the

modulation index is ramping up to 0.95. As the flux-weakening

current is dropped by a boosted DC-link voltage utilization,

the operating point subsequently moves from point E to F.

To be consistent with the experimentation presented in

subsection-A, the maximum torque by the HBC (λ=0.97) and

the IPBC (λ=0.95) scheme is measured at different machine

speeds, which is helpful to demonstrate the output torque

capability improvement. It can be seen from Fig.15(b) that

the proposed strategy gains Tem=14.3Nm at a shaft speed

of 20 krpm, which means the output torque capability is

roughly increased by 3.6% as compared to the HBC limit. In

comparison with the LM operation, the proposed modulation

algorithm enhances 10% output torque capability for the

studied drives.
C. Steady-State Performance

When the PMSM operates at a speed of 20 krpm, the steady-

state performance under the LM (m=0.95) and the OM-I with

the proposed IPBC method (λ=0.95 and θc=12.5◦) are tested.

The results from Fig.16(a) show that the line-to-line voltage

by the proposed overmodulation technique features five levels

and constant clamping instants in some periods. Apart from

that, two capacitor voltages are well balanced.
D. Dynamic-State Performance

To validate the dynamic-state performance of the proposed

overmodulation strategy, rotation speed and load are both
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Fig. 17. NP voltage balancing process with: (a) The HBC method. (b) The
proposed IPBC method.
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Fig. 18. FFT analysis of stator current under λ=0.95 and θc=12.5◦ with: (a)
The HBC scheme. (b) The proposed IPBC scheme.

changed, where λ and θc are set at 0.95 and 12.5◦, respectively.

Initially, the output active power of the ESG system is 3

kW under a machine speed of 20 krpm, in which the q-axis

reference current command is −6A. After that, the PMSM

speed descends to 18 krpm while the load is increased to 10

kW, where the q-axis reference current demand is −25A. The

results from Fig.16(b) show a smooth transient performance

regarding NP voltage, phase current and line-to-line voltage.

E. Capacitor Voltage Balancing Performance

The active capacitor voltage balancing performance is ver-

ified under a DC-link voltage utilization ratio of 1.02. That

is, λ for the HBC and IPBC scheme is 0.98 and 0.95,

while θc equals 12.5◦. As shown in Fig.17, the initial NP

voltage deviation is 200V in the LM region, with an average

modulation index of 0.95 and power factor of 0.12. When

switching to the proposed overmodulation strategy, the two

capacitor voltages can be kept at a balanced state again.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on August 19,2021 at 09:50:47 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2021.3105752, IEEE

Transactions on Power Electronics

IEEE POWER ELECTRONICS REGULAR PAPER

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

Modulation Index

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

W
T

H
D

(%
)

=0.90(HBC)

=0.90(IPBC)

=0.95(HBC)

=0.95(IPBC)

=0.98(HBC)

=0.98(IPBC)

=1.00(HBC)

=1.00(IPBC)

Fig. 19. WTHD comparison of line-to-line voltage at different λ and m.

0.265 0.253 0.251

0.692 0.614 0.568

0.532
0.524 0.523

0.168
0.168 0.168

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Conventional LM OM scheme with the

HBC limit

OM scheme with the

proposed IPBC limit

P
o

w
e
r 

L
o

ss
e
s(

k
W

)

IGBT Cond. Diode Cond. IGBT Switching Diode Reverse

Fig. 20. The power losses comparison with different PWM schemes at 20
krpm in the generation mode.

Compared with the HBC scheme, an additional time of 50ms

is required to correct the unbalanced NP voltage.

F. Distortion Analysis

Fig.18 presents the fast Fourier transform (FFT) analysis

of the stator current when the compression coefficient is

set at 0.95 and the crossover angle is controlled at 12.5◦.

It can be seen that the total harmonic distortion (THD) by

the proposed strategy is less than that by the HBC scheme,

which is consistent with the theoretical analysis in Section-

III. The weighted THD (WTHD) comparison of the line-to-

line voltage under different λ and desired m is illustrated in

Fig.19. From the results, it can conclude that the presented

inscribed polygonal-boundary limit obtains a lower WTHD as

compared to the hexagonal compression limit.

G. Power Losses Analysis

Power losses analysis of the semiconductors is carried out

by our applied Infineon F3L400R07ME4 B22/B23 insulated-

gate bipolar transistor (IGBT) module that has the maximum

collector-emitter voltage of 650V and continuous collector

current of 400A. According to the manufacturer’s datasheet,

the losses can be obtained through the PLECS tools. Given

that θc is set at 10◦, while λ for HBC and IPBC limits is

selected as 0.97 and 0.94, respectively. Switching frequency

is set to be 16 kHz. Before extending into the overmodulation

region, the modulation index maintains at 0.95 in the linear

range. Under these operating conditions, with 35 kW of active

power generation at 20 krpm, the switching device losses

distribution map is elaborated in Fig.20. As can be seen,

the proposed overmodulation algorithm can lower conduction

TABLE IV
ESG SYSTEM PARAMETERS

Parameters Value

Ld = Lq 99 µH

Pole pair 3

Switching frequency 16 kHz

PM flux 0.03644 Vs/rad

Dead time 1.4 µs

Control system sampling frequency 16 kHz

Fundamental frequency in generation mode 1∼1.6 kHz

Capacitor value (C1=C2) 600 µF

DC-link voltage 270 V

losses compared with the linear range operation. Besides, due

to increased DC-bus terminal clamping instants, the switching

losses are reduced as compared to that by the LM. In order to

experimentally test the converter’s total losses under the above

overmodulation conditions, a power analyzer PPA5330 is used

to monitor the input and output parameters when the target

system delivers an active power of 25 kW at a rotation speed

of 20 krpm. A resultant of 1.24 kW power loss is measured

under the presented approach, while that value in the case of

the benchmark method is about 1.30 kW.

By importing the data of stator currents into the finite

element analysis model of the employed PMSM, the machine

copper loss can be calculated in a steady state. Compared

with typical operation in the LM, that value is significantly

decreased from 189.96W to 160.18W with the upper limit of

the OM-I, which means a nearly 15.7% reduction.

As the overmodulation conditions lead to a lower required

flux-weakening current, the loss issue can be thus mitigated.

Nevertheless, the more boosted DC-link voltage utilization,

the less output harmonic performance will be for the aviation

electric power system. Consequently, it comes as a trade-off

between efficiency and stability to some extent.

H. Computational Time Performance

The execution time of the proposed overmodulation algo-

rithm is tested by the applied TMS320C6713 DSP Starter

Kit with a 225MHz system clock. The results present that

it costs 57.2µs to implement the presented technique in the

g-h reference frame, while 73.8µs is the time to implement

the same algorithm in the conventional α-β reference frame,

which indicates nearly 30% computational burden reduction.

I. Comparison With Other NP Control-Based Overmodulation

Strategies

Compared with existing NP control-based overmodulation

strategies [25]-[31] for 3L-NPC converters, the proposed strat-

egy embraces the following advantages:

1) As the configured switching patterns generate extra NP

currents to realize net-zero NP current, the proposed capacitor

voltage balancing control is effective for high modulation

index and low power factor operating conditions. However,

the methods in [25]-[29] can hardly achieve this target.

2) Due to the adopted nearest-three VSVs, less output

distortion would be expected as compared to the work of [30]

that omits space vector numbers in high output voltage region.

3) The complexity caused by massive trigonometric func-

tions is reduced by algebraic operations in the g-h plane. While
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the CBPWM scheme reported in [31] gains overmodulation

conditions, the appropriate ZSVs need to be calculated.

4) With the proposed IPBC technique, the output voltage

converges to the upper limit of LM, which is beneficial for

smooth transition among various compression coefficients,

particularly for traction and servo drives, where loading con-

ditions and speed change frequently [31]. On the other hand,

due to the non-monotonous relationship between θc and m
shown in Fig.10, the continuity of boosted DC-link voltage

utilization would be affected to some extent in comparison

with the HBC scheme. Nonetheless, the minimum modulation

depth by the provided strategy gaining near unity might make

this issue marginal. The dedicated compensation method will

be explored in our future study.

V. CONCLUSION

In this paper, a VSV-based PWM algorithm has been

presented for the 3L-NPC converter-fed high-speed aerospace

drives in the MEA, which aims at the operation of aircraft

ESG systems easily extending into the overmodulation region.

With the provided inscribed polygonal-boundary compres-

sion technique, the major contributions of this work lie in:

1) DC-link voltage utilization is improved under a lower

crossover angle and compression coefficient, which offers

further benefits of flux-weakening current and machine copper

loss reduction, together with an enhanced maximum output

torque for the applied PMSM. 2) In order to remain a balanced

NP potential under stringent operating conditions, an active

capacitor voltage control method is developed to supplement

the algorithm. 3) A fast-executed approach is adopted as an

alternative to overcome the computational burden caused by

massive trigonometric functions in the orthogonal plane, which

is helpful for semiconductors with a short switching period.

The conclusions are applicable to all 3L-NPC topologies in

electric motor drive systems. Simulation and experimental re-

sults confirmed the good overall performance of the proposed

strategy in terms of overmodulation capability, NP voltage

balance, losses, phase current and ease of use.

APPENDIX

The duty cycle of virtual medium vector is calculated as:

1) without hexagonal-boundary compression limit:

d3 = [3(1− sin(60◦ − θ)

sin(120◦ − θ)
− sin θ

sin(120◦ − θ)
)] = 0

2) with hexagonal-boundary compression limit:

d3 = [3(1− λ sin(60◦ − θ)

sin(120◦ − θ)
− λ sin θ

sin(120◦ − θ)
)] = 3(1− λ)
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