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Abstract: Cancer incidence and mortality are rapidly increasing worldwide; therefore, effective
therapies are required in the current scenario of increasing cancer cases. Polysaccharides are a family
of natural polymers that hold unique physicochemical and biological properties, and they have
become the focus of current antitumour drug research owing to their significant antitumour effects.
In addition to the direct antitumour activity of some natural polysaccharides, their structures offer
versatility in synthesizing multifunctional nanocomposites, which could be chemically modified
to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This
review aims to highlight recent advances in natural polysaccharides and polysaccharide-based
nanomedicines for cancer therapy.
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1. Introduction

In the coming years, cancer is expected to become the main cause of death and the
most important obstacle to extending life expectancy in the world. Lung cancer is the most
common cancer and the leading cause of cancer death (18.4% of total cancer deaths), closely
followed by colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) [1].
There are three common cancer therapeutics, including surgery, radiation therapy, and
chemotherapy, as well as other emerging therapies, such as molecular targeted therapy.
However, the serious side effects and drug resistance of chemotherapy and other treatments
are becoming major obstacles in current cancer research. Hence, it is very important to
develop a new type of anticancer agent with ideal antitumour activity and extremely
low toxicity.

Polysaccharides are carbohydrates that participate in almost all aspects of organisms
and play various important biological functions [2]. Polysaccharides consist of 10 or more
monosaccharides linked together by glycosidic bonds, which can be linear or contain
branched chains. Importantly, monosaccharide composition, molecular weight (MW), and
polysaccharide attachment affect its structure, and its structure further affects its properties
and functional mechanisms [3]. According to their source, polysaccharides can be classified
into natural polysaccharides and semisynthetic polysaccharides. Natural polysaccharides
are distributed in many organisms. Then, the natural polysaccharide is further chemically
or enzymatically modified to obtain semisynthetic polysaccharides. So far, researchers have
found that polysaccharides have a wide range of biological effects, including anticancer,
antibiotic, antioxidant, anticoagulant, and immuno-stimulation activities.

The antitumor effect of polysaccharides was first discovered by Nauts et al. in 1946,
which can effectively relieve the symptoms of cancer patients [4]. Ample evidence in-
dicated that polysaccharides can inhibit tumors through direct anticancer activity, such
as inducing apoptosis of tumor cells and inhibiting migration (Table 1). In addition,
the structure of polysaccharides provides versatility for the synthesis of multi-functional
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nanocomposites, which can achieve high stability and bioavailability through chemical
modification, thus delivering therapeutic drugs to tumor tissues [5]. This review used
keywords (anticancer/polysaccharides/drug delivery systems/nanomedicines) to search
in PubMed and Web of Science databases, and selected qualified high-level papers for
systematic sorting and summary. In this paper, we aim to systematically summarize the
research findings in the past decade, and the different structures of anticancer polysaccha-
rides from different sources and polysaccharide-based nanomedicines for cancer treatment
are reviewed, which provides theoretical support for the design and development of
polysaccharide preparations.

Table 1. Performance and structural features of natural anticancer polysaccharides.

Natural Polysaccharides Performances Structural Features

Polysaccharides from plants Target Twist/AKR1C2/NF-1 pathway acidic protein–polysaccharide
Polysaccharides from animals Antiangiogenic properties GlcN-GlcA or GlcN-IdoA

Polysaccharides from fungi Inhibiting JAK2/STAT3 signaling pathway β-(1→3) glucose linkages

2. Polysaccharides from Plants
2.1. Panax ginseng C. A. Meyer Polysaccharides

Panax ginseng C. A. Meyer (P. ginseng) is a precious medicine that has been used
for thousands of years, also known as ginseng [6]. Ginseng is composed of multiple
active components, including ginsenosides and polysaccharides. Studies have proven that
polysaccharides are one of the most important components in P. ginseng and participate in
immunomodulation, antitumour, and antidiabetic activities [7].

P. ginseng polysaccharide contains starch-like glucans and pectin [8]. Pectin is a plant-
derived neutral polysaccharide with abundant resources for its amounts and categories.
Many types of pectin polysaccharides are associated with anticancer activity. Pectin, with
Panax ginseng C. A. Meyer Polysaccharidesvery complex structure, typically contains
galacturonic acid (GalA), galactose (Gal), arabinose (Ara), and rhamnose (Rha) residues [9].
Pectin could be divided into five types: homogalacturonan (HG), type I rhamnogalac-
turonans (RG-I), type II rhamnogalacturonans (RG-II), xylagalgalacturonan (XGA), and
Apio galgalacturonan (AGA), based on the different structural characteristics [10]. HG
is characterized by α-(1→4)-D-GalA repeat units as the backbone [11], whereas RG-I is
composed of Ara, galactans, and L-fucose (L-fuc) in the sidechains [12]. RG-II and XGA are
both derivatives of HG [10]. The components of P. ginseng pectin include HG and RG-I, as
well as GalA, Gal, Ara, and Rha [13].

To date, many kinds of pectin have been isolated and identified from ginseng, and
some of them have been identified as having antitumour activity, as described in Table 2.

Table 2. Ginseng polysaccharides with antitumour activity.

Compound Structure Features MW Antitumor Mechanism Ref.

PGPW1 97.4% carbohydrate and 1.2% uronic acid ~3.5 × 105 Da Not been elucidated [14,15]

PGP2a Acidic protein–polysaccharide ~3.2 × 104 Da Target Twist/AKR1C2/NF-1 pathway [16]

RG-I RG-I and side chains AG-I ~6 × 104 Da Bound to galectin-3 [17]

MCGP-1 The ratio of Rha/GalA is 0.82 1.649 × 105 Da Might be related to the Ara residues linked to
the surface of the polysaccharide [18]

MCGP-2 Mainly composed of GalA, Ara, Gal, Rha, and Glc 1.644 × 105 Da The same mechanism as MCGP-1 [18]

MCGP-3 The characteristic compositions of RG-I pectin 1.572 × 105 Da
The same mechanism as MCGP-1 and contains

disaccharide [-(1, 4)-α-D-GalAp-(1, 2.
-α-L-Rhap-]

[18]

MCGP-4 The characteristic compositions of RG-I pectin 1.673 × 105 Da The same mechanism as MCGP-1 [18]

MCGP-5 The ratio of Rha/GalA is 0.24 1.600 × 105 Da The same mechanism as MCGP-1 [18]

MCGP-6 Mainly composed of GalA, Ara, Gal, Rha, and Glc 1.592 × 105 Da The same mechanism as MCGP-1 [18]

MCGP-7 Mainly composed of GalA, Ara, Gal, Rha, and Glc 1.520 × 105 Da The same mechanism as MCGP-1 [18]
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2.2. Portulaca oleracea L. Polysaccharides

P. oleracea L., a traditional Chinese herbal medicine, is known as MaChiXian in Chi-
nese and purslane in English. It exhibits a range of biological activities, such as anti-
inflammatory, antioxidant, and antiaging [29–32]. P. oleracea L. polysaccharides (POL-P)
are major bioactive components of purslane with antitumour activity. Zhou et al. purified
a homogeneous POL-P, which contains Gal, Ara, Man, and Glc. Then, they evaluated
an animal model transplanted with sacroma 180 and found that it had pronounced an-
titumour effects [33]. Another POL-P, named POL-P3b, inhibits cancer cell growth, and
the mechanism involves triggering DNA damage and inducing apoptosis [34]. Further
research also showed that POL-P3b inhibits the proliferation of HeLa cells, and the pos-
sible antitumor mechanism is through downregulating the TLR4 downstream signaling
pathway and inducing cell apoptosis [35]. In addition, POL-P3b could also decrease the
growth of cervical carcinoma, suggesting the antitumour mechanism via stimulating the
TLR4/PI3K/AKTNF-κB signaling pathway [36].

In addition to direct antitumour effects, Lee et al. go deeply into the immune-
enhancing characteristics of POL-P. The preliminary results showed that POL-P increased
the viability of CY-treated splenocytes because of CY-induced immunosuppression [37].
POL-P also enhances the immune efficiency of the breast cancer dendritic cell vaccine [38].
Ding et al. found that POL-P can improve lipopolysaccharide-induced inflammation and
barrier dysfunction of the porcine intestinal epithelium monolayer [39].

Ginseng polysaccharide could also significantly inhibit the growth of Lewis lung
carcinoma tumor [19]. In addition, one selenium-modified polysaccharide, sGP, has been
reported. The experimental results indicate that sGP enhances apoptosis in HL-60 cells,
demonstrating that chemical modification methods to obtain high contents of selenium
polysaccharides could be developed as a novel antitumour therapy [20].

2.3. Angelica Sinensis (Oliv.) Diels Polysaccharides

The root of A. sinensis, known as Danggui, is a celebrated Chinese medicinal herb [21].
A. sinensis possesses a wide range of pharmacological activities, including hematopoiesis,
immunomodulation, antioxidant, and anticancer activities [22–25]. Polysaccharides are the
most important active constituents in Danggui, and numerous A. sinensis polysaccharides
(ASPs) have been identified. The majority of ASPs contain GalA, Gal, Ara, Rha, mannose
(Man), and glucose (Glc) with various molar ratios. Wei et al. also proved that APSs could
induce apoptosis in cancer cells via regulation of the JAK/STAT of the transcription path-
way [26]. Key kinases in the JAK/STAT and PI3K/AKT pathways were also downregulated
by ASPs’ stimulation in another study [27]. ASPs have also been utilized in drug delivery
systems. Wang et al. prepared doxorubicin (DOX)-loaded nanoparticles and proved that it
can inhibit the growth of HepG2 multicellular spheres [28].

2.4. Lycium barbarum L. Polysaccharides

L. barbarum, known as wolfberry in China, is a herbal medicine [40]. Polysaccharides
are one of the most investigated, as they are considered to be mainly responsible for
different biological effects among all L. barbarum components [41]. Zhao et al. extracted
polysaccharides from Chinese wolfberry fruits and proved that it could induce MCF-7 cell
apoptosis. Cao et al. isolated and characterized another polysaccharide, named CF1, with
an MW of 1540.10 ± 48.78 kDa. Their results showed that CF1 also exhibited effective cell
growth inhibition in vitro [42]. Then, Cao et al. conducted further research and exploration.
Eventually, they found that the antitumour mechanism of CF1 was associated with the
PI3K/AKT pathway [43].

2.5. Ginkgo biloba Polysaccharides

G. biloba, known as yinxing in China, is a traditional Chinese herb. Polysaccharides are
bioactive compounds isolated from G. biloba, with a wide variety of physiological functions
such as antitumor activity. Kong et al. reported a selenium (Se)-containing polysaccharide
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purified from the leaves of G. biloba, and proved that it induced human bladder cancer T24
cell apoptosis through a mitochondria-dependent pathway [44].

2.6. Seeds’ Polysaccharides

Seeds are one of the important sources of plant polysaccharides and accumulated
evidence has demonstrated that these polysaccharides show superior anticancer activity, as
described in Table 3.

Table 3. Seeds’ polysaccharides with anticancer activity.

Plants Species Types of Carcinoma Cell Lines Ref.

Peony seeds Pc-3/HCT-116/MCF-7/Hela [45]
Chenopodium quinoa seeds SMMC 7721/MCF-7 [46]
Psidium guajava L. seeds MCF-7 [47]

2.7. Citrus Polysaccharides

Citrus pectin is a neutral polysaccharide isolated from the pulp and peel of citrus
fruits, which consists of HG and RG-I [48]. Modified citrus pectin (MCP) is a nonbranched
polysaccharide and is high in Gal extracted from citrus pectin by enzymatic hydrolysis, high
temperature, and high pH [49]. The shorter and nonbranched MCP could recognize and
bind tightly with galectin-3 [50], whose overexpression was related to a variety of malignant
tumors [51]. The combination mechanism of MCP and galectin-3 is that the former can
recognize galectin-3 on the surface of cancer cells and then inhibit tumor metastasis [49,50].
However, citrus pectin from a neutral resource is unable to interact with galectin-3 owing
to its limited solubility in water.

It has been reported that MCP inhibits myeloma/prostate cancer/bladder tumor [52]/
gastrointestinal cancer [53] via interaction with galectin-3. Conti et al. found that MCP
is a potential sensitizer targeting galectin-3 for prostate cancer radiotherapy [54]. Fabi
et al. demonstrated that MCP fractions with different molecular sizes can have different
effects on the development of malignant tumors [55]. In addition, pectic from Aegle
marmelos L. could potentially inhibit skin cancer [56]. Additionally, pectin polysaccharides
extracted from tomato, papaya, or olive have been reported to possess the activity of
inhibiting galactose lectin-3. The pectin polysaccharide fraction from papaya pulp and
olive showed inhibitory effects on colon cancer [57] and bladder cancer [58], respectively,
through interactions with galectin-3.

2.8. Marine Algae Polysaccharides

Marine algae are one of the richest resources in the ocean, and contain a variety of
active components, such as peptides and polysaccharides [59]. According to the thallus
color, marine algae are usually divided into red seaweed, brown seaweed, and green
seaweed. Marine algal polysaccharide (MAP) is a unique polysaccharide, which is differ-
ent from land plant polysaccharides in composition, substitution, and linkage [60]. The
major MAP contains carrageenan of red algae, fucoidan and laminarans of brown algae,
and ulvan of green algae, comprising monosaccharide subunits such as Gal, Ara, Glc,
Man, fucose, xylose, glucuronic acid (GlcA), mannuronic acid (ManA), and iduronic acid
(IdoA) [61,62] (Figure 1).

According to a previous study, polysaccharides fractionated from brown seaweed
Sargassum (S.) show superior anticancer activity. For example, a study showed that
sulfated polysaccharides could inhibit proliferation in A549 cells via induced mitochondria-
mediated intrinsic apoptosis and cell cycle arrest [63]. Rajendran et al. obtained polysaccha-
ride fractions (SWP1) from S. wightii and found that it showed a dose-dependent manner
inhibition of proliferation and migration of cancer cells. Further research reveals that the
mechanism of SWP1 inducing apoptosis in cancer cells is via cutting the mitochondrial
membrane and damaging the nucleus, as well as increasing caspase 3/9 activity [64].
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Fucoidan, a sulfated polysaccharide rich in fucose, has antitumour activities [65]. The ex-
perimental results of Kang et al. also prove that fucoidan possesses anti-proliferation of B16
melanoma cell [66]. Alginate oligosaccharide was prepared from alginate sodium using al-
ginate lyase and can reduce tumor size by improving the antioxidant and anti-inflammatory
capacities of patients [67]. The red seaweed sulfated polysaccharide from Acanthophora
spicifera (Vahl) Borgeson exhibited apoptotic effects in lung cancer cells [68]. In addi-
tion, polysaccharides isolated from two microalgae sources showed certain ant-hepatoma
activity in vitro mainly through the induction of apoptosis [69,70].
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2.9. Other Plant Sources of Polysaccharides
2.9.1. Polysaccharides with Anti-Lung Cancer Activity

Ni et al. successfully separated HRWP-A, a natural pectin, from Hippophae rham-
noides berries. HRWP-A effectively inhibits the growth of lung cancer in vivo and pro-
motes NK cell activity and CTL mechanism by enhancing lymphocyte proliferation and
macrophage activity [71]. HCA4S1 was separated from Houttuynia cordata, and bioactivity
tests suggested that it exerts anticancer action via inducing cell cycle arrest and apoptosis
on lung cancer cells [72]. Additionally, Glehnia littoralis polysaccharide effectively inhibits
the proliferation and migration of A549 cell lines and induces cell apoptosis [73]. Lee et al.
showed that the bioactive polysaccharides from Achyranthes bidentata exhibit potential
anti-metastasis effects with the mechanisms of blocking the epithelial-to-mesenchymal
transition process [74].

2.9.2. Polysaccharides with Anti-Pancreatic Cancer Activity

Lonicera japonica and Lycium ruthenicum pectin have certain inhibitory effects on pan-
creatic cancer in vitro. LJ-02–1 is an RG-I polysaccharide, and bioactivity tests suggested
that it might inhibit BxPC-3 and PANC-1 cell growth [75]. LRP3-S1 could also inhibit the
growth of pancreatic cancer cells via downregulating the protein expression of p-FAK and
p-p38 MAP kinase [76].

2.9.3. Polysaccharides with Anticancer Activity

In addition to lung cancer and pancreatic cancer, polysaccharides from other species of
plants have also been reported for the use of other malignant tumors, as shown in Table 4.
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Table 4. Polysaccharides from other species of plants with antitumour activity.

Plants Species Structure Features Types of Carcinoma Cell Lines Ref.

Broccoli Comprised of Ara, Gal, and Rha with a molar ratio of 5.3:0.8:1.0 HepG2, Siha cervical, MDA-MB-231 [77]

Gleoestereum incarnatum Composed of Gal, Glc, xylose, and Man at molar ratios of
1:4.25:1.14:1.85 HepG2 [78]

Zizyphus jujuba cv.Muzao Presence of RG-I domains and typical pectic polysaccharides, with
homogalacturonan (methyl and acetyl esterified) HepG2 [79]

Taxus chinensis var.mairei fruits S180 [80]

Huperzia serrata Composed of Gal, Glc, Ara, Rha, Man, GalA, and so on Skov3 and A2780 [81]

Dandelion α-type polysaccharides, consisted of Glc, Gal, Ara, arabinose
rhamnose, and GlcA HepG2 [82,83]

Dendrobium nobile Lindl Composed of Gal, Glc, Ara, Rha, Man, and so on Sarcoma 180 [84]

3. Polysaccharides from Animals
3.1. Polysaccharides from Mammals

Glycosaminoglycans (GAGs) are natural linear polydisperse heteropolysaccharides
distributed in both vertebrates and invertebrates, with molecular weights up to
several million Dalton [85]. Evidence obtained from glycobiology studies suggests that
GAGs can recognize and interact with numerous proteins, and thus possess extensive
biological functions [86]. GAGs are one class of glycostructures of the extracellular matrix
(ECM). There are four classes of GAGs, each according to the constitution of the repeating
disaccharide units, which consist of heparin (HP)/heparan sulfate (HS), hyaluronan (HA),
chondroitin sulfate (CS)/dermatan sulfate (DS), and keratan sulfate (KS) (Figure 2) [85,87].
Except for HA, other compounds contain O-sulfonation, N-acetylation, and N-sulfonation
modifications, and this polyanionic character allows GAGs to bind to positively charged
moieties, including plasma proteins, growth factors, and so on [87]. These molecules
are a kind of ubiquitous molecule with extensive biological functions and, of course,
they are also widely used as therapeutics, for example, HP is an anticoagulant, while
CS is generally used to treat osteoarthritis [88]. In addition, further understanding of
GAG’s structure–function relationships has also led to the discovery of novel pharmaceu-
ticals for the possible treatment of serious diseases, such as antitumor agents. In light of
GAGs related to tumorigenesis, its application in drug development has been the focus of
two main directions: (I) using GAGs as the target of therapeutic strategies and (II) utilizing
the specificity and excellent physical and chemical properties of GAGs to deliver targeted
cancer drugs [89].
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sulfate (KS).

3.1.1. Heparin/Heparan Sulfate

HP has been used as an anticoagulant for more than 80 years, and it is a true biologic
and can be purified from bovine lung or porcine mucosa. The anticoagulant activity of HP
is mostly owing to the action of a precise pentasaccharide sequence that acts in accordance
with antithrombin-III (AT-III), a serine protease inhibitor [90]. As an important member
of the linear GAG family, HP and HS are composed of sulfated disaccharide repeating
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units of either GlcA- or IdoA-linked glucosamine (GlcN) residues (Figure 2A). HP is, on
the whole, more highly sulfated than HS. Depending on the sources and molecular weight
differences, HP is classified into the following three classes: (I) unfractionated heparin
(UFH), extracted from many animal sources, with an MW of approximately 14,000 Da;
(II) low molecular weight heparin (LMWH), prepared from UFH, with a MW of approx-
imately 3500~6000 Da; and (III) ultralow molecular weight (ULMWH), generally refer-
ring to the chemically synthesized pentasaccharide fondaparinux sodium, with the trade
name Arixtra.

HP, including UFH and LMWH, is used in the treatment of cancer-associated venous
thromboembolism (VTE), and LMWH is recommended as the nursing standard for the
treatment of established VTE [91–93]. Preclinical data support that coagulation inhibition
greatly limits tumor metastasis in some experimental models, and it has been demon-
strated that LMWH can effectively inhibit metastasis of solid malignant tumors [94]. In
addition to anticoagulant activity, HP may possess direct anticancer benefits because of
its antiangiogenic properties [95]. The antiangiogenesis mechanism is that HP binds to
vascular endothelial growth factor (VEGF) and then inhibits the phosphorylation of VEGF
receptor (VEGFR) [96]. Furthermore, HP is an inhibitor of heparanase, which is overex-
pressed in tumors, and heparin can bind with P-selectin to significantly inhibit tumor
cell adhesion [97,98]. As natural resourced polysaccharides, HP are often described as
nonimmunogenic and nontoxic, driving the desire to employ them in nanoformulations for
cancer management. Because of the above factors, HP plays an important role in cancer
treatment, as shown in Table 5.

Table 5. Application of HP in antitumour therapy.

Compound HP Combination Types Anticancer Mechanisms Types of Cancer Ref.

LHT HP–drug conjugate Antiangiogenic properties Pancreatic cancer cells-bearing mice [99]

Oral LMWH conjugate (LHTD4) HP–drug conjugate Antiangiogenic properties A549 lung cancer cells [100]

Tinzaparin, a LMWH HP fragments Reverses the cisplatin resistance in
A2780cis cells A2780cis cells [101]

Deoxycholic acid conjugatedHP
fragments (HFD) HP–drug conjugate Inhibiting VEGF165 SCC7 cells [102]

LMWH-Suramin HP–drug conjugate Inhibiting VEGF165 SCC7-bearing mouse model [103]

HP-suramin/PEGylated protamine HP–drug conjugate Antiangiogenic properties SCC7-bearing mouse model [104]

HP-functionalized Pluronic
nanoparticles Polymeric nanoparticles Antiangiogenic properties and drug

combination Gastric cancers [105]

Heparin/polyethyleneglycol (PEG)
hydrogel Nanogels Antiangiogenic properties and drug

combination Breast cancer [106]

LMWH-poloxamer Nanogels
Enhancing the efficacies, minimizing

the side effects ofdalteparin, and
exhibiting a good thermosensitivity

Xenograft S180 sarcoma tumor [107]

HP-containing cryogel microcarriers Polyelectrolyte complex
nanoparticles

Reversible strong electrostatic
interaction Metastatic breast cancer [108]

HP-Folate-Tat-Taxol Polyelectrolyte complex
nanoparticles

Negatively charged nanoparticles
may cause lower toxic effect Breastcancer cells [109]

LMWH–quercetin conjugate HP–drug conjugate Antiangiogenic properties MCF-7 tumor cells [110]

HP-Poloxamer HP-coated inorganic nanoparticles Antiangiogenic properties and drug
combination HeLa cells [111]

Heparosan-cystamine-vitamin E
succinate Nanogels Increase tumor selectivity and

improve the therapeutic effect MGC80-3 tumor cells [112]

LMWH-TOS Polyelectrolyte complex
nanoparticles

Antiangiogenic properties and drug
combination 4T1 solid tumor model [113]

HP–folate–retinoic acid
bioconjugates

Polyelectrolyte complex
nanoparticles Drug combination HeLa cells [114]

HP-reduced graphene oxide
nanocomposites

Polyelectrolyte complex
nanoparticles

Combinational chemotherapy and
photothermal therapy MCF-7 and A549cells [115]

PEGylated HP-based nanomedicines Polyelectrolyte complex
nanoparticles Photodynamic therapy 4T1 cells [116]
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3.1.2. Hyaluronan

HA normally exists in the form of long-chain nonsulfated polysaccharides, which are
the main component of the ECM in cells [117]. The repeated disaccharide unit of HA is
composed of GlcA β (1→3) GlcNAc, and each disaccharide unit passes through a β (1→4)
glycosidic bond (Figure 2B). Native HA, extracted from many animal sources, is present
as a linear polymer with an average molecular weight of approximately 106~107 Da [118].
Likewise, HA with strong hydrophilicity could form a very viscous gel that helps to
maintain tissue integrity [119]. In addition to being a structural part of tissues, HA is
the ligand of the cluster of differentiation (CD) protein CD44 receptor [118]. CD44 is a
complex transmembrane receptor protein that is overexpressed by many tumor types [117].
Hence, specific ligation with HA-CD44 enables HA-based drug delivery (containing HA–
drug conjugates, nanogels, polymeric nanoparticles, and HA-coated organic and inorganic
nanoparticles) to target diseased cells that express these receptors (Figure 3). In addition,
HA combined with drugs or drug carriers could solve some solubility problems [118].
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To date, HA has been widely used in anticancer drug delivery, either associating HA
with drugs to form conjugates or producing hydrogels, for the local delivery of various
drugs, including antitumoral agents, owing to its biocompatibility, biodegradability, nontox-
icity, nonimmunogenicity, and as a ligand of CD44. The application of these nanoparticles
in various cancer therapies is shown in Table 6.
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Table 6. Application of HA in antitumour therapy.

Compound HA Combination Types Anticancer Mechanisms Types of Cancer Ref.

Carbon
nanotubes-Chitosan

(CHI)-HA-DOX
Polymeric nanoparticles CD44-targeted, hydrophilic HeLa cells [120]

HA-DOX-afatinib-CaP Polymeric nanoparticles CD44-targeted,
high-densitycarboxyl groups A549 lung cancer cells [121]

HA-Curcumin (Cur) Nanogels CD44-targeted A549 lung cancer cells [122]

HA-Sinulariolide Polymeric nanoparticles CD44-targeted A549 lung cancer cells [123]

HA-Cur-prodrug-CaP Polymeric nanoparticles CD44-targeted MB-MDA-231 mouse
model [124]

HA-cystamin-pyrenyl-
Ir(III) Polymeric nanoparticles CD44-targeted, hydrophilic A549 tumor-bearing mice [125]

HA-DOX-cisplatin Nanogels CD44-targeted A2780 cell lines [126]

HA-keratin-DOX Nanogels
CD44-targeted, negative

charge and good
hydrophilicity

4T1 and B16 cells [127]

HA-Pemetrexed HA–drug conjugate

CD44-targeted, as a
prognostic marker in

malignant pleural
mesothelioma

Malignant
pleuralmesothelioma

model
[128]

HA-fluvastatin-
encapsulating

liposomes
Polymeric nanoparticles CD44-targeted, hydrophilic

barrier

Breast cancer stem
cellxenografted mouse

model
[129]

HA-coated
silica/hydroxyapatite-

DOX

HA-coated inorganic
nanoparticles CD44-targeted 4T1 tumor-bearing mice [130]

HA-sclareol/poly-lactic-
co-glycolic

acid

HA-coated inorganic
nanoparticles CD44-targeted, hydrophilic MCF-7 and MDA-MB468

cell lines [131]

HA-coated camptothecin HA-coated inorganic
nanoparticles CD44-targeted MDA-MB-231 cells [132]

HA and poly-(N-ε-
carbobenzyloxy-L-

lysine)
Polymeric nanoparticles CD44-targeted HepG2 tumor-bearing

mice [133]

Ursolic acid-loadedin a
poly-L-lysine coat and

HA

HA-coated organic
nanoparticles CD44-targeted SCC-7 xenograft tumor

model [134]

folic acid- and
dopamine-decorated HA

HA-coated organic
nanoparticles CD44-targeted B16 melanoma model [135]

HA-Cu2−XS HA-coated organic
nanoparticles

CD44-targeted,
biocompatibility

CT26.WT cells-bearing
mice [136]

HA Conjugated
ZincProtoporphyrin

HA conjugated
cincprotoporphyrin CD44-targeted C26 colon cancer cells [137]

Irinotecan-loaded
self-agglomerating HA Polymeric nanoparticles CD44-targeted H23 non-small-cell lung

cancer cells [138]

HA-
SuperparamagneticIron

Oxide

Polyelectrolyte complex
nanoparticles CD44-targeted U87MG cells [139]
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3.1.3. Chondroitin Sulfate/Dermatan Sulfate

The repeated disaccharide unit of CS is comprised of GlcA β (1→3) GlcNAc, and each
disaccharide unit passes through a β (1→4) glycosidic bond (Figure 2C). CS can be divided
into five types according to their different modification types and sulfonation forms, as
shown in Table 7 [87,139]. After rare C5 isomerization of CS GlcA into IdoA, a special type
CS-B of CS, DS, is produced (Figure 2C). As with other GAGs, CS is a special anionic acid
polysaccharide with high biocompatibility and specificity, and is a promising drug carrier
for cancer treatment.

Table 7. Types of CS.

CS Types Major Disaccharide Unit Other Disaccharide Unit

CS-A GlcA-GalNAc4S GlcA-GalNAc/GlcA2S-GalNAc
CS-B(DS) IdoA-GalNAc4S IdoA2S-GalNAc4S/GlcA3S-GalNAc

CS-C GlcA-GalNAc6S IdoA-GalNAc4S6S/GlcA3S-GalNAc4S
CS-D GlcA2S-GalNAc6S IdoA2S-GalNAc4S6S/GlcA3S-GalNAc4S6S
CS-E GlcA-GalNAc4S6S IdoA2S-GalNAc/GlcA3S-GalNAc6S

Curcumin-loaded CS/chitosan nanoparticles inhibited the apoptosis of lung cancer
cells, whereas loading CS/chitosan hydrogel with curcumin exhibited cytotoxicity-inducing
effects in HeLa, HT29, and PC3 cancer cells [140,141]. Curcumin-loaded zein and CS self-
assembled nanoparticles also exhibited anti neoplastic activity on HepG2, MCF-7, and
HeLa cells [142]. In colorectal cancer cells, folate-targeted nanostructured chitosan/CS
complex carriers, CS–chitosan nanoparticle carriers encapsulating black rice anthocyanins,
and CS-based smart hydrogels could heighten the delivery of antitumor drugs to tumor
cells [143–146].

Similar to HA, CS has a great targeting ability for the cluster CD44, which is over-
expressed in particular cancer cells [147]. Therefore, the surface functionalization of CS-
endowed nanoparticles has been successfully used for the treatment of colon cancer [148].
Moreover, a codelivery vector including CS loaded with small interfering RNA and pa-
clitaxel has been proven to have a mighty targeting effect towards CD44-overexpressing
cancer cells [149]. CS-based multi-walled carbon nanotubes can precisely target CD44
receptors overexpressed on triple-negative breast cancer specific cells [150]. In addition,
combined application of CS with doxorubicin or quercetin (chemicalsensitizer) can enhance
chemical photodynamic therapy and overcome multidrug resistance [151,152].

3.1.4. Keratan Sulfate

KS is localized in the ECM of different tissues, has a relatively small molecular
weight, and ranges from 5 to 30 repeating disaccharide subunits. KS is composed of
Galβ(1→4)GlcNAc, and each disaccharide unit passes through a β (1→3) glycosidic bond.
It is different from other GAGs because its uronic acid moiety is partially replaced by
neutral Gal units (Figure 2D) [87]. As a class of GAGs, the potential of KS in the delivery of
anticancer drugs needs to be further developed.

3.2. Polysaccharides Derived from Marine Animals
3.2.1. Chondroitin Sulfate from Sturgeon and Cartilage

As mentioned earlier, CS is a natural polymer and is widely distributed in the cartilage
and bone of animals. Herein, a sturgeon (Acipenser)-derived CS significantly inhibits tumor
progression of HCT-116 mice model by inhibiting proliferation and inducing apoptosis [153].
Moreover, a novel CS-E exhibits dose-dependent antimetastatic activity [154].

3.2.2. Sulfated Polysaccharides from Sea Cucumber

Sulfated polysaccharides are one of the main components of sea cucumber, which
have a wide range of biological activities. Ermakova et al. isolated sulfated fucans and
proved that it exhibits anticancer activity against the cancer cell lines [155].
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3.2.3. Polysaccharides from Common Cockles

Research by Pye et al. shows that the sulfated polysaccharide has antiproliferative
activity on chronic myeloid leukemia and relapsing acute lymphoblastic leukemia cell lines.
They identified that sulfated polysaccharides are a unique marine-derived HP/HS-like
polysaccharide [156].

4. Polysaccharides from Fungi
4.1. Lentinan

Lentinan (LNT), a neutral polysaccharide extracted from Lentinus edodes, has been
widely used in Asia. LNT is a kind of β-(1→3)-D-glucan and its repeating unit is shown in
Figure 4. The primary structure of LNT consists of two lateral β-(1→6) glucose branches
on five β-(1→3) glucose linkages [157].
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The antitumour activity of LNT and its synergistic effect with various chemicals
or other therapies have been extensively studied. Wu et al. reported that LNT can ef-
fectively delay the development of lung adenocarcinoma by upregulating miR-216a-5p
and inhibiting the JAK2/STAT3 signaling pathway (Figure 5) [158]. LNT as an adjuvant
has been prepared into lentinan calcium carbonate (LNT-CaCO3) microspheres and has
potential use as a vaccine delivery system [159]. Chen et al. used LNT as a modifier
to synthesize stable and efficient selenium nanoparticles (SeNPs), which can effectively
inhibit the growth of solid tumors [160]. Additionally, LNT-coated selenium nanoparti-
cles (SeNPs@LNT) could restore the dysfunctional immune cells in the malignant pleural
perfusion microenvironment [161].
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4.2. Ganoderma lucidum Polysaccharide

Ganoderma lucidum (G. lucidum) is one of the most famous folk medicines in China [162].
Most G. lucidum polysaccharides (GLPs) are β-glucans with an MW distribution of
103–106 Da. Ding et al. reported a neutral polysaccharide, GLSA50-1B, with a (1→6)
(1→4)-β-D-glucan (Figure 6A) [163]. Fang et al. identified a branched β-D-(1→3)-glucan,
named PSGL-I-1A (Figure 6B) [164]. WGLP, a water-soluble polysaccharide, was ob-
tained from spores of Ganoderma lucidum (Fr.) Karst and its repeating unit is shown in
Figure 6C [165].
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Crude polysaccharides from G. lucidum work with dacarbazine to inhibit the growth
of melanoma tumors [166]. A fucoxylomannan from G. lucidum showed effective antiprolif-
erative effects [167]. Ding et al reported that WGLP can significantly inhibit the growth
of tumor in vivo at a certain concentration without drug-related toxicity [165]. The water-
soluble polysaccharide WSG is effective against lung cancer and tongue cancer [168,169].
In addition, Lin et al. found that the combination of WSG and cisplatin can inhibit cell
activity and induce apoptosis [169]. The application of GLPs on gold nanocomposites
can be activated effectively for dendritic cells and T lymphocytes in breast cancer-bearing
mouse models and inhibit the growth and metastasis of tumors [170]. In addition, GLP-
conjugated bismuth sulfide nanoparticles can effectively assist tumor radiotherapy via
radiosensitization and dendritic cell activation [171].

5. Conclusions

It is predicted that the global number of cancer patients will reach 34 million in 2070,
with a doubling of the incidence of all cancers combined relative to 2020 [172]. More and
more evidence shows that polysaccharides have great anticancer potential. Polysaccharides
are a class of biological macromolecules produced by plants, animals, and fungi, which have
received extensive attention in recent years owning to their high therapeutic efficacy and
low toxicity. Some polysaccharides isolated from the leaves, seeds, roots, and bark of plants
show a certain direct anticancer effect, with mechanisms involved in regulating multiple
proteins or signal transduction pathways. Besides, the unique structure diversities and
physiochemical properties of polysaccharides lay the foundation for developing various
nanocarriers. Drug delivery methods based on polysaccharides nanomaterials help to
achieve targeted delivery of immunotherapeutic agents to immune cell subtypes and
effectively improve the therapeutic effect of drug carriers. In addition, the degradation
products of polysaccharides are normal monosaccharides in vivo and can be recycled by
cells without accumulation in the tissue.
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In a word, this article reviews the latest progress of polysaccharides and polysaccharide-
based nanomaterials and their applications in cancer immunotherapy. The anticancer
properties of polysaccharides are mainly mediated through two ways: (I) direct cytotoxicity
and (II) as a targeted nano carrier platform, which carries traditional anticancer drugs.
Although there are still many unsolved problems in this field, the clinical value and broad
application prospects of anticancer polysaccharides make them an important direction of
new drug development.
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