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Abstract

Infectious diseases, such as the coronavirus disease-19, SARS virus, Ebola virus, and AIDS, threaten the health of human 

beings globally. New viruses, drug-resistant bacteria, and fungi continue to challenge the human efficacious drug bank. 

Researchers have developed a variety of new antiviral and antibacterial drugs in response to the infectious disease crisis. 

Meanwhile, the development of functional materials has also improved therapeutic outcomes. As a natural material, chitosan 

possesses good biocompatibility, bioactivity, and biosafety. It has been proven that the cooperation between chitosan and 

traditional medicine greatly improves the ability of anti-infection. This review summarized the application and design 

considerations of chitosan-composed systems for the treatment of infectious diseases, looking forward to providing the idea 

of infectious disease therapy.
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Introduction

Infectious diseases are currently one of the main causes of 

human death. The prevention and treatment of these diseases 

have been received great attention. There was a period in 

history when the incidence and mortality of infectious 

diseases have been declining, which can be attributed to the 

development of penicillin [1]. However, the pace of drug 

development has fallen behind the microbial mutations rates, 

especially the emergence of super bacteria and new viruses 

[2]. The emergence of coronavirus disease-19 (COVID-

19) has brought a huge health crisis to all countries in 

the world. Seven coronaviruses infect humans currently, 

which including acute respiratory syndrome coronavirus 

(SARS-CoV) in 2002, Middle East respiratory syndrome 

coronavirus (MERS-CoV) in 2012, and the COVID-19 or 

named SARS-CoV-2 last year [3, 4]. The development of 

new drugs and vaccines cannot be delayed [5]. Meanwhile, 

effective treatment strategies are constantly being tried in the 

clinic. In recent years, the dynamics of infectious diseases 

and the emergence of drug-resistant bacteria and viruses 

have also made the biomedical field pay more attention to 

new drug delivery platforms.

Most infectious diseases are caused by bacteria, fungi, 

parasite, and viruses [6]. The current therapy methods 

for infectious diseases include vaccine injection and drug 

treatment for the infected site, which ultimate goal is to 

eliminate pathogens. Most vaccines are injected parenterally 

to stimulate the immune system to produce antibodies in the 

serum, but cannot produce mucosal antibody responses [7]. 

In recent years, needle-free administration via oral, nasal, 

pulmonary, and dermal routes has become an alternative to 

parenteral administration [8]. Some drug delivery systems 

based on micro- or nano-particles have been developed 

for targeted delivery of vaccines to generate effective 

adaptive immunity. Because of the high specific surface 

area of nanoparticles, drug molecules can obtain ideal drug 

loading efficiency in particles [9]. Vectors with low cost, 

good biocompatibility, and low side effects have attracted 

the interest of researchers.

Chitosan is a natural and biocompatible polysaccharide, 

mainly derived from the exoskeleton of crustaceans. Due to 

the presence of quaternary ammonium salt groups, chitosan 
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exhibits positive charges in physiological environments. 

[10]. A large number of active functional groups on the 

molecular chain make chitosan easy to be structurally and 

chemically modified to produce immune stimulation [11], 

the promotion of wound healing [12], and antibacterial 

and antifungal properties [13]. The versatility and 

adaptability of chitosan provide a unique opportunity for the 

development of new antibacterial therapies and prevention 

of infectious diseases. Chitosan-composed systems utilize 

the characteristics of chitosan to achieve great therapeutic 

effects. For example, the adhesiveness of chitosan can be 

used for noninvasive mucosal vaccine vectors [14]. When 

chitosan combined with other wound dressings such as 

hydrogels, it has certain antibacterial properties while 

promoting wound healing [15]. Chitosan-modified vectors 

exhibit good biocompatibility in vivo. Therefore, chitosan-

composed systems have great potential in the therapy of 

infectious diseases.

This review summarized the application of chitosan in 

the treatment of infectious diseases. By analyzing its design 

considerations and application, new ideas for the therapy of 

infectious diseases are expected to be proposed.

The application of chitosan in the infectious 
diseases therapy

The antibacterial action mechanism of chitosan is to bind 

to the negatively charged bacterial cell wall, which leads 

to a change in the permeability of the cell envelope and 

then attaches to the DNA to inhibit its replication [16]. The 

physical and biological properties of chitosan depend on 

the degree of deacetylation and molecular weight [17]. The 

number and distribution of acetyl groups in chitosan affect 

its biodegradability and cytotoxicity, and the degree of 

deacetylation of chitosan directly affects the efficiency of 

antigen delivery and the activity of chitosan as an adjuvant 

[18, 19]. The amine and hydroxyl functional groups present 

in chitosan can be chemically modified to introduce other 

groups, such as hydroxyalkyl [20, 21], carboxyalkyl 

[22], succinyl [23], thiol [24, 25], and sulfate [26], to 

prepare various chitosan derivatives. The adhesion and 

permeability enhancement of chitosan derivatives depend 

on the degree of substitution or quaternization of chitosan.

The construction of chitosan-composed nanoscale vectors 

can take advantage of the size to achieve great therapeutic 

effects. There are various kinds of delivery systems, not 

limited to nanocarriers, and corresponding requirements 

for delivery systems are also varied. For instance, 

nanoparticles as drug delivery systems need to responsive 

release characteristics and require good biocompatibility; 

meanwhile, wound dressings emphasize the mechanical 

properties of the material to achieve sustained drug release. 

Hydrogels need to have good biocompatibility and the 

promotion of wound healing ability. Hydrogels loaded 

with therapeutic drugs have been proven to promote wound 

repair or enhance antibacterial and anti-infective properties. 

Therefore, in response to different infectious diseases, the 

treatment strategies tend to be diversified.

Chitosan-composed nanoparticles

Chitosan and its derivatives have antibacterial effects on 

Gram-negative bacteria and Gram-positive bacteria [27]. 

The effectiveness of the antibacterial agent on bacteria can 

be improved by being loaded into the chitosan-composed 

nanoparticles [28]. Chitosan can also work in collaboration 

with other nanoparticles. Nanoparticles have a high specific 

surface area. The high surface area leads to a higher 

charge density, thereby increasing the interaction with 

microbial elements [13]. For instance, chitosan films were 

incorporated onto gold nanoparticles to achieve improved 

antibacterial effects [29] (Fig. 1). The intrinsic effects of 

chitosan-composed nanoparticles on microorganisms 

have been enhanced on the nanoscale, while the adverse 

effects have hardly increased [30–32]. Chitosan-composed 

nanoparticles showed obvious antibacterial effects on E. 

coli and several Staphylococcus [13]. These chitosan-

composed nanoparticles are superior to pure chitosan 

polymers and doxycycline in inhibiting the growth of 

these species. Friedman et al. studied the antibacterial and 

immunological properties of chitosan-sodium alginate 

nanoparticles, which showed effective inhibition of the 

growth of P. acnes [33]. Studies have shown that chitosan 

nanoparticles, especially those formed with low molecular 

chitosan, can inhibit the formation of Streptococcus mutans 

biofilm in vitro [34]. Chitosan-composed nanoparticles can 

be uniformly dispersed throughout the sample and cause 

significant cell membrane damage [31]. Similarly, the anti-

fungal mechanism of chitosan-composed nanoparticles is 

also through the close interaction of chitosan and fungal 

cell membranes, which caused fungal cell membrane 

rupture [35]. But it should be noted that A. niger is resistant 

to chitosan nanoparticles [36]. The cell wall of A. niger 

contains 10% chitin, which is related to its resistance to 

chitosan. Therefore, chitosan-composed nanoparticles need 

specific choices in antifungal aspects to achieve the ideal 

therapeutic effect.

Helicobacter pylori can cause gastroesophageal 

reflux disease and chronic atrophic gastritis [37]. The 

drug resistance of H. pylori has increased sharply, and 

the efficacy of traditional antibiotics has been severely 

reduced. Chitosan nanoparticles can be used for gastric 

delivery and continuous administration [38]. This strategy 

can overcome malabsorption of the drug in the stomach. 

Chitosan nanoparticles can also be used for ocular 
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administration. Zhou et  al. designed chitosan-modified 

polylactic acid nanoparticles for ocular drug delivery 

[39] (Fig. 2). Compared with the free drug, with the same 

antibacterial properties, this drug delivery system exhibits 

better corneal penetration without increasing corneal 

irritation. These advantages promoted the strategic design 

of chitosan-composed nanoparticles in drug delivery 

systems. The biodegradable nano-delivery system that 

combined polysaccharides and proteins has also attracted 

interest of researchers. There are reports on the preparation 

of nanoparticles by electrostatic complexation of proteins/

polysaccharides [40, 41]. The stability of embedding 

agent and nanoparticles can be improved by increasing 

the spatial and electrostatic repulsion between protein 

and polysaccharide. The stability of nutrient compounds 

can be greatly improved by encapsulating hydrophobic 

and hydrophilic nutritive compounds into protein/

polysaccharide electrostatic complexes [42]. A kind 

of vector modified by corona with oppositely charged 

macromolecules has been reported [43]. For example, 

proteins act as the inner core to change the overall particle 

density and provide sustained release of drugs; meanwhile, 

polysaccharides act as the outer layer to provide additional 

steric and electrostatic stability [42, 43]. The biodegradable 

nanoparticles were corona-modified by chitosan, and the 

adhesion of biodegradable nanoparticles was improved 

through electrostatic interaction with the anionic mucus 

layer. This proposal exhibited a good therapeutic effect on 

H. pylori in the gastric epithelial layer and the mucus layer. 

To sum up, it is of significance for improving the curative 

effect to construct a nano-carrier based on chitosan or to 

modify the carrier with chitosan.

Fig. 1  Schematic diagram of chitosan-gold nanoparticles as efficient antibacterial materials [29]. Copyright © 2014 American Chemical Society

Fig. 2  Schematic diagram of 

self-aggregation formed by the 

PLA-g-CS copolymer in aque-

ous medium [39]
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Chitosan-based vaccine vectors

For the prevention and treatment of infectious diseases, 

drug treatment often brings some undesirable side effects 

and increases the drug resistance of bacteria and viruses. 

Vaccination is one of the effective treatment methods 

for the prevention and treatment of infectious diseases. 

By activating the immune system, the recurrence of 

infectious diseases can be effectively prevented [44]. The 

mucosal surface (nose, respiratory tract, oropharynx, 

gastrointestinal tract, and genitourinary system) is the most 

common entry route for pathogens (viruses and bacteria) 

[45]. Mucosal immunity not only provides humoral and 

cellular immune protection in the mucosal area but also 

provides systemic immunity [46]. Polymer-based vectors 

have flourished in mucosal vaccine delivery because they 

provide the advantage of delivering antigens to specific 

targets [47]. Moreover, the polymer-based vector can 

protect the antigen from harsh environments such as pH, 

bile, and gastrointestinal tract digestive enzymes, as well 

as can control or slow the release of the antigen. It has 

been reported that polymer-based particles can enhance 

the immune response to mucosal delivery of antigens [48] 

(Fig. 3). After encountering with an antigen, B cells convert 

themselves to antibody secreting plasma cells that produce 

antibodies for excreting the pathogens to mucosal surfaces 

(mucosal response), whereas dendritic cells (DCs) present 

the antigen via major histocompatibility complex (MHC) 

class I and class II molecules to CD8+ and CD4+ T cells. 

The activation pathway of CD8+ T cells and CD4+ Th1 

cells produces cytotoxic T lymphocytes (CTL) and activated 

macrophages that kill intracellular pathogens or infected 

cells (cellular response), while the activation pathway 

of CD4+ Th2 cells produces activated B lymphocytes 

that secrete antibodies for neutralization of extracellular 

pathogens (humoral response).

Considering the optimal performance of the polymer-

based vector and the required conditions for the delivery 

of antigens through the mucosal route, chitosan and its 

derivatives have attracted great attention as the particle 

vector for antigen delivery. The adhesion of chitosan is 

mainly caused by the electrostatic interaction between 

the positively charged molecular chain and the negatively 

charged cell surface and mucus [49]. Subbiah et al. loaded 

hepatitis B virus surface antigen (HBsAg) into N,N,N-

trimethyl chitosan nanoparticles (TMC NPs) for controlled 

intranasal administration (Fig. 4) [50]. In vivo immune 

studies shown that the adjuvant efficiency of antigen-loaded 

Fig. 3  Schematic diagram of 

various immune responses 

induced by particulate vaccine 

system [48]. Copyright © 2017 

Elsevier B.V
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TMC NPs remains highly stable for a long period of time. 

However, it is worth noting that the aggregation behavior 

of chitosan particles affects the long-term stability of 

vectors. PEGylation can enhance the stability of the 

vector during circulation in vivo [14]. PEGylated chitosan 

microspheres can release more antigens in  vitro and 

stimulate macrophages to produce more cytokines. Pluronic 

as a typical multi-purpose excipient has been widely used 

in various pharmaceutical preparations due to its ability 

to increase water solubility and drug stability. It has been 

reported that the two-component system of Pluronic F127 

and chitosan showed additive or synergistic effects in 

immune response [51].

Vaccine vectors modified with targeting ligand can 

greatly improve the delivery efficiency of the antigen [52]. 

Chitosan surface-modified by mannose has been used 

as nasal delivery of vaccines [53]. Similarly, targeting 

peptides conjugated to chitosan can also improve the 

targeting efficiency of vaccine vectors [54]. Chitosan, as a 

positively charged polysaccharide, shows great advantage in 

constructing vaccine vector.

Chitosan-based wound dressings

Local infections are widespread in wounds, burns, diseases, 

surgical wounds, and all other tissues involved in surgery. A 

local infection may lead to prolonged wound healing, wound 

dehiscence, abscess formation, and sepsis, and in severe 

cases, it can also lead to life-threatening complications [55]. 

Therefore, the development of new biological materials that 

can prevent infection has become an urgent and important 

goal. Due to antibacterial properties, chitosan has inherent 

advantages as wound dressings. In the environment of 

multivalent electronegative molecules or anions, chitosan 

can form ion network through coordination and secondary 

interactions, which form gel network easily [56]. In recent 

years, materials with three-dimensional network composition 

have received more and more research as a new type of 

vector platform, such as three-dimensional scaffolds, drug 

banks, bandages, and wound dressings [57–59]. It is worth 

noting that biomedical hydrogels based on natural polymers, 

especially chitosan, have received special attention due to 

their good biocompatibility and biomimetic properties [60]. 

Chitosan-based gels can encapsulate biologically active 

molecules in the network through physical interaction or 

chemical coupling. For example, a hydrogel composed 

of carboxymethyl chitosan (CMC)/oxidized dextran was 

developed for loading anti-infective drugs (ceftriaxone 

sodium) [61]. The prepared hydrogel has been proven to 

have good biocompatibility and exhibit good anti-infective 

effects in vivo (subcutaneous infection model and cecal 

ligation and perforation model). Hu et  al. used CMC, 

alginate (ALG), and calcium chloride to prepare a series 

of double-crosslinked amorphous hydrogels (CMC-ALG) 

through electrostatic interaction and divalent chelation, 

which loaded epidermal growth factor (EGF) (Fig. 5) [62]. 

The double cross-linked amorphous hydrogel promotes 

wound healing while being antibacterial.

As shown in Fig.  6, Yang et  al. developed a high-

performance hybrid chitosan-polyacrylamide (CS-pam) ion 

covalent double-network hydrogel and flexibly adjusted its 

structure and mechanics by adjusting the CS ion network 

in  situ [63]. The application of this hydrogel in wound 

dressings has great prospects.

Chen et  al. fabricated antibacterial alginate/chitosan 

hydrogel dressing integrated with gelatin microspheres. 

Fig. 4  Schematic diagram 

of N,N,N-trimethyl chitosan 

(TMC) NP preparation, HBsAg 

loading, and nasal administra-

tion of TMC NPs [50].  Copy-

right © 2012 Elsevier Ltd
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Drug-loaded gelatin microspheres improved the biodegradable 

and mechanical properties of the dressing. The composite 

dressing showed antibacterial performance and bacterial 

growth inhibition effects [64]. Bandages with hemostatic and 

antibacterial effects were prepared by using chitosan acetate 

[65]. Compared with alginate sponge bandage and silver 

sulfadiazine cream, the chitosan acetate bandages can reduce 

the level of bacterial load in the skin more efficiently. In the 

P. aeruginosa and P. mirabilis models treated with chitosan 

acetate bandages, systemic infections can be prevented, and 

all animals can survive.

Design considerations for chitosan‑based 
drug delivery systems

Chitosan component can improve the biocompatibility, 

biosafety, and stability of drug delivery systems via chemical 

modification or physical mixing. According to different 

treatment strategies, the expected performance of the vector 

is diverse. For example, drug vectors need controlled release 

function, mucosal vaccine carriers need adhesive properties, 

and wound dressings require certain physical properties.

Adhesion

In mucosal vaccine carriers, chitosan has been used to 

increase the adhesive ability of vaccine carriers to achieve 

long-term retention on the mucosa [49]. In the antibacterial 

therapy of dental diseases, insufficient absorption and 

penetration of biofilms by traditional antibacterial agents 

are two major considerations for the use of these therapies 

[66]. Biofilms are complex bacterial communities that are 

highly resistant to antibiotics and human defense systems 

[67]. Researchers have done plenty of work on the anti-

biofilm/antibacterial potential of metals and metal oxide 

nanoparticles, such as titanium oxide, copper, silver, gold, 

zinc, and silicon [68]. However, the side effects of metal 

nanoparticles limited their clinical applications. Therefore, 

natural biopolymers with adhesive properties can be used 

as potential antibacterial and anti-inflammatory nano-drug 

delivery systems [69, 70]. Chitosan has adhesive properties 

and is used to treat periodontitis. A faster healing rate of 

alveolar bone and periodontal epithelium in mice with 

periodontitis was observed [71]. The vector system can be 

attached to the tooth surface, tongue surface, and buccal 

cavity mucosa. As the environment of the oral cavity 

changes, the antibacterial agent can be released in response, 

so the antibacterial agent can penetrate the bacterial biofilm 

that caused the dental infection to achieve a therapeutic 

effect.

The balance between efficiency and toxicity

Polysaccharides have received extensive attention in the 

field of pharmacy due to their high-efficiency therapeutic 

applications in drug storage and reducing toxicity [72]. 

Almeida et al. prepared chitosan-based amphiphilic micelles 

for hydrophobic drug delivery [73]. This delivery strategy 

has demonstrated that chitosan micelles can stabilize the 

loaded drug, protect up to 75% of the drug from hydrolysis 

and retain its activity. The antibiotic polymyxin B (PMB) is 

considered to be an effective weapon against gram-negative 

Fig. 5  Schematic illustration of CMC-ALG and CMC-ALG-EGF 

hydrogels [62]  Copyright © 2018 WILEY‐ VCH Verlag GmbH & 

Co. KGaA, Weinheim.

Fig. 6  Fabrication of hybrid 

CS-PAM ionic-covalent double-

network hydrogels [63]. Copy-

right © 2018 WILEY‐VCH 

Verlag GmbH & Co. KGaA, 

Weinheim
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“super bacteria” [74]. However, the severe nephrotoxicity 

and neurotoxicity of PMB limits its application [75, 76]. 

There have been many methods to reduce the toxicity of 

polymyxin by shielding the cationic part or reducing the 

number of cationic residues by negatively charged derivatives. 

For example, PMB prodrugs prepared from cationic amino 

acids modified by methanesulfonic acid and PEG [77, 78]. 

Although PMB prodrugs can significantly reduce its toxicity, 

it inevitably reduces its antibacterial properties. Some 

traditional drug delivery nano-platforms such as liposomes 

[79], silica nanoparticles [80], and polymer particles [81, 

82] can improve the safety of PMB. However, due to the 

restriction of entering the bacterial membrane, the bactericidal 

activity of these nanocarriers is reduced. Chai et al. developed 

a pH-sensitive multi-ion nanocomplexes to deliver PMB for 

the treatment of acute lung infections, which showed fewer 

adverse reactions without affecting the inherent antibacterial 

effect (Fig. 7) [83]. This multi-ionic nanocomplexes are 

mixture of PMB and 2,3-dimethylmaleic anhydride (DA) 

grafted chitoligosaccharide. As a derivative of chitosan, 

chitoligosaccharide can be excreted or biodegraded in the 

body. By electrostatically complexing with negatively charged 

DA, the positive charge density of PMB was reduced, which 

leads to the decline of the toxicity. This delivery system 

showed the same antibacterial properties as free PMB in vivo, 

but significantly reduced the nephrotoxicity and neurotoxicity 

caused by PMB. Moreover, this method of electrostatically 

combining antibiotics and biocompatible materials can be 

extended to other antibiotics as a general strategy to reduce 

the side effects of highly toxic antibiotics.

Combination therapy

Chitosan have great potential in combination therapy. 

Whether through chemical modification or physical mixing, 

the biocompatibility, biosafety, and stability of the drug 

delivery system could be improved. In some cases, the 

combination of chitosan and other therapeutic drugs can 

produce synergistic therapeutic effects.

Chitosan is an attractive preparation widely used as 

a pharmaceutical excipient. El-Sharif et al. explored the 

antibacterial activity of the chitosan-EDTA combination 

against gram-negative bacteria, gram-positive bacteria, 

and Candida albicans [84]. This research showed that the 

use of chitosan as an enhancing agent with antibacterial 

and antifungal properties in combination with EDTA 

in pharmaceutical preparations. Camacho-Alonso et al. 

explored the antibacterial effect of chitosan accompanied 

by photodynamic therapy (PDT) on Enterococcus faecalis 

and evaluated the enhancement effect of chitosan on the 

photosensitizer methylene blue in the root canals of 

extracted human teeth infected in vitro [85].

Some matrixes can be chemically or physically 

modified by chitosan, which achieve good biocompatibility 

and antibacterial properties. The permanent presence of 

metal vascular stents in the blood vessel wall can cause 

foreign body reactions and thrombosis [86]. Researchers 

have developed bioabsorbable vascular stents (BVS) to 

overcome the above-mentioned limitations of metal stents. 

BVS can be absorbed over time without any permanent 

prosthetic constraints in the blood vessel [87]. Poly(L-

lacticacid) (PLLA) is currently the most commonly used 

BVS polymer [88]. But compared with permanent metal 

stents, BVS made of PLLA faces a higher incidence of 

early thrombosis [89]. To solve this problem, chitosan is 

used to form heparin-like polysaccharide multilayer film 

with sulfated yam polysaccharide (SCYP) to assemble and 

modify the surface of PLLA membrane layer by layer [90]. 

The multilayer modified PLLA prepared by this strategy 

is non-cytotoxic, has good antibacterial activity against E. 

coli and S. aureus, and has drug loading/sustained release 

behavior. This strategy has potential applications in 

biomedical materials that contact blood. The combination 

of chitosan and antibacterial drugs provides an idea for 

constructing versatile treatment systems. These therapy 

strategies were summarized in Table 1, which not limited 

to the treatment of infectious diseases, which had a certain 

inspiration for the treatment of other diseases.

Fig. 7  Schematic illustration of 

preparation process of CS-DA/

PMB nanocomplexes [83]. 

Copyright © 2020 WILEY‐
VCH Verlag GmbH & Co. 

KGaA, Weinheim
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Conclusion

Infectious diseases have always been one of the threats to 

human health. The effectiveness of traditional therapeutic 

agent and therapy strategies has been challenged. Chitosan 

and chitosan-composed systems show great potential in 

anti-infection field. Compared with the cumbersome 

and costly artificial polymers, low cost, wide sources, 

and good biocompatibility are the characteristics of the 

chitosan. However, chitosan is not a panacea for bacteria, 

fungi, and viruses that cause infectious diseases. But the 

biocompatibility of chitosan can be applied to the human 

body. Due to the low-cost and highly biocompatible, 

chitosan-based vectors have great potential in the future.

As summarized in Fig. 8, in terms of infectious diseases, 

chitosan-composed systems in different forms or with 

diverse properties have been proposed. Chitosan-composed 

vectors have great application potential in vaccine vectors 

and drug vectors. These kinds of vectors can efficiently load 

therapeutic drugs, reduce the toxic and side effects of the 

drugs, and enhance the treatment efficacy. These concepts 

have certain potential in the development of clinical 

applications. In addition, due to its good antibacterial ability 

and biocompatibility, chitosan-based wound dressings 

have good prospects in clinical applications. As the wound 

dressing, it is not only required to promote wound healing, 

but also should be dedicated to rapid analgesia, anti-itching, 

and alleviating the discomfort of patients during the healing 

process. Moreover, simplifying the preparation steps of 

chitosan-based dressings can also promote its development 

in clinical applications. For the current epidemic of COVID-

19 and possible viruses in the future, chitosan as a vaccine 

vector has high application value in terms of non-invasive 

vector. The chitosan-based vector can deliver antibodies to 

the nasal mucosa, and can load gene drugs that interfere with 

or disrupt viral DNA/RNA replication and deliver them to 

infected cells. These provide some inspiration for the fight 

against COVID-19 in the future.

The development of new vectors increases the diversity of 

combination with chitosan-composed systems. It is believed 

that in the near future, more chitosan-composed systems would 

be developed in the treatment of infectious diseases and be 

widely used in clinical practice.

Table 1  Summary of chitosan-

based vectors in drug delivery
Vector type Application Design considerations Ref

Nanoparticles Antibacterial Antibacterial [33]

Nanoparticles Anti-fungal Anti-fungal mechanism [35]

Nanoparticles Drug delivery Continuous administration [38]

Nanoparticles Ocular administration Corneal penetration [39]

Nanoparticles Vaccine vectors Stability and adhesion [50]

Hydrogel Wound dressings biocompatibility [62]

Hydrogel Wound dressings Mechanical property [63]

Hydrogel Wound dressings Biodegradable and mechanical 

properties

[64]

Hydrogel Periodontitis Adhesive property [71]

Micelles Drug delivery Stability [73]

Nanocomplexes Drug delivery Biocompatibility [83]

Complexes Antibacterial Combination therapy [84]

Complexes Antibacterial Combination therapy [85]

Multilayer film Antibacterial and Drug delivery Combination therapy [90]

Fig. 8  Applications and performances of chitosan-composed systems 

in infectious disease
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