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Abstract: Recently, wireless sensor networks (WSNs) have drawn great interest due to their
outstanding monitoring and management potential in medical, environmental and industrial
applications. Most of the applications that employ WSNs demand all of the sensor nodes
to run on a common time scale, a requirement that highlights the importance of clock
synchronization. The clock synchronization problem in WSNs is inherently related to
parameter estimation. The accuracy of clock synchronization algorithms depends essentially
on the statistical properties of the parameter estimation algorithms. Recently, studies
dedicated to the estimation of synchronization parameters, such as clock offset and skew,
have begun to emerge in the literature. The aim of this article is to provide an overview
of the state-of-the-art clock synchronization algorithms for WSNs from a statistical signal
processing point of view. This article focuses on describing the key features of the class
of clock synchronization algorithms that exploit the traditional two-way message (signal)
exchange mechanism. Upon introducing the two-way message exchange mechanism, the
main clock offset estimation algorithms for pairwise synchronization of sensor nodes are
first reviewed, and their performance is compared. The class of fully-distributed clock
offset estimation algorithms for network-wide synchronization is then surveyed. The
paper concludes with a list of open research problems pertaining to clock synchronization
of WSNs.
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1. Introduction

A wireless sensor network (WSN) is a group of spatially-distributed autonomous sensors, which
monitor physical or environmental conditions, such as temperature, humidity, speed, pressure, etc.,
and then transmit the recorded data to a central computing unit for analysis. WSNs originate from
military-oriented applications, such as battlefield surveillance and movement monitoring. Nowadays,
WSNs have witnessed a rapid growth and have been implemented in a variety of promising applications,
which can be classified as follows:

• Military [1]: battlefield surveillance; forces monitoring; battle damage assessment.
• Health [2,3]: tracking and monitoring patients; telemonitoring of human physiological data.
• Environment [4,5]: air pollution monitoring; water quality monitoring; forest fire detection.
• Home [6,7]: home automation; home appliances management and monitoring.
• Industry [8]: machine health monitoring; waste monitoring; data logging.

Most of these applications require the clocks of network nodes to be synchronized, because
performing a joint task requires all of the nodes to operate on a common time scale. For instance,
data logging is a basic operation that collects, processes and transmits data and is used for temporal
and spatial monitoring of a habitat. The advantage of data logging in WSNs over the conventional data
logging lies in the property of real-time data being collected, which requires some or all nodes in the
network to share a common time frame.

Each sensor in a WSN operates independently and has its own clock. Even if the clocks of sensors are
initially tuned perfectly, due to the imperfections of the clock oscillator, they may drift away from the
ideal time as time evolves [9]. Hence, developing efficient clock synchronization protocols is critical in
WSNs. In the literature, many clock synchronization algorithms rely on the clock information from the
Global Positioning System (GPS). However, GPS is not ubiquitously available and requires a high-power
receiver [10]. This fact makes it impractical to implement GPS technology in the clock synchronization
of WSNs, since WSNs generally consist of small sensors that have limited energy. Furthermore,
sensors sometimes are positioned in an environment where the GPS signal is not available, as is the
case with underwater or underground sensors for water quality monitoring. For clock synchronization
applications in computer networks, the network time protocol (NTP) represents one of the oldest and
standard Internet timing protocols in current use [11]. However, NTP is still not suitable for WSNs,
due to the lack of energy availability and unstable working environment in WSNs. Therefore, a variety
of synchronization protocols have been particularly designed for WSNs. In general, these protocols
perform clock synchronization via timing message exchanges among sensors. However, due to the
power requirement for each individual sensor, sensors have a limited communication range, and they are
not able to communicate with every other sensor. An example of a WSN with nine sensors is shown
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in Figure 1a, where each circle denotes a sensor and each edge represents the communication link (if
present) between the corresponding pair of sensors.
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Figure 1. Network topology for different synchronization approaches.

Traditional synchronization protocols for WSNs generally include two steps: first, the
synchronization is conducted within a pair of neighboring nodes; second, a multi-hop structure is
built, such that the synchronization can be extended into all of the nodes through a layer-by-layer
synchronization. One natural approach to deal with the multi-hop structure of WSNs is to construct
a tree-based network. Specifically, as illustrated in Figure 1b, a sensor is selected as the reference
node, then a spanning tree rooted at this node is built, and each sensor synchronizes with its parent
pairwisely along the unique path from that sensor to the root. On the other hand, the cluster-based
structure divides the network into several interconnected single-hop clusters, as graphically shown in
Figure 1c. In each cluster, a reference node is selected, and all of the other nodes are pairwisely
synchronized by the reference node. The reference nodes of different clusters act as gateways to
adjust the local clock of different clusters into one common time frame. In general, the core of
these protocols is based on timing message exchanges between a pair of nodes, in which accurate and
efficient pairwise clock synchronization algorithms play a key role. In the literature, some widely-used
clock synchronization protocols, such as the timing-sync protocol for sensor networks (TPSN) [12], the
tiny/mini synchronization [13], the light-weight time synchronization (LTS) [14] and the flooding time
synchronization protocol (FTSP) [15], employ a two-way message exchange mechanism to adjust the
clock between any two nodes.

However, the traditional synchronization protocols suffer from large overhead in building and
maintaining the spanning-tree or cluster structure. In addition, some nodes act as a root (in the
spanning-tree structure) or as a gateway (in the cluster structure), and the failure of such nodes may
lead to the failure of a large number of nodes connecting to it. To tackle this problem, several algorithms
based on a fully-distributed communication topology have been proposed. In such algorithms, there are
no special nodes, such as roots and gateways, and thus, no structure needs to be built. With all of the
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nodes performing exactly the same algorithm and communicating with their neighboring nodes, these
protocols are robust to the topology changes and failures of nodes.

In this paper, the latest algorithms in the realm of clock synchronization for WSNs are
surveyed following a statistical signal processing viewpoint. Specifically, the rest of the paper is
organized as follows. Section 2 introduces the clock model and the two-way message exchange
mechanism for pairwise clock synchronization. Based on the two-way message exchange mechanism,
the state-of-the-art pairwise clock synchronization algorithms under Gaussian random delays are
investigated in Section 3. Section 4 overviews the pairwise clock synchronization algorithms in the
presence of exponential random delays. Section 5 surveys the signal processing techniques employed in
WSNs when the random delays are unknown. In Section 6, synchronization algorithms that assume a
fully-distributed operation are discussed. Finally, Section 7 concludes the paper and provides some open
research topics.

In the literature, surveys for clock synchronization in WSNs have been presented by [9,10,16,17].
The focus of [10,16] lies in the clock synchronization protocols that are applied in WSNs. The
survey paper [17] provides a technical overview of the history, recent advances and challenges
in distributed clock synchronization for distributed wireless networks, while this article presents
synchronization algorithms with emphasis on the mathematical and statistical techniques employed
for clock synchronization parameters estimation. The work in [9] surveys the latest advances
in the clock synchronization of WSNs following a signal processing viewpoint. However, only
pairwise synchronization methods are investigated in [9], while our paper discusses both pairwise and
fully-distributed synchronization algorithms.

2. System Model for Pairwise Clock Synchronization

In this section, the clock model for each senor node is first introduced and the notions of clock offset
and skew are described. Then, the classic mechanism for message exchange between two adjacent nodes,
namely the two-way message exchange mechanism, is presented.

2.1. Clock Offset and Skew

As discussed earlier, each sensor node in a WSN works independently and has its own clock. Ideally,
the clock of a sensor node is modeled as c(t) = t, where t represents the reference time [9]. However,
due to the imperfections of the clock oscillator, as well as the environmental factors, such as pressure,
temperature and hardware aging, the clock is subject to change as time evolves. Generally, the clock
function of node i can be expressed as:

ci(t) = θi + fi · t (1)

where θi and fi denote the clock offset (phase difference) and the clock skew (frequency difference) for
sensor node i, respectively [9]. In this way, if the clock of Node A is selected to be the reference time, it
follows that:

cB(t) = θ + f · cA(t)
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where θ and f stand for the clock offset and skew between Nodes A and B, respectively. A graphical
interpretation of the relationship between the clocks of Nodes A and B is shown in Figure 2. It can
be seen that if θ = 0 and f = 1, then Nodes A and B are perfectly synchronized. Otherwise, the
synchronization process aims to estimate the clock offset θ and skew f , such that Node B can adjust
its local clock to the reference time (Node A). As time evolves, the clock offset and skew are subject
to change due to various reasons, such as the changes induced by the environment and sensor hardware
aging. Therefore, the clock parameters are synchronized periodically, such that they are tuned up-to-date.
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Figure 2. Clocks of sensor nodes.

2.2. Two-Way Message Exchange Mechanism

The two-way message exchange is a classic mechanism for communicating the timing messages
between two adjacent nodes and has been widely used in the literature [12–15]. For pairwise
synchronization, one of the sensor nodes is selected as the reference node. For example, a two-way
message exchange model between Node A and Node B is shown in Figure 3 in the situation when Node
A is serving as the reference node. During message exchange round i, the synchronization begins at
Node A, and a synchronization message containing the sending time T ai is sent to Node B. Next, Node B
records the reception of the message at its clock time T bi and sends an acknowledgment message to Node
A at T ci . The acknowledgment message contains the timestamps T bi and T ci . At last, Node A receives
the acknowledgment message at T di , and the message exchange round i ends. This process is repeated
N times, where N stands for the required number of observations.

Based on the procedure depicted above, the clock synchronization problem can be mathematically
modeled as

T bi =f(T ai + d+Xi) + θ

T ci =f(T di − d− Yi) + θ
(2)

where θ and f represent the clock offset and clock skew, respectively. Moreover, Xi and Yi denote the
random delays from Node A to Node B and from Node B to Node A, respectively, and d stands for
the fixed portion of delays. In addition, T ai , T

d
i and T bi , T

c
i are time stamps recorded at Nodes A and

B, respectively.
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Figure 3. Two-way message exchange mechanism (with skew).

If we consider only the clock (phase) offset between two adjacent nodes, i.e., f = 1, the system model
in Equation (2) can be expressed as:

T bi =T ai + d+Xi + θ

T ci =T di − d− Yi + θ
(3)

The equations in Equation (3) can be further simplified as:

Ui =d+ θ +Xi

Vi =d− θ + Yi
(4)

where Ui and Vi contain the clock information and are defined as Ui = T bi − T ai and
Vi = T di − T ci , respectively.

3. Pairwise Clock Synchronization under Gaussian Delays

In general, probability density function (PDF) models have been employed for modeling the random
portion of delays in WSNs. Examples of PDFs that have been adopted in the literature include
exponential, Gaussian, Weibull and Gamma [18–21]. In this section, we use the Gaussian distribution to
characterize the random delay in WSNs, i.e., Xi and Yi are Gaussian random variables with parameters
(µ1, σ1) and (µ2, σ2), respectively. The reasons for selecting the Gaussian distribution for modeling the
random delays are as follows:

• The central limit theorem (CLT) states that the PDF of the sum of a large number of independent
and identically-distributed (i.i.d.) random variables is approximately normally distributed.
Therefore, the Gaussian model is appropriate if the random delays are assumed to be the
summation of multiple independent random variables.
• Experimental results based on two Texas Instruments ez430-RF2500 evaluation boards were

recorded in [22] to demonstrate the fitness of the Gaussian distribution in modeling the random
portion of delays in WSNs.

The most representative pairwise clock synchronization algorithms in the literature focused on
developing maximum likelihood estimators (MLEs) for the clock offset and skew. The MLE is one
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of the most widely-used estimators in the area of parameter estimation, since it achieves asymptotically
the Cramér–Rao lower bound (CRLB).

Based on the two-way message exchange model in Equation (4), where only the clock offset is
considered, [18] derived the MLE for clock offset by assuming a known fixed delay d and symmetric
random delays, i.e., µ1 = µ2 = µ and σ1 = σ2 = σ. In this framework, the likelihood function is
expressed as:

p(Ui, Vi|θ) = (2πσ2)−Ne
− 1

2σ2

[
N∑
i=1

(Ui−d−θ−µ)2+
N∑
i=1

(Vi−d+θ−µ)2

]

The MLE of clock offset is derived by differentiating the log-likelihood function with respect to θ and
setting the corresponding derivative to zero, and it assumes the expression:

θML =
U − V

2
(5)

where U and V stand for the sample means of observations {Ui}Ni=1 and {Vi}Ni=1, respectively. It can
be verified that the estimator Equation (5) is unbiased and achieves the CRLB. The MLE estimator
Equation (5) represents also the minimum variance unbiased estimator (MVUE).

Following the same assumptions, i.e., a known fixed delay and symmetric random delays, the joint
maximum likelihood estimates of the clock offset and skew were also proposed in [18] based on
the two-way message exchange model in Equation (2). Specifically, the likelihood function is first
formulated as:

p(Ui, Vi|θ, f ′) = (2πσ2)−Ne
− 1

2σ2

N∑
i=1
{[f ′(θ−T bi )+(Tai +d)]2+[f ′(θ−T ci )+(T di −d)]2}

where f ′ = 1/(1 + f). Differentiating the log-likelihood function with respect to θ leads to an equation
of θ in terms of f ′. In addition, differentiating the log-likelihood function with respect to f ′ results in an
equation of f ′ in terms of θ. The joint estimates of θ and f ′, denoted as θ̂ML and f̂ ′ML, can be obtained
by combining those two equations, and the MLE of f is obtained as f̂ML = 1/(1 + f̂ ′ML), due to the
invariance principle [23].

However, in some practical cases, the value of the fixed delay d is unknown and sometimes
even represents a parameter that needs to be estimated, as is the case with the node localization
application [24]. Therefore, efficient algorithms for joint estimation of the clock offset, clock skew and
fixed delay are of great interest. Based on the two-way message exchange mechanism in Equation (2),
Leng et al. [24] extended the result in [18] by assuming an unknown fixed delay d. First, the signaling
model Equation (2) is re-formulated in matrix form as:

T a1
...
T aN
−T d1

...
−T dN


︸ ︷︷ ︸

4
=Cr

+d · 1 =



T b1 −1
...

...
T bN −1

−T c1 1
...

...
−T cN 1


︸ ︷︷ ︸

4
=Ch

[
φ1

φ0

]
︸ ︷︷ ︸
4
=Φ

−



X1

...
XN

Y1

...
YN


︸ ︷︷ ︸

4
=Z
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where φ0
4
= θ/f , φ1

4
= 1/f and 1 = [1, 1, · · · , 1]T with dimension 2N × 1.

Since Xi and Yi are independent Gaussian random variables, i.e., Xi ∼ N (0, σ2), Yi ∼ N (0, σ2), the
log-likelihood function for Φ and d is expressed as:

ln p(Cr,Ch|Φ, d) = ln
N

2πσ2
− ||Cr + d · 1−ChΦ||2

2σ2

For a fixed d, the MLE of Φ is given by:

Φ̂(d) = (CT
hCh)

−1CT
h (Cr + d1) (6)

Plugging Equation (6) into the log-likelihood function results in a compressed likelihood function
with only one variable d. The MLE of d is derived by taking the derivative over the resulting
log-likelihood function with respect to d, and the MLE of Φ is obtained by plugging the corresponding
estimate of d back into Equation (6). Finally, the MLEs of θ and f are obtained from the MLE of Φ

using the invariance principle [23].

4. Pairwise Clock Synchronization under Exponential Delays

In the literature, the exponential distribution is also commonly exploited to represent the random
portion of delays in WSNs. The reasons behind choosing the exponential distribution include:

• For the point-to-point hypothetical reference connection (HRX) between two nodes, a single-server
M/M/1queue can appropriately represent the aggregate link delay, where the random delays are
modeled as independent exponential random variables [25].
• Experiment results were carried out in [26,27] to verify the appropriateness of choosing the

exponential distribution to characterize the random delays in WSNs.
• Among all distributions with a fixed mean in the support [0,+∞), the exponential distribution

achieves the maximum differential entropy, and thus, it is the least informative.

The most representative clock offset estimation methods for pairwise synchronization in the presence
of exponential delays are the maximum likelihood estimator (MLE), the best linear unbiased estimator
(BLUE) and the minimum variance unbiased estimator (MVUE), and they will be first reviewed in
this section. The MLE for joint estimation of the clock offset and skew will be investigated later.
Finally, an important statistical concept, referred to as the confidence interval for the clock offset, will
be investigated.

4.1. Clock Offset Estimation under Exponential Delays

4.1.1. Maximum Likelihood Estimator

In the two-way message exchange mechanism Equation (4) where only clock offset exists, we assume
that Xi and Yi are exponentially-distributed random variables with means λ1 and λ2, respectively.
Assuming a known fixed delay, Abdel-Ghaffar [25] reported that the MLE of the clock offset does not
exist when the exponential random delays are assumed to be known and symmetric, i.e., λ1 = λ2 = λ,
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since the likelihood function does not admit a unique maximum. However, Jeske [28] derived a
closed-form solution for the MLE of clock offset by assuming an unknown fixed delay and an unknown
mean for the exponential delay. In this way, a joint estimation of θ, d and λ can ensure a unique maximum
of the likelihood function. Specifically, assuming symmetric exponential delays with a common mean
λ, the likelihood function for [d, θ, λ]T is expressed as:

p(Ui, Vi|d, θ, λ) = λ−2Ne
−
(
N∑
i=1

Ui+
N∑
i=1

Vi−2Nd

)
/λ

× I[U(1) ≥ d+ θ, V(1) ≥ d− θ] (7)

where I[·] denotes the indicator function. Let the first order statistics U(1) and V(1) denote the minimum
values of observations {Ui}Ni=1 and {Vi}Ni=1, respectively. It can be shown that for fixed values of d and θ,
the optimal value of λ that maximizes the likelihood function is given by λ = (U +V )/2−d. Therefore,
the likelihood function Equation (7) can be simplified to:

p(Ui, Vi|d, θ) =

(
U + V

2
− d
)−2N

e−2N × I[U(1) ≥ d+ θ, V(1) ≥ d− θ]

It can be observed that the indicator function poses a high impact on the value of the likelihood
function, and moreover, the indicator function depends on U(1) and V(1). Hence, in order to maximize the
likelihood function, different assumptions on U(1) and V(1) are discussed in [28], e.g., U(1) > V(1) > 0,
and the region where p(d, θ|Ui, Vi) > 0 is illustrated separately for each assumption. The value of θ
that maximizes the likelihood function is found graphically from the corresponding support region. It
is shown that all of the different assumptions on U(1) and V(1) lead to the same MLEs for the vector
[d, θ, λ]T :  d̂ML

θ̂ML

λ̂ML

 =
1

2

 U(1) + V(1)

U(1) − V(1)

U + V − U(1) − V(1)

 (8)

Our primary interest is the MLE of the clock offset θ̂ML = (U(1) − V(1))/2, but in the meantime, the
MLEs for d and λ are also derived. It can be verified that θ̂ML is unbiased and has a variance λ2/(2N).
Interestingly, if d is unknown and the variable portions of delays are not symmetric, i.e., λ1 6= λ2, the
MLE of θ also admits the form θ̂ML = (U(1) − V(1))/2. However, in this case, the MLE is biased.

Different from the graphical analysis used in [28], [29] analytically derived the MLE of clock offset
under exponential delays using convex optimization tools. In particular, the system model in Equation (4)
is re-written as:

Ui = ξ +Xi, Vi = ψ + Yi (9)

where ξ 4= d+ θ and ψ 4= d− θ. The goal is to determine the MLEs of ξ and ψ, i.e., ξ̂ML and ψ̂ML, such
that the MLE of θ can be obtained from:

θ̂ML =
(
ξ̂ML − ψ̂ML

)
/2 (10)
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based on the invariance principle [23]. Towards this end, the density functions of Ui and Vi are
expressed as:

p(Ui|ξ) = λN1 exp

(
−λ1

N∑
i=1

(Ui − ξ)

)
I(U(1) − ξ) (11)

p(Vi|ψ) = λN2 exp

(
−λ2

N∑
i=1

(Vi − ψ)

)
I(V(1) − ψ) (12)

The resulting MLE of ξ can be formulated as a convex optimization problem:

ξ̂ML = arg max
ξ

exp(Nλ1ξ)

s.t. ξ ≤ U(1)

and it follows that ξ̂ML = U(1). The analysis of ψ is analogous to the case of ξ, and it yields that
ψ̂ML = V(1). Thus, the MLE of θ follows from Equation (10) and admits the form:

θ̂ML =
U(1) − V(1)

2

which coincides with the result in Equation (8). The advantage of this analytical approach is that it
provides a more general derivation of MLEs, which can by applied to obtain the MLEs for the delays
under other types of distributions, which include Gaussian and log-normal as special cases [29].

4.1.2. Best Linear Unbiased Estimator

In the statistical signal processing field, the minimum mean square error (MSE) is commonly selected
as the criterion to measure the performance of estimators. The MSE of an estimator θ̂ is defined as:

MSE(θ̂) = var(θ̂) + [bias(θ̂)]2 (13)

where var(θ̂) stands for the variance of θ̂ and bias(θ̂) 4= E(θ̂)− θ.
In general, the MVUE is referred to as the “optimal” estimator, since it minimizes the variance in the

class of unbiased estimators. However, it frequently occurs that the MVUE is difficult or impossible to be
derived or might not even exist [23]. For such scenarios, a suboptimal estimator is required. A common
approach is to constrain the estimator to be linear in terms of the observations and to find the linear
estimator that is unbiased and achieves the minimum variance. Such an estimator is referred to as the
BLUE. The BLUE of the clock offset under asymmetric exponential delays was first derived by Jeske and
Sampath in [30] using the order statistics of the observations [U(1), U(2), · · · , U(N), V(1), V(2), · · · , V(N)]

T

where U(1) ≤ U(2) ≤ · · · ≤ U(N) and V(1) ≤ V(2) ≤ · · · ≤ V(N). Specifically, the BLUE is formulated as
a linear combination of the order statistics:

T =
N∑
i=1

aiU(i) +
N∑
i=1

biV(i) (14)

The variance of estimator T and the unbiasedness condition are further expressed in terms of ai
and bi. Using Lagrange multipliers, it can be shown that the minimum of the variance subject to the
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unbiasedness condition is achieved when bi = −ai with a1 = 1/2 + 1/(2N) and ai = −1/[2N(N − 1)]

for 2 ≤ i ≤ N . Thus, the BLUE of the clock offset admits the form:

θ̂BLUE-A =
N(U(1) − V(1))− (U − V )

2(N − 1)
(15)

On the other hand, the BLUE of the clock offset under symmetric exponential delays can also be
derived following the aforementioned steps, and it is expressed as:

θ̂BLUE-S =
U(1) − V(1)

2

Using statistical signal processing techniques, [31] later re-derived the joint BLUEs for the fixed
delay, the clock offset and the mean of exponential delays under symmetric and asymmetric exponential
delays, as shown in Equations (16) and (17), respectively. d̂BLUE-S

θ̂BLUE-S

λ̂BLUE-S

 =
1

2(N − 1)

 N(U(1) + V(1))− (U + V )

(N − 1)(U(1) − V(1))

N(U + V )−N(U(1) + V(1))

 (16)


d̂BLUE-A

θ̂BLUE-A

λ̂1BLUE-A

λ̂2BLUE-A

 =
1

2(N − 1)


N(U(1) + V(1))− (U + V )

N(U(1) − V(1))− (U − V )

2N(U − U(1))

2N(V − V(1))

 (17)

These results were further used as a prerequisite to find the MVUE of the clock offset, a result that
will be presented in the next sub-section.

4.1.3. Minimum Variance Unbiased Estimator

As discussed earlier, the MVUE is an unbiased estimator that exhibits lower variance than any other
unbiased estimator. Finding the MVUE usually requires usage of the concept of sufficient statistics, the
Neyman–Fisher factorization theorem and the Rao–Blackwell–Lehmann–Scheffe theorem [23] (p. 101).

Let Φ denote the parameters to be estimated and z represent the set of the observations; then, the
Neyman–Fisher factorization theorem states that if the likelihood function p(z|Φ) can be factorized as:

p(z|Φ) = g(T (z),Φ)h(z),

where g is a function depending on z only through T (z) and h is a function depending on z only,
then T (z) is a sufficient statistic for Φ. In a two-way message exchange mechanism under symmetric
exponential delays, Φ = [d, θ, λ]T and z = [U1, U2, · · · , UN , V1, V2, · · · , VN ]T . The MVUE of Φ was
derived in [31] by implementing the following procedure. Express first the likelihood function in terms
of the unit step function u[·] as follows:

p(z|Φ) = λ−2N exp

[
−1

λ

N∑
i=1

(Ui + Vi − 2d)

]
· u[U(1) − d− θ] · u[V(1) − d+ θ] (18)
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and factorize Equation (18) as:

p(z|Φ) = g1(
N∑
i=1

(Ui + Vi), d, λ) · g2(U(1), d, θ) · g3(V(1), d, θ) · h(z)

where:

g1(
N∑
i=1

(Ui + Vi), d, λ) = λ−2N exp

[
−1

λ

N∑
i=1

(Ui + Vi − 2d)

]
g2(U(1), d, θ) = u[U(1) − d− θ], g3(V(1), d, θ) = u[V(1) − d+ θ], h(z) = 1

In the above equations, h(z) is independent of the unknown parameters Φ and g1, g2, g3

are functions depending on the data only through T = {
n∑
i=1

(Ui + Vi), U(1), V(1)}. Using the

Neyman–Fisher factorization theorem, it turns out that T is a sufficient statistic. Moreover, the
Rao–Blackwell–Lehmann–Scheffe theorem (p. 109 in [23]) claims that a sufficient statistic T is
complete if there is only one function c(·) of T that is unbiased, and this function leads to the MVUE,
i.e., ΦMVU = c(T). Therefore, the remaining task is to prove that T is complete or, equivalently, that
only one function of T is unbiased, and to find that function.

The authors in [31] employed a one-to-one transformation of T, denoted as

T′ = {
N∑
i=1

(Ui + Vi − U(1) − V(1)), U(1), V(1)}. Then, it was shown that T′ is complete by assuming

that there are two functions of T′ leading to unbiasedness, i.e., E(c(T′)) = E(h(T′)) = Φ, and
then, proving that, actually, c(T′) = h(T′). It turns out that T is also complete, since the sufficient
statistics are unique within one-to-one transformations [23]. To this end, what remains to prove is
to find an unbiased estimator for Φ as a function of T, which represents the MVUE according to
the Rao–Blackwell–Lehmann–Scheffe theorem. It seems difficult to find three unbiased functions of
T for each of d, θ and λ just by inspection. However, it can be observed that the BLUE ΦBLUE-S in
Equation (16) is a function of T and is also unbiased. Therefore, it is concluded that the BLUE is also
the MVUE:

Φ̂MVUE-S =

 d̂MVUE-S

θ̂MVUE-S

λ̂MVUE-S

 =
1

2(N − 1)

 N(U(1) + V(1))− (U + V )

(N − 1)(U(1) − V(1))

N(U + V )−N(U(1) + V(1))

 (19)

Following an analogous approach, it was reported in [31] that the MVUE of the clock offset is also
equivalent to the BLUE in the presence of asymmetric exponential delays:

θ̂MVUE-A =
N(U(1) − V(1))− (U − V )

2(N − 1)

4.1.4. Comparison of Estimators

A comparison of MLE, BLUE and MVUE under both symmetric and asymmetric exponential
delays is shown in Table 1. The criteria adopted in Table 1 include the estimator formula in terms
of observations, bias, variance and MSE. It is observed that the BLUE and MVUE coincide in the
presence of both symmetric and asymmetric distributions. Furthermore, all three estimators admit the
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same expression when the random delays are symmetrically exponential distributed. Under asymmetric
exponential delays, albeit unbiased, the MLE can still outperform the MVUE when:

λ2
1 + λ2

2 − λ1λ2

2N2
<

λ2
1 + λ2

2

4N(N − 1)

or equivalently:

N <
2λ1λ2

(λ1 − λ2)2
+ 2 (20)

It can be seen that the MLE achieves a better performance when the means of the exponential delays
are close to each other. In this way, the right-hand side of Equation (20) resumes being a large number,
and the inequality Equation (20) generally holds with a reasonable selection of N .

Table 1. Comparison of estimators.

Clock Offset
Symmetric Delays Asymmetric Delays

Formula Bias Variance MSE Formula Bias Variance MSE

MLE [28,29]
U(1)−V(1)

2 0 λ2

2N2
λ2

2N2

U(1)−V(1)
2

λ1−λ2
2N

λ21+λ22
4N2

λ21+λ22−λ1λ2
2N2

BLUE [30,31]
U(1)−V(1)

2 0 λ2

2N2
λ2

2N2

N(U(1)−V(1))−(U−V )

2(N−1) 0 λ21+λ22
4N(N−1)

λ21+λ22
4N(N−1)

MVUE [31]
U(1)−V(1)

2 0 λ2

2N2
λ2

2N2

N(U(1)−V(1))−(U−V )

2(N−1) 0 λ21+λ22
4N(N−1)

λ21+λ22
4N(N−1)

4.2. Joint Estimation of Clock Offset and Skew under Exponential Delays

In general, the clock synchronization in WSNs involves two steps. The first step assumes
synchronizing the nodes by adjusting the clock phase offset (close offset), while the second step resumes
correcting the clock frequency offset (clock skew). The clock skew correction plays a critical role
in clock synchronization, especially for long-term synchronization, since it reduces the number of
exchanged messages and, thus, brings down the energy consumption. Therefore, we discuss the joint
estimation of clock offset and skew in this section.

In the literature, based on a two-way message exchange mechanism, the studies for joint estimation
of clock offset and skew mainly concentrated on the development of MLEs, and there is no closed-form
solution for the joint estimation of clock offset and skew under exponential delays. Roughly speaking,
the algorithms for developing MLEs can be categorized into two types: in the first category, a suboptimal
model is built by removing some nuisance parameters, and the corresponding MLEs are derived, while
in the second category, the joint estimation is conducted directly.
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4.2.1. Removing Nuisance Parameters

Based on the two-way message exchange mechanism in Equation (2) and assuming symmetric
exponential delays, the likelihood function based on observations {Ui}Ni=1 and {Vi}Ni=1 is given by:

p(Ti|d, θ, f, λ) =λ−2N exp

[
−1

λ

(
N∑
i=1

T bi − T ci
f

−
N∑
i=1

(T ai − T di )− 2Nd

)]

×
N∏
i=1

I

[
T bi − θ
f
− T ai − d ≥ 0;T di −

T ci − θ
f
− d ≥ 0

] (21)

It is observed that the likelihood function Equation (21) assumes a complicated expression, and the
MLEs might be difficult to derive. According to this observation, an algorithm for joint estimation of
clock offset and skew, referred to as the ML-like estimator (MLL), was proposed in [18] by using the first
and last observations of timing message exchanges. Specifically, from the first equation in Equation (2),
subtracting T b1 from T bN yields:

T bN − T b1 = f · (T aN − T a1 +XN −X1) (22)

Similarly, from the second equation in Equation (2), subtracting T c1 from T cN leads to:

T cN − T c1 = f · (T dN − T d1 + Y1 − YN) (23)

Such an approach helps to remove the explicit dependency on the nuisance parameters λ, d and θ.
In addition, an ML-like estimate f̂MLL of the clock skew is derived using Equation (22) and (23). Finding
an estimate of the clock offset is achieved by rewriting Equation (2) as:

U ′i =d′ + θ +X ′i

V ′i =d′ − θ + Y ′i

where U ′i = T bi − T ai f̂MLL, V
′
i = T di f̂MLL − T ci , X ′i = Xif̂MLL, Y

′
i = Yif̂MLL, and d′ = df̂MLL. It can be

seen that the above model shares the same form as the no-skew model in Equation (4). Therefore, an
ML-like estimate of the clock offset is obtained θ̂MLL = (U ′(1) − V ′(1))/2. The above algorithm for joint
estimation of clock offset and skew is computationally simple, but it exhibits a suboptimal performance
compared to the maximum likelihood estimator, since it exploits a reduced set of statistics. That is the
reason why the above estimator is referred to as the ML-like estimator.

Another approach to remove the nuisance parameter was reported in [32] by adding two equations in
Equation (2). It follows that:

T bi + T ci = f(T ai + T di ) + 2θ + f(Xi − Yi) (24)

where the nuisance parameter d is removed. Dividing the above expression by f and defining θ1 = 1/f

and θ2 = θ/f leads to a new model represented in matrix form as follows: T a1 + T d1
...

T aN + T dN

 =

 T b1 + T c1 −2
...

...
T bN + T cN −2

[ θ1

θ2

]
+

 Y1 −X1

...
YN −XN

 (25)
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Assuming symmetric exponential delays, it is easy to verify that Zi
4
= Xi − Yi follows a Laplace

distribution with location parameter zero and scale parameter 1/λ. Thus, the log-likelihood function for
model Equation (25) is expressed as:

ln p(Ti|θ1, θ2) = N ln
λ

2
− λ

N∑
i=1

|T ai + T di − θ1(T bi + T ci ) + 2θ2| (26)

Therefore, the MLEs of θ1 and θ2 can be found by maximizing Equation (26), and the corresponding
estimators for θ and f are obtained using the relationships θ1 = 1/f and θ2 = θ/f .

4.2.2. Direct Joint Estimation of Clock Offset and Skew

Assuming symmetric exponential delays with a known mean λ, [33] addressed the problem of MLEs
for clock offset and skew by optimizing over nonlinear constraints iteratively. In terms of the estimates
[d, θ, f ]T , four different cases were considered: (1) d and θ known, f unknown; (2) θ known, d and f
unknown; (3) d known, θ and f unknown; (4) d, θ, f unknown. The ultimate goal is to jointly estimate
[d, θ, f ]T in the fourth case. However, similar to the derivation of the MLE in [28] when no skew is
considered, the MLEs are also determined by exploiting the boundary conditions of the support regions.
For Cases 1 and 2, the support regions are 2D, and the discussion of these two cases gives an insight to
further analyze Cases 3 and 4, where the support regions admit a 3D visualization.

Li and Jeske [34] proposed a computationally-simpler algorithm to find the MLEs of clock offset
and skew. Asymmetric exponential delays with unknown means were assumed in [34], such that the
estimation algorithm can be applied to a more general framework. In this case, the likelihood function
resumes as:

p(Ti|d, θ, f, λ1, λ2) =
λN1 λ

N
2

f 2N

N∏
i=1

exp

[
−λ1

f
(T bi − fT ai − θ − fd)− λ2

f
(fT di − T ci + θ − fd)

]
× I[min(T bi − fT ai − θ − fd) ≥ 0; min(fT di − T ci + θ − fd) ≥ 0]

(27)

Re-parameterizing in terms of θ1 = θ + fd and θ2 = −θ + fd leads to:

p(Ti|f, θ1, θ2, λ1, λ2) =
λN1 λ

N
2

f 2N

N∏
i=1

exp

[
−λ1

f
(T bi − fT ai − θ1)− λ2

f
(fT di − T ci − θ2)

]
× I[min(T bi − fT ai − θ1) ≥ 0; min(fT di − T ci − θ2) ≥ 0]

(28)

To find the MLEs for likelihood function Equation (27), or equivalently Equation (28), the concept
of profile likelihood function is employed in [34], such that the MLEs can be alternatively found by
maximizing the profile likelihoods. In particular, fixing f, θ1 and θ2, the conditional MLEs of λ1 and λ2

are shown to be:

λ̂1(f, θ1, θ2) =
fN

n∑
i=1

(T bi − fT ai − θ1)
, λ̂2(f, θ1, θ2) =

fN
n∑
i=1

(T di − fT ci − θ2)

Plugging the above equations into Equation (28) yields the profile likelihood as a function of f, θ1

and θ2, which is denoted as Lp(f, θ1, θ2). Following the same procedure with respect to Lp(f, θ1, θ2), the
conditional MLEs for θ1 and θ2 are expressed as:

θ̂1(f) = min(T bi − fT ai ), θ̂2(f) = min(fT di − T ci )
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To this end, the original five-dimensional optimization problem Equation (27) is simplified to the
maximization of a one-dimensional function Lp(f,min(T bi − fT ai ),min(fT di − T ci )), whose solution
represents the MLE for clock skew, and it is denoted as f̂JML. Additionally, the MLE for clock offset is
obtained via:

θ̂JML =
min(T bi − f̂JMLT

a
i )−min(f̂JMLT

d
i − T ci )

2

since the corresponding estimates of θ1 and θ2 are min(T bi − f̂JMLT
a
i ) and

min(f̂JMLT
d
i − T ci ), respectively.

4.3. Confidence Interval for Clock Offset

From a statistical point of view, a confidence interval (CI) is used to describe the amount of uncertainty
associated with a sample estimate of a parameter. More specifically, if a CI is constructed among a
series of experiments, the proportion of such an interval that contains the true value of the parameter is
given by the confidence level. Mathematically, suppose X to be a random sample from a probability
distribution with parameter θ, a CI is an interval with endpoints {s(X), b(X)}, such that the following
property holds:

Pr(s(X) < θ < b(X)) = γ (29)

where γ stands for the confidence level.
In terms of the confidence interval for clock offset under exponential delays, Li et al. [35] derived

satisfactory CIs using an approximate pivotal quantity (APQ). By assuming asymmetric exponential
delays, the authors in [35] derived the relative likelihood function for θ, say Λ(θ), based on the likelihood
function from model Equation (4). It was then shown that Λ(θ) is an asymptotic pivot in the sense that
its limiting distribution does not depend on any unknown parameter. Thus, the asymptotic pivot property
of Λ(θ), as well as its easily invertible form lead to a way to obtain an asymptotic 100(1− α)% CI for θ
as follows:

s(Ui, Vi) = max

{
U(1) − V(1)

2
−
U − U(1)

2

(
1

α
1
N

− 1

)
,−V(1)

}

b(Ui, Vi) = min

{
U(1) − V(1)

2
+
V − V(1)

2

(
1

α
1
N

− 1

)
,−U(1)

} (30)

A generalized pivotal quantity (GPQ) was also employed in [35] to propose a generalized confidence
interval for θ. Even though generalized confidence intervals generally do not have frequentist coverage
probabilities that are exactly equal to the nominal value, the proposed GPQ actually leads to frequentist
coverage probabilities that are very close to the nominal value. Furthermore, APQ and GPQ CIs under
exponential delays were also extended in [35] to any distribution within the one-parameter scale family.

Further discussions about CIs of clock offset were carried out in [36,37]. Specifically, under
exponential network delays, [36] explored sequential intervals with a preset width and proved that these
CIs provide a satisfactory solution to minimize the number of samples. In this way, sequential CIs can
be used to obtain the smallest sample size required to achieve a specified precision for the clock offset
estimation. On the other hand, by considering the correlation between the uplink and downlink random
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delays, [37] extended the CI procedure to bivariate models where the random delays are formulated as
Freund and Marshall–Olkin bivariate exponential delays. In addition, the MLEs for clock offset under
Freund and Marshall–Olkin models were also derived.

5. Pairwise Clock Synchronization under Unknown Random Delays

Although the assumptions of Gaussian and exponential distributions for the random delay component
of WSNs are plausible, it might happen that the underlying PDF of the network random delays is
unknown in advance. In fact, it is well known that the distribution of the network random delays is
difficult to characterize succinctly [30]. Therefore, the performance of estimators particularly designed
for a certain distribution may degenerate greatly under another type of distribution, and there is a need for
developing efficient estimation methods that are robust to the unknown random delays of WSNs. Based
on the classic two-way message exchange mechanism, we describe several robust estimation methods in
this section, namely the bootstrap bias correction [30], the composite particle filtering [38] and the least
squares estimator [39].

5.1. Bootstrap Bias Correction

Bootstrap bias correction is a statistical approach that aims to reduce the bias of an estimator at
the expense of increased variance, but with a total effect of reduced MSE [40]. For example, the
MLE of clock offset derived under exponential delays is given by θ̂ = (U(1) − V(1))/2. However,
the random delays may not follow an exponential distribution exactly, and the MLE derived under the
exponential assumption may perform poorly under other distributions. For such scenarios, the bootstrap
bias correction approach can be applied to reduce the bias and eventually the MSE of the estimator.

Suppose the observations x follow an unknown distribution F and the estimator is a statistic θ̂ = s(x);
the bias of θ̂ is defined as B(θ̂) = EF [s(x)]− θ. The bootstrap estimate of the bias can be expressed as:

B̂(θ̂) = EF̂ [s(x)]− θ̂ (31)

and the bias corrected estimator admits the form:

θ̂BC = θ̂ − B̂(θ̂) (32)

where F̂ denotes the empirical distribution of observations.
In the context of clock offset estimation under exponential delays, the observations between two

nodes are denoted as {Ui}Ni=1 and {Vi}Ni=1, and the MLE is given by θ̂ = (U(1) − V(1))/2. The bias of θ̂
resumes as:

B(θ̂) = EF

(
U(1) − V(1)

2

)
− θ =

1

2

(∫ ∞
0

[1− F (u)]Ndu−
∫ ∞

0

[1−G(v)]Ndv

)
− θ

where F (u) and G(v) stand for the unknown distributions of observations {Ui}Ni=1 and {Vi}Ni=1,
respectively. The bootstrap estimate of B(θ̂) can be further expressed as:

B̂(θ̂) = EF̂

(
U(1) − V(1)

2

)
− θ̂ =

1

2

(∫ ∞
0

[1− F̂ (u)]Ndu−
∫ ∞

0

[1− Ĝ(v)]Ndv

)
− θ̂ (33)
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Defining U(0) = V(0) = 0 and U(N+1) = V(N+1) =∞ leads to the empirical distribution [30]:

1− F̂ (u) =
N+1∑
i=1

N − i+ 1

N
I[U(i−1) ≤ u < U(i)]

1− Ĝ(u) =
N+1∑
i=1

N − i+ 1

N
I[V(i−1) ≤ v < V(i)]

(34)

Plugging Equation (34) back into Equation (33) yields B̂(θ̂) and eventually the bias-corrected
estimator of θ̂:

θ̂BC = U(1) − V(1) −
1

2

N∑
i=1

[(
N − i+ 1

N

)N
−
(
N − i
N

)N] [
U(i) − V(i)

]
(35)

Following the same procedure described above, the bias-corrected estimator of the BLUE under
asymmetric exponential delays, i.e., Equation (15), was also derived in [30]. Experimental results in [30]
showed that under common distribution assumptions other than exponential, e.g., Gamma, Weibull and
log-normal, the bias-corrected estimator of BLUE has the smallest MSE, while θ̂BC also outperforms the
MLE and the BLUE derived for exponential delays.

The work in [41] investigated the BLUE and its corresponding bias-corrected estimator under a
Pareto distribution: a heavy-tailed distribution that was adopted to model network delays for recent
applications [42–44]. The authors in [41] examined the effectiveness of bootstrap bias correction of
different estimators under varying assumptions for network delays. Some interesting examples were
reported where bootstrap bias correction fails in the sense that the MSE increases or even the absolute
bias increases. For instance, a somewhat surprising result is that the bootstrap bias correction of the
exponential BLUE leads to a large absolute bias under Pareto network delays. Among these estimators
and their corresponding bootstrap bias corrections, the bias-corrected estimator in Equation (35) was
considered to be a significantly more robust estimator in [41].

Moreover, another bias correction method, referred to as the Jackknifebias-correction, was reported
in [45]. The Jackknife bias-corrected estimator of the exponential MLE, θ̂ = (U(1) − V(1))/2,
was proposed and compared to the corresponding bootstrap bias-corrected estimator Equation (35).
Simulation results in [45] illustrated that the Jackknife bias correction does a better job at reducing
bias, but is generally eroded by a variance increase, which yields a larger MSE.

5.2. Composite Particle Filtering

The idea of composite particle filtering is to model the estimation problem in the form of a state-space
representation and to exploit an optimal Bayesian approach for state estimation [9]. In terms of clock
offset estimation, the system model in Equation (4) is rewritten in compact form matrix representation:[

Ui

Vi

]
︸ ︷︷ ︸
4
=yi

=

[
1 1

1 −1

]
︸ ︷︷ ︸

4
=B

[
d

θ

]
︸ ︷︷ ︸
4
=xi

+

[
Xi

Yi

]
︸ ︷︷ ︸
4
=ωi

(36)
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where ωi can assume any distribution. Since the value of clock offset is time varying, it is assumed to
obey a Gauss-Markov dynamic model:

xi = xi−1 + νi−1 (37)

where the noise term νi−1 is modeled as a Gaussian random variable with zero mean and covariance
matrix Qk−1 = E[νi−1ν

T
i−1]. The aim is to obtain the minimum mean square error (MSEE) estimator of

state xi, which is expressed as the conditional mean state estimator:

x̂i = E[xi|y1:i] (38)

where y1:i = [y1, · · · , yi]T stands for the observations up to time i.
The optimal state estimator consists of two steps. In the first step, the posterior distribution

p(xi−1|y1:i−1) is updated and supposed known, then the predictive distribution is updated as follows:

p(xi|y1:i−1) =

∫
p(xi|xi−1)p(xi−1|y1:i−1)dxi−1 (39)

where the transition PDF is obtained from Equation (37). In the second step, the posterior distribution at
time i is evaluated:

p(xi|y1:i) = Ci · p(xi|y1:i−1)p(yi|xi) (40)

where p(yi|xi) represents the likelihood function obtained from Equation (36), and:

Ci =

(∫
p(xi|y1:i)p(yi|xi)dxi

)−1

is a normalization constant.
In the composite particle filtering algorithm adopted in [38], the posterior and predictive distributions

are recursively modeled by finite Gaussian mixtures, and the components of the Gaussian mixtures
are updated using the Kalman filter in conjunction with particle filters. Computer simulation results
illustrate that the performance of the composite particle filter algorithm is superior in the presence of
delays with unknown distribution (such as Gamma, Weibull, log-normal or arbitrary mixtures) relative
to the performance exhibited by the MLEs derived specifically under the assumption of Gaussian or
exponential delays.

5.3. Least Squares Estimators

The least squares approach in [39] provides a general framework for joint estimation of clock offset
and skew, irrespective of the network delay distribution type. The model adopted by the least squares
approach is obtained by adding two equations in Equation (2) together and reduces to:

T bi + T ci
2

= θ + f
T ai + T di

2
+ f

Xi − Yi
2

(41)

Thus, we can regard Equation (41) as a linear regression model in terms of {(T bi + T ci )/2,
(T ai + T di )/2}Ni=1, where θ represents the intercept, f stands for the slope and f(Xi − Yi)/2 denotes
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the error term. Based on the model Equation (41), θ and f can be naively estimated via a standard least
squares approach as follows:

f̂LS =

N∑
i=1

(T bi + T ci )(T ai + T di − T
a − T d)

N∑
i=1

(T ai + T di − T
a − T d)2

(42)

and:
θ̂LS = (T

b
+ T

c
)/2− f̂LS(T

a
+ T

d
)/2 (43)

where T
j

for j = a, b, c, d represent sample means.
However, in general, neither the mean nor the covariance of the error term f(Xi−Yi)/2 is zero, which

may result in poor estimation performance. Therefore, several alternative least squares estimators were
proposed in [39] to further improve the estimation accuracy of clock offset and skew. An example of an
enhanced least squares estimator is referred to as the constrained least squares (CLS) estimator, and it is
found by minimizing the sum of squared residuals subject to a set of constraints on θ and f formed by
considering the time stamp model in Equation (2):

T bi ≥ θ + fT ai , T ci ≤ θ + fT di (44)

The disadvantage of the CLS lies in the challenging computations to solve the minimization problem.
Therefore, two additional least squares estimators, referred to as the feasibility checked least squares
(FLS) estimator and the Paxson-based estimator, respectively, were proposed in [39] to reduce the
computational complexity. Experimental results showed that the FLS estimator and the Paxson-based
estimator perform comparably and sometimes better than the CLS estimator, while exhibiting the
advantage of much less computational complexity.

6. Fully-Distributed Clock Synchronization Algorithms

The centralized signal processing techniques can only help address the problem of pairwise
synchronization. As discussed in Section 1, the network-wide synchronization requires a specified
network structure to extend the pairwise synchronization approach to all of the sensor nodes. This
increases the overhead of the communication and makes the network vulnerable to node failures. More
recent works on clock synchronization mainly concentrated on applying decentralized signal processing
methods (e.g., distributed estimation techniques) to develop clock synchronization algorithms in a
fully-distributed manner.

6.1. System Model

In a fully-distributed clock synchronization algorithm, the synchronization is not performed
pairwisely, but simultaneously among all of the sensor nodes. Therefore, instead of estimating the clock
offset difference and the relative clock skew between two nodes, we aim to find the clock offset and skew
for each individual sensor node. A two-way message exchange between nodes i and j in the n-th round
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of their message exchange is modeled in Figure 4. Following the same message exchange procedure
described in Section 2.2, we can write:

1

fj
[cj(t

2
n)− θj] =

1

fi
[ci(t

1
n)− θi] + dij +Xij (45)

1

fj
[cj(t

3
n)− θj] =

1

fi
[ci(t

4
n)− θi]− dji −Xji (46)

where dij and dji denote the fixed delays from node i to node j and from node j to node i, respectively,
andXij, Xji stand for the random delays. If only the effect of clock offset is considered, i.e., fi = fj = 1,
and the network topology is assumed stationary, i.e., dij = dji = d, the system model in Equations (45)
and (46) reduces to the more simplified model:

cj(t
2
n)− θj = ci(t

1
n)− θi + d+Xij (47)

cj(t
3
n)− θj = ci(t

4
n)− θi − d−Xji (48)

��(��
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Node i

Node j
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Figure 4. Two-way message exchange between nodes i and j.

6.2. Fully-Distributed Clock Synchronization Algorithms under Gaussian Delays

The Gaussian assumption for the random delay component of WSNs is justifiable due to the CLT and
many experimental results (see, e.g., [22]). The state-of-the-art of fully-distributed clock synchronization
algorithms under Gaussian random delays are discussed in the following sub-section.

6.2.1. Belief-Based Synchronization Algorithms

Existing fully-distributed algorithms in [22,46,47] are based on the belief propagation method in the
Bayesian framework. Under the assumption of Gaussian random delays, [46] proposed a belief-based
algorithm to estimate the clock offset in a distributed manner. Specifically, the system model is modified
by adding Equation (47)–(48), and it leads to:

T{i,j},n
4
= cj(t

2
n) + cj(t

3
n)− ci(t1n)− ci(t4n) = 2θj − 2θi + Zn (49)

where Zn
4
= Xij − Xji. Stacking all of the observations in a vector as Ti,j =

[
T{i,j},1, · · · , T{i,j},N

]
leads to the likelihood function denoted as p(Ti,j|θi, θj). In the Bayesian scenario, the clock offset of
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each sensor node, denoted as θi, is regarded as a random variable with prior distribution p(θi). The
estimate is obtained by maximizing the posterior distribution of the clock offset.

The posterior distribution of θi for a network with only two nodes i and j is expressed as:

gi(θi) =

∫
p(θi, θj|Ti,j)dθj ∝

∫
p(Ti,j|θi, θj)p(θi)p(θj)dθj

Extending the above idea to a WSN with M sensor nodes, the posterior distribution of clock offset θi
is expressed as:

gi(θi) =

∫
· · ·
∫

θ1,··· ,θi−1,θi+1,··· ,θM

p(θ1, · · · , θM |{Tij}i=1,··· ,M,j∈βi)dθ1 · · · dθi−1dθi+1dθM (50)

where βi stands for the indices of neighboring sensors of node i. It can be seen that the joint distribution
depends on interactions among all of the variables, and the integration is almost impossible to calculate.
Therefore, belief propagation (BP) is employed to compute the posterior distribution without fully
integrating Equation (50).

BP takes advantage of the graphical model structure. Factor graphs represent one of the most widely
used graphical models and have been adopted in [46]. An example of a factor graph for two nodes i and
j is depicted in Figure 5. The two sensor nodes i and j are represented in terms of the variable nodes
(circles), and they are connected to a square factor node γij , which stands for the likelihood function
p(Tij|θi, θj). On the other hand, nodes i and j are also connected to factor nodes γi and γj , which
represent the prior distributions of θi and θj , respectively. During each iteration, i.e., for the iteration l,
the BP algorithm in [46] is carried out via the following three steps:

(1) Each variable node θi transmits its current belief b
(l)
i (θi) to all of its neighboring factor

nodes {γij, j ∈ βi}.
(2) Acting like an intermediate node, the message from a factor node γij to a variable node θi is

calculated based on the belief received from θj:

m
(l)
γi,j→θi(θi) =

∫
p(Ti,j|θi, θj)b(l)

j (θj)dθj (51)

(3) After variable node θi receives all of the messages from its neighboring factor nodes, i.e.,
{m(l)

γi,j→θi(θi)}j∈βi , it updates its belief b(l+1)
i (θi) as follows:

b
(l+1)
i (θi) = p(θi)

∏
j∈βi

m
(l)
γi,j→θi(θi) (52)
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Figure 5. The factor graph of nodes i and j.

If no prior information is given about p(θi), we set p(θi) to a Gaussian PDF with zero mean and
very large variance. Furthermore, the belief of each node is initially set as its prior distribution, i.e.,
b

(0)
i (θi) = p(θi). Beliefs and messages are then iteratively updated at variable nodes and factor nodes,

respectively. After convergence, the belief at each node reaches the posterior distribution exactly when
the network topology is loop free and approximately when the network topology presents loops [48].
Thus, the maximum a posteriori probability (MAP) estimate is obtained by maximizing the converged
belief at each node. Since each node runs the same algorithm only with its neighbors, the estimates are
achieved in a fully-distributed manner.

However, only the problem of clock offset estimation is investigated in [46]. Moreover, the algorithm
is performed in a synchronous way, i.e., every node updates its belief only after receiving messages from
all of its neighboring factor nodes. Due to the random packet dropouts, the synchronous algorithm may
converge slowly. To account for these aspects, Du et al. [47] generalized the belief-based algorithm to
jointly estimate the clock offset and skew under Gaussian random delays using both synchronous and
asynchronous algorithms. In the asynchronous algorithm, some nodes are allowed to update their beliefs
more frequently as long as they receive messages from their neighbors within a preset time period.

Following the two-way message exchange model in Equations (45) and (46), the authors in [47]
eliminated the fixed delay d by adding these two equations together. It turns out that:

Aj,iβj + Ai,jβi = zj,i (53)

where Aj,i and Ai,j are N -by-two matrices with the n-th row representing

[cj(t
2
n) + cj(t

3
n),−2] and −[ci(t

1
n) + ci(t

4
n),−2], respectively, βj

4
= [1/fj, θj/fj]

T , βi
4
= [1/fi, θi/fi]

T

and zj,i = [Xj,1 − Yj,1, · · · , Xj,N − Yj,N ]T . Thus, the likelihood function can be obtained from
Equation (53), and it is denoted by p(Ai,j,Aj,i|βi, βj).

The message passing procedure adopted in [47] is slightly different from the one in [46]. In Step 1,
instead of broadcasting the belief to all of its neighboring factor nodes, the message transmitted from
variable node θi to factor node γij is evaluated via:

m
(l)
θi→γi,j(βi) =

∏
k∈βi\j

m
(l−1)
γi,k→θi(βi) (54)
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which is simply the product of the incoming messages on the other links. Thus, in Step 2, the message
from a factor node γij to a variable node θi is updated via:

m
(l)
γi,j→θi(βi) =

∫
p(Ai,j,Aj,i|βi, βj)m(l)

θj→γi,j(βj)dβj (55)

and the belief is further updated as:

b
(l+1)
i (βi) =

∏
j∈βi

m
(l)
γi,j→θi(βi) (56)

It is illustrated analytically in [47] that the asynchronous algorithm converges regardless of
the network topology, and the MSE of the estimation parameters achieves the centralized CRLB
asymptotically. Simulation results further show that the asynchronous algorithm converges faster than
the synchronous one.

In parallel to the work in [47], Etzlinger et al. [22] proposed a BP algorithm and a mean field
(MF) algorithm and adopted a Bayesian model with Gaussian random delays. The MAP estimates of
clock offset and skew are derived using some simplifications of the measurement likelihoods and prior
distributions. The message update rule in the BP algorithm is analogous to the one in [47] (see, e.g.,
Equations (54) and (55)). As concerns the implementation of the MF algorithm, each variable node θi
broadcasts its current belief b(l)

i (θi) to all of its neighboring factor nodes, and the same step as in [46] is
followed. However, in the second step, the message transmitted from a variable node θi to a factor node
γi,j is alternatively evaluated as:

m
(l)
γi,j→θi(θi) = exp

(∫
log(p(Ti,j|θi, θj))b(l)

j (θj)dθj

)
(57)

Numerical results corroborate the attractive performances exhibited by both BP and MF algorithms.

6.2.2. Consensus-Based Synchronization Algorithms

The fully-distributed algorithms reported in [49–51] rely on the average consensus principle.
However, the message delays are not considered in these algorithms, and their performance degenerates
significantly when message delays exist [46]. Other consensus-based distributed synchronization
algorithms, such as [52,53], typically suffer from slow convergence speed and require a high
number of data packages [22]. To overcome this issue, Berger et al. [54] recently presented
a fully-distributed low-complexity consensus-based synchronization algorithm for embedded WSNs.
Another fully-distributed clock synchronization method based on a cascade of two consensus algorithms
was proposed by Schenato et al. [55], which exhibits the advantage of being asynchronous and being
robust to packet losses, node failures and communication topology changes. The details of these
consensus-based algorithms are omitted herein, since they are not based on the statistical framework
described in Section 6.1. Xiong et al. [56] generalized the consensus-based algorithm to estimate the
clock offset by taking into account both fixed delays, as well as random Gaussian delays. In each iteration
of the generalized consensus-based algorithm, each node processes and decodes the timestamps from its
neighbors and then updates its local clock time using a weighted average of the time differences with its
neighbor nodes. Such a strategy naturally leads to the introduction of a special network topology referred
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to as the time delay balanced network in which average timing consensus is achieved in the presence of
Gaussian random delays.

6.3. Fully-Distributed Clock Synchronization Algorithms under Exponential Delays

Compared to the fully-distributed clock synchronization algorithms that assume Gaussian network
delays, fewer works have been proposed to account for exponential network delays in a fully-distributed
manner. Considering only the estimation of clock offset, Zennaro et al. [57] pioneered a fully-distributed
algorithm under exponential delays based on a factor-graph representation of the network and a
max-product message update algorithm. From the two-way message exchange model in Equations (47)
and (48), since the MLE for the clock offset difference θj − θi is given by Sij =

[
Uij,(1) − Vij,(1)

]
/2,

whereUij,(1) and Vij,(1) denote the first order statistics ofUij,n
4
= cj(t

2
n)−ci(t1n) and Vij,n

4
= ci(t

4
n)−cj(t3n),

respectively, the modified system model is expressed as:

Sij = θj − θi + Zij (58)

where Zij
4
=
(
Xij,(1) − Yij,(1)

)
/2 is a Laplace random variable, since Xij and Yij are both assumed to be

exponentially distributed. Thus, the likelihood function p(Sij|θi, θj) is formulated based on the model in
Equation (58). The factor graph representation of the network is identical to the one employed in [46].
In terms of the message update rule, the message transmitted from variable node θi to factor node γij is
given by:

m
(l)
θi→γi,j(θi) = p(θi)

∏
k∈βi\j

m
(l−1)
γi,k→θi(θi) (59)

Moreover, the message from a factor node γi,j to a variable node θi is updated by the “max” operator:

mγi,j→θi(θi) = max
θj

[mθj→γi,j(θj)p(Sij|θi, θj)] (60)

and the belief update is expressed as:

b
(l)
i = pi(θi)

∏
j∈βi

mγi,j→θi(θi) (61)

Under exponential random delays, [58] proposed a fully-distributed synchronization algorithm for
joint estimation of clock offset and skew. The joint maximum likelihood estimation of the clock
offset and skew is first formulated as a linear programming (LP) problem and solved in a centralized
way. With the help of auxiliary replica variables, the original LP problem is re-formulated as an
equivalent optimization problem with the structure more amenable for decomposition, which is further
decoupled into a series of subtasks. By applying the classic alternating direction method of multipliers
(ADMM), these subtasks are solved in a distributed way while still guaranteeing the convergence to the
centralized solution.

7. Conclusions and Open Problems

Wireless sensor networks can be applied to a variety of applications, and most of these applications
require synchronization among the sensor nodes. Based on the two-way message exchange system
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model described in Section 2.2, this paper surveyed the most representative pairwise and fully-distributed
clock synchronization algorithms from a statistical signal processing viewpoint. The interested
reader is referred to [59–63] for references based on other system models. Specifically, similar to
Equation (2), [59] adopted a two-way message exchange mechanism where no random delay is
considered and the fixed portion of delays is different for the uplink and downlink (i.e., replace d in
Equation (2) by dAB and dBA). The main result is that while estimating the clock skew between two
nodes is possible, it is impossible to determine the clock offset for pairwise synchronization, unless
the delays in two-way message communication are symmetric, i.e., dAB = dBA. The same result was
later extended in [60] for the network case. Recently, timestamp-free synchronization algorithms were
reported in [61,62] to avoid the overhead brought by timestamp exchanges. The approach employed
in [61] is based on conveying implicit timing information in the physical layer via the timing
responses from the receiver to the transmitter. The work in [62] avoids timestamp exchanges using
the round-trip-time data, which can be measured by a time-to-digital converter in the master node. The
clock parameters, such as the offset and skew, as well as the unknown range between the master and
slave nodes were experimentally estimated and verified with an accuracy in the order of a nano-second.
Without considering the random delays, a fully-distributed network-wide synchronization algorithm was
presented in [63] by assuming the constraint that the relative clock offsets in any network loop sum to
zero. Recently, Jeske [64] developed a statistical process control (SPC) algorithm that can be used in the
context of the two-way message exchange mechanism to detect translations in the delay distribution.

In reflecting on the research problems which have been addressed, we have observed several open
research topics that need further investigation. On the one hand, the algorithms presented in this article
all assume a line-of-sight transmission. The fixed portion of delays d herein is actually related to the
propagation delay between the transmitter and the receiver nodes. It may occur that some obstacles exist
in the signal path, and they might reflect or simply absorb the signal. In this case, the received signal
strength and the propagation delay may be significantly affected, and thus, the mathematical system
model proposed in this article might not be plausible. To our best knowledge, the clock synchronization
problem under non-line-of-sight transmissions is still open. In addition, even though many references
that exploit the statistical system model from Section 2.2 have been reported in the literature, more
convincing experimental results based on large-scale WSN testbeds are necessary for a more accurate
clock synchronization system model. Other possible future research topics lie in the investigation of the
convergence rate and computational complexity of the proposed distributed synchronization algorithms.
Due to the limited energy of sensors in WSNs, designing new distributed synchronization schemes with
reduced energy consumption, low implementation complexity and a fast convergence rate represents
another fruitful research direction.
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