
An Overview of a Method and its Support Tool for Generating B Specifications
from UML Notations

Régine Laleau and Amel Mammar
CEDRIC-IIE(CNAM)

18 allée Jean Rostand, 91025 Evry, France
�laleau, mammar�@iie.cnam.fr

Abstract

This paper presents, through an example, an overview of
our method which generates B specifications from an appli-
cation described using UML notations. We are interested
in data intensive applications. This allows us to automati-
cally generate basic update operations from class diagrams.
Then these operations are combined to elaborate more com-
plex transactions described in UML by state and collabora-
tion diagrams. The obtained B machines are directly usable
in AtelierB and proofs can be performed allowing the con-
sistency of the application to be checked. Finally the out-
lines of the prototype support tool are described.

1. Introduction

UML [10] is now standardized by the OMG. In spite of
real efforts, it is not sufficiently formal, specially if proof
of consistency between the different components has to be
achieved. B is a formal method developed by Abrial [1].
It is a complete method and supports a large segment of the
development life cycle: specification, refinement and imple-
mentation. It ensures, thanks to refinement steps and proofs,
that the code satisfies its specification. It has been used in
significant industrial projects and commercial case tools are
available in order to help the specifier during the develop-
ment process. These are the main arguments to use B rather
than Z (type checking and tool assistance in proof, but lim-
ited tool support for refinement and no automated proof),
VDM (standard semantics, good tool support, but relatively
primitive structuring of formal presentation) or another for-
malism.

In this framework, our objective is to provide designers
with a tool that automatically derives B specifications from
UML specifications, for the design of data intensive appli-
cations. The main characteristic of such systems is that they
manage massive amounts of data. The complexity of the de-

sign is to ensure that these data are handled safely whereas
operations that act upon are rather simple.

Direct related works are those of Dupuy[4] and Bruel[2].
They propose a method with a support tool for generating
formal specifications from informal object-oriented nota-
tions. The work of Dupuy consists of translating an UML
application (described with the Rose toolkit) into Z specifi-
cations. It is focused on the generation of basic operations
and their preconditions from a class diagram. More com-
plex operations are not considered. In the second work, the
object-oriented method is Fusion. The method is not dedi-
cated to a specific domain. Thus it is not possible to define
generic operations. Z specification skeletons are generated,
which must be completed by the designer.

Up to now, among UML concepts which have a rather
well defined semantics accepted by the UML community,
we have extracted a subset adapted to our domain. This
excludes concepts such as aggregation/composition and in-
heritance. Indeed, for example, inheritance of associations,
aggregation or state diagrams have not been clarified yet.
For this subset, a formal semantics has been defined [7].
Then, a set of rules which translate the precise UML con-
cepts into B specifications have been specified [5].

The aim of this paper is to give an overview of the
method through an example (Section 2) and to describe the
main features of the prototype support tool (Section 3).

2. Generating B Specifications from UML Dia-
grams

2.1. Overview of the method

The generation is performed into three steps:

1. The UML class diagram is first elaborated to represent
the static structure of the system. Then the correspon-
ding B specifications are generated, completed with
basic update B operations calculated from the diagram.

2. Transactions are elaborated by using UML state and
collaboration diagrams. State diagrams describe the
local behaviour of objects. Collaboration diagrams
show how objects collaborate to perform functions of
the system. The diagrams are annotated by formal def-
initions issued from the previous step. Then the formal
specification is completed with the translation of these
diagrams.

3. Proofs of the global specification can be achieved with
a prover dedicated to the B method.

The different diagrams are edited under the Rose envi-
ronment [11]. Information not graphically expressed is put
in the documentation field of the relevant element.

The approach is illustrated through a simple example in
the following sections.

2.2. Class Diagrams in UML and B

The class diagram of the running example is described
in Figure 1. Property �K� specifies that an attribute or a set

0..1 *Loan
Cassette

Code: Nat{K}
Title:String
LoanDate:Nat

Customer

CardNo: Nat{K}

Name:String

Suspended:Bool

Figure 1. Class diagram of the example

of attributes is the key of a class. Suspended is a boolean
that specifies that a customer cannot loan because he has
overdue loans (more than 90 days late).

In B, each class is mapped into a B machine which con-
tains an abstract set of all possible instances and a variable
representing the set of existing instances. Class Cassette
becomes:

���� ���������

������	�� �����		�

�
�����
� �����		� � ��������

Each monovalued attribute is modelled as a function(�)
between the set of existing instances and the attribute type.
A key is translated by a total injective function(�).

������	�� �
��� � 	��� �
����	�

�
�����
� �
�� � �����		�� ����
� 	�� � �����		�� �������
�
����	� � �����		�� ���

Each association is modelled as a relation (�) between
two sets of existing instances. The relation become a func-
tion, an injection,� � � depending on the multiplicity of the
roles.

������	�� �
��

�
�����
� �
�� � �����		�� ���	
���

A machine is created for an association if it is subjected
to independent operations, that is operations on links be-
tween existing objects. Otherwise, this variable is defined
in one of the class machine, according to the multiplicity.

In database applications, basic update operations, which
are application-independent, can be automatically gener-
ated from the class diagram. We generate such operations
for inserting or deleting objects of a class or links of an as-
sociation and for modifying an attribute value. For example,
the operation that deletes all the loans of a set of customers
is specified as follows:

� ��	���������������� �
PRE �� � �����
���
THEN �
�� �� �
�� �� ��

END

2.3. Specification of the Transactions

Data behaviour is described by transactions triggered by
a message called transaction message. UML state and colla-
boration diagrams are used to specify which basic opera-
tions are involved and under which conditions.

A state diagram is elaborated for every relevant class
or association. It describes how its basic operations are
used. Figure 2 describes a state diagram of Customer. A
customer can be either ”InOrder” or ”Suspended”. When
the event CancelCustomer occurs, either the customer is
deleted(call to the basic operation B DelCustomer) if he has
no current loan, or suspended (call to the basic operation
B ChangeSuspended) if he has overdue loans.

InOrderCustomer

SuspendedCustomer

CancelCustomer(cu)[C3]

CancelCustomer(cu)

/B_DelCustomer(cu)

....

/B_ChangeSuspended(cu,TRUE)

-1Loan [{cu}]= �

Figure 2. State diagram of Customer

An expression of C3 could be:
	������ � �
���������� �
������	��	�� �
����	����� � ���

In order to make the generation of B specifications more
complete, some rules need to be followed:

– both states and guards are defined by predicates using
B notations. For example:
����������	
������� �
�� � ��������������������	

– actions involved in transitions correspond to calls of
operation of the related class.

If a transaction message involves several classes, a col-
laboration diagram elaborates the decomposition of this
message into internal messages on each class. In Figure 3,
the collaboration diagram for the transaction message Cus-
tomerCancellation specifies that a customer must be can-
celed (sending of a CancelCustomer event described in the
state diagram of Customer), that the cassettes he has loaned
are deleted (call to the basic operation B DelCassette) and
that the loans themselves are also deleted (call to the basic
operation B DelLoanCustomers).

B_DelCassette(Loan [{cu}])-1

CustomerCancellation(cu) :System

CancelCustomer(cu)

B_DelLoanCustomers({cu})

LoanCassette:Customer

Figure 3. Example of a collaboration diagram

Once the diagrams have been achieved, the correspond-
ing formal specifications can be generated. The class di-
agram produces basic machines containing the main vari-
ables of the system together with basic operations that mod-
ify them. The behavioural diagrams complete this archi-
tecture by defining machines which include basic machines
and have no variables.

First, state diagrams are translated. A new abstract ma-
chine is created which includes the corresponding basic ma-
chine and uses the necessary machines (those whose vari-
ables are used in guard conditions). Each event is translated
by an operation. For example, the CancelCustomer event is
translated by:

CancelCustomer(cu) =
PRE �����������	
������� � �
���������� �
�

������������	
������� � �
�
THEN

SELECT ��
���������� �
�
THEN � ������	
�������

WHEN �

THEN � � ��!�������������� ��"��

END
END

The precondition of the operation contains explicitly the
predicate of the source state and the guards, and implicitly
the preconditions of the basic operations specified on the
transitions. Thus we ensure that the operation is called only

if the object is in the source state and if the guard is true.
We generate a proof obligation for each transition that ex-
presses the fact that the operation related to the transition
preserves the invariant of the machine and also establishes
the predicate of the target state.

Collaboration diagrams are translated into one abstract
machine called System which includes all the state diagram
machines and the basic machines corresponding to classes
which have not an associated state diagram. There is one
operation for each transaction message. The operation cor-
responding to CustomerCancellation is:

CustomerCancellation(cu) =
PRE �� � ���	
���

THEN
���������	
������� �
� ��������		���
����������� �
� ����
�����	
����������

END

The implicit precondition of this operation is the con-
junction of the precondition of the operations CancelCus-
tomer, B DelCassette and B DelLoanCustomers.

Proof obligations are also generated that ensure that
all the operations (and thus the transactions) preserve the
global invariant of the machines describing the whole ap-
plication.

3. Automatic Translator

Thanks to the precise definitions of the UML core con-
cepts we have proposed, derivation rules have been estab-
lished [5],[9], and then an automatic translator has been
built. The prototype support tool is implemented in OCaml
language [8] which is well suited for implementing transla-
tion between different languages. In order to build a reliable
tool, a formal semantics for UML models has been defined
[7]. The basic semantics is specified by metamodels (as
in UML [10]), expressed either in a diagrammatic form or
with B notation sets. Additional semantics used to clarify
the constraints among metamodel components are specified
in the form of B invariant clauses. Using these formal meta-
models, the tool consists of four logical parts:

a) An abstract syntax of UML: each kind of diagrams
is described in an abstract syntax form expressed in
OCaml. The OCaml representation is a straightfor-
ward translation of the relevant formal UML meta-
model.

b) An abstract syntax of B language: it represents the
structure of a B machine and its different clauses.

c) A set of checking functions that allow part of the con-
sistency inside any diagram but also between the dif-
ferent diagrams to be checked.

d) A set of generating functions that achieve the transla-
tion from UML diagrams into B specifications. They
are implemented by OCaml functions working only on
the two abstract syntax.

The tool permits the automatic generation of B specifi-
cations from a UML description of an application. Some
interesting features can be emphasized. The inputs and out-
puts of the tool are represented in abstract syntax form, thus
the tool is independent of commercial toolkits for UML
and B. The generated machines are directly usable in the
AtelierB toolkit [3]. Thus the proof phase can be directly
started in order to establish the correctness of the specifica-
tions. OCaml has allowed a rapid development of the proto-
type and the resulting code is rather concise: 1800 lines are
enough for the automation of all diagrams. Furthermore,
the OCaml functions are a straightforward translation of the
derivation rules.

Nevertheless, up to now, some limits of the tool are to
be stated. Some deep semantic analysis are missing on the
diagrams. For example, we would like to check that the
predicate of a source state is not always false or contradic-
tory. The generated specification is not always optimal. In-
deed, in some cases, precondition of operations represent-
ing events can be simplified. The amount of automatically
generated B specifications strongly depends on the way the
state and collaboration diagrams are annotated. More the
annotations are formal, more the B specifications are com-
plete. Otherwise, the designer has to complete the gener-
ated formal skeletons in order to achieve some consistency
checks and formal analyses.

4. Conclusions

This paper gives, through an example, an overview of
our method which generates B specifications from an appli-
cation described using UML notations. Then the outlines
of the prototype support tool are presented. The obtained B
machines are directly usable in AtelierB. Thus proofs can
be performed. In general, it is not the easier activity of
the specification. AtelierB generates proof obligations and
try to automatically demonstrate them. In case of failure,
proofs must be achieved manually. We think it is possible
to help the designer during this last task by providing him
with a set of proof tactics that could be defined by taking
into account the specific domain (database applications) we
consider.

Now we are currently working on two complementary
axes. The first one consists of extending the tool to
automatically generate database implementations (data and
programs). We have already defined a set of generic rules
for relational implementations [6], based on the refinement
process of B. Thus the design and coding phases will be

largely automated. Secondly we would like to extend the
subset of UML concepts we consider by integrating for
example inheritance and agregation/composition.

In Memoriam
We would like to dedicate this paper to Professor Philippe
Facon, who died tragically on September 1st, 1999. He was
the leader of our research team and was one of the guiding
forces of the project presented above.

References

[1] J. R. Abrial. The B-Book. Cambridge University Press,
1996.

[2] J. M. Bruel and R. B. France. A Formal Object-Oriented
CASE Tool for the Development of Complex Systems. 7th
European Workshop on Next Generation of Case Tools,
Crete, Greece, May 1996.

[3] DIGILOG groupe STERIA. Atelier B, Manuel de référence.
DIGILOG, BP 16000, 13791 Aix-en-Provence Cedex 3
France, 1996.

[4] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. An Overview
of Roz: a Tool for Integrating UML and Z Specifications.
12th International Conference CAISE’00, Stockhom, Swe-
den, June 2000.

[5] P. Facon, R. Laleau, and A. Mammar. Combining UML
with the B Formal Method for the Specification of Database
Applications. Research Report, CEDRIC Laboratory, Paris,
September 1999.

[6] R. Laleau and A. Mammar. A Generic Process to Refine a B
Specification into a Relational Database Implementations.
International Conference ZB2000, LNCS, Springer-Verlag,
York, UK, September 2000, forthcoming.

[7] R. Laleau and F. Polack. Metamodels for Static Concep-
tual Modelling of Information Systems. Workshop ”Defin-
ing Precise Semantics for UML”, ECOOP 2000, Cannes,
France, June 2000.

[8] X. Leroy. The Objective Caml System, Documentation and
User’s Manual. INRIA, France, 1999.

[9] H. P. Nguyen. Dérivation de spécifications formelles B à par-
tir de spécifications semi-formelles. PHD thesis, CEDRIC
Laboratory, Paris, France, December 1998.

[10] OMG. Unified Modeling Language Specification. BetaR1
Release, available on line, www.rational.com/uml., April
1999.

[11] Rational Software Corporation. Rational Rose - Using Ra-
tional Rose 98. 1998.

