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Abstract: Several oversampling methods have been proposed for solving the class imbalance problem.
However, most of them require searching the k-nearest neighbors to generate synthetic objects.
This requirement makes them time-consuming and therefore unsuitable for large datasets. In this
paper, an oversampling method for large class imbalance problems that do not require the k-nearest
neighbors’ search is proposed. According to our experiments on large datasets with different sizes
of imbalance, the proposed method is at least twice as fast as 8 the fastest method reported in the
literature while obtaining similar oversampling quality.

Keywords: class imbalance problem; fast oversampling; oversampling methods; large datasets

1. Introduction

One of the current research topics of interest in supervised classification is the class
imbalance problem that frequently appears in several real-world datasets [1–5]. The class
imbalance problem occurs when, in a dataset, one of the classes has fewer objects, usually
called the minority class, than the other class, usually called the majority class. This
problem produces a poor classification rate for the minority class, which is usually the most
important. Consequently, it becomes difficult for a classifier to effectively discriminate
between the minority and majority classes, especially if the class imbalance is extreme. For
example, among several patients with a suspicious disease, very few are likely to have
cancer, i.e., minority class, while most are likely not to have cancer, i.e., majority class. Here,
a false negative means a patient with cancer is misclassified as not having the disease,
which is a severe error. Another example of the class imbalance problem is distinguishing
between 100 spam emails from 100,000, given that most emails are non-spam. Like these
examples, the class imbalance problem is widespread and appears in many areas such as
industrial, medical, and social, among others.

In the literature, we can find different types of solutions like class decomposition [6,7]
or oversampling methods that are the most frequently used solutions reported in the litera-
ture for solving the class imbalance problem. SMOTE (Synthetic Minority Oversampling
Technique) [8] is the most widely used and referenced method among the oversampling
methods. SMOTE addresses the class imbalance problem by increasing the number of
objects of the minority class by generating synthetic objects for this class.

Due to its success, many other oversampling methods based on SMOTE have been
proposed in the literature [9–30]; these methods are characterized by modifications of some
of the SMOTE steps and/or addition of new steps. Other oversampling methods that do not
follow the SMOTE’s approach have also been proposed [22,23,26,31–33]. However, most
of the oversampling methods reported in the literature require computing the k-nearest
neighbors of objects from the minority class or other slow steps, making them unsuitable
for balancing large datasets. This paper will use the term large datasets to refer to those
bigger than the conventional datasets used in the literature of oversampling, which have
less than 10K objects.
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Among those oversampling methods not based on the k-nearest neighbors’ search,
we can highlight LMCMO [34], ROS (Random OverSampling), and NDO [35]. However,
LMCMO needs to find the minimum distance between the minority class and the majority
class objects, becoming very slow for large datasets. On the other hand, although ROS
is fast, it produces low oversampling quality because ROS only generates exact copies of
the objects of the minority class [36–39]. Meanwhile, NDO is an oversampling method
that is not based on the search for the k-nearest neighbors, but in a fast generation of
synthetic objects; showing good oversampling results. Therefore, NDO can be applied
to large datasets with imbalanced classes. The above shows that the development of fast
oversampling methods not based on the k-nearest neighbors’ search or other slow steps
has been little studied in the literature. For his reason, this paper introduces a method that
follows this approach, making it applicable to large datasets with imbalanced classes. Our
experiments with large datasets show that the proposed method is at least twice as fast as
the fastest method reported in the literature while obtaining similar oversampling quality.

The rest of the paper is organized as follows: In Section 2, we present the related work.
In Section 3, our oversampling method for class imbalance problems on large datasets
is introduced. Section 4 shows our experimental results and compares our proposed
method against the most successful oversampling state-of-the-art methods. We also include
experiments on real large datasets, as well as scalability experiments that confirm the good
performance of the proposed method in terms of time and quality of oversampling. Finally,
in Section 5, we present our conclusions and future work.

2. Related Work

The most successful and referenced oversampling method for class imbalance prob-
lems is SMOTE [8]. The main idea of SMOTE is to oversample the minority class by
randomly generating synthetic objects between objects from the minority class and some of
their k-nearest neighbors selected in random manner.

In SMOTE, to generate a synthetic object, the feature difference between an object of the
minority class and one of its k-nearest neighbors, selected in random manner, is computed.
Then, for each feature, this difference is multiplied by a random number between 0 and 1.
Finally, the multiplied differences is added to the object of the minority class in order to
obtain a synthetic object that is then added to the training set. In Algorithm 1, a pseudocode
of SMOTE is shown.

Algorithm 1 SMOTE

Input: A minority class, N - Percent of oversampling (integer multiple of 100), k - number
of nearest neighbors.

Output: An oversampled minority class.
n← N/100 Number of objects to be generated for each object of the minority class
for each object O in the minority class do

Compute the k-nearest neighbors of O in the minority class
for j = 1, ..., n do

Onn← Randomly select one of the k-nearest neighbors of O
Syn← Initialize an empty object
for each feature f do

Compute the feature difference between O f and Onn f
r ← Random(0, 1)
di f f ← feature difference ∗r
Syn f ← O f + di f f

end for
Add Syn to the minority class

end for
end for
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Due to the high success of SMOTE, several oversampling methods based on SMOTE
(SMOTE-based methods) have been proposed in the literature [9–29,40–44]. These methods
modify SMOTE in different ways in order to improve the oversampling quality. In the
next paragraphs, we will describe only some of the most widely cited and recent SMOTE-
based methods.

Borderline-SMOTE [9] first labels each object of the minority class as a border. An
object is labeled as a border if the number of its k-nearest neighbors computed from the
whole training set that belong to the majority class is greater than or equal to k/2 and
smaller than k. Then, Borderline-SMOTE generates synthetic objects between the border
objects and their k-nearest neighbors in the minority class.

Safe Level SMOTE [11] computes, for each object of the minority class, a safe level
(sl) value. This value depends on the number of nearest neighbors that the object has into
the minority class among its k-nearest neighbors computed in the whole training set. Safe
Level SMOTE generates synthetic objects between objects of the minority class with sl > 0
and their k-nearest neighbors in the minority class. If the safe level of the selected neighbor
is 0, the object of the minority class is duplicated. Otherwise, Safe Level SMOTE computes
a safe level ratio (slr) by dividing the sl value of the object in the minority class by the
sl value of the selected neighbor. Then, to generate a synthetic object, as SMOTE does,
the random number used for multiplying the feature difference between the object of the
minority class and its selected neighbor is generated in a different interval, according to the
slr value, as follows: if slr = 1 the random number is generated between 0 and 1; if slr > 1
the random number is generated between 0 and 1/slr; and if slr < 1 the random number is
generated between (1− slr) and 1.

LNE [12] is based on Safe Level SMOTE (SLS) [11], but in the generation of the sinthetic
objects rather than computing the k-nearest neighbors in the minority class, LNE computes
the k-nearest neighbors in the whole training set. Then, when a neighbor of the majority
class is selected to generate a synthetic object, the random number (r) is computed as in
SLS and adjusted as r′ = r(sln/k) where sln is the safe level of the selected neighbor.

NDO [35] generates synthetic objects around each object of the minority class by
adding a fraction of the standard deviation of the values of each feature. This portion of
the standard deviation is computed by dividing the standard deviation by the square root
of the number of objects in the minority class, and multiplying the result by a random
number. The random number is generated by a normal distribution with the mean of 0 and
standard deviation of 1.

SMOTE-RSB* (S-RSB*) [13] first applies SMOTE, and then only keeps as synthetic
objects the objects that belong to the lower approximation of the minority class, according
to the Rough Set Theory.

K-means-SMOTE (K-means-S) [24] applies K-means for clustering the training set and
then selects the clusters with an Imbalance Ratio (IR) lower than a given threshold. Finally,
K-means-SMOTE applies SMOTE on those selected clusters. The amount of oversampling
for each cluster is computed based on the sparsity and density values of the minority
class objects. Following this idea, A-SUWO [25] first group the training set but apply
Complete-Linkage Hierarchical Clustering and then apply SMOTE over each cluster.

Farthest SMOTE (Farthest-S) [27] uses a similar approach to that of SMOTE, but rather
than using the k-nearest neighbors, it uses the k-farthest neighbors.

To generate a synthetic object, Geometric-SMOTE (G-SMOTE) [28] first randomly
selects an object of the minority class as the center of a hyper-spherical region and, also
randomly selects one of its nearest neighbors computed in the whole training set to define
the size of the hyper-spherical region based on the distance between the two selected objects.
Then, the synthetic object is randomly generated as a point inside of the hyper-spherical
region; the generation of synthetic objects is repeated as many times as synthetic objects to
be generated.

SMOTE-SF (S-SF) [29] selects a subset of features to handle with high-dimensional
datasets (a high number of features). The selection of the subset of features is performed
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by applying a feature ranking method (many methods are studied in their work). Then,
SMOTE-SF generates synthetic objects similar to SMOTE but only until it reaches the
number specified by an input parameter.

In the literature, other methods that are not based on computing the k-nearest neigh-
bors for generating synthetic objects have been also proposed. However, these methods
use computationally expensive techniques such as particle swarm optimization [22], self-
organizing maps [23], multi-objective swarm fusion [26], genetic algorithms [31], differen-
tial evolution [32], deep generative models and variational autoencoders [33], and feature
correlation computing [29]; among others for generating synthetic objects. Therefore, these
methods are time-consuming and are unsuitable for large datasets with imbalanced classes.

From the above review of oversampling methods, we can see that with the exception
of NDO, most oversampling methods are based on the search for the k-nearest neighbors or
other slow techniques. This makes them time-consuming when applied on large datasets
with imbalanced classes. Therefore, in the next section, we propose a fast oversampling
method for class imbalance problems on large datasets.

3. Proposed Method

SMOTE is the most widely cited method for addressing the class imbalance prob-
lems and has inspired and continues to inspire the development of many oversampling
methods [45–51]. However, SMOTE as well as SMOTE-based methods have poor time
performance for large class imbalance problems because all of these methods either require
searching for the k-nearest neighbors or use other time-consuming methods for balancing
the minority class.

If SMOTE avoided searching the k-nearest neighbors to generate synthetic objects, this
would improve its performance. An alternative to searching for the k-nearest neighbors in
the generation of synthetic objects is that instead of using an object of the minority class
each time and selecting one of its k-nearest neighbors as is done in SMOTE, one object of
the minority class is used and the nearest neighbor’s selection is performed with a faster
method for determining where in the minority class it is necessary to generate the new
synthetic object.

To generate a new synthetic object, SMOTE uses an object of the minority class and one
of its nearest neighbors. In some sense, this is done in order to guarantee that the synthetic
object is generated in an object’s neighborhood belonging to the minority class. Using the
nearest neighbors also aims to guarantee that the synthetic object is located in a region
in the minority class because it is computed by generating a value between the values of
an object in the minority class and one of its nearest neighbors for each of the features of
the synthetic object. Thus, in our proposed method for generating synthetic objects in the
minority class, instead of using objects of the minority class, as is done in SMOTE, we will
use the mode jointly with the minimum and maximum values in each feature. We tested
other central tendencies such as the mean or the median and other statistical dispersion
metrics such as the standard deviation or the variance in the proposed method. However,
the mode jointly with the minimum and maximum values obtained the best oversampling
quality results.

To compute the mode for numerical features, we followed [52] (allowing us to compute
the mode rapidly) to obtain the minimum and maximum values from a feature and divide
the feature’s values in the sample in 10 equal-size bins. Then, the mode is computed as
described by Equation (1):

mode = l +
f − f−1

( f − f−1) + ( f − f+1)
∗ w (1)

where l is the lower limit of the bin with the highest frequency ( f ), w is the bin size, f−1
is the frequency of the bin preceding the bin with the highest frequency, and f+1 is the
frequency of the bin following to the bin with the highest frequency.
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It is important to highlight that the mode, the minimum, and the maximum can be
computed quickly since they can be computed in two scans of the minority class, i.e.,
computing them for a feature is O(n), where n is the number of objects in the minority
class. Thus, the complexity of computing them for all features is O(mn), where m is the
number of features.

In our method, we propose computing the absolute differences between the mode
value and the minimum and maximum values for each feature in the minority class. Then,
by subtracting or adding these differences multiplied by a certain random factor to each
feature’s mode value, it is possible to generate a new synthetic object into the minority
class. Similar to SMOTE, our method generates a synthetic object located between the
mode (a central tendency measure) of the class and the neighbor objects that are not farther
from the mode than the minimum or maximum values. We want to point out that using
the minimum and maximum values allows our method to keep the synthetic generated
values in the observed value range of the features.

Following the idea mentioned above, it is possible to avoid searching for the k-nearest
neighbors, which is the most time-consuming step of SMOTE. Consequently, we obtain an
oversampling method that is faster than SMOTE and the SMOTE-based methods.

The first step of our method computes, for each feature the minimum, maximum and
mode values in the minority class. Then, the absolute differences between the mode and the
minimum and maximum values are computed. Then, a random number is generated for
each feature. This random number is multiplied by one of the differences and subtracted
or added to the corresponding feature mode. To decide if a difference is subtracted or
added, we generate a random number between 0.0 and 1.0; then, if the generated random
number is lower than 0.5, the difference is subtracted. Otherwise, the difference is added.
Thus, the generated synthetic object’s feature values will be clustered around the mode
and in the region defined by each feature’s difference values. In the proposed method, we
use a random number between 0 and 1; this allows the generation of objects as far as the
differences allow, but not too far so as to avoid the generation of feature value outside the
observed feature value range.

We want to point out that if the random number that is multiplied by the difference
is closer to 0, the synthetic objects are generated closer to the mode of the class on the
corresponding feature, or, in the opposite case, if the random number is close to 1, the
feature values of the synthetic object is generated farther from the mode of the class and
closer to the minimum or maximum values.

Finally, the above-described procedure is repeated as many times as the number of
synthetic objects to be generated N (an input parameter of our method). A pseudo-code of
the proposed method is shown in Algorithm 2.

To determine the computational complexity of Fast SMOTE, we ill analyze each one of
its steps (see Algorithm 2). Steps 1–3 of Fast-SMOTE are O(n f ) (where n is the number of
objects in the minority class and f is the number of features of the dataset), because as it is
well-known, computing the minimum and maximum and the mode from grouped data of n
values isO(n), and this must be done for each feature. Steps 4 and 5 areO( f ), because they
involves just a difference for each one of the f features. The FOR loop of step 6 is repeated
n times, and inside of this loop, we have a nested FOR loop that is repeated f times. In the
inner loop, the steps 9–15 are O(1). Therefore the complexity of the FOR loop of step 6 is
O(n f ), and hence the complexity of Fast-SMOTE is O(n f ). This complexity is smaller than
the complexity of SMOTE and SMOTE-based methods, which is at leastO(n2 f ) [22,53] due
to the k-nearest neighbors search. Moreover, this complexity is similar to the complexity of
NDO, which is the only oversampling method reported in the literature that is not based
on computing the k-nearest neighbors and therefore that can be applied to large datasets.
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Algorithm 2 Fast-SMOTE

Input: A minority class, N - number of synthetic objects to be generated.
Output: An oversampled minority class.

MIN ←Minimum value for each feature into the minority class.
MAX ←Maximum value for each feature into the minority class.
MODE←Mode value for each feature into the minority class.
MinDi f ← MODE−MIN Absolute difference between the mode and the minimum
value for each feature into the minority class.
MaxDi f ← MAX−MODE Absolute difference between the mode and the maximum
value for each feature into the minority class.
for j = 1, ..., N do

Syn← Initialize an empty object
for each feature f do

r ← Random(0, 1)
r2← Random(0, 1)
if r2 < 0.5 then

gap← MinDi f f ∗ r
else

gap← MaxDi f f ∗ r
end if
Syn f ← MODE f + gap

end for
Add Syn to the minority class.

end for

4. Experimental Results

In this section, we first present an experiment to show the synthetic objects generated
by SMOTE, NDO and our proposed method Fast-SMOTE. Then, in the second experiment,
we evaluate the proposed method by comparing it to the methods described in the related
work section using standard unbalanced public databases. Since these databases are
relatively small, in the third experiment, we compared the proposed method to the fastest
methods in the previous experiment but for larger datasets. Finally, in the last experiment,
we demonstrate the scalability of the proposed method.

4.1. Synthetic Objects Generated by SMOTE, NDO and Fast-SMOTE

This experiment applies SMOTE, NDO, and Fast-SMOTE over three real datasets to
show the synthetic objects generated by each method.

For this experiment, we used the mammography dataset that was also used in [54] for
this purpose, and we included the glass6 and ecoli1 datasets from the KEEL repository [55].
For a better appreciation of the plotted objects, for this experiment, we selected only 10% of
majority class objects and 10% of minority class objects. In this way, the IR of each dataset
is preserved.

To show the synthetic objects generated by each method, in Figures 1–3 we plotted, in
a 2-D projections, the mammography, glass, and ecoli datasets respectively, together with 10
synthetic objects generated by each method. The mammography dataset was projected on
the fourth and fifth features, the glass6 dataset on the aluminum and silicon features, and
the ecoli1 dataset on the Mcg and Alm2 features. In all three figures, green circles represent
the objects of the majority class, and red crosses represent the objects of the minority class.
Also, we show in Table 1 the mode values computed by the proposed method on each
dataset (see rows) for axis x and y (see columns) for the Figures 1–3.
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(a) SMOTE/mammography (b) NDO/mammography

(c) Fast-SMOTE/mammography

Figure 1. Synthetic objects (blue diamonds) generated by SMOTE (a), NDO (b), and Fast-SMOTE (c)
over a 2-D projection of the dataset Mammography. Green circles represent objects of the majority
class, and red crosses represent objects of the minority class.

(a) SMOTE/Glass (b) NDO/Glass

(c) Fast-SMOTE/Glass

Figure 2. Synthetic objects (blue diamonds) generated by SMOTE (a), NDO (b), and Fast-SMOTE (c)
over a 2-D projection of the dataset Glass. Green circles represent objects of the majority class, and
red crosses represent objects of the minority class.
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(a) SMOTE/Ecoli (b) NDO/Ecoli

(c) Fast-SMOTE/Ecoli

Figure 3. Synthetic objects (blue diamonds) generated by SMOTE (a), NDO (b), and Fast-SMOTE (c)
over a 2-D projection of the dataset Ecoli. Green circles represent objects of the majority class, and red
crosses represent objects of the minority class.

Table 1. Mode values of x and y axis for for Figures 1–3.

Features Mode

x y

mamography −0.55 0.06
glass 0.42 0.73
ecoli 0.32 0.79

In Figures 1–3, we can see that Fast-SMOTE, as well as SMOTE and NDO generate
synthetic objects close to the objects of the minority class.

4.2. Comparison against State of the Art Oversampling Methods

In this experiment, we compare the proposed method Fast-SMOTE to the state-of-
the-art oversampling methods in terms of oversampling quality and runtime. In this
experiment, we used small-medium size datasets to allow applying SMOTE and other
state of the art methods. We used all 66 imbalanced datasets from the KEEL repository [55]
(shown in Table 2), and assessed the oversampling quality of the oversampling methods.
This was done by oversampling a repository training dataset until reaching a full balance
between classes and training a classifier with the oversampled dataset produced by an
oversampling method. The testing set that is also available in the repository was used to
evaluate the trained classifier. The quality of the classification result is interpreted as the
oversampling quality of the employed oversampling method.
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Table 2. Datasets from the KEEL repository used in our experiments.

Dataset # Features # Objects IR Dataset # Features # Objects IR

glass1 9 214 1.82 glass-0-4_vs_5 9 92 9.22
ecoli-0_vs_1 7 220 1.86 ecoli-0-3-4-6_vs_5 7 205 9.25
wisconsin 9 683 1.86 ecoli-0-3-4-7_vs_5-6 7 257 9.28
pima 8 768 1.87 yeast-0-5-6-7-9_vs_4 8 528 9.35
iris0 4 150 2.00 vowel0 13 988 9.98
glass0 9 214 2.06 ecoli-0-6-7_vs_5 6 220 10.00
yeast1 8 1484 2.46 glass-0-1-6_vs_2 9 192 10.29
haberman 3 306 2.78 ecoli-0-1-4-7_vs_2-3-5-6 7 336 10.59
vehicle2 18 846 2.88 led7digit-0-2-4-5-6-7-8-9_vs_1 7 443 10.97
vehicle1 18 846 2.90 glass-0-6_vs_5 9 108 11.00
vehicle3 18 846 2.99 ecoli-0-1_vs_5 6 240 11.00
glass-0-1-2-3_vs_4-5-6 9 214 3.20 glass-0-1-4-6_vs_2 9 205 11.06
vehicle0 18 846 3.25 glass2 9 214 11.59
ecoli1 7 336 3.36 ecoli-0-1-4-7_vs_5-6 6 332 12.28
new-thyroid1 5 215 5.14 cleveland-0_vs_4 13 177 12.62
new-thyroid2 5 215 5.14 ecoli-0-1-4-6_vs_5 6 280 13.00
ecoli2 7 336 5.46 shuttle-c0-vs-c4 9 1829 13.87
segment0 19 2308 6.02 yeast-1_vs_7 7 459 14.30
glass6 9 214 6.38 glass4 9 214 15.47
yeast3 8 1484 8.10 ecoli4 7 336 15.80
ecoli3 7 336 8.60 page-blocks-1-3_vs_4 10 472 15.86
page-blocks0 10 5472 8.79 abalone9-18 8 731 16.40
ecoli-0-3-4_vs_5 7 200 9.00 glass-0-1-6_vs_5 9 184 19.44
yeast-2_vs_4 8 514 9.08 shuttle-c2-vs-c4 9 129 20.50
ecoli-0-6-7_vs_3-5 7 222 9.09 yeast-1-4-5-8_vs_7 8 693 22.10
ecoli-0-2-3-4_vs_5 7 202 9.10 glass5 9 214 22.78
glass-0-1-5_vs_2 9 172 9.12 yeast-2_vs_8 8 482 23.10
yeast-0-3-5-9_vs_7-8 8 506 9.12 yeast4 8 1484 28.10
yeast-0-2-5-7-9_vs_3-6-8 8 1004 9.14 yeast-1-2-8-9_vs_7 8 947 30.57
yeast-0-2-5-6_vs_3-7-8-9 8 1004 9.14 yeast5 8 1484 32.73
ecoli-0-4-6_vs_5 6 203 9.15 ecoli-0-1-3-7_vs_2-6 7 281 39.14
ecoli-0-1_vs_2-3-5 7 244 9.17 yeast6 8 1484 41.40
ecoli-0-2-6-7_vs_3-5 7 224 9.18 abalone19 8 4174 129.44

Since all oversampling methods generate random numbers when a synthetic object is
built, the oversampling methods were applied 30 times for each one of the 66 imbalanced
datasets using the 5-fold cross-validation partition available in the repository. We used the
supervised classifiers CART (Classification and Regresion Tree), KNN (K-Nearest Neighbor
Classifier) (K = 5), and Naïve Bayes. Additionally, as suggested in [56], we used AUC (Area
Under Curve) to assess the classification results, the most used measure for evaluating
classification quality on imbalance class problems.

Table 3 shows the average AUC of the 150 results (30 repetitions for each one of the
5 folds) obtained with each classifier (CART, KNN, and Naïve Bayes; see rows) over the
66 datasets for each oversampling method (see columns). As mentioned above, most
of the compared oversampling methods are based on finding the k-nearest neighbors; it
is observed from the results shown in Table 3 that these methods obtain the best AUC
results. In particular, we can observe that SMOTE and S-RSB* obtained the best average
oversampling quality. On the other hand, the methods that are not based on finding the
nearest neighbors (NDO and Fast-SMOTE) do not obtain the lowest oversampling quality.
The methods that obtain the worst AUC results were K-Means-S and G-SMOTE. The
proposed method and NDO, obtain lower average AUC results than SMOTE and S-RSB*
although unlike these methods, Fast-SMOTE and NDO can be applied on large datasets.

Additionally, in this experiment we assessed the runtime employed by the oversam-
pling methods. This experiment was run in MATLAB 2020b, using a computer with a
Ryzen 5300X 3.60 GHz processor with 32 GB DDR4 RAM, running 64-bit Windows 10.



Appl. Sci. 2022, 12, 3424 10 of 17

Table 3. Average AUC results of CART, KNN and Naive Bayes classifiers for the 66 datasets from the
KEEL repository.

Classifier
Oversampling Method

SMOTE Borderline SafeLevel LNE NDO S-RSB* K-Means-S Farthest-S G-SMOTE S-SF Fast-SMOTE

CART 0.825 0.807 0.808 0.814 0.817 0.824 0.802 0.819 0.798 0.821 0.801
KNN 0.857 0.842 0.822 0.836 0.853 0.857 0.789 0.840 0.800 0.854 0.822
Naïve Bayes 0.808 0.775 0.776 0.802 0.786 0.807 0.755 0.801 0.731 0.808 0.772

Table 4 shows the runtime in seconds to fully balance each KEEL data set with all
oversampling methods. An examination of the data presented in the table shows that
S-RSB* was the most time-consiming oversampling method. By contrast, the proposed Fast-
SMOTE method is clearly the fastest of all the oversampling methods under comparison.
The closest method in runtime to our proposed method is NDO, but it was more than twice
as time-consuming as the proposed method.

Table 4. Runtime in seconds spent by the oversampling methods revised in Section 2 for oversampling
all datasets from Table 2.

Dataset
Oversampling Method

SMOTE Borderline SafeLevel LNE NDO S-RSB* K-Means-S Farthest-S G-SMOTE S-SF Fast-SMOTE

glass-0-4_vs_5 0.0027 0.0006 0.0056 0.0040 0.0002 0.0045 0.0035 0.0025 0.0037 0.0003 0.0001
glass-0-6_vs_5 0.0033 0.0007 0.0069 0.0048 0.0003 0.0054 0.0040 0.0031 0.0044 0.0002 0.0001
shuttle-c2-vs-c4 0.0041 0.0004 0.0094 0.0058 0.0004 0.0067 0.0052 0.0040 0.0062 0.0003 0.0002
iris0 0.0017 0.0016 0.0039 0.0038 0.0002 0.0030 0.0028 0.0017 0.0024 0.0011 0.0001
glass-0-1-5_vs_2 0.0052 0.0011 0.0113 0.0076 0.0004 0.0083 0.0068 0.0049 0.0070 0.0004 0.0002
cleveland-0_vs_4 0.0054 0.0009 0.0124 0.0081 0.0005 0.0096 0.0078 0.0051 0.0072 0.0004 0.0002
glass-0-1-6_vs_5 0.0059 0.0007 0.0136 0.0083 0.0005 0.0101 0.0069 0.0057 0.0080 0.0004 0.0002
glass-0-1-6_vs_2 0.0056 0.0010 0.0132 0.0084 0.0005 0.0102 0.0070 0.0057 0.0076 0.0005 0.0002
ecoli-0-3-4_vs_5 0.0062 0.0009 0.0132 0.0083 0.0005 0.0091 0.0086 0.0055 0.0076 0.0005 0.0002
ecoli-0-2-3-4_vs_5 0.0062 0.0009 0.0136 0.0092 0.0005 0.0097 0.0088 0.0055 0.0082 0.0005 0.0002
ecoli-0-4-6_vs_5 0.0060 0.0009 0.0132 0.0091 0.0005 0.0091 0.0079 0.0055 0.0080 0.0005 0.0002
ecoli-0-3-4-6_vs_5 0.0061 0.0009 0.0136 0.0091 0.0005 0.0093 0.0081 0.0057 0.0082 0.0005 0.0002
glass-0-1-4-6_vs_2 0.0066 0.0012 0.0144 0.0092 0.0005 0.0107 0.0082 0.0062 0.0088 0.0004 0.0002
glass1 0.0023 0.0032 0.0052 0.0062 0.0002 0.0061 0.0035 0.0022 0.0031 0.0026 0.0001
glass2 0.0065 0.0010 0.0152 0.0099 0.0005 0.0113 0.0087 0.0065 0.0087 0.0005 0.0003
glass0 0.0026 0.0031 0.0059 0.0092 0.0002 0.0068 0.0038 0.0026 0.0036 0.0024 0.0001
glass4 0.0066 0.0008 0.0156 0.0101 0.0006 0.0117 0.0087 0.0065 0.0090 0.0005 0.0003
glass-0-1-2-3_vs_4-5-6 0.0041 0.0022 0.0093 0.0090 0.0003 0.0089 0.0051 0.0040 0.0056 0.0014 0.0002
glass5 0.0070 0.0006 0.0161 0.0100 0.0006 0.0125 0.0085 0.0067 0.0094 0.0004 0.0003
glass6 0.0055 0.0009 0.0125 0.0092 0.0005 0.0095 0.0067 0.0054 0.0076 0.0007 0.0002
new-thyroid1 0.0051 0.0017 0.0116 0.0091 0.0004 0.0074 0.0063 0.0050 0.0069 0.0008 0.0002
newthyroid2 0.0051 0.0016 0.0114 0.0091 0.0004 0.0073 0.0066 0.0050 0.0068 0.0008 0.0002
ecoli-0_vs_1 0.0109 0.0028 0.0069 0.0176 0.0002 0.0058 0.0047 0.0024 0.0049 0.0026 0.0001
ecoli-0-6-7_vs_5 0.0066 0.0010 0.0149 0.0090 0.0005 0.0098 0.0084 0.0061 0.0087 0.0005 0.0003
ecoli-0-6-7_vs_3-5 0.0066 0.0011 0.0150 0.0098 0.0005 0.0102 0.0085 0.0061 0.0088 0.0005 0.0003
ecoli-0-2-6-7_vs_3-5 0.0066 0.0012 0.0153 0.0099 0.0005 0.0105 0.0089 0.0063 0.0093 0.0006 0.0003
ecoli-0-1_vs_5 0.0077 0.0010 0.0170 0.0100 0.0006 0.0112 0.0093 0.0069 0.0094 0.0005 0.0003
ecoli-0-1_vs_2-3-5 0.0073 0.0012 0.0172 0.0111 0.0006 0.0113 0.0100 0.0068 0.0096 0.0006 0.0003
ecoli-0-3-4-7_vs_5-6 0.0082 0.0014 0.0177 0.0117 0.0006 0.0126 0.0104 0.0071 0.0099 0.0006 0.0003
ecoli-0-1-4-6_vs_5 0.0088 0.0010 0.0209 0.0118 0.0007 0.0137 0.0122 0.0082 0.0113 0.0006 0.0003
ecoli-0-1-3-7_vs_2-6 0.0096 0.0006 0.0224 0.0132 0.0008 0.0152 0.0111 0.0092 0.0127 0.0005 0.0004
haberman 0.0052 0.0042 0.0124 0.0099 0.0004 0.0186 0.0059 0.0050 0.0069 0.0027 0.0002
ecoli-0-1-4-7_vs_5-6 0.0104 0.0013 0.0257 0.0151 0.0008 0.0166 0.0139 0.0096 0.0137 0.0007 0.0004
ecoli4 0.0105 0.0012 0.0269 0.0150 0.0009 0.0179 0.0121 0.0101 0.0141 0.0007 0.0004
ecoli1 0.0072 0.0035 0.0170 0.0148 0.0005 0.0118 0.0079 0.0074 0.0096 0.0028 0.0003
ecoli-0-1-4-7_vs_2-3-5-6 0.0105 0.0015 0.0255 0.0147 0.0008 0.0172 0.0139 0.0096 0.0136 0.0008 0.0004
ecoli2 0.0086 0.0018 0.0207 0.0143 0.0007 0.0160 0.0096 0.0083 0.0115 0.0017 0.0003
ecoli3 0.0092 0.0021 0.0235 0.0147 0.0008 0.0164 0.0107 0.0092 0.0127 0.0010 0.0004
led7digit-0-2-4-5-6-7-8-9_vs_1 0.0138 0.0019 0.0369 0.0215 0.0011 33.1945 0.0162 0.0129 0.0189 0.0012 0.0005
yeast-1_vs_7 0.0142 0.0021 0.0424 0.0225 0.0012 0.0294 0.0171 0.0140 0.0192 0.0011 0.0006
page-blocks-1-3_vs_4 0.0153 0.0020 0.0443 0.0244 0.0013 0.0386 0.0171 0.0148 0.0203 0.0012 0.0007
yeast-2_vs_8 0.0167 0.0016 0.0471 0.0244 0.0013 0.0369 0.0199 0.0155 0.0218 0.0011 0.0007
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Table 4. Cont.

Dataset
Oversampling Method

SMOTE Borderline SafeLevel LNE NDO S-RSB* K-Means-S Farthest-S G-SMOTE S-SF Fast-SMOTE

yeast-0-3-5-9_vs_7-8 0.0154 0.0032 0.0431 0.0253 0.0012 0.0339 0.0180 0.0142 0.0197 0.0018 0.0006
yeast-2_vs_4 0.0155 0.0030 0.0451 0.0254 0.0013 0.0358 0.0196 0.0146 0.0226 0.0018 0.0006
yeast-0-5-6-7-9_vs_4 0.0159 0.0035 0.0471 0.0255 0.0013 0.0352 0.0178 0.0151 0.0225 0.0019 0.0006
wisconsin 0.0079 0.0119 0.0306 0.0271 0.0006 10.9796 0.0095 0.0077 0.0106 0.0241 0.0003
yeast-1-4-5-8_vs_7 0.0235 0.0032 0.0901 0.0428 0.0020 0.0630 0.0305 0.0227 0.0312 0.0017 0.0010
abalone9-18 0.0243 0.0037 0.0929 0.0436 0.0021 0.0700 0.0267 0.0233 0.0320 0.0021 0.0010
pima 0.0091 0.0170 0.0346 0.0338 0.0007 0.0332 0.0107 0.0087 0.0118 0.0289 0.0003
vehicle2 0.0175 0.0167 0.0745 0.0507 0.0016 0.0877 0.0205 0.0175 0.0232 0.0236 0.0008
vehicle1 0.0178 0.0184 0.0750 0.0501 0.0016 0.0877 0.0185 0.0174 0.0234 0.0230 0.0008
vehicle3 0.0181 0.0190 0.0767 0.0483 0.0016 0.0898 0.0202 0.0179 0.0238 0.0221 0.0008
vehicle0 0.0192 0.0143 0.0823 0.0625 0.0017 0.0912 0.0221 0.0188 0.0254 0.0199 0.0008
yeast-1-2-8-9_vs_7 0.0352 0.0039 0.1494 0.0618 0.0030 0.1203 0.0413 0.0324 0.0444 0.0025 0.0015
vowel0 0.0320 0.0076 0.1454 0.0656 0.0032 0.1441 0.0344 0.0310 0.0430 0.0061 0.0016
yeast-0-2-5-7-9_vs_3-6-8 0.0316 0.0070 0.1407 0.0654 0.0027 0.1101 0.0363 0.0300 0.0421 0.0059 0.0013
yeast-0-2-5-6_vs_3-7-8-9 0.0318 0.0074 0.1427 0.0677 0.0027 0.1092 0.0365 0.0300 0.0411 0.0059 0.0013
yeast1 0.0265 0.0347 0.1342 0.0896 0.0020 0.1277 0.0292 0.0260 0.0342 0.0747 0.0010
yeast4 0.0567 0.0080 0.2914 0.1046 0.0054 0.3084 0.0742 0.0523 0.0699 0.0052 0.0027
yeast5 0.0562 0.0071 0.2921 0.1067 0.0054 0.3100 0.0698 0.0525 0.0706 0.0050 0.0027
yeast3 0.0456 0.0136 0.2471 0.1047 0.0043 0.2384 0.0508 0.0448 0.0596 0.0141 0.0021
yeast6 0.0566 0.0062 0.3081 0.1069 0.0056 0.3173 0.0803 0.0528 0.0711 0.0048 0.0028
shuttle-c0-vs-c4 0.0634 0.0083 0.4022 0.1428 0.0068 0.4615 0.0018 0.0622 0.0864 0.0119 0.0033
segment0 0.0821 0.0466 0.5992 0.3141 0.0105 1.1618 0.0894 0.0807 0.1045 0.0597 0.0052
abalone19 0.1695 0.0255 1.8756 0.4817 0.0270 19.3115 0.1816 0.1679 0.2192 0.0262 0.0134
page-blocks0 0.2206 0.1040 2.5987 0.7628 0.0344 28.2546 0.1910 0.2177 0.2792 0.1586 0.0171

Sum 1.3955 0.4553 8.7356 3.3823 0.1522 96.2835 1.5021 1.3391 0.5366 0.5696 0.0754

Based on this experiment, we conclude that the methods that obtain the best oversam-
pling quality in the previous experiment are among the slowest. By contrast, the fastest
methods obtain lower oversampling quality, although it is similar to that of the methods
that obtain the best oversampling results. However, the KEEL repository databases are
relatively small and therefore do not provide a good assessment of the runtime advantage
of the proposed method. Hence, in the following experiment, the proposed method is
compared to NDO that is the second fastest method in the previous experiment but for
larger datasets.

4.3. Assessing the Proposed Method in Large Datasets

In this experiment, we compared the proposed method to the fastest method in the pre-
vious experiment, namely NDO, but on larger datasets taken from the UCI repository [57]
(see Table 5); these datasets are 5, 7, 10, 44, and 100 times larger than the largest dataset
used in the previous experiments (page-blocks0).

Table 5. Large datasets from the UCI repository used in our experiments.

Dataset # Features # Objects IR

Default of credit card clients 24 30,000 3.52
Online News Popularity 61 39,797 3.90
Statlog (Shuttle) 9 58,000 3.67
Skin segmentation 3 245,057 3.81
Buzz in social media (Twitter) 78 583,250 3.80

We followed the same evaluation scheme to measure the oversampling quality of the
methods as in the previous experiment. However, given the datasets’ size, the oversampling
methods were applied only 10 times on each imbalanced dataset of Table 5 with a 5-fold
cross-validation partition. Additionally, we only used the CART classifier because it can
produce good results in a reasonable time for this size of the datasets compared with the
other two supervised classifiers.
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Table 6 shows the average AUC of the 50 results (10 repetitions for each one of the
5 folds) obtained from each dataset in Table 5 for NDO and Fast-SMOTE. As observed
from the data presented in this table, the proposed method and NDO obtain quite similar
oversampling quality results for all of the datasets. To validate these results, we applied
the Wilcoxon test, which showed that Fast-SMOTE and NDO were statistically similar on
the first three datasets (Default of credit card clients, Online News Popularity, and Statlog
(Shuttle)). Meanwhile, for the Skin segmentation dataset, Fast-SMOTE was statistically
better than NDO, and for the Buzz in social media (Twitter) dataset, NDO was statistically
better than Fast-SMOTE. On the other hand, in Table 7, we show the runtime spent by
NDO and Fast-SMOTE for fully balancing every dataset in Table 5. Table 7 shows that the
proposed method’s runtime is approximately 50% lower than NDO’s runtime. Moreover,
the difference grows with increasing the size of the dataset. For example, for the largest
dataset, the dataset with 583,250 objects (153,487 objects in the minority class, a large
dataset, although not so large) and 78 features, Fast-SMOTE only require 2860.4 s, while
NDO require 8771.89 s, in this case, NDO spent more than three times longer time than
our method.

Table 6. AUC results of Cart classifier for one of the 5 datasets from the UCI repository.

Dataset NDO Fast-SMOTE

Default of credit card clients 0.620 0.623
Online News Popularity 0.551 0.551
Statlog (Shuttle) 0.549 0.551
Skin segmentation 0.990 0.999
Buzz in social media (Twitter) 0.922 0.921

Although we could include larger datasets, the datasets of Table 5 are sufficient for
showing that the proposed method is clearly faster than NDO on large datasets.

Table 7. Runtime in seconds spent by NDO and Fast-SMOTE on artificial datasets from Table 5.

Dataset
Oversampling Method

NDO Fast-SMOTE

Default of credit card clients 0.81 0.40
Online News Popularity 4.94 1.95
Statlog (Shuttle) 1.61 0.62
Skin segmentation 16.47 5.80
Buzz in social media (Twitter) 8771.89 2860.40

Sum 8795.17 2869.17

4.4. Scalability

In this experiment, we evaluate the scalability of the proposed method Fast-SMOTE.
Here, we randomly generated two artificial datasets with numeric features in [0,1], one
with 10,000,000 objects and 10 features, and another with 10,000 features and 10,000 objects.
Then, to evaluate the scalability of the proposed method regarding the number of objects,
we measure the runtime required for oversampling minority classes from one million to
10 million of objects with increments of 2 million of objects, taken from the artificial dataset
with 10 features. Additionally, to evaluate the scalability of Fast-SMOTE regarding the
number of features, we measure the runtime required for oversampling minority classes
with 1000 to 10,000 features with increments of 1000 features from the artificial dataset
with 10,000 objects. Due to the size of the minority classes that makes it unmanageable
in MATLAB, for this experiment, Fast-SMOTE and NDO were implemented in C++. The
experiment was run on a computer with an Intel Core i7-3820 3.60 GHz processor with
64 GB DDR4 RAM, running 64-bit Ubuntu. Although we could use larger datasets, we
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selected these datasets because they are sufficient for demonstrating the scalability of
Fast-SMOTE.

Figure 4 shows a graph of the scalability of the proposed method Fast-SMOTE with
respect to the number of objects. For comparison purposes, we include NDO in the graph.
In this graph, the x-axis shows the number of objects of the minority classes used in this
experiment, while the y-axis shows the runtime in seconds for FAST-SMOTE (blue line)
and NDO (red line) for oversampling the respective minority class. From this figure, we
can observe that Fast-SMOTE scales better than NDO with increasing number of objects,
allowing oversampling larger datasets in a much shorter runtime.

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0
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20

30

40

50

60

Figure 4. Runtime in seconds (y-axis) for oversampling different numbers of objects in the minority
class (x-axis) by Fast-SMOTE (blue line) and NDO (red line).

Figure 5 shows a graph of the scalability of Fast-SMOTE with respect to the number of
features. We also included NDO results in the graph. In this graph, the x-axis shows the
number of features that describe the objects of the minority classes used in this experiment,
while the y-axis shows the runtime in seconds required by FAST-SMOTE (blue line) and
NDO (red line) for oversampling the respective minority class. It is observed from this
figure that Fast-SMOTE scales better than NDO with increasing number of features.
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Figure 5. Runtime in seconds (y-axis) for oversampling a minority class with different number of
features (x-axis) by Fast-SMOTE (blue line) and NDO (red line).
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This experiment shows that when the number of objects and variables grows, Fast
SMOTE has better scalability than NDO, making it more suitable than NDO for practical use.

5. Conclusions

In this paper, we introduced Fast-SMOTE, a fast oversampling method non based
on the k-nearest neighbors search that is the most time-expensive step of SMOTE-based
methods. For each feature, the proposed method uses the value that appears most often in
the minority class (the mode) jointly with the minimum and maximum values (all three
can be quickly computed), in an appropriate manner, for the generation of synthetic objects
around the mode in the region of the minority class defined by the minimum and maximum
values. This allowed us to obtain a linear complexity oversampling method that is much
faster than SMOTE-based methods, which complexity is at least quadratic. Moreover,
the proposed method has a complexity similar to the complexity of NDO, which is the
only oversampling method reported in the literature that is not based on the k-nearest
neighbors, however according to our experiments, the proposed method scales better when
the number of objects and features increases.

Comparing the synthetic objects generated by the proposed method against those
generated by SMOTE and NDO, we have shown that similar to SMOTE and NDO, Fast-
SMOTE generate synthetic objects close to the objects of the minority class and near the
decision region between the classes.

In small unbalanced datasets where state-of-the-art oversampling methods can over-
sample the minority class in a short time, the proposed method obtains an oversampling
quality similar to these method but it is found to be the fastest method.

Our comparison between Fast-SMOTE and NDO for large datasets with regard to
runtime and AUC shows that Fast-SMOTE produces oversampled datasets that allow
training supervised classifiers to obtain classification results that are statistically similar to
those classification results obtained by training the classifiers with datasets oversampled
by NDO, but in much less runtime. From all of these experiments, we can conclude that
Fast-SMOTE is the best method for oversampling large datasets with imbalanced classes.

As mentioned above, the development of oversampling methods not based on the
search for nearest neighbors is a poorly explored research direction. Hence, in future work,
we propose to continue developing oversampling methods following this approach. In
particular, we are interested in developing oversampling methods that can work on large
mixed datasets with imbalanced classes. Additionally, the implementation and develop-
ment of oversampling methods on GPU, parallel CPU or distributed computing [58–62] is
an active research area. Thus, in future work, we will develop an implementation of our
oversampling method on these platforms to improve its runtime further. Also, we will face
the imbalance problem with other problems in supervised classification as noise, missing
data, or multiple minority class groups.
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