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Abstract

Significance: Autophagy is a highly conserved eukaryotic cellular recycling process. Through the degradation of
cytoplasmic organelles, proteins, and macromolecules, and the recycling of the breakdown products, autophagy
plays important roles in cell survival and maintenance. Accordingly, dysfunction of this process contributes to
the pathologies of many human diseases. Recent Advances: Extensive research is currently being done to better
understand the process of autophagy. In this review, we describe current knowledge of the morphology,
molecular mechanism, and regulation of mammalian autophagy. Critical Issues: At the mechanistic and reg-
ulatory levels, there are still many unanswered questions and points of confusion that have yet to be resolved.
Future Directions: Through further research, a more complete and accurate picture of the molecular mechanism
and regulation of autophagy will not only strengthen our understanding of this significant cellular process, but
will aid in the development of new treatments for human diseases in which autophagy is not functioning
properly. Antioxid. Redox Signal. 20, 460–473.

Introduction

Autophagy is a cellular degradation and recycling pro-
cess that is highly conserved in all eukaryotes. In mam-

malian cells, there are three primary types of autophagy:
microautophagy, macroautophagy, and chaperone-mediated
autophagy (CMA). While each is morphologically distinct, all
three culminate in the delivery of cargo to the lysosome for
degradation and recycling (Fig. 1) (154). During micro-
autophagy, invaginations or protrusions of the lysosomal
membrane are used to capture cargo (101). Uptake occurs
directly at the limiting membrane of the lysosome, and can
include intact organelles. CMA differs from microautophagy
in that it does not use membranous structures to sequester
cargo, but instead uses chaperones to identify cargo proteins
that contain a particular pentapeptide motif; these substrates
are then unfolded and translocated individually directly
across the lysosomal membrane (95). In contrast to micro-
autophagy and CMA, macroautophagy involves sequestra-
tion of the cargo away from the lysosome. In this case, de novo
synthesis of double-membrane vesicles—autophagosomes—
is used to sequester cargo and subsequently transport it to the
lysosome (157).

Of the three types of autophagy, macroautophagy is the best
studied. Macroautophagy occurs at a low level constitutively
and can be further induced under stress conditions, such as
nutrient or energy starvation, to degrade cytoplasmic material
into metabolites that can be used in biosynthetic processes or
energy production, allowing for cell survival (157). Under
normal growing conditions, macroautophagy aids in cellular
maintenance by specifically degrading damaged or superflu-
ous organelles (154). Thus, macroautophagy is primarily a cy-
toprotective mechanism; however, excessive self-degradation
can be deleterious. Accordingly, autophagic dysfunction is
associated with a variety of human pathologies, including lung,
liver, and heart disease, neurodegeneration, myopathies, can-
cer, ageing, and metabolic diseases, such as diabetes (148).

This review provides an overview of the current state of
knowledge of autophagy, with an emphasis on the mor-
phology, molecular mechanism, regulation, and selectivity of
mammalian macroautophagy.

Microautophagy

Microautophagy refers to a process by which cytoplasmic
contents enter the lysosome through an invagination or
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deformation of the lysosomal membrane (94). In one early
study, isolated rat liver lysosomes were shown by electron
microscopy to engulf Percoll particles in vitro by way of
protrusions or cup-like invaginations of the lysosomal
membrane, forming vesicles within the lysosome. Some of
these particles were seen free-floating within the lysosomal
lumen, presumably through rupture/lysis of the vesicles
(93). A very recent study presented evidence that a micro-
autophagy-like process called endosomal microautophagy
transports soluble cytosolic proteins to the vesicles of late
endosomal multivesicular bodies (123). Due to the limited
number of tools available for the study of microautophagy,
we know relatively little about this process, including its
regulation and possible roles in human health and disease
(101).

Chaperone-Mediated Autophagy

A second type of autophagy, which has so far only been
described in mammalian cells, is CMA. Unlike micro-
autophagy and macroautophagy, which can both nonspe-
cifically engulf bulk cytoplasm, CMA is highly specific;
common to all CMA substrates is a pentapeptide targeting
motif biochemically related to KFERQ (24). Based on se-
quence analysis and immunoprecipitation experiments, it is
estimated that *30% of cytosolic proteins contain such a
sequence (16). Target proteins containing the KFERQ con-
sensus motif are unfolded through the action of cytosolic
chaperones and translocated directly across the lysosomal
membrane where they are degraded in the lumen (114).
CMA degrades a wide range of substrate proteins, includ-
ing certain glycolytic enzymes, transcription factors and
their inhibitors, calcium and lipid binding proteins, pro-
teasome subunits, and proteins involved in vesicular traf-
ficking (3).

During CMA, the KFERQ motif is recognized by the heat
shock 70 kDa protein 8 (HSPA8/HSC70), as well as other
cochaperones (Fig. 1) (17). HSPA8 can then deliver the

substrate to the lysosomal membrane, where it likely assists
in substrate unfolding (1). At the lysosomal membrane, the
substrate binds to monomers of the CMA substrate recep-
tor, lysosomal-associated membrane protein 2A (LAMP2A)
(18). This substrate-receptor binding leads to the multi-
merization of LAMP2A (8, 18). As the multimeric translo-
cation complex forms, subunits of the complex are
stabilized on the lumenal side of the lysosomal membrane
by HSP90 (8). Following translocation of the substrate into
the lysosomal lumen—in part, through the action of lu-
menal HSPA8—the translocation complex is actively dis-
assembled by cytosolic HSPA8, and LAMP2A returns to a
monomeric state where it can bind new substrate and ini-
tiate a new round of translocation (8).

Regulation of the translocation process occurs at the level of
substrate binding to LAMP2A, which is rate-limiting for CMA
(19). Changes in LAMP2A levels at the lysosomal membrane
modulate the level of CMA activity and primarily result from
changes in degradation and organization of LAMP2A rather
than synthesis of the protein (8, 19, 20). Some data support the
idea that redistribution of LAMP2A between fluid regions of
the lysosomal membrane and lipid-enriched microdomains
influences the degradation of LAMP2A (65). While much is
known about translocation regulation, far less is clear about
overall CMA regulation (3). Mild oxidative stress (66),
protein-damaging toxins (21), and extended periods of nu-
trient deprivation all upregulate CMA (6, 22), but the intra-
cellular signaling pathways that facilitate this change are not
fully understood (3).

It is suggested that HSPA8 and LAMP2A also participate in
a type of macroautophagy called chaperone-assisted selective
autophagy. During this process, chaperones aid in the clear-
ance of selectively ubiquitinated organelles and protein
complexes (76). Association of these ubiquitinated targets
with receptors, such as SQSTM1/p62 and NBR1, and with
enzymes, including HDAC6, allows for recognition by the
macroautophagy machinery, delivery to the lysosome, and
degradation (74, 76, 81).

FIG. 1. Three types of au-
tophagy in mammalian cells.
Macroautophagy relies on de
novo formation of cytosolic
double-membrane vesicles, au-
tophagosomes, to sequester
and transport cargo to the ly-
sosome. Chaperone-mediated
autophagy transports individ-
ual unfolded proteins directly
acrossthelysosomalmembrane.
Microautophagy involves the
direct uptake of cargo through
invagination of the lysosomal
membrane. All three types of
autophagy lead to degrada-
tion of cargo and release of the
breakdown products back into
the cytosol for reuse by the cell.
See the text for details. To see
this illustration in color, the
reader is referred to the web
version of this article at www
.liebertpub.com/ars
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Macroautophagy

Basic morphological progression

As stated above, macroautophagy is distinct from micro-
autophagy and CMA in part because the initial site of se-
questration occurs away from the limiting membrane of the
lysosome, and involves the formation of cytosolic vesicles that
transport the cargo to this organelle. The morphological fea-
ture that makes macroautophagy unique from other intra-
cellular vesicle-mediated trafficking processes is that the
sequestering vesicles, termed autophagosomes, form de novo
rather than through membrane budding; that is, the auto-
phagosome forms by expansion, and does not bud from a
preexisting organelle, already containing cargo (152). Upon
induction of macroautophagy in yeast, formation of auto-
phagosomes begins at a single perivacuolar site called the

phagophore assembly site (PAS) (14). In mammalian systems,
autophagosome generation is initiated at multiple sites
throughout the cytoplasm rather than at a single PAS (14, 57).
Several studies suggest that endoplasmic reticulum (ER)-
associated structures called omegasomes may serve as initi-
ation sites in mammals (41, 155).

Following initiation, the membrane begins to expand. At
this stage, it is called a phagophore, which is the primary
double-membrane sequestering compartment (Fig. 2) (43).
The source of membrane that makes up the phagophore is
highly debated, but various studies have implicated the
plasma membrane (120, 121), ER (41, 155), Golgi complex
(134), and mitochondria (36) as possible sources (107, 145).
As the phagophore expands, the membrane bends to ulti-
mately generate a spherical autophagosome. The factors
that drive curvature of the membrane during nonspecific
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FIG. 2. Morphology of macro-
autophagy. Nucleation of the pha-
gophore occurs following induction
by the ULK1/2 complex. Elonga-
tion of the phagophore is aided by
the ATG12–ATG5-ATG16L1 com-
plex, the class III PtdIns3K com-
plex, LC3-II, and ATG9. Eventually,
the expanding membrane closes
around its cargo to form an auto-
phagosome and LC3-II is cleaved
from the outer membrane of this
structure. The outer membrane of
the autophagosome will then fuse
with the lysosomal membrane to
form an autolysosome. In some in-
stances, the autophagosome may
fuse with an endosome, forming an
amphisome, before fusing with the
lysosome. The contents of the auto-
lysosome are then degraded and ex-
ported back into the cytoplasm for
reuse by the cell. See the text for de-
tails. This figure was modified from
Figure 1 in Yang and Klionsky (153).
ATG, autophagy-related; PtdIns3K,
phosphatidylinositol 3-kinase; ULK,
unc-51-like kinase (C. elegans). To see
this illustration in color, the reader is
referred to the web version of this
article at www.liebertpub.com/ars
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macroautophagy are not known. In the case of selective
macroautophagy, the membrane appears to essentially wrap
around the cargo; thus, adjusting to fit the specific target (102).
Upon completion, the phagophore fully surrounds its cargo
and fuses to form the double-membrane autophagosome. The
size of the autophagosome varies based on organism and
cargo type. For example, the diameter of autophagosomes
ranges from *0.4 to 0.9 lm in yeast, and 0.5 to 1.5 lm in
mammals (104, 117, 127, 136).

Once the autophagosome is formed, it must deliver its
cargo to the lysosome in mammals or the functionally related
vacuole in yeast and plants. As it reaches its destination, the
outer membrane of the autophagosome will fuse with the
lysosomal/vacuolar membrane. In yeast and plants, due to
the relatively large size of the vacuole, this releases a single-
membrane autophagic body into the vacuolar lumen. Fusion
between autophagosomes and lysosomes in mammals,
however, does not generate autophagic bodies (23). The
product of fusion between an autophagosome and lysosome
in mammalian cells is referred to as an autolysosome (152).
Exposed to the acidic lumen and resident hydrolases of the
lysosome/vacuole, the autophagosome inner membrane and,
subsequently, the autophagic cargo are degraded and the
component parts are exported back into the cytoplasm
through lysosomal permeases for use by the cell in biosyn-
thetic processes or to generate energy (157). In mammals,
macroautophagy often converges with the endocytic path-
way. Hence, before fusion with lysosomes, autophagosomes
may also fuse with early or late endosomes to form
amphisomes, which then fuse with lysosomes to become
autolysosomes (9, 140).

Macroautophagy machinery

Induction. In yeast macroautophagy, induction of auto-
phagosome formation is regulated by the Atg1-Atg13-Atg17-
Atg31-Atg29 kinase complex (43). In mammalian cells, this
complex is made up of an Atg1 homolog from the Unc-51-like
kinase family (either ULK1 or ULK2), the mammalian ho-
molog of Atg13 (ATG13), and RB1-inducible coiled-coil 1

(RB1CC1/FIP200), which is required for the induction of
macroautophagy and may be an ortholog of yeast Atg17 (Fig.
3) (33, 38, 47, 62). Also in this complex is C12orf44/ATG101,
which binds directly to ATG13, is essential for macro-
autophagy, and has no known yeast homolog (48, 100). The
mammalian ULK1/2-ATG13-RB1CC1 complex is stable and
forms regardless of nutrient status (47, 62).

The association of the mechanistic target of rapamycin
complex 1 (MTORC1) with the induction complex is, how-
ever, influenced by nutrient status. Under nutrient-rich con-
ditions, MTORC1 associates with the complex, but dissociates
upon nutrient starvation (47). When MTORC1 is complex-
associated, it phosphorylates ULK1/2 and ATG13, inactivat-
ing them. However, when cells are treated with rapamycin or
starved for nutrients, MTORC1 dissociates from the induction
complex, resulting in dephosphorylation at these sites and
induction of macroautophagy (47, 62). The phosphatases re-
sponsible at this stage are as yet unknown. The involvement
of MTORC1 in the regulation of macroautophagy is an active
area of research and will be discussed in greater detail below,
as well as in another review in this Forum series.

Nucleation. The next complex recruited to the putative
site of autophagosome formation is the ATG14-containing
class III phosphatidylinositol 3-kinase (PtdIns3K) complex
(57). The PtdIns3K complex generates PtdIns3P, which is re-
quired for macroautophagy in both yeast and mammals (13).
This complex is involved in the nucleation of the phagophore
and consists of PIK3C3/VPS34, PIK3R4/p150 (Vps15 in
yeast), and BECN1 (Vps30/Atg6 in yeast) (Fig. 4) (32, 55, 67, 87,
151). As in yeast, this complex can either function in macro-
autophagy by associating with ATG14 or in the endocytic
pathway through an interaction with UVRAG (an ortholog of
yeast Vps38) (55, 85, 132). While some data suggest that the
UVRAG-associated PtdIns3K complex is involved in autop-
hagosome formation (85), other reports suggest that it may act
in later stages of autophagosome development (86). Another
study found that siRNA knockdown of UVRAG in HeLa cells
does not affect macroautophagy (55). It is clear that further
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FIG. 3. The induction complex consists of ULK1/2, ATG13, RB1CC1, and C12orf44. Under nutrient-rich conditions,
MTORC1 associates with the complex and inactivates ULK1/2 and ATG13 through phosphorylation. During starvation,
MTORC1 dissociates from the complex and ATG13 and ULK1/2 become partially dephosphorylated by as yet unidentified
phosphatases, allowing the complex to induce macroautophagy. RB1CC1/FIP200 and C12orf44/ATG101 are also associated
with the induction complex and are essential for macroautophagy. RB1CC1/FIP200 may be the ortholog of yeast Atg17,
whereas the function of C12orf44/ATG101 is not known. This figure was modified from Figure 1 in Yang and Klionsky (154).
MTORC1, mechanistic target of rapamycin complex 1; RB1CC1, RB1-inducible coiled-coil 1. To see this illustration in color,
the reader is referred to the web version of this article at www.liebertpub.com/ars
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work is required to fully understand the role of UVRAG in the
endocytic and macroautophagic pathways.

Regulation of the PtdIns3K complex occurs largely through
proteins that interact with BECN1, which is essential for
macroautophagy (87, 160). The antiapoptotic protein BCL2
binds BECN1 and prevents its interaction with PIK3C3; thus,
inhibiting macroautophagy (32, 88, 116). Another BECN1-
binding protein, KIAA0226/Rubicon, inhibits PIK3C3 activ-
ity in UVRAG-associated PtdIns3K complexes (Fig. 4) (96,
163). Two positive regulators of the PtdIns3K complex are
AMBRA1 (which directly binds BECN1) and SH3GLB1/Bif-1
(which interacts with BECN1 through UVRAG, and may be
involved in generating membrane curvature) (29, 133, 135).
Very little is known, however, about upstream events regu-
lating the constituents of the various PtdIns3K complexes.

In yeast, there are several proteins that bind to PtdIns3P
generated by the Vps34 complex. Of these, Atg18 and Atg21
have a role in macroautophagy and localize to the PAS (78).
Mammalian cells express two Atg18 orthologs, WIPI1 and
WIPI2, which are also involved in macroautophagy and as-

sociate with phagophores during amino acid starvation by
binding to PtdIns3P (60, 118, 119). Another PtdIns3P-binding
protein in mammalian cells is the zinc finger, FYVE domain
containing 1 (ZFYVE1/DFCP1), which associates with
PtdIns3P-enriched omegasomes (7). The precise functions of
WIPI1/2 and ZFYVE1 in macroautophagy are still unknown.

Elongation. In both yeast and mammals, there are two
conjugation systems involving ubiquitin-like (UBL) proteins
that contribute to the expansion of the phagophore (145). The
first system involves formation of the Atg12–Atg5-Atg16
complex. In yeast, the UBL protein Atg12 is covalently con-
jugated to Atg5 in a manner dependent on the E1 activating
enzyme Atg7 and the E2 conjugating enzyme Atg10 (70, 113,
129). This process differs from ubiquitination in that the con-
jugation of Atg12 to Atg5 is irreversible and does not require an
E3 ligase enzyme (34). Following Atg12–Atg5 conjugation,
Atg16 binds to Atg5 noncovalently and dimerizes to form a
larger complex (79). Mammalian orthologs of this system,
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FIG. 4. The activity of the class III PtdIns3K complex is
regulated by subunit composition. The ATG14 complex
(ATG14-BECN1-PIK3C3-PIK3R4) is required for macro-
autophagy. It can be positively regulated by AMBRA1 and
negatively regulated by BCL2 binding to BECN1 and preventing
association with the complex. The UVRAG (UVRAG-BECN1-
PIK3C3-PIK3R4) complex is involved in the endocytic pathway
and also participates in macroautophagy. SH3GLB1/Bif-1 posi-
tively regulates this complex by binding UVRAG. The
KIAA0226/Rubicon complex (KIAA0226-UVRAG-BECN1-
PIK3C3-PIK3R4) negatively regulates macroautophagy. This
figure was modified from Figure 1 in Yang and Klionsky (154).
To see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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ATG5, ATG12 and ATG16L1, have been identified, and func-
tion as in yeast (Fig. 5) (105, 113). The mammalian ATG12–
ATG5-ATG16L1 complex associates with the phagophore
membrane, but dissociates following autophagosome com-
pletion (105, 106). One way in which this complex is regulated
is through the Golgi protein RAB33A, which can bind to and
inhibit ATG16L1 (58). Additionally, ATG5, ATG7, and ATG12
are inhibited through acetylation by the acetyltransferase
KAT2B/p300 (82).

The second UBL system involved in phagophore expansion
is the Atg8/LC3 system. This conjugation pathway in yeast
begins with processing of Atg8 by the cysteine protease Atg4
to expose a glycine residue at the C terminus of Atg8 (73).
The E1-like enzyme Atg7 activates the processed Atg8 and
transfers it to the E2-like enzyme Atg3 (52). Finally, the
C-terminal glycine of Atg8 is covalently conjugated to the
lipid phosphatidylethanolamine (PE). The Atg12–Atg5 con-
jugate, which may act as an E3 ligase, facilitates this final step
(30, 37, 52). Atg8–PE is membrane-associated, but can be re-
leased from membranes as a result of a second Atg4-mediated
cleavage (73). The mechanism of regulation of the second
Atg4-dependent processing event, referred to as deconjuga-
tion, is not known; however, this appears to be an important
step in macroautophagy because defects in cleavage result in
partial autophagic dysfunction (111).

Mammalian homologs of the Atg8/LC3 system function
much like their yeast counterparts (Fig. 6) (34). Unlike yeast,
which have only one Atg4 and one Atg8, mammals have four
isoforms of ATG4 and several Atg8-like proteins, the latter of
which are divided into the LC3 and GABARAP subfamilies
(44, 91, 146). Whereas both subfamilies can localize with au-
tophagosomes (64), it has been proposed that they function at
different steps in phagophore elongation and completion,
with the LC3 subfamily acting before the GABARAP sub-
family (146). Among the Atg8-like proteins in mammals, LC3
has been the best characterized. The ATG4-processed form of
LC3 is referred to as LC3-I and the PE-conjugated form is
called LC3-II (34). Lipidation of LC3 in mammalian cells is
accelerated under conditions of nutrient starvation or other
types of stress (63). While the mechanism of the conjugation
system of Atg8/LC3 is well understood, the precise role of
Atg8/LC3 in macroautophagy is still unclear. Atg8, and to
some extent LC3 (92, 138), shows a substantial increase in
synthesis during macroautophagy induction (72), and in yeast
this is a determining factor in autophagosome size (149).

Another protein thought to function in elongation of the
phagophore is the transmembrane protein ATG9. In yeast,
Atg9 may cycle between the PAS and peripheral sites (122).
These peripheral sites are referred to as Atg9 reservoirs or
tubulovesicular clusters (TVCs). The TVCs may be direct
membrane precursors to the PAS, and thus, to phagophores
(90, 110). The movement of Atg9 is dependent on the Atg1-
kinase complex, as well as multimerization of Atg9 (42, 122).
The abilities of Atg9 to traffic and multimerize are necessary
for autophagosome formation, suggesting that these proper-
ties of Atg9 contribute to a role for this protein in recruiting
membrane to the expanding phagophore (42, 122).

The mammalian homolog of Atg9 (ATG9) is also seen to
shift localization within the cell and is proposed to have a
similar role in membrane recruitment (159). Under nutrient-
rich conditions, ATG9 localizes to the trans-Golgi network
and late endosomes (159). When cells are starved for nutri-

ents, however, ATG9 colocalizes with autophagosomal
markers (159). This cycling to autophagosomes is dependent
on both ULK1 and PtdIns3K activity and is negatively regu-
lated by MAPK14/p38a (144, 159). The exact functions of
ATG9 in the cell, and how the ULK1 complex regulates ATG9
movement, are poorly understood.
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illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars
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Autophagosome completion and fusion. In what is per-
haps the least understood step of macroautophagy, the ex-
panding phagophore must eventually mature and close to
form a completed autophagosome, which traffics to and fuses
with an endosome and/or lysosome, becoming an autolyso-
some. Movement of autophagosomes to lysosomes is depen-
dent on microtubules (108). Fusion of autophagosomes with
endosomes involves the protein VTIlB (5). UVRAG, which can
associate with the PtdIns3K complex, can activate the GTPase
RAB7, which promotes fusion with lysosomes (59, 86). It has
also been suggested that components of the SNARE ma-
chinery, such as VAM7 and VAM9, have a role in fusion (28,
31). Recent work has identified another SNARE, syntaxin 17,
which localizes to completed autophagosomes and is re-
quired for fusion with the endosome/lysosome through an
interaction with SNAP29 and the endosomal/lysosomal
SNARE VAMP8 (56).

Regulation of macroautophagy

Macroautophagy helps cells respond to a wide range of
extra- and intracellular stresses including nutrient starvation,
the presence/absence of insulin and other growth factors,
hypoxia, and ER stress (Fig. 7) (43). Two pathways involved in
nutrient starvation are regulated by the cAMP-dependent
protein kinase A (PKA) and TOR pathways, which sense
primarily carbon and nitrogen, respectively (130). In yeast,
PKA is an inhibitor of macroautophagy under nutrient-rich
conditions (12). In mammals, this inhibition occurs at least
partially through the phosphorylation of LC3 by PKA (15).
For its role in nitrogen sensing, MTORC1 is positively regu-
lated by the presence of amino acids. Amino acids regulate
RAG proteins, RAS-related small GTPases that activate
MTORC1 (68, 124). There is thought to be some crosstalk

between the carbon- and nitrogen-sensing pathways, based
on studies that demonstrated that mammalian PKA can
phosphorylate, and thus activate, MTORC1 (11, 97). PKA can
also indirectly activate MTORC1 through inactivation of the
AMP-activated protein kinase (AMPK) (26).

AMPK is not simply a substrate of PKA. It is the major
energy-sensing kinase in the cell and responds to intracellular
AMP/ATP levels to regulate a variety of cellular processes,
including macroautophagy (2, 99). AMP and ATP have op-
posite effects on the activity of AMPK, with AMP binding
activating the kinase activity of AMPK (40). When activated
by low energy levels, AMPK can phosphorylate and activate
the TSC1/2 complex, which indirectly inhibits the activity of
MTORC1 (53). Alternatively, AMPK can directly inhibit
MTORC1 (35, 154). Several studies have also reported that
AMPK can phosphorylate and activate ULK1 to induce
macroautophagy (27, 71, 84, 128). The modulation of macro-
autophagy by energy sensing is conserved in yeast where
Snf1, the yeast ortholog of AMPK, serves as a positive regu-
lator (50, 143).

It has also been observed that an increase in cytosolic Ca2 +

concentrations resulting from ER stress causes calcium/
calmodulin-dependent protein kinase kinase 2, beta
(CAMKK2/CaMKKb) to activate AMPK and induce macro-
autophagy (49). Another way in which ER stress can induce
macroautophagy is through unfolded protein response (UPR)
signaling. Accumulation of unfolded proteins in the ER can be
caused by a variety of cellular stressors, and induces macro-
autophagy in both yeast and mammals. However, the role
of macroautophagy in response to ER stress seems to vary,
with some studies reporting that it enhances cell survival,
while others suggest that it may result in autophagic cell
death (25, 43).

Additional signals that cause the induction of macro-
autophagy include hypoxia and the absence of growth factors.
Even in the presence of adequate nutrients, the absence of
growth factors leads to the induction of macroautophagy (89).
Both growth factor concentrations and hypoxia regulate
macroautophagy at least in part through MTORC1, and
hypoxia can inhibit MTORC1 even in the presence of ade-
quate nutrients and growth factors (2, 4). Given its complex
regulation by a variety of cellular signaling pathways,
the involvement of MTORC1 in the regulation of macro-
autophagy is a very intriguing and active area of research, and
is discussed in greater detail in another review in this Forum
series.

Selective macroautophagy and cellular maintenance

While nonspecific macroautophagy can be induced in re-
sponse to nutrient or energy deprivation to enable cell sur-
vival, macroautophagy can also be highly specific, and in this
mode functions more in cell maintenance and homeostasis
(14, 54). Specific autophagic cargoes can include, but are not
limited to peroxisomes, mitochondria, and ubiquitinated
proteins (83, 139, 145).

The selective macroautophagic degradation of peroxi-
somes, termed pexophagy, is important for a majority of the
turnover of peroxisomes under normal growth conditions
(51). For example, in mouse livers, macroautophagy is re-
sponsible for degradation of 70%–80% of the peroxisomal
mass (156). Peroxisomes can also be degraded under

Autophagy

MTORC1PKA

AMPK TSC1/2

CAMKK2 ER stress

Low ATP

Glucose

Amino acids

Growth factors

Oxygen

FIG. 7. Regulation of macroautophagy. Three of the major
kinases that regulate macroautophagy are PKA, AMPK, and
MTORC1. These kinases, along with proteins such as TSC1/2
and CAMKK2/CaMKKb, respond to a variety of intracellular
and extracellular signals to regulate macroautophagy. Green
arrows indicate activation of a target and red bars indicate in-
hibition of a target. See the text for details. This figure was
modified from Figure 4 of Chen and Klionsky (14). PKA,
cAMP-dependent protein kinase A; AMPK, AMP-activated
protein kinase; CAMKK2/CaMKKb, calcium/calmodulin-
dependent protein kinase kinase 2, beta. To see this illustration
in color, the reader is referred to the web version of this article
at www.liebertpub.com/ars
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starvation conditions, during which they can be specifically
recognized by autophagosomes through binding of LC3-II to
PEX14, a component of the peroxisomal translocon complex
found on the peroxisomal membrane (39). Given the role
of peroxisomes in a variety of metabolic functions and the
negative effects of peroxisomal dysfunction on human health,
pexophagy has an important role in maintaining proper cel-
lular physiology (139).

Mitophagy is another type of selective macroautophagy
that involves the selective degradation of mitochondria, and
has been shown to be important in mammals not only for
steady-state turnover of these organelles (137), but also for the
development of certain cell types and the clearance of dam-
aged mitochondria (69, 80, 126). For example, in order for
mammalian red blood cells to mature, mitophagy is used to
remove mitochondria from the immature cells (80, 109, 161).
During this process, it is thought that a mitochondrial outer
membrane protein called BNIP3L/NIX interacts through a
WXXL-like motif (also called the LC3-interacting region) with
LC3 and GABARAP on the expanding phagophore, allowing
for recognition (Fig. 8) (158).

The clearance of damaged mitochondria, however, is
thought to proceed in a slightly different way. In this case, the
cytosolic E3 ubiquitin ligase PARK2/Parkin is recruited to
damaged mitochondria by the mitochondrial outer mem-
brane kinase PINK1, whereupon PARK2 ubiquitinates mito-
chondrial substrates, leading to mitophagy (158). In healthy
mitochondria, PINK1 is imported into the mitochondrial in-
ner membrane, and subsequent cleavage by the mitochondrial
processing peptidase (PMPCB) and presenilin associated,
rhomboid-like protease (PARL) leads to its eventual degra-
dation. This prevents the accumulation of PINK1 on the mi-
tochondrial outer membrane, which would otherwise lead to
mitophagy of healthy mitochondria (61, 98). The genes en-
coding both PINK1 and PARK2 are mutated in autosomal
recessive Parkinson disease (77, 142), emphasizing the im-
portance of mitophagic clearance of damaged mitochondria in
maintaining cellular and, thus, organismal health.

Another mechanism used by the cell to identify cargo
for selective degradation by macroautophagy involves ubi-
quitination. The ubiquitin-binding protein SQSTM1/p62 tar-
gets intracellular bacteria for degradation by a specific type
of macroautophagy called xenophagy (162). SQSTM1 is
also important for the clearance of ubiquitinated protein ag-
gregates by acting as an adaptor protein that interacts with
LC3-II to target aggregates for macroautophagy-specific
degradation in a process termed aggrephagy (10, 115, 141).
NBR1 and OPTN are other receptors that function in targeting
ubiquitinated proteins or pathogens to autophagosomes
(75, 147).

Conclusions

Given the wide array of extra- and intracellular signals that
can regulate autophagy and the range of possible cargos, it is
not surprising to learn that autophagy has been implicated in
various aspects of human health and pathophysiology. Sev-
eral of these topics will be explored in depth in other reviews
in this Forum series. One area that especially warrants further
study is the regulatory network controlling macroautophagy.
While several key regulators of macroautophagy have been
identified, it is likely that many regulatory factors are not yet

defined. Even in the case of relatively well-characterized
regulators, such as MTORC1, the relevant downstream
targets are not completely known, as is true for most of the
kinases that control macroautophagy, and very little infor-
mation is available with regard to the complementary phos-
phatases. Similarly, the crosstalk among the different
regulatory pathways has not been well elucidated. The
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FIG. 8. Two mechanisms of mitophagy. Mitochondria are
cleared from maturing red blood cells through a mechanism
involving autophagic recognition of mitochondria through a
BNIP3L–LC3 interaction. During removal of damaged mi-
tochondria, PARK2 binds to PINK1 on the mitochondrial
surface and ubiquitinates mitochondrial outer membrane
proteins, which may then bind SQSTM1, a receptor that in-
teracts with LC3. In either case, the interaction with LC3
leads to sequestration by the phagophore and eventual
degradation. This figure was modified from Figure 2 of
Youle and Narendra (158). To see this illustration in color,
the reader is referred to the web version of this article at
www.liebertpub.com/ars
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identification and characterization of such factors will be
important in the development of therapeutics targeting reg-
ulatory proteins; without a deeper understanding of how the
cell integrates various extracellular and intracellular signals
into a cohesive macroautophagic response, it is difficult to
predict how the regulatory network will function when per-
turbed by therapeutics.

Along these lines, potentially interesting targets for thera-
peutic applications include ULK1/2, ATG3, ATG4, ATG7,
ATG10, and PIK3C3/VPS34. The crystal structures of most of
these proteins have been determined from various organisms
(45, 46, 103, 112, 125, 131, 150), and, importantly, they have
clearly defined functions and functional motifs, making them
interesting targets for rational drug design. Further elucidation
of the individual steps of macroautophagy, additional struc-
tural studies, and a more complete knowledge of the role of this
process in different disease conditions will provide a better
understanding of this integral cellular process, and can guide
the development of improved methods and/or drugs for the
treatment of autophagy defects related to human disease.
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AMPK¼AMP-activated protein kinase
ATG¼ autophagy-related

CAMKK2/CaMKKb¼ calcium/calmodulin-dependent
protein kinase kinase 2, beta

CMA¼ chaperone-mediated autophagy
ER¼ endoplasmic reticulum

HSPA8¼heat shock 70kDa protein 8
LAMP2A¼ lysosomal-associated membrane

protein 2A
MTORC1¼mechanistic target of rapamycin

complex 1
PAS¼phagophore assembly site

PE¼phosphatidylethanolamine
PKA¼ cAMP-dependent protein kinase A

PtdIns3K¼phosphatidylinositol 3-kinase
RB1CC1¼RB1-inducible coiled-coil 1

TVC¼ tubulovesicular cluster
UBL¼ubiquitin-like
ULK¼unc-51-like kinase (C. elegans)
UPR¼unfolded protein response

ZFYVE1¼ zinc finger, FYVE domain
containing 1
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