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ABSTRACT OF THE DISSERTATION

GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY

by

Liangdong Deng

Florida International University, 2020

Miami, Florida

Professor Naphtali Rishe, Major Professor

Geographic data are information associated with a location on the surface of the

Earth. They comprise spatial attributes (latitude, longitude, and altitude) and non-

spatial attributes (facts related to a location). Traditionally, Physical Geography

datasets were considered to be more valuable, thus attracted most research interest.

But with the advancements in remote sensing technologies and widespread use of

GPS enabled cellphones and IoT (Internet of Things) devices, recent years witnessed

explosive growth in the amount of available Human Geography datasets. However,

methods and tools that are capable of analyzing and modeling these datasets are

very limited. This is because Human Geography data are inherently difficult to

model due to its characteristics (non-stationarity, uneven distribution, etc.).

Many algorithms were invented to solve these challenges – especially non-stationarity

– in the past few years, like Geographically Weighted Regression, Multiscale GWR,

Geographical Random Forest, etc. They were proven to be much more efficient than

the general machine learning algorithms that are not specifically designed to deal

with non-stationarity. However, such algorithms are far from perfect and have a lot

of room for improvement.

This dissertation proposed multiple algorithms for modeling non-stationary geo-

graphic data. The main contributions are: (1) designed a novel method to evaluate

non-stationarity and its impact on regression models; (2) proposed the Geographic

vi



R-Partition tree for modeling non-stationary data; (3) proposed the IDW-RF algo-

rithm, which uses the advantages of Random Forests to deal with extremely unevenly

distributed geographic datasets; (4) proposed the LVRF algorithm, which models

geographic data using a latent variable based method. Experiments show that these

algorithms are very efficient and outperform other state-of-the-art algorithms in

certain scenarios.
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CHAPTER 1

INTRODUCTION

1.1 Background

Geographic data are information associated with a location on the surface of the

earth. They are comprised of spatial attributes (latitude, longitude, and sometimes

altitude), non-spatial attributes (features or characteristics of an object, or observa-

tions associated with the location), and sometimes also temporal attributes [SG16].

Typically, scientists and researchers categorize geographic datasets by the source

where they come from. Data collected from the natural processes of the Earth

are called Physical Geography datasets. Data generated by activities of people

are categorized as Human Geography datasets. For example, mineral resources,

hydrology, weather, and climate all belong to Physical Geography [Mas99]. Whereas

housing, culture, traffic, disease, war, and crime are in the category of Human

Geography. This categorization method is widely used because datasets in different

categories usually have distinct characteristics which makes methods or theories that

work with one category less efficient or don’t work at all for the other category.

Traditionally, Physical Geography datasets were considered to contain more

value and thus attracted more interest from researchers. Unarguably, these research

are important and crucial to the survival and development of the human race, such

as learning how to avoid or dampen damage brought by natural hazards [AMlBI17],

efficiently locate and extract mineral resources [PW16] and so on.

On the other hand, Human Geography datasets have been growing at a fast

pace in recent years due to the adoption of GPS enabled cellphones and other

IoT (Internet of Things) devices [BBFRS12]. Values in these datasets are gaining

increased interest every day. However, some methods and algorithms that worked
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well on Physical Geography data cannot be applied to Human Geography data

directly without any change, as some of the underlying assumptions have changed.

Thus, new theories and tools need to be invented accordingly.

1.2 Problem Statement

Comparing with Physical Geography, Human Geography datasets have the following

traits that make them more difficult to deal with:

❼ Non-stationary

– A non-stationary dataset means the underlying rules that determine the

target value (the feature in the dataset that we are interested in or want

to predict) would change with the location. Conversely, in stationary

data, this rule is the same everywhere.

– Usually, data collected during the natural processes of the Earth are

completely or mostly stationary. For example, the presence of a certain

mineral deposit is always decided by a few factors no matter where it is.

Different locations will affect the values of these factors but won’t change

the formula between these factors and the presence of the mineral.

– But for Human Geography datasets, a formula that works in one city

doesn’t necessarily work in another city. There are always hidden factors

that cannot be collected or precisely measured that influences the target

value. For example, crime data collected from different cities may not fit

the same models because a lot of social, political, or historical factors are

not included in the dataset.

2



– However, this doesn’t mean non-stationary datasets are impossible to

learn. Spatial autocorrelation is still effective in these data and makes it

possible to create multiple local models instead of one global model.

❼ High dimensionality

– Human Geography datasets usually tend to have a much higher dimension

than Physical ones because of the number of features available. This is

especially true when the datasets are enlarged by deriving additional

information from other sources.

– For example, when predicting the sale price of houses, one can easily

find attributes of the property itself (dozens of features), plus countless

derived location data (like nearby schools, supermarkets, tax info, and

so on) which can easily expand to hundreds of features, in which case

many of the traditional algorithms will be much less efficient or doesn’t

applicable at all.

❼ Large data size

– Many of the Physical Geography datasets require researchers to actually

visit the sample location to retrieve critical data. This is generally very

expensive thus greatly limits the amount of data available.

– Human Geography datasets, however, do not have this limitation and

can be retrieved from various ways at a very low cost like crow sourcing,

Internet questionnaire, widely available government data sources, and so

on. Thus, datasets that contain millions of observations are more and

more common.

3



– More data usually means more accurate models can be trained. But with

Human Geography datasets, this can hardly be true due to the existence

of non-stationary. For any location, if nearby observations are the only

reliable data source that can be used to build the model, it would not

help no matter how many observations are available at other places.

These challenges make it difficult to learn accurate models from Human Geogra-

phy datasets. Traditional geographic spatial regression methods are almost useless

in this case. So, approaches specifically designed to solve these challenges were

proposed in the last few years, like Geographically Weighted Regression (GWR)

[BFC96], Semiparametric GWR (SGWR) [FBC02], Multiscale GWR (MGWR) [FYK17],

Geographical Random Forest (GRF) [GGG+19] and etc. However, state-of-the-art

algorithms are essentially building multiple local models instead of one global model.

While these types of algorithms work relatively well under normal situations, they’re

much less accurate when the dataset is unevenly distributed. Thus, this paper pro-

vides a different understanding of non-stationarity and proposes a better way to

build models for non-stationary geographic datasets.

1.3 Contribution

My dissertation is centered around Geographic datasets and non-stationarity. It

addresses challenges outlined in the previous section, by proposing and implementing

approaches that are specially designed to handle non-stationarity.

The main contributions of this paper are: (1) designed a novel method to evaluate

non-stationarity and its impact on regression models; (2) proposed the Geographic

R-Partition tree for modeling non-stationary data; (3) proposed the IDW-RF algo-

rithm, which uses the advantages of Random Forests to deal with extremely unevenly

4



distributed geographic datasets; (4) proposed the LVRF algorithm, which models

geographic data using a latent variable based method.

1.4 Organization

This dissertation is organized as follows. First, related work on the same topic is

discussed in Chapter 2. Then, Chapter 3 suggests novel approaches to understand

and evaluate non-stationarity. The rest of the chapters focus on building improved

models for non-stationary geographic data. Chapter 4 proposes the GRP-tree to

improve modeling accuracy by aggregating spatially similar data into the same par-

titions. Chapter 5 proposes the IDW-RF algorithm to solve the challenge of mod-

eling extremely unevenly distributed geographic datasets. And Chapter 6 proposes

a latent variable based approach to explain and model non-stationarity as a hidden

factor. Experiments show that these algorithms outperform other state-of-the-art

algorithms in certain scenarios.

5



CHAPTER 2

PRELIMINARIES AND RELATED WORK

The previous chapter listed challenges in modeling geographic data. Over the

years, many researchers studied these challenges and proposed different modeling

algorithms. In this chapter, I will highlight some of the most influential and state-

of-art literature on this topic.

2.1 Spatial Interpolation Methods

There is a long history of study on Physical Geography data. A few decades ago,

before machine learning algorithms are well developed, the modeling of geographic

datasets was mostly done in the form of spatial interpolation.

Spatial interpolation means use known observations to predict the values of un-

known observations. This type of methods are widely adopted in environmental

science studies, especially in the field of geosciences, water resources, and agricul-

ture or soil sciences [ZGHW07]. For these disciplines, spatially continuous data

is typically required or important for the decision-making process. But obtaining

spatially continuous data that cover the entire region of interest is sometimes diffi-

cult or impossible, as these disciplines often involve studies of remote, mountainous,

inaccessible areas. For these cases, a spatial interpolation process will be first per-

formed to fill in the blank areas. The accuracy of the interpolated data is often

critical to the success of the entire study, thus, many spatial interpolation theories

and methods were invented in order to obtain better interpolation results.

Inverse Distance Weighting (IDW)

Of these methods, the most basic and frequently used one is Inverse Distance Weight-

ing (IDW) [She68]. This method is relatively simple comparing with the others. But

6



in applications where results are required to be highly intuitive and interpretable,

IDW has its unique advantage.

IDW works by predicting unknown observations’ values from a weighted aver-

age from the known observations. One advantage of IDW is that it’s flexible on

the weighing function. The default weighing function, used in [She68], is the mul-

tiplicative inverse of the distance (any form of distance function can be accepted

here). But it’s highly customizable and often replaced by a more appropriate one

depending on the actual dataset. Generally speaking, when the weighing function is

properly chosen (which requires prior-knowledge of the dataset), IDW will produce

results that are accurate enough, even when comparing with the most complicated

spatial interpolation algorithms.

Kriging

The Kriging method, which was invented in the year 1952 by D. G. Krige [Kri52],

is another widely used spatial interpolation method. It was first used in mining

geology [ZGHW07], then discovered to be also a powerful tool in many other earth

related research fields.

Since then, the development of Kriging based methods had thrived. Multiple

variants were invented like ordinary kriging (OK), universal kriging (UK) and or-

dinary co-kriging (OCK). Comparative studies were done on spatial interpolation

methods (like [LH11]) and showed that although many methods have their own ad-

vantages at certain circumstances, kriging and kriging based methods are the most

competitive for generating accurate spatial interpolation results.

However, Kriging is an unbiased methods and assumes data are stationary, which

make it unsuitable for human geography datasets.

7



2.2 Non-stationary Spatial Data Modeling

Geographically Weighted Regression (GWR)

Even with Physical Geography data, it is not an unusual thing to observe non-

stationarity in the data. Applying method designed to handle stationary data

on such datasets would generally mean less accurate or completely unusable in-

terpolation results are expected. To solve this problem, Brunsdon, Fotheringham

and Charlton proposed the Geographically Weighted Regression (GWR) in 1996

[BFC96], which later become a very important method and had various extensions.

Instead of producing an average global model, GWR tries to interpret the rela-

tionship between features and target variables differently across the space. The way

how it works is to learn a regression model for every single feature in the dataset.

During this process, nearby observations will be examined to include dependent and

explanatory components in the model. The distance between the nearby observation

and the observation being processed determines how much influence will be applied,

which is why the word “weighted” is included in the name of the method.

Semiparametric GWR (SGWR)

After the success of GWR, Brunsdon proposed an enhanced version of GWR in 2002

[FBC02]. This method is called Semiparametric GWR (SGWR). In this variant,

users of the method can specify a list of features to be stationary across the space,

whereas others remain non-stationary.

Multiscale GWR (MGWR)

This method was introduced by Fotheringham, Yang and Kang in 2017. It “is sim-

ilar in intent to Bayesian nonseparable spatially varying coefficients (SVC) models,

8



although potentially providing a more flexible and scalable framework in which to

examine multiscale processes” [FYK17]. By doing so, it is able to model datasets

on different scales (hence the name multiscale).

GRF (Geographical Random Forest)

The Geographical Random Forest (GRF) is relatively new. It was proposed by

Stefanos, Tais, et al. in 2019. The method adopts the famous Random Forests

algorithm [Bre01] as an underlying modeling method to create many local models,

instead of a global average model. When predicting target values, these local models

will work together to produce a weighted calculation result.
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CHAPTER 3

GEOGRAPHIC REGRESSION MODELS REVISITED: PROGRESS

AND CHALLENGES

Geographic datasets are usually discrete observations collected from one or mul-

tiple areas, as continuous data are oftentimes difficult or even impossible to obtain

(for example, environmental data that requires retrieving physical samples from re-

mote, inaccessible places). But when put into practical use, such data is frequently

required to be spatially continuous (at least for the region of interest) for researchers

and engineers to make efficient use of them. Thus, in order to produce spatially con-

tinuous data, one must give his best estimation of values at unsampled points. And,

to make these predictions as accurate as possible, geographic regression models are

created to better accomplish the task.

This chapter first gives a general idea of the main challenges in learning ac-

curate geographic regression models. Then, existing algorithms are reviewed and

discussed. After that, several testing methods are proposed and implemented to

help better evaluate and understand these challenges. Finally, conclusions are made

and potentially better ways for producing more accurate models are discussed.

3.1 Challenges in Geographic Datasets

The challenges in modeling geographic datasets, especially datasets from Human

Geography, mainly come from these factors:

❼ Non-stationarity

– Geographic datasets are usually generated from either Physical Geog-

raphy or Human Geography. Physical Geography datasets come from
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natural processes of the Earth, such as natural disasters, mineral re-

sources, hydrology, land and ocean boundaries, elevation, weather and

climate ([Mas99]). Whereas Human Geography datasets are generated

by activities of people, like land use, traffic, population, crime and real

estates.

– When learning models from geographic datasets, non-stationarity is an

unignorable factor. Physical geography datasets tend to be more sta-

tionary as they are decided by certain rules of the nature. But things

are totally different with human geography datasets, which is produced

by human activities thus rules can be very different from place to place.

For these datasets, non-stationarity is normal and stationarity is abnor-

mal. For example, crime activities will have different patterns in different

areas; house prices will be influenced by different factors depending on lo-

cation of the real estate; traffic congestions at different places are decided

by different conditions.

❼ Spatial autocorrelation

– According to the first law of geography [Tob70], “everything is related to

everything else, but near things are more related than distant things”. In

most datasets, the spatial features are unavoidably correlated with non-

spatial features to a certain degree. In fact, this type of correlation can be

observed easily because these datasets are typically joined by matching

the coordinates.

– Another source of autocorrelation comes from the fact that objects with

similar characteristics tend to cluster together. For example, real estate

properties in the same community tend to share similar characteristics
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like layouts, market prices and household income. Also, people from the

same background tend to cluster together. When analyzing geographic

data, ignoring such correlation would cause inaccuracy or inconsistency

in the result [SSV+02].

❼ High dimensionality

– Besides the original geographic features (latitude, longitude, altitude and

time), there’re typically a lot of additional features which are derived

from other sources of information. For example, when predicting the

market price of real estate properties, the dataset will usually contain

the property’s latitude, longitude, year built, number of stories, number

of bedrooms/bathrooms, distance to shopping centers and schools, and

so on.

– To make the situation worse, the dimensionality can be further increased

by including statistical features such as average/lowest/highest market

price nearby, average year built nearby, etc. In this example, one can

easily expand the dimensionality to over one hundred, in which case most

of the traditional algorithms will lose efficacy.

❼ Irregularity in spatial features

– Most of related researches focus on datasets in Euclidean space. But lots

of geographic datasets are actually based on network space, despite of

the fact that original coordinates are given in Euclidean space.

– For example, it would be more effective to use road network [OBK+10]

rather than latitudes and longitudes to analyze and predict people’s daily

activities, travel habits and points of interest. In cases when these kind
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of information is missing, or inaccurate, or relatively difficult to obtain,

it will be more challenging to learn a good model from the data.

Over the years, researchers and scientists had been studying these challenges

and invented many algorithms to solve them. [KHS99] proposed an efficient method

for building decision trees for the classification of spatial data. [SSV+02] invented

two classification approaches to create spatial data models using probabilistic frame-

work. [SYA11] extended ID3 decision tree algorithm to includes spatial information

as additional features. [JSZ+14] proposed local and focal test-based decision tree

algorithm.

Many of these researches use a common method to handle the spatial attributes,

which is transforming the relationships implied by spatial attributes to features on

which classical algorithms can be applied [KBL95]. These features are typically

statistical features generated from existing spatial and non-spatial attributes of the

training dataset. It is worth noting that generating spatial statistics is a well-

researched area. For example, spatial continuity and weak stationarity can be easily

extracted from the dataset [Cre93]. Basing on these statistics, various common

algorithms have been created to perform different types of tasks like outlier detection

[SZK14], prediction [GA89], coupling [Gü17] and clustering [JMF99].

However, during the transformation, information may be lost [SZHV03]. Thus,

a better method is needed to handle the spatial attributes directly with fewer or no

loss of information, whereas being able to deal with the implicit spatial relationships

among the data points.
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3.2 Literature Review

By definition, geographic data are comprised of spatial and non-spatial attributes,

sometimes also temporal attributes. But due to the fact that research of datasets

with temporal attributes are still relatively preliminary [SY18] and very few algo-

rithms can actually derive accurate models from them, in this chapter, discussion is

limited to geographic data with spatial and non-spatial attributes only.

If we remove non-spatial attributes from geographic datasets and keep only the

spatial attributes, they simply become spatial datasets. And the regression task for

the hybrid data will be simplified to a pure spatial regression analysis task. But

even spatial regression analysis is not a trivial task. So, to understand how to build

regression models for geographic datasets, one must first learn how to model spatial

datasets.

Luckily, spatial regression methods had been studied by researchers for decades

and widely used in many disciplines. A research [ZGHW07] found that they’re most

adopted in environmental sciences, geosciences, water resources and agriculture or

soil sciences. As previously explained, the reason why they play such an important

role in these disciplines are because spatially continuous data are essential to perform

the research but usually very difficult to obtain, thus requires additional procedure

for generating predicted values for unsampled places.

For such purpose, spatial regression is often referred to as spatial interpolation

and many methods were invented in order to obtain the best interpolation results. Of

these methods, the most frequently used ones are Inverse distance weighting (IDW)

and various kriging methods like ordinary kriging (OK), universal kriging (UK) and

ordinary co-kriging (OCK). Many researches were made to evaluate these methods

[LH11] and although different methods have their best application scenarios, it’s
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widely agreed that for general datasets, kriging methods are the most promising

and tend to produce the best interpolation results.

Kriging, which originated in mining geology [ZGHW07], is a regression method

that calculates the least squares estimation for data points. D. G. Krige first invented

this method in the year 1952 [Kri52] and applied it in ore reserve estimation for a

region located in South Africa. Later, in 1963, Georges Matheron further extended

this research and established a generic method which can be used in geostatistics

to model the spatial autocorrelation within spatial features. From then on, many

variances of the Kriging method had been invented and widely applied in the field

of geoscience, environmental science, and many other earth related researches as a

powerful tool.

However, Kriging and other spatial modeling methods mentioned above are un-

biased methods and work under the assumption of stationary data, which means

the features must behave universally the same across the region of interest. While

this is true in earth science and environmental science, it might not be the case for

other fields like human geography and social science, for which most of the time

studying of non-stationary spatial data is involved.

For example, one cannot expect the relationship between house prices and house

features to remain the same in different regions. Features such as number of bed-

rooms and total square footage have much obvious impact on the house price in

urban areas than in rural areas. Whereas other features like distance to nearby su-

permarkets and schools usually matters more in rural areas. This non-stationarity

imposes additional challenges to spatial data modeling. Thus, methods designed to

process stationary data such as Kriging will perform much worse, or doesn’t work

at all.
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3.3 Evaluating Impact of Non-Stationarity

To further understand non-stationarity and how it impacts the accuracy of mod-

els learned from spatial data by various machine learning algorithms, we designed

a simulated spatial dataset and ran different machine learning algorithms on the

dataset.

Although there are plenty of real world datasets available, a simulated one is

preferred here because in such a dataset, non-stationarity can be easily controlled

and changed, which makes it much easier to observe how non-stationarity impacts

the performance of various machine learning algorithms. It would be otherwise

difficult to do so with a real world dataset for which most of the time it’s hard to

say how much non-stationarity is embedded within the dataset.

The simulated dataset is comprised of spatial attributes (x and y) and labels

(ground truth) only. Non-spatial attributes are not included as some of the Kriging

algorithms were designed to handle spatial attributes only. To test their performance

and compare it horizontally with other algorithms, the dataset is required to contain

spatial attributes only, in order to create a level playing field.

Adding Non-Stationarity

Then, the tricky part comes to how to add non-stationarity into the data while

allowing the amount of non-stationarity can be somehow manipulated. Because

non-stationarity is merely a virtual concept and not something can be precisely

measured, we can only say one dataset has more non-stationarity in it than the

other one, but impossible to quantify how much more it has.

For this reason, the concept of Point of Influence (POI) is introduced in order

to solve the problem mentioned above. A POI is defined as a hidden factor that
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Figure 3.1: Nonstationarity spatial dataset generated by simulator (POI=10)

influences the surrounding data points and their label values. It is a part of the

ground truth, but cannot be observed directly. One can only infer the existence of

POIs from the labels values of the data points.

Then, the label values of data points can be calculated by checking their nearby

POIs. To produce the best results, a data point should be affected by neither too

few POIs (in which case non-stationarity will be too strong), nor too many POIs

(otherwise non-stationarity can be too weaker to be observed). A number that falls

within the range of [3, 7] will be the best.
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Figure 3.2: Nonstationarity spatial dataset generated by simulator (POI=100)

After deciding the number of POIs influencing a data point, the formula for

calculating the label values also need to be decided. Here, Inverse distance weighting

[She68] (IDW) is adopted to calculate label values from nearby POIs. The IDW

method is chosen because it’s relatively simple but sufficient to our needs here. It

predicts values of unknown points by calculating a weighted average from the values

of known points. The original form of IDW looks like below. Here, we don’t want

a data point to be calculated from all of the other known points so the value of N

will be a predetermined number as previously discussed.
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∑
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1

d (x,xi)
p

Manipulating Non-Stationarity

By adding random POIs into the data, non-stationarity can be added. Figure 3.1

and 3.2 show how the generated datasets look like. Every dot in the figure represents

a data point. The grayscale indicates the label value of the data point. Black data

points have a value close to 1 and white data points have a value close to 0. As

observed, dataset with 100 POIs is way more localized than dataset with only 10

POIs. In fact, non-stationarity can be controlled by two ways:

Method 1. Increase or decrease the number of POIs.

❼ When the number of POIs is increased, the non-stationarity will also

increase. This is because the more POIs there are, two data points with

the same distance tend to be less correlated to each other because they’re

now more likely to be influenced by different POIs, rather than the same

POIs.

Method 2. Increase or decrease the influence radius of POIs.

❼ When the influence radius of POIs is increased, the non-stationarity will

decrease. This is because two data points with the same distance tend
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to be more correlated to each other because they’re now more likely to

be influenced by the same POIs.

Here, method 1 is adopted rather than method 2 because it’s easier to implement

and requires the changing of only a single number, which makes it more intuitive

and the test results more straightforward and understandable.

Table 3.1: Statistics of the generated dataset (Number of POI = 10)

X Y Label

count 10000.000 10000.000 10000.000
mean 0.502 0.500 0.522
std 0.288 0.291 0.155
min 0.000 0.000 0.012
25% 0.254 0.245 0.409
50% 0.504 0.498 0.534
75% 0.753 0.756 0.652
max 1.000 1.000 0.819

Table 3.1 shows the statistics of 10000 data points generated by the simulator

program. As we can see, Label values are designed to fall in the range of [0, 1] and

have a mean value of around 0.5. The purpose of this design is to create an unbiased

dataset to make it as fair as possible for all machine learning algorithms.

Performance Evaluation

Now that the datasets are ready, it’s time to pick some algorithms. A total of 9

regression algorithms are chosen as test candidates, as listed below.

❼ Baseline

❼ Linear Regression
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❼ Stochastic gradient descent (SGD)

❼ Support Vector Regression (SVR)

❼ K-nearest Neighbors (KNN)

❼ Decision Tree

❼ Random Forest

❼ Multi-layer Perceptron (MLP)

❼ Ordinary Kriging

The Baseline algorithm always predict the mean of the training set, no matter

what the input is. Its purpose is to provide an important reference point for the

comparison of other algorithms. Since it’s the simplest possible algorithm, any other

algorithm that performs worse or close to this one can be considered as worthless.

The Linear Regression, SGD and SVR algorithms are all regressors that assume

the dataset follows a linear distribution, which is obviously not true in our case.

The purpose of introducing them in the comparison is to provide some insights on

how a model performs when its assumption doesn’t match the underlying dataset.

KNN, Decision Tree and Random Forest are traditional machine learning algo-

rithms that can deal with non-stationary datasets. They’re not specifically designed

for spatial datasets but the way how they work sounds promising to our test dataset.

So they’re also included in the comparison.

MLP is also included in this study. Although it’s not made for situations like

this (very few features with strong correlations), how it performs comparing with

the other algorithms is still an interesting topic and may provide additional findings.

Then, finally the Ordinary Kriging is added to see how it performs under non-

stationarity.
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Figure 3.3: Performance comparison of different algorithms

Figure 3.3 shows the result of how the aforementioned algorithms perform under

the test dataset with different number of POIs.

Here, Root Mean Squre Error (RMSE) is used as the performance indicator be-

cause all the algorithms are executed on the same dataset thus RMSE is directly

related to the performance. Usually when algorithms run on different datasets, indi-

cators like R2 score (coefficient of determination) is used to measure the performance

of regressors. But here we don’t have this concern thus RMSE is obviously the best

choice of all indicators.

As shown in the figure, the Baseline algorithm has a RMSE that ranges from

0.15 to 0.18. Given the fact that the label values range from 0 to 1, have an average

of 0.5, and a standard deviation of 0.15, this is a pretty reasonable result. And

unsurprisingly, the linear regressors (SGD, Linear Regression and SVR) didn’t do
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well on this dataset which is not a linear dataset in any way. But it’s worth noting

that SVR (with a non-linear kernel) performs better than the other linear regressors,

which is an indication that non-linear kernels are capable of capturing some of the

characteristics of the dataset, but not all of them.

The most surprising result is that Decision Tree and KNN do much better than

Ordinary Kriging and MLP on this dataset. This observation sort of proves the

previous hypothesis that when there is a lot of non-stationarity in the data, Or-

dinary Kriging and Neural Network based algorithms won’t adapt very well with

the non-stationary thus produce inaccurate predictions. An algorithm specifically

designed to handle non-stationarity, even as simple as Decision Tree and KNN,

can easily outperform complicated algorithms that didn’t take non-stationarity into

consideration.

On the other hand, it seems as the number of POIs increases, all algorithms tend

to do worse except the baseline algorithm, which does nothing but outputting mean

value of training dataset no matter what the input is. From this figure, one cannot

decide which algorithms is more non-stationarity resistance. So we converted all

algorithms’ absolute performance (as a RMSE value) to relative performance (as a

percentage of its base performance when number of POI = 10).

The result is shown in figure 3.4. From the picture, it can be easily told that the

Ordinary Kriging algorithm’s performance decreases much faster than the others,

which is another proof that algorithms not designed to handle non-stationarity will

quickly become unusable when non-stationarity increases in the dataset.

Conclusion

Here are a few conclusions that could be made basing on the tests performed in this

section:
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Figure 3.4: Comparison of relative performance

❼ Non-stationarity can greatly affect algorithm’s performances.

❼ The more non-stationarity there are, the more difficulty it is to learn an accu-

rate model from the dataset.

❼ On datasets with a lot of non-stationarity, Algorithms that are designed to

handle non-stationarity, even the simplest ones, will easily outperform those

who don’t.

❼ No algorithm performs universally well. Different algorithms have different

assumptions thus only perform well when the underlying dataset matches their

corresponding assumptions.
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3.4 Evaluating Impact of Correlation

In geographic datasets, there usually exist multiple types of correlations. The first

type of correlation is spatial autocorrelation.

As stated previously, spatial autocorrelation comes from the fact that objects

with similar characteristics tend to cluster together. It is almost impossible to find

a dataset without any spatial autocorrelation. This type of correlation is actually

both our friend and enemy. It is our friend in a way that it help predict label values

by examine the neighboring data points. And it will also become an enemy when it

is inconsistent and hard to capture.

As spatial autocorrelation is such a useful tool for the studying of geographic

datasets, many methods were invented to quantify spatial autocorrelation. The

most widely used one is Moran’s I [Mor50] and its many variants, which is defined

as below:

I =
N

W

∑

i

∑

j wij (xi − x̄) (xj − x̄)
∑

i (xi − x̄)2

In the formula, x is the spatial variable that we’re concerned of. wij is a spatial

weights matrix. N is the number of spatial data points. W is the sum of all wij.

But this only provides a general idea of how much spatial autocorrelation is there

in the dataset. Spatial autocorrelation can and will vary from place to place. A low

spatial autocorrelation calculated from the formula above doesn’t necessarily mean

that autocorrelation is low everywhere. [Ans95] noticed this issue and proposed a

local Moran’s I method to alleviate this problem. But it does not completely solve

the problem since it only gives a relative measurement of z-score and p-value which
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answers what region has relatively high or low autocorrelation comparing with the

rest of the area.

And to make things even more challenging, non-spatial features haven’t been

added into the discussion yet. They are highly likely to be both spatial autocorre-

lated and cross-correlated. [Hol04] provided some insights on multivariate autocor-

relation but leave the majority part of the problem unsolved.

Adding Correlation

Thus, due to the fact that it is not easy to measure correlation in a dataset, the idea

of using a real world dataset to evaluate how correlation affects the performance

of different algorithms seems to be unrealistic. Hence we need to come up with a

way to inject correlation into a simulated dataset and use that to test performance

of different modeling methods. And it would be the best if the amount of correla-

tion can be controlled to make it easier to observe how algorithms perform when

correlation increases or decreases.

The simulated dataset will be comprised of spatial attributes (x and y), non-

spatial attributes (other features of the data point), and label values(ground truth,

the value that needs to be learned and predicted).

In order to add correlation to the data, 3 sets of features needs to be created:

❼ One set of spatial features (Spatial Component)

– These features are highly spatial autocorrelated. They’re responsible for

creating correlation in the dataset.

❼ Two sets of non-spatial features (Structural Component)
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– These features are used to simulate the structural component in the

dataset. Each of the feature is randomly generated and independent

of each other. Thus there is no correlation implied by them.

– The purpose of adding them to the dataset is to create a mixture of

correlated and uncorrelated features thus the amount of correlation in

the dataset can be somehow manipulated. To reduce the correlation, one

simply need to assign more weight to the structural components, or less

weight to the spatial components. And the opposite operations can also

be performed to increase the correlation.

Then, two tests can be performed. Test1 is to mix SPC (spatial component)

with STC2 (one set of structural component). Test2 is to mix STC1 (the other set

of structural component) with STC2.

For Test1, the label value can be calculated by the formula below, where L is

the label value, W1 and W2 are the weights for SPC and STC. L(SPC) stands for

the generated label value of SPC.

Lf = W1 ∗ L(SPC) +W2 ∗ L(STC2)

Then, Test2 can be performed similarly using the following formula with every-

thing stays the same except that SPC is replaced by STC1:

Lf = W1 ∗ L(STC1) +W2 ∗ L(STC2)

By changing the values of W1 and W2, the amount of correlation in the dataset

will also change correspondingly. But if an algorithm performs worse when W1

increases, it’s hard to say whether it’s caused by the increase of correlation, or the

fact that more features in the input contributes to the output (with more features,

it is inherently harder to learn a model as accurate).
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Thus a control group of Test2 is introduced, in which correlation is removed

(STC1 and STC2 are generated independently thus has no correlation with each

other) but the difficulty of learning the models remains more or less the same.

Here, with Test2, SPC is replaced by STC1 so that correlation is gone but the

number of features stay the same. If an algorithm performs worse on Test1 than

Test2, it can be inferred that the performance loss is caused by correlation in the

spatial component SPC.
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Figure 3.5: Distribution of different components’ Label Values

However, there is one more problem to be dealt with. The label values of all three

components should have more the less the same distribution. Otherwise they need

to be normalized and standardized before added together, which creates additional
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hassle as the normalization and standardization process may have different impacts

to the component data thus introduces unwanted uncertainly to the entire test.

Thus, the formula used to calculate label value from features (this is also the

ground truth that needs to be learned by algorithms) is carefully adjusted to make

sure the three components’ label value distributions are as close to each other as

possible. For a final result, see figure 3.5 for the distribution of label values.

As shown in the figure, the two structural components have almost the identical

distribution, whereas the spatial component’s distribution is more spread out but

still more or less comparable with the others. Ideally we’d like to see the spatial

component also has the same distribution but that would mean too much manipu-

lation in the construction of datasets, which we would like to avoid if possible. This

distribution serves the purpose very well and doesn’t involve deliberate fabrication

of the formula, thus is the final one that being adopted.

Performance Evaluation

Now that the datasets are ready, we can move forward and test the algorithms.

Random forest [LW01] is the first to be tested as it outperformed other candidates

from the previous non-stationarity test.

Figure 3.6 shows the RMSE result of the Random Forest algorithm under differ-

ent alpha values. The last section discussed that the formula used to generate label

values for the hybrid dataset is:

Lf = W1 ∗ L(SPC) +W2 ∗ L(STC2)

In the formula, W1 and W2 are the weight values that control how much of

the two components being mixed influences the final label value (ground truth).

However, we don’t truly care what values they are, but the relative relationship
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Figure 3.6: RMSE of Random Forest under different alpha values

between them. Thus, the formula can be evolved into the following one:

Lf = β ∗ L(SPC) + (1− β) ∗ L(STC2)

where β is in the range of [0, 1]. With this new formula, only one variable need to

be changed to generate various datasets with different mix of spatial and structural

components.

The value of β for different test datasets shouldn’t be changing linearly, but

rather exponentially. This is because we need to observe how algorithms behave

under zero, fifty percent, and one hundred percent of correlation, and also have

steps denser towards both ends (where changes are expected to happen fast) but

sparser towards the middle (where performance doesn’t fluctuate as much). Thus,
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Figure 3.7: RMSE of KNN Regressor under different alpha values

α is introduced as:

β = 1/(1 + xα)

Here, x determines how fast β changes exponentially and the value should not

be too large or too small, otherwise it would be difficult to capture the changes in

performance. After experimenting with different values, x = 1.5 seems to be the

best balanced values. So, the final formula becomes:

Lf =
L(SPC) + 1.5α ∗ L(STC2)

1 + 1.5α

So, in figure 3.6, when α = −10, it’s a mixture of mostly SPC and very few

STC2. When α = 10, the ratio is reversed. And when α = 0, it has the same amount
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of SPC and STC2. As we can see, the Random Forest algorithm performs relatively

well when there is either a lot of correlation or very few correlation, but poorly when

the ground truth is a mixture of both. As a control group, the mixture of STC1 and

STC2, which doesn’t have any correlation in them at all, proves that although it’s

harder to learn the ground truth when mixing two components half and half, due

to the fact that more features are involved in the calculation thus implies a rise of

dimensionality, the additional challenge brought by this doesn’t impose a serious

impact to the performance of the Random Forest algorithm. The performance

difference under the two situations can be only explained as it substantially difficult

to learn an accurate model with a hybrid dataset in which some components are

correlated but others don’t.

However, with KNN regressors, such behavior is not observed, as shown in figure

3.7. It does not mean the discovery is not true any more, but rather due to the

fact that KNN works fundamentally different. The crucial difference is that KNN

treats all features as having the same weight, thus performs extremely bad when

some features weigh much more than the others. In fact, the more imbalanced the

weights are, the worse KNN performs. From the figure, we can tell that this factor

has the most impact thus when features are evenly weighted when α is close to 0,

KNN’s perform gets more gains than the loss brought by mixing correlated features

with uncorrelated features. The test is further extended to the MLP algorithm. The

results are shown in figure 3.8. As one can see, the performance of MLP is not as

smooth as the other algorithms, possibly due to the fact that MLP can not capture

the relationship among deeply correlated features very well, thus suffers performance

a lot even if the data changes a little. Despite of this, it can be still observed that

the mixture of correlated data with uncorrelated data will also cause performance

loss for the MLP algorithm.
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3.5 Discussion

In this chapter, we discussed the two main challenges in modeling geographic datasets:

non-stationarity and correlation. Then proposed and proved it’s possible to use sim-

ulated datasets to test traditional machine learning algorithms’ performance under

these challenges.

As a result of the tests, it was found that all machine learning algorithms’ per-

formances would be impacted by non-stationarity to a certain degree. Those not

specifically designed to handle non-stationarity will suffer from a severe performance

loss when used to process datasets with non-stationarity. Algorithms that are de-

signed with the consideration of non-stationarity, even the simplest ones, will handle

the situation much better.

On the other hand, correlation will also make models less accurate, no matter

what methods were used to learn them. And the impacts will be even greater when

some features in the dataset are correlated, whereas the others are not. These

impacts are more obvious when the underlying algorithms are inherently good at

handling datasets with weighted features but less observable for those who don’t.
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Figure 3.8: RMSE of MLP Regressor under different alpha values
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CHAPTER 4

GEOGRAPHIC R-PARTITION TREE: MODELING

NON-STATIONARY SPATIAL DATA

* The content of this chapter is an extended version of an in-press paper ([DARssa])

which is accepted by the 2020 International Conference on Machine Learning and

Applications (ICMLA).

The previous chapter discussed two main challenges in modeling geographic

datasets (especially those from Human Geography): non-stationarity and spatial

autocorrelation.

It was shown that specialized algorithms are needed to train strong models for

geographic datasets because non-stationarity can cause trouble for algorithms that

assume stationarity of data. And, a good amount of information will be lost if spatial

autocorrelation is not well taken care of because nearby objects are inherently more

similar to each other than remote objects.

Thus, in this chapter, the Geographic R-Partition Tree is proposed to solve these

challenges. It first groups spatial objects into blocks utilizing a modified version of

R-Tree, then put spatially similar blocks into partitions. An individual model is

then trained for each of the partition. Finally, the prediction result is calculated

from a weighted average of all the individual models that are close to the prediction

target.

Comparing with the other algorithms, this method has its own advantage. It

is especially suitable for Human Geography datasets with some non-stationarity,

but are not non-stationary everywhere. Blocks that are far away but still spatially

similar to each other will be grouped into the same partition and explained by the

same model. By doing so, the accuracy of the individual models is greatly improved
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because there are enough amount of observations to improve the models to a certain

degree.

Another advantage of the Geographic R-Partition Tree is the customizability.

The block creation process in the modified R-tree can be customized. This ability

allows users of the algorithm to program prior knowledge into the algorithm so that

the best result is achieved. If no prior knowledge is given, the default block creation

function also works very well and can produce models that are accurate enough for

the majority of scenarios.

4.1 Statement of Problem

When talking about geographic datasets, most of them can be categorized as either

Physical Geography dataset, or Human Geography dataset. The categorization is

based on the source of the data. Physical Geography datasets are generated from

Earth’s natural activities, whereas Human Geography datasets are generated from

people’s activities. Some examples are [Wil20]:

❼ Physical Geography Datasets

– Land and Ocean Boundaries

– Elevation

– Weather and Climate

– Mineral Resources

– Natural Disasters

❼ Human Geography Datasets

– Population
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– Transport and Communications

– Land Use

– Buildings, Roads and Points of Interest

– Administrative Boundaries

– Wars, Conflict and Crime

Traditionally, scientific researches were more focused on Physical Geography

datasets for many important motivations such as learn how to survive and mitigate

the damage of natural disasters [SA07], better discover and utilize mineral resources

[PM12], understand how to take care of Earth [FFWF10] (and how much damage

we’ve done to her), and so on.

While these tasks remain important and crucial to our daily lives, recent years

saw an explosive growth in the number of Human Geography datasets [BBFRS12].

A majority part of the growth comes from the fact that we are now living in a

digital world of information explosion. A good example is the widespread use of

GPS enabled personal digital devices like cellphones, tablets, smart wearable and

home devices. As people began to realize the tremendous underlying values in these

datasets, it is now increasingly important to study how to analyze, understand and

model these datasets.

As discussed in the previous chapter, a major difference in Physical Geography

and Human Geography datasets, from machine learning’s perspective, is the amount

of stationarity in the data. Physical Geography data tends to be stationary whereas

Human Geography data are usually non-stationary. For example, crime activities

are decided by different factors depending on the location, whereas the distribution

of a certain mineral resources tend to follow the same rule across the Earth.
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Due to the history of extended researches on Physical Geography datasets, there

was never a lack of methods in studying and modeling stationary datasets. For

example, the Kriging method family (such as ordinary kriging, universal kriging,

co-kriging and regression kriging) is the most popular one among them. But for

datasets with non-stationarity, these methods don’t do very well. In fact, according

our study performed in Chapter 3, sometimes they perform even worse than the

simplest algorithms built to handle non-stationarity such as decision tree.

Thus, algorithms that are specifically designed to handle non-stationarity are

needed to build better models for geographic datasets with a lot of non-stationarity

in them.

4.2 Literature Review

GWR (Geographically Weighted Regression)

The first renowned method for exploring spatial non-stationarity, known as Geo-

graphically Weighted Regression (GWR), was proposed by Brunsdon, Fothering-

ham, and Charlton in 1996 ([BFC96]). The “main characteristic of GWR is that it

allows regression coefficients to vary across space, and so the values of the parameters

can vary between locations” ([Mat10]).

The motivation for inventing GWR was that “a single global model cannot ex-

plain the relationship between some sets of variables” ([BFC96]). Thus, in order to

solve this problem, GWR made it possible for relationships between features and

labels to differ across spaces, rather than generating an average global model.

The basic idea of how GWR works is to learn a regression equation for every

feature in the dataset, during which dependent and explanatory components are

accounted for by examine neighboring data points. And the neighbors contribute
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differently to this process according to how far away it is, which is why it is called

a “weighted” regression. The closer a data point is, the more weight it is assigned.

According to Tobler’s first law of geography, “everything is related to everything

else, but near things are more related than distant things” ([Tob70]).

Extensions of GWR

Soon after GWR was invented, Semiparametric GWR (SGWR) was proposed in

2002 [FBC02]. In this method, GWR is improved to allow some features to have

fixed regression equations across the space, whereas others can still be variable.

Another extension is called Multiscale GWR (MGWR), which was introduced

in 2017 by Fotheringham, Yang and Kang. This method “is similar in intent to

Bayesian nonseparable spatially varying coefficients (SVC) models, although po-

tentially providing a more flexible and scalable framework in which to examine

multiscale processes” ([FYK17]). And it improves GWR in a way that it not only

adapts to datasets on different levels of non-stationarity, but also provides necessary

information to evaluate the scales of different processes.

GRF (Geographical Random Forest)

The latest well-known research on this topic was performed by Stefanos, Tais, et

al. in 2019. The method is called Geographical Random Forest (GRF) and was

developed basing on the Random Forests algorithm ([Bre01]). The principle idea of

this method is to “disaggregate of RF into geographical space in the form of local

sub-models” ([GGG+19]). As a result, it produces many local RFs, instead of a

global one, for each of the locations including data points nearby.
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4.3 Spatial Similarity

Although the methods mentioned above tried to tackle non-stationarity from dif-

ferent angles, they work under a similar way that non-stationarity is learned by

creating local models for locations basing on information obtained from nearby ob-

servations. And there is a critical disadvantage of this type of methods. When one

want to learn an accurate local model for a certain location, he want to include as

many nearby observations as possible. But the number of nearby observations are

sometimes very limited, as datasets are usually not evenly sampled over the area of

interest due to many reasons. To include more observations in the calculation, the

distance has to be increased. And as a result, local models will be not so “local”.

But if we reduce the number of observations, local models tend to be highly sensible

to the randomness in the missing of observations.

Essentially, when observations are evenly distributed over the space and non-

stationarity is relatively stable at small regions (meaning local models can include

more nearby observations safely without losing locality), these methods will perform

well. But when those assumption doesn’t hold true, a decreased performance is

expected.

4.3.1 Dataset

To better understand how algorithms’ performances are affected by the size of the

train data, we performed the test on a real estate transaction dataset. This dataset

will be reused throughout the rest of the chapter so it’s important to get acquainted

with it.

The dataset was made available by a company named Zillow in the year 2017

during a Home Value Prediction Competition [Zil17]. It contains more than 160, 000
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sale records of properties, with 56 features including information about the sale price

(sale prices are not included directly, will explain later) and information about the

property itself like latitude, longitude, square feet, year built, number of stories,

number of bedrooms and bathrooms, tax records, zip code, garage info and so on.

The data itself comes from properties sold in the year 2016 and 2017 in California

within counties of Los Angeles, Orange and Ventura. Zillow reserved a small portion

of the transaction data in both years for the purpose of testing and calculating the

accuracy of competitors’ models. But the majority of the transactions are available

to everyone hence making it a pretty good dataset with reasonable amount of data

that makes it theoretically possible to create a very accurate model.

The goal of the competition, however, is not to predict the sale price. Zillow hid

the sale price from the data but made available the log-error between their Zestimate

and the actual sale price. According to Zillow, “Zestimates are estimated home

values based on 7.5 million statistical and machine learning models that analyze

hundreds of data points on each property” [Zil17]. And the logerror is defined as:

logerror = log(Zestimate)− log(SalePrice)

Here, whether the prediction target is the sale price or the logerror makes no

big difference. It only makes feature engineering by human more difficult because

the underlying rules of which feature will affect the prediction target in what way is

totally unpredictable, as the exact mechanism of how Zestimate works is a secret.

But from a modeling algorithm’s perspective, it is the same thing as one only need

to model how the prediction target relates to a series of observations spanned across

the space.

41



A visualization of the dataset is shown in figure 4.1. The latitude and longitude

of the dataset have been transformed but their relative relationship is kept. From

the figure we can the data coverage is so good that it pretty much outlines the

coastal line of California and some of the most populated places. The large blank

areas in the figure is either the sea where nobody lives there, or mountainous and

rural areas that are sparsely populated. This also reveals a common rule of Human

Geography datasets that observations are usually unevenly distributed across the

site of interest, because it’s natural for people or activities of people to cluster at a

few places but leave large areas sparsely populated.

4.3.2 Data Size and MAE

In order to study how an algorithm’s performance would be impacted by the size of

training dataset, we performed a test using the Zillow real estate dataset mentioned

above.

Each time, observations within a randomly selected square area S (with a side

length of L) is used as the training data and fed into the Random Forests (RF)

algorithm. The fitted model is then used to predict the same observations from S.

The MAE is then calculated between the prediction results and the ground truth.

To make the result more reliable, for each side length L, 100 random locations are

tested and the mean of all test results is used.

As shown by figure 4.2, the MAE is highly negatively correlated with side length

L, meaning the more data is used, the more accurate the trained model would be.

In this test, the best MAE is 0.05 whereas the worst one is 0.15. The difference here

is definitely unignorable.
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4.3.3 Defining Spatial Similarity

So, to learn accurate local models, we need to include as many nearby observations

as possible. But the amount of nearby observations are always limited and if we go

too far, the learned local models will lose locality. One way to solve the problem is to

collect more data. But this is often very expensive and sometimes even impossible,

hence a better solution is yet to be found.

Here, we introduce the concept of “Spatial Similarity”. An area of a geographic

dataset is said to be spatially similar with another area if both areas can be explained

by the same or similar local models.

Let:

❼ Ai denotes an area in a geographic dataset.

❼ X(Ai) denotes observations within Ai.

❼ M(Ai) denotes the model trained from X(Ai) using any underlying algorithm.

❼ E(M(Ai), Aj) denotes the error of using M(Ai) to predict area Aj

Then, Ai and Aj are said to be spatially similar if:

E(M(Ai), Aj) ≈ E(M(Aj), Aj)

or, E(M(Aj), Ai) ≈ E(M(Ai), Ai)

4.3.4 Utilizing Spatial Similarity

With spatial similarity defined, our insight becomes that many Human Geography

datasets could have a lot of spatial similarity in them, which can be utilized to

create local models. For example, for criminal activity data, it is totally possible

that model learned from one region is also accurate in another remote, disconnected

43



region. This will cause the dataset to be possibly described by very few models with

each model fits multiple regions.

Therefore, if we know which regions are spatially similar to each other, we can

use data from these regions aggregated to train a better model to describe them, in

stead of training a local model for each of the region with very limited amount of

data.

Spatial similarity test

To check if this idea works, a test was designed to see if there is any said spatial

similarity in a given geographical dataset. Here the Zillow dataset is used as the

test subject. From the dataset, 4000 random regions of side length 50 are selected

to train models, which are then tested on randomly different regions.

The result is shown in figure 4.3. The average MAE for different distances

between Atrain and Atest are calculated and shown as a line plot. As can be seen

from the diagram, the MAE is only low when the training area Atrain and test area

Atest are very close to each other.

When the distance is smaller than 50, the MAE is also very small. This is due to

both Atrain and Atest have a side length of 50. A distance of smaller than 50 means

Atrain and Atest are actually overlapping each other, thus giving the most accurate

results. After a certain value, the distance doesn’t have an obvious correlation with

MAE any more. In fact, as distance between Atrain and Atest increases, the MAE

almost stays unchanged.

This rule is even more obvious when the test result is rendered as a scatter plot,

as shown in figure 4.4. A lot of fluctuation in the MAE actually comes from very

few outliers. The formation of outliers may come from multiple factors. One of the

reason is that the observations are not evenly distributed in the dataset space. Thus
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some of the Atrain or Atest may happen to have very few observations in them, thus

creating those bad results. If those anomalies are removed from the dataset, the

correlation between distance and MAE stays even flatter.

As can be observed from figure 4.4, no matter if the distance is 100, 200, or 400,

there are always Atrain and Atest pairs that produces lowest MAE, which implies the

two areas are spatially similar to each other.

Also, when distance is in the range of [400, 500], the MAE fluctuates a lot due

to lack of sample size thus doesn’t affect our conclusion here.

As a conclusion, a model learned from Atrain won’t decrease performance on Atest

simply because the two areas are far away from each other. This also implies that

for a certain Atrain, all the other areas, no matter how far away from Atrain, have

an equal chance of be spatially similar to Atrain.

Evaluating spatial similarity

The test above shows it possible that two areas that are far away from each other

could still be spatially similar to each other. But it remains uncertain whether this

spatial similarity is worth exploiting.

In the extreme case, a dataset whose all areas are spatially similar to each other

won’t need a specialized algorithm at all. Such dataset is actually a stationary

dataset and would be better off if any traditional machine learning algorithm is

applied.

Conversely, a dataset whose all areas are spatially dissimilar to each other won’t

fit our application scenario either. As our insight is that spatially similar areas can

be grouped and modeled together to increase the accuracy of the model. If none of

them are similar to each other, the insight would not be working any more. But

generally speaking, a real world Human Geography dataset is almost impossible
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to appear such level of dissimilarity. If there exist a dataset like this, it would be

inherently difficult to learn an effective model from it any way.

Consequently, to verify if the insight works, another test is performed on the

Zillow dataset. This time, a model is trained using all the available data, and then

applied to all grids of the dataset to see how many areas are actually spatially similar

(has a low MAE with the trained model).

The result, as shown in figure 4.5 and figure 4.6, proves this idea. Only a

relatively small portion of all areas (see the dark red blocks on the heat map) have

the best MAE with the fitted model. And these spatially similar areas scatter all

over the space, instead of being clustered at a few locations.

Also, the distribution of the MAE, as shown in the histogram, shows that MAE

values for most areas are between 0.01 and 0.05. There is indeed a good chance

that a better model (with non-stationarity taken into consideration) can be built to

minimize the MAE for the poorly fitted areas.

4.4 Geographic R-Partition Tree

4.4.1 Algorithm Outline

With the studies from the previous section, the ideas become much more clearer. For

geographic datasets (especially human geography datasets) which can be described

by limited number of models, we can group spatially similar regions to train models

which will then be used for prediction.

Such an algorithm will include these steps:

1. Spatial Division: divide the dataset space into small blocks.

2. Partition: divide blocks into spatially similar partitions.
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3. Training: learn models for each of the partition, using any underlying ma-

chine learning algorithm.

4. Prediction: unknown observations will be predicted by calculating a weighted

average of predictions made by all the nearby models.

4.4.2 Terms and Definitions

Before we start, there are some terms that need to be defined:

❼ Observation

– An observation is a data record in a geographic dataset.

– It is essentially a spatial object (which could be either a point, or a

rectangle, or a cube, or any shape of any dimension) with non-spatial at-

tributes associated with it. Here we’re only dealing with two-dimensional

spatial objects but the method can be easily extended to process higher-

dimension objects.

– As an example, for a real estate transaction dataset, an observation is a

single transaction record. It has two spatial attributes that are latitude

and longitude of the house, and many non-spatial attributes like number

of bedrooms, number of stories, year built, tax information and sale price

(which is also the target variable)

❼ Target Variable

– A target variable is a specified attribute of the observations, like the sale

price in the real estate example. It is the attribute that we are especially

interested in, so that we want to also know the value for any unknown

observations.
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– The task of any machine learning algorithm is to learn a model from

known observations, which can be then used to predict the target variable

(sale price) of an unknown observation (which we know all of its other

attributes but don’t know the sale price)

❼ Block

– Blocks are generated by a modified R-tree which will be explained later.

– Every block has a rectangle associated with it, and a list of observations

who are bounded within the rectangle. For higher dimension applications,

the rectangle can be replaced with a multi-dimensional rectangle and the

rest of the method still applies.

– At the very first step of the algorithm, a modified R-tree will be con-

structed with all the observations. Then, the lowest level nodes of the

R-tree, which are the direct parents of the observations, will be saved as

blocks.

❼ Partition

– A Partition is a set of blocks which are spatially similar. All of these

blocks can be explained by this partition’s corresponding P-Model very

well (meaning the validation error is minimum).

– The key to a successful algorithm is therefore being able to divide blocks

into the right partitions. The theoretically possible number of ways to

partition is Bn, which is a Bell Number with exponential grow rate. Thus

a heuristic search in the state space is needed in order to find a good

enough partition schema within reasonable amount of time.
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❼ P-Model

– A P-Model is a individual model that corresponds with a Partition. All

blocks in the Partition can be explained by the P-Model relatively well.

– During the prediction stage, a group of P-Models will be used to predict

multiple target values. Then a final prediction is made by calculating a

weighted average of these individual predictions, basing on how far away

the P-Models are from the prediction target.

4.4.3 Spatial Division

This is the first step of the algorithm where observations in datasets are divided

into blocks. The ideal way of dividing the space is, obviously, putting observations

who are both close and similar to each other into the same block. Here, the concept

of “similar” is the same as in Spatial Similarity defined in the previous section:

observations that can be explained or predicted accurately by the same model are

said to be similar to each other.

However, despite of this attractive idea, the fact is that this is the very first stage

of the algorithm. At this point of time, there is no information of which observation

is similar to which at all. So the best we can get is to put spacially close observations

into the same region.

Here, we want to quote the famous first law of geography one more time, “ev-

erything is related to everything else, but near things are more related than distant

things” [Tob70]. Now that the information of observation similarity is missing, the

closest one we would get is to assume nearby observations are also similar to each

other. By doing this, spatial auto-correlation is also utilized in the best way. In

order to do spatial division, there are already numerous candidates out there so it is
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unnecessary to re-invent the wheel. The most promising ones are the Grid method,

Quadtree, and R-tree.

Grid Method

This is the most basic method that simply divides space by fixed number of grids.

It is most often used when a fast and simple method is needed to divide the space.

However, the major drawback of this algorithm is that, in spatial datasets that the

density varies by location, it has a horrible performance as it will create lots of blank

grids in sparse areas and create grids that are crowed with observations in dense

areas.

Here in our scenario, this drawback is even more exaggerated, because Human

Geography datasets usually tend to be highly unevenly distributed. A good example

is figure 4.1 in which urban areas are extremely populated, whereas rural areas are

either very sparse or totally blank. So, as a conclusion, the grid method is obviously

not what we want.

Quadtree

Quadtree was invented by Finkel and Bentley in the year 1974 [FB74]. It is a hier-

archical data structure based on the principle of recursive decomposition [Sam84].

The tree is constructed by dividing a 2-D space into four sub-regions, and these

sub-regions can be further divided recursively. The sub-regions may be either square

or rectangular. See figure 4.7 for an example. The Quadtree in the figure was used

by Microsoft to create a Map Tile System and served as the basic structure of the

Bing map. It is actually a very popular structure commonly used by most map

systems due to its simplicity and recursive structure.
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There are a few advantages of the Quadtree. One is it can self-balance on

unevenly distributed datasets. This is because each of the Quadtree’s subregion can

be assigned a maximum capacity. When number of observations fall in a subregion

making it reach the maximum capacity, it can further split into four subregions.

In case of all the observations are still tightly packed in one of the subregion, the

splitting will continue until the number of observations in a subregion do not exceed

its capacity anymore.

However, Quadtree is still not what we want as the subregions generated by the

algorithm is still divided by fixed grid lines. It is very likely a group of very close

to each other observations (thus are highly possible that they’re similar and can be

explained by one model) happen to be divided into two totally different regions.

R-tree

R-tree was proposed by Antonin Guttman in the year 1984 [Gut84]. It is also

a hierarchical tree structure which resembles other hierarchical trees like B-tree

and Quadtree (as mentioned above). Although it can be applied to data of any

dimensions, the most commonly application scenario is for indexing two-dimensional

data.

The main idea of R-tree is to use a minimum bounding rectangle (MBR) to

group objects within an area, and organize them into a hierarchical structure. An

example of generated MBRs is shown in figure 4.8. Unlike Quadtree which can be

built from top down, R-tree is constructed from bottom up. Each of the node also

has a pre-defined maximum capacity, inserting new observations will cause it split

and increase height when the maximum capacity is reached. For our user scenarios,

the advantages of R-tree are obvious for several reasons:
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❼ A minimum and maximum number of children can be specified for each of the

node.

– This flexibility makes it possible to create smaller MBRs in areas where

observations are sparse, whereas also allowing reasonably amount of MBRs

created in dense areas.

❼ MBRs are allowed to overlap each other.

– For the typical scenarios in which R-tree is used as an index, this is an

disadvantage. Because the more overlapped MBRs are, the worse overall

performance of R-tree is due to more nodes need to be scanned in order

to find the desired result.

– However, in our situation, it doesn’t matter or not whether MBRs over-

lap each other, as overlapped blocks will be likely grouped into the same

partition, thus won’t impact the performance of the final learned models.

Allowing overlap can actually improve the performance as spatially sim-

ilar blocks are more likely to be overlap each other in a region. In fact,

there is a way to turn this overlapping issue into an advantage, which

will be explained later in this chapter.

❼ The choose leaf procedure in the R-tree algorithm is highly customizable.

– The classic R-tree can be easily customized by changing the choose leaf

method, which decides newly inserted observation will be inserted into

which leaf node.

– Over the years, many R-tree variants were developed, like R*-tree [BKSS90],

R+ tree, Hilbert R-tree [KF99] and so on.
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– Later, we will show a modified version of R-tree which make it generates

MBRs more suitable for our algorithm.

Modified R-tree

Despite of these advantages, there are two problem with the classic R-tree that

makes it not desired as our choice of spatial division algorithm.

The first problem is that the shape of generated MBRs can be too narrow. This

will cause problems sometimes because two groups of points far away from each

other can be connected by one MBR in the classic R-tree. See figure 4.8 for an

example. The MBR in the center of the figure connects two groups of points that

are so far away, that the likelihood of these points are spatially dissimilar to each

other has greatly increased.

This is definitely not a desired result that works in our favor. But the good

news is that this behavior is fixable by changing R-tree’s ChooseLeaf function. To

how ChooseLeaf function works, we need to start with the InsertEntry function,

which is shown below:

// Insert a new Entry into the R-tree

1 Function InsertEntry(e)

2 node = ChooseLeaf(e) // find a leaf node for placing E

3 Add e into node, split if necessary

4 Propagate change to ancestor nodes

5 Increase height of tree if necessary

6 end
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The function is called every time a new Entry need to be inserted into the R-

tree. The Entry e can be either a point data (with location x and y), or an object

with shape (then both location and shape must be given). Then, inside of the

InsertEntry function, ChooseLeaf must be called first, in order to find out where

is the best fit for this new Entry. After the location is found, the new Entry can then

be inserted into the best node. Other necessary changes triggered by the insertion

will also be performed like splitting and propagating changes to ancestor nodes, so

that the R-tree can maintain its valid structure.

// Select the best leaf node for placing a new Entry

1 Function ChooseLeaf(e)

2 n = root node

3 while n is not a leaf node do

4 Initialize best placement

5 foreach c in n.children do

6 if place e in c cause less enlargement than best placement then

7 best placement = c

8 end

9 end

10 n = best placement

11 end

12 end

The ChooseLeaf procedure will traverse the tree to find the best placement

strategy for the newly inserted Entry. If the Entry to be inserted can fit any existing

node, it will be inserted into that node, obviously. But when inserting the Entry

54



must cause enlargement of an existing node, multiple candidates will be compared

to decide where is the best fit. Here, for the classic R-tree, the simplest and good

enough strategy is to place the new Entry where would cause the lease enlargement,

which makes total sense as with smaller nodes, the R-tree will query faster. And

the original purpose of inventing the classic R-tree is to use it as a spatial index to

find spatial objects quickly. But in our situation, we don’t care about R-tree’s query

performance, but only want to avoid nodes have their MBR too narrow. Thus, the

ChooseLeaf function can be modified as:

// A selection process that favors squareness

1 Function ChooseLeafNew(e)

2 n = root node

3 while n is not a leaf node do

4 Initialize best placement

5 foreach c in n.children do

6 if n is the direct parent of a leaf node then

7 if placing e in c has less impact score than best placement

then best placement = c ;

8 else

9 if place e in c cause less enlargement than best placement

then best placement = c ;

10 end

11 end

12 n = best placement

13 end

14 end
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Essentially, this ChooseLeafNew function replaces the ChooseLeaf function in

the classic R-tree algorithm. For nodes that are not the direct parent of a leaf node,

the original algorithm is used because we don’t care about the upper level MBRs,

but only care about the squareness of the lowest level MBRs.

For these lowest level nodes, the ChooseLeafNew function will find out the

best placement that has the least impact score, whereas impact score is defined as:

impact score = enlargement ∗ ( long length of MBR

short length of MBR
)2

Thus, the impact score will penalize MBRs basing on how narrow they are, and

these penalties grow exponentially as they become narrower. And the effect of this

modification is obvious, as shown in figure 4.9. There are more overlaps in this

figure but as explained before this has no impact on the algorithm we’re about to

implement. The narrowness of MBRs has been greatly reduced as expected.

Customizing the Impact Score Formula

An additional feature brought by the impact score is that it makes the modified R-

tree highly customizable. Being able to customize the R-tree may not be so useful

for a general dataset without any prior knowledge, but would be really handy if

there are some assumptions about the dataset.

For example, on a real estate dataset collected from a certain location, if the

area of the largest community is known as Amax, the impact score formula can be

customized as:
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impact score = enlargement ∗ ( long length of MBR

short length of MBR
)2 ∗ penalty

where

penalty =















1, if A <= Amax

A
Amax

, if A > Amax

This formula is just an example and not necessarily the best way to handle the

situation. But it illustrates how to customize impact score by adding a penalty to

it and make generating blocks larger than Amax less desirable.

Thus, this customizability makes the algorithm more flexible. Users can program

prior knowledge of the dataset into the formula case by case.

Conclusion

After reviewing different Spatial Division algorithms, we choose the Modified R-tree

to perform the task. Because with no pre-knowledge of the dataset, this spatial

dividing method has the best chance of putting observations close to each other into

the same MBR, whereas keeping the size of all the MBRs balanced.

4.4.4 Partition

After blocks are generated, it is now time to find spatially similar blocks and group

them into partitions.

The definition of partition here is the same as what the term “partition” means

in mathematics, “a partition of a set is a grouping of its elements into non-empty

subsets, in such a way that every element is included in exactly one subset” [Wik20].
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Brute Force Search

The theoretical number of possible ways to partition a set of size n is called a Bell

Number, which is named after mathematician Eric Temple Bell who studied this

number in the 1930s. A Bell Number satisfies a recurrence relation [AKK01] :

Bn+1 =
n

∑

k=0







n

k






Bk

Here, we first need to know whether it is possible to use a brute force way to

find the best partitioning schema by examining each of the partitioning schema one

by one. But in reality, the Bell Number grows exponentially [Lov93]:

Bn ∼ 1√
n

(

n

W (n)

)n+ 1

2

exp

(

n

W (n)
− n− 1

)

In the formula above, W (n) is a Lambert W function which has a growth rate of

logarithm. With this growth rate of Bn, it is impractical to iterate all the possible

combinations of partitioning. Thus a heuristic search (or somethings work similar)

is needed.

Heuristic Search

If we train a global model M0 on the entire dataset, it is likely to fit some of the

blocks, but doesn’t work so well for other blocks. Then, a possible way to improve

M0, is to take those blocks that fits well with M0 (let’s call the set of blocks P0),

and train another model M1.

Since M1 is only trained with data from blocks in P0, it has a much higher chance

to fit P0 than with the rest of the blocks. Thus we say that M1 is biased towards
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P0. But, there are some blocks in P ′

0 (the complement of P0, formal definition:

P ′

0 = {block /∈ P0}) that may be left out, which could also fit M1.

Next, M1 should be tested again with B (all the blocks) to see which blocks fit

M1 best (likewise, let’s call them P1). This is essentially a recursion in which both

Mi and Pi can keep improving to a certain degree.

But when does the recursion stop? Ideally, the best scenario would be Pi+1 is

the same with Pi and thus Mi+1 is also the same as Mi (because if you train on

the same data with the same algorithm, you get the same model). In practice,

this is nearly impossible to happen. Thus, the stop condition can be set as when

Pi+1 is only slightly different with Pi. Alternatively, this can also be called Pi+1

starts to converge with Pi. And the convergence threshold can be a constant or

predetermined number.

Also, to avoid the rare cases in which Pi fails to converge, another threshold of

maximum number of loops can be defined to prevent wasting CPU resources on such

cases. This process is similar to a Heuristic Search process because every time it

goes from Mi and Pi to Mi+1 and Pi+1, it is in fact a “search” for a better partition

than the current one by using the current model to predict the next model.

Implementation

The heuristic search process described above can be generalized into a function

SearchBestPartition.

Here, ImprovePartition corresponds with the train-and-refine process as de-

scribed above. It takes a partition as the parameter, train a model with it, and

create partition new which is better than partition from the perspective of spatial
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// search for the best partition

1 Function SearchBestPartition()

2 partition = All blocks

3 while True do

4 partition, model = ImprovePartition(partition)

5 if partition has converged, or reached max loop count then

6 return partition,model

7 end

8 end

9 end

// given an existing partition, improve it and return the new

partition along with the new model

10 Function ImprovePartition(partition)

11 model = Train(partition)

12 mae array = Test(model, all blocks)

13 partition new = CreateNewPartition draft(mae array)

14 return partition new,model

15 end

similarity. Then, SearchBestPartition will keep invoking ImprovePartition until

convergence has reached, or the preset maximum number of loops has been reached.

During the described process, a CreateNewPartition draft function is needed.

Its purpose is to find a better partition basing on the mae result of the current

model tested on all blocks. According to the algorithm above, it should be as

simple as returning the blocks with the lowest test error (for which we use mae as

the performance indicator). Although there is a problem here (more discussion on
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this later, and this is also why it’s called a draft), for now, it can be temporarily

defined as below.

// return the best partition according to given mae array

1 Function CreateNewPartition draft(mae array)

2 sort blocks by mae from smallest to greatest

3 return the first a few blocks in the array

4 end

4.4.5 Training

With the ability to generate one partition and its corresponding model, it is now

time to extend the algorithm to generate all the partitions. This function will be

called TrainAllModels draft and looks like below.

// train all the individual models which collectively form the final

model of this algorithm

1 Function TrainAllModels draft()

2 foreach i in range(0, K) do

3 partition,model = SearchBestPartition()

4 all models.append(partition,model)

5 end

6 end

TrainAllModels draft works as simple as invoking SearchBestPartition for

multiple times, and store these individually generated models and partitions in an
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array, which will be used as the final model. However, there are two problems with

this drafted version of function:

Problem 1. How to make these partitions cover all the blocks (or, at least cover

the majority of them)

❼ SearchBestPartition will return the same partition no matter how many

times it is called.

❼ To cover all the partitions, some measures must be taken to prevent the

same blocks from being included by a partition too many times.

Problem 2. How to determine parameter K

❼ K is the number of models (or partitions) that will be generated.

❼ The value of K will directly decide how many spatially dissimilar models

are needed to describe a dataset.

❼ A larger K value would potentially be better than a smaller K, because

overestimating the number of spatially dissimilar models will only cause

duplications in the final model. But underestimating would cause some

spatially dissimilar models to be missing, thus causing a potentially worse

result when used to predict observations that match these models.

Similarity Score

To address the first problem, there must be a way to exclude blocks that have

already been included in a partition from the next invoke of SearchBestPartition.

But, as discussed above, the SearchBestPartition actually does not guarantee to

find the best partition. It is only a heuristic search which may lead to a good result,

but not guarantee it’s the one and only best solution.
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Thus, a block should not be excluded from the next calculation simply because

it has been included in a previous generated partition, as there is a good chance

this block shouldn’t have been included in that partition in the first place. What’s

more, the CreateNewPartition draft function only sort blocks by mae and return

the ones with least mae values. It is in fact not an all-or-nothing situation here.

Blocks with slightly greater mae values than the cutoff line may still influence the

model to a certain degree.

So, CreateNewPartition draft need to be modified first. The solution to the

problem above is, instead of a clear line of whether a block should be included in a

partition or not, a weighted result shall be calculated to represent how much relation

does each of the block have with the corresponding model. Hence, a similarity score

function is created to facilitate with this process:

similarity score(block,model) =

√

1

mae(block,model)

The similarity score measures how “similar” a block is to a certain model. It

should have a negative correlation with mae because a lower mae value means this

block better fits this model. At the same time, the highest mae can easily be ten if

not hundred times larger than the lowest mae so a square root calculation is applied

to make the final result less sensible to the mae values. In real application, this

doesn’t have to be a square root relationship but can be replaced by an β value that

scales depending on the dataset.

With the definition of similarity score, the CreateNewPartition draft func-

tion can be formalized into CreateNewPartition, which looks like below.
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// return the best partition according to the given mae array

1 Function CreateNewPartition(mae array)

2 initialize score array

3 foreach mae in mae array do

4 score = similarity score(mae)

5 score array.append(score)

6 end

7 sort score array from greatest to smallest

8 return score array.top(α ∗ score array.length)

9 end

In the new version of CreateNewPartition, an α value within the range of (0, 1)

must be specified by the user of the algorithm, to determine how much percentage

of the blocks will be used to train the next model. There is no absolute best value

of α because it totally depends on the dataset. A default value of 0.1 can be used

but that only provide a general idea. In practice, one can use grid search to find

out the best α value.

Coverage Array

With the introduction of similarity score, it is now possible to proceed and solve

the issue that SearchBestPartition will always yield the same results. When

SearchBestPartition ends and about to return a result, it should not return partition

and model, but similarity score array and model.

Here, similarity score array is an array of similarity scores of all the blocks to

this model. This array can later be used to add to a global coverage array which

indicates which block has already been represented by how many models. The
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coverage array can then be used by future invokes of the SearchBestPartition

function to avoid covering a certain block too many times.

The formal version of TrainAllModels shall look like below.

// train all the individual models which collectively form the final

model of this algorithm

1 Function TrainAllModels()

2 foreach i in range(0, K) do

3 similarity score array,model = SearchBestPartition()

4 Add similarity score array to coverage array

5 all models.append(similarity score array,model)

6 end

7 end

Coverage Score

By far, the algorithm is almost complete but lacking one last thing. Because obvi-

ously a coverage score needs to be defined in order to determine how much a block

have already been covered, and also for future SearchBestPartition calls to assign

less weight to highly covered blocks.

The coverage score should be associated with the similarity score. It only

needs to be calculated once after SearchBestPartition returns, because during the

calculation process of SearchBestPartition, the algorithm should be consistently

skipping the same high coverage blocks. The calculations inside of SearchBestPartition

is for determining which blocks should be included in the current partition or not.

Thus, coverage score is calculated after SearchBestPartition returns. Then the

result is added to the global coverage array.
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There are multiple expected characteristics of the coverage score. First, a block

with high similarity score should have a much higher coverage score than any

block with lower similarity score. The relationship should be more than linear

because low similarity score is really not helpful in building accurate models. One

highly accurate model should be much more desirable than many inaccurate models.

But on the other hand, if the formula gives to much weight to a high similarity score,

those blocks with high similarity score will then very likely to be only covered a

few times by models thus resulting a highly biased model.

Thus, the final formula is a balance and it is defined as the following with γ has

a default value of 2, but also adjustable if the user want to.

coverage score = (similarity score)γ

Initially, all blocks has a coverage score of zero. Every time SearchBestPartition

finishes running, all blocks gain some coverage score depending on how similar they

are to the current model returned by the SearchBestPartition function.

Conversely, the change of coverage score will affect the CreateNewPartition

function, thus also affect how SearchBestPartition runs and priorities those with

less coverage. Finally, the generated model will include all blocks but with different

coverage on each of them.

Value of K

As mentioned before, K is the number of models that will be generated. Each of

the model represents some blocks in the modified R-tree. Model and Block are in a

many to many relationship, meaning one model covers many blocks and one block

many be covered by multiple models.
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In extreme scenarios, a few blocks may not have any models covering them. But

that is by design and can be avoided by adjusting the γ value. However, it is not

necessarily a good thing to have all blocks covered, because some outliers or erro-

neous observations may actually decrease the overall performance of the algorithm,

and excluding them will in fact be beneficial.

Here, a larger K value could potentially be better than a smaller K but not nec-

essarily always the case. This is due to the same reason that over-fitting is generally

considered harmful. But under-fitting is not a good thing either. Thus, it should

be left for the user of the algorithm to decide value of K and adjust it according

to the dataset. Generally speaking, grid search and several other commonly seen

techniques can be used to handle this situation and find the best K value for an

actual dataset.

Complete Training Algorithm

Putting all the pieces together from the previous discussions, the completed training

algorithm looks like below. Note that the modified R-tree must be created before

running these functions to group observations into blocks.
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1 Function SearchBestPartition()

2 partition = All blocks

3 while True do

4 partition, model = ImprovePartition(partition)

5 if partition has converged, or reached max loop count then

6 return partition,model

7 Function ImprovePartition(partition)

8 model = Train(partition)

9 mae array = Test(model, all blocks)

10 partition new = CreateNewPartition(mae array)

11 return partition new,model

12 Function CreateNewPartition(mae array)

13 initialize score array

14 foreach mae in mae array do

15 score = similarity score(mae)

16 score array.append(score)

17 sort score array from greatest to smallest

18 return score array.top(α ∗ score array.length)

19 Function TrainAllModels()

20 foreach i in range(0, K) do

21 similarity score array,model = SearchBestPartition()

22 Add similarity score array to coverage array

23 all models.append(similarity score array,model)
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4.4.6 Prediction

After train and learn the model, it is now time to use the model to predict unknown

observations.

The final model of the Geographic R-Partition Tree is a series of models, with

each of the model representing a Partition (some spatially similar blocks). Every

model also comes with a similarity score array with a similarity score for each of

the blocks in the dataset (not just blocks in its own partition).

For prediction, one should first use the location of the unknown observation to

determine which block(s) it belongs to. Here, one can do a brute force scan, or use

the traditional R-tree search algorithm on the modified R-tree. If it doesn’t fall in

any block, then the nearest block(s) will be used.

After the blocks are determined, for each of the block, there are K models with

different similarity score to this block. Here, a weighted result should be calculated.

The calculation process will have the same idea with the IDW algorithm, which takes

the following form [She68]:

u(x) =











∑
N

i=1
wi(x)ui

∑
N

i=1
wi(x)

, if d (x,xi) 6= 0 for all i

ui, if d (x,xi) = 0 for some i

where

wi(x) =
1

d (x,xi)
p

Inspired by the IDW algorithm, the final prediction result can be defined as a

weighted average of the prediction from all the individual models:
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p(x) =

∑K

i=1 wi(x)pi
∑K

i=1 wi(x)

where

wi(x) = similarity score(modeli, block(x))

In the formula, pi is the prediction result given by the modeli, and wi(x) is

defined as the similarity score of modeli to the block that x belongs to.

4.5 Conclusion

In this chapter, a novel Geographic R-Partition Tree is proposed to solve two main

challenges in Human Geography datasets: non-stationarity and spatial autocorrela-

tion.

4.5.1 Previous Studies

Although many researches had been done to tackle these challenges, none of them

had utilized locality to the extreme. They all work under a similar way that only

deals with non-stationarity locally by examine nearby observations.

The main disadvantage for these type of methods is that there are usually not

enough nearby observations to train a local model that is accurate enough. So some

of the methods simply behaves poorly when data is not dense enough to create

accurate local models. For the rest of the methods, they generally use one of two

ways to solve this problem.

The first one tries to model the relationship between distance and observation’s

target value as a function. Although this might work for some of the datasets, it
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would definitely fail for datasets that this function is non-stationary. For example, in

a real estate dataset, the sale price of a property may be affected by the sale price of

nearby properties. This distance is highly likely to be smaller in urban areas than in

rural areas. And different locations may have their own special situations that make

it even more complicated. Thus, this method might work for some datasets with

weak non-stationarity, but won’t work when non-stationarity is inherently strong.

It will especially fail the cases when the relationship between target values and

distance cannot be described by a single function.

The other type of methods will use a scalable structure (usually a hierarchical

tree or something similar) to describe the dataset. These methods, however, will also

fail when their finest level fails. Because no matter how many layers or scales have

been created, the base layer usually decide the performance of the entire model. The

upper layers are merely created for a purpose of preventing over-fitting, but cannot

solve the problem if underlying is inaccurate.

4.5.2 Our Solution

In this chapter, we proposed a totally different to solve this problem. The challenge

of not being able to create accurate local models due to limited number of nearby ob-

servations is overcame by creating partitions that put spatially similar observations

together.

Although this method may not be suitable for stationary datasets, or datasets

that are non-stationary everywhere (usually such kind of dataset is hard to exist

and even if it exists, it’s inherently difficulty to predict), it provides a novel way to

deal with non-stationarity.
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In the Geographic R-Partition Tree, observations that are far away but still

spatially similar are put into the same partition. Individual models are then trained

from these partitions. Comparing with the other methods that create a local model

for every location, this method will greatly improve the individual models’ accuracy

because much more observations are used to build the models.

This characteristic is especially important. Because when the number of obser-

vations increase but the data density doesn’t change, the other methods will not

benefit from this growth, as again, the number of nearby observations are still the

same if the density doesn’t change. But our method can benefit from the growth as

long as the non-stationarity doesn’t grow (less likely), or it grows but at a slower

rate than the number of observations grows (much more likely).

The Geographic R-Partition Tree is also high customizable. The creation of

blocks are based on the R-tree process. And R-tree is especially famous for its

customizability. During the years, many variants of the R-tree were developed like

R*-tree, R+ tree, Hilbert R-tree and so on. Our algorithm keeps this customizability

and allows users of the GRP-tree to add prior knowledge into the algorithm to

produce even more accurate models.

4.5.3 Possible Extensions

Here, GPR-tree is only designed to deal with two-dimensional observations of any

shape. But in fact it is capable of handling higher dimension objects as R-tree can

theoretically deal with objects of any dimension.

However, higher than three dimensional objects are almost impossible to be

handled effectively by the GPR-tree. As curse of dimensionality will soon render

any distance-based algorithms useless. Although the training algorithm do not rely
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directly on calculation of space, the same assumptions that hold true in a 2D or 3D

space doesn’t necessarily still hold true for higher dimensions. Also, the prediction

process needs to calculate the distance of nearby blocks, whereas the concept of

“nearby” may change drastically in dimensions that are higher than 3.

Despite of this, GPR-tree is promising for dealing with 3D datasets, especially for

datasets with time as the third dimension, although certain alterations are needed

in order to make it work.

For example, in the first step of creating R-tree, bounding rectangles need to be

changed from 2D to 3D. After that, all calculations that involves calculation of dis-

tance shall also be changed. The assumptions of non-stationarity that is the key to

the success of the algorithm, need to be revisited and verified. Besides, whether par-

titioning still converges under a 3D dataset would also need to be carefully reviewed.

During these changes, there might be new challenges that need new solutions. But

no matter what, the GPR-tree still provides a totally new option for tackling the

non-stationarity.
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Figure 4.1: Visualization of the Zillow Home Value Prediction DataSet
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Figure 4.2: Relationship between training area and MAE
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Figure 4.3: Spatial similarity test

76



0 100 200 300 400 500

Distance between training area and test area

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
A
E

Figure 4.4: Spatial similarity test (scatter plot)
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Figure 4.7: Basic structure of the Quadtree [Mic18]
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Figure 4.8: MBRs generated by classic R-tree
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Figure 4.9: Modified R-tree
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CHAPTER 5

INVERSE DISTANCE WEIGHTED RANDOM FORESTS:

MODELING UNEVENLY DISTRIBUTED NON-STATIONARY

GEOGRAPHIC DATA

* The content of this chapter is an extended version of an in-press paper ([DARssb])

which is accepted by the 2020 International Conference on Advanced Computer Sci-

ence and Information Systems (ICACSIS).

In the previous chapter, a Geographic R-Partition Tree was proposed to model

non-stationarity geographic datasets. It proves the idea that for datasets with special

characteristics, we need special designed algorithms to handle them.

For this chapter, another algorithm for dealing with non-stationary datasets is

proposed. It takes a different approach than the previous R-tree based strategy.

5.1 Introduction

Geographic datasets are usually categorized by the phenomena they describe. Data

collected about the natural processes of the Earth are categorized as Physical Geog-

raphy datasets, such as mineral resources, hydrology, weather, and climate [Mas99].

In contrast, data generated about activities of people are called Human Geography

datasets: housing, culture, traffic, disease, war, crime, etc. Historically, researchers

were more interested in Physical Geography datasets in order to learn how to survive

and mitigate the damage of natural disasters [SA07], discover and utilize mineral re-

sources, understand environmental damage [FFWF10], and so on. But recent years

also witnessed an explosive growth of Human Geography data, as GPS-enabled

devices are omnipresent in everyday life[BBFRS12].
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With new data come new challenges. Many of the tools and theories that worked

well with Physical Geography data are incompatible with the new datasets, which

have significantly different characteristics. Spatial non-stationarity is one of them.

For Physical Geography data, researchers usually assume stationarity, meaning the

relationships among features remain unchanged across space. This makes perfect

sense because Earth’s natural processes, such as the distribution of mineral deposits,

will only be relevant to various environmental factors. Location doesn’t matter as

long as all the environmental factors have been sampled. However, such an assump-

tion is not necessarily valid for Human Geography data due to the complicated

nature of human activities. For instance, a house’s sale price is affected by nu-

merous factors like the number of bedrooms, garage space, square footage, and so

on. When stationarity is assumed, the increase of garage space will cause the same

amount of sale price increase everywhere, which is not the case, as garage space can

be much more valuable in cities than in rural areas. Even for urban areas, it’s un-

likely that Paris shares the same pricing model with New York. Thus, it makes more

sense to think that the sale price model is affected by “local knowledge” [BFC96],

which shifts over space. This local knowledge is not directly included in the dataset

because it’s difficult to collect or measure, but its influence on the data is real and

observable.

A viable solution to the non-stationarity problem is to build multiple local mod-

els instead of a single average global model. Each local model represents a sub-

region of the space within which the data is relatively stationarity. Many studies

took this route (e.g., [BFC96], [GGG+19] and [FYK17]) and obtained significant

improvements. However, the fact that local models are only trained from nearby

observations within a certain area (called the kernel) can be a double-edged sword,

and the size of kernels (called the bandwidth) must be chosen carefully [Kal16].
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According to [MDHC03], modeling accuracy will be severely impacted if the sample

size drops below 1000. Thus, a smaller bandwidth will generate fine-grained models,

but each of them is less accurate. In contrast, a larger bandwidth will be less sen-

sitive to non-stationarity and tends to generate local models similar to each other.

When data is extremely unevenly distributed, the majority of kernels will contain so

few data that it’s pointless to adopt the multiple-local-model approach. Figure 5.1

shows the Melbourne housing data (ranging from 2016 to 2018), which illustrates

how unevenly distributed data could be for Human Geography datasets.

To solve this problem, we propose the IDW-RF (Inverse Distance Weighted

Random Forests) algorithm, which adopts the multiple-local-model approach but

allows kernels to overlap. Experiments show that IDW-RF performs as well as

other state-of-the-art methods when data is evenly distributed and outperforms in

uneven distribution.

5.2 Background

Researchers had been studying how to model non-stationary spatial data for a long

time. Brunsdon, Fotheringham, and Charlton performed the first well-known re-

search on this topic in 1996 [BFC96]. In the paper, an algorithm called Geographi-

cally Weighted Regression (GWR) was proposed, whose “main characteristic is that

it allows regression coefficients to vary across space, so the values of the parameters

can vary between locations” [Mat10]. GWR solves non-stationarity by making it

possible for relationships between features and labels to differ across spaces, rather

than generating an average global model. Many later studies are based on this

multiple-local-model idea. For example, [GGG+19] improves GWR by replacing

Ordinary Least Squares (OLS) – which is used in GWR to generate local models
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Figure 5.1: Spatial distribution of Melbourne housing data.

– with Random Forests and see substantial improvements, as the Random Forests

algorithm is naturally superior to OLS at modeling spatial data. And [FYK17] al-

lows different local models to operate at different spatial scales, thus building more

flexible and scalable regression models.

These studies also discussed the problem mentioned above that the bandwidth

of kernels must be carefully chosen to get any useful models. [BFC96] uses cross-

validation to find the optimal bandwidth. [FYK17] has a complicated weighing

method and invented a Back-Fitting algorithm to solve the bandwidth selection
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problem. [GGG+19] fuses prediction results from global and local models, to im-

prove overall accuracy when the local models are not good enough. However, these

methods fail to discuss the case in which data are so unevenly distributed that it’s

impossible to find a bandwidth that achieves both high accuracy (favors larger band-

width) and non-stationarity (prefers smaller bandwidth). Here, we present a new

approach that allows local models to be trained from very large kernels (typically

greater than 10% of the entire dataset) so that bandwidth no longer plays a critical

role in the success of the algorithm. The impact brought by letting kernels overlap

each other is then minimized by fusing all prediction results with the IDW method.

5.3 Inverse Distance Weighted Random Forests

IDW-RF’s design includes five key steps in training and predicting process, which

we detail below.

5.3.1 Training: Select Kernel Centroids

As previously mentioned, a kernel is defined as an area in which a local model

operates. The number, location, and radius of kernels will have a direct impact on

the model performance and, thus, must be carefully chosen. A common way to do

this – as adopted by many other researchers – is to use the locations of all the data

points as kernel centroids, which also implies that the number of local models will

be the same as the number of data points. The main disadvantage of this method

is that it’s computationally expensive and doesn’t scale well when the data size

increases. In our case, another drawback of this method is most of the calculations

would be unnecessary and even harmful because the adoption of large kernels means

most kernels will significantly overlap with each other if there are too many of them.
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Here, we use a simple grid-based method to generate kernel centroids. Within the

dataset’s boundaries, space is evenly divided to grid cells, whose geometric centers

are then used as kernel centroids. The value of G – the size of grid cells – can be

determined by either prior knowledge of the data, an exhaustive grid search process,

or a combination of both. As a general rule of thumb, if prior knowledge is to be

used, G should be the best guess on the average range within which data points

remain relatively stationary. For example, when predicting house sale prices, homes

within the same community are generally believed to follow the same pricing model.

In other words, data is stationary on the scale of communities. So for this case, G

can be set as the average size of communities. However, in most scenarios, when

prior knowledge doesn’t exist or cannot be precisely determined, an exhaustive grid

search will be used to find the optimal value of G, which will be explained in detail

later.

5.3.2 Training: Determine Kernel Sizes

There are two types of kernels. Adaptive kernels are defined by n nearest neighbors,

whereas fixed kernels have a predetermined radius r [Kal16]. In the present study,

adaptive kernels are used, since they perform much better when data density varies

across space, which is the main challenge this paper tries to solve. Instead of n, we

use α = n
N
, where N is the total number of data points, to get a better idea of what

percentage of data are used to train each of the local models. Similarly to G, this

parameter is also tuned by the grid search process.
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5.3.3 Training: Create Local Models

After kernels are chosen, local models can then be trained. Here we use the Random

Forests [Bre01] algorithm to create local models. As the name suggests, Random

Forests use multiple randomly generated decision trees to predict unknown observa-

tions. Each of the trees is trained by only part (about two-thirds) of the data points

available. Moreover, during the feature selection process, each decision tree node

only chooses from a random subset of features. The final prediction result is either a

majority vote (for classification) or an average (for regression) of results from all the

trees. The theory behind RF is that the bagging process will decrease the variance of

the model without increasing the bias, leading to better overall model performance.

We choose RF to create local models for several reasons. First, RF will not

over-fit no matter how the number of trees is increased. According to a study of the

Random Forests [Lou14], expected generalization error of ensembling decision trees

has a variance of:

var(x) = ρ(x) · σ2
L,θ(x) +

1− ρ(x)

M
· σ2

L,θ(x)

in which M is the size of the ensemble and ρ(x) is Pearson’s correlation coefficient

between two randomized models trained from the same data. Thus if ρ(x) is smaller

than 1 (which is always the case for RF), increasingM (number of decision trees) will

always cause var(x) to decrease. This characteristic of RF is critical to the success

of our algorithm, which is de facto an ensemble of decision trees that trained on the

same or partially different data.

Second, RF is based on decision trees, which is naturally good at handling coor-

dinates in geographic datasets. Many other models have trouble with them because

latitude and longitude will be treated as independent variables if fed directly into

the model. In such a case, loss of spatial information would be unavoidable, and
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Figure 5.2: A branch of decision tree trained from Melbourne housing data.

the model’s effectiveness would be undermined. As a workaround, researchers often

run a feature engineering process on geographic datasets before training, to capture

the information embedded within data locations and convert them into additional

features. But this method is often unreliable, and the results largely depend on

the skill of the person who performs the feature engineering process. But decision

trees do not suffer from such complications. If a leaf node of the decision tree is

examined, its criteria are determined only by the set of ancestor nodes all the way

up to the root, for which the order doesn’t matter. If latitude or longitude appears

in any of its ancestor nodes, like in the example shown in Figure 5.2, the leaf node

can be considered as operating within the area defined collectively by all its ancestor

89



latitude/longitude nodes. This is precisely how we expect location information to

be accounted for.

Additionally, Random Forests is one of the best machine learning algorithms

available and often shows excellent potential when dealing with spatial data, as

observed by many studies, including [BJKK12] and [NSB+18]. Using RF as the

underlying local model will enable us to inherit all of these advantages.

5.3.4 Predicting: An Inverse Distance Weighted Approach

To predict an unknown observation, results from all local models are combined with

the following formula:

f(x) =

∑N

i=1 wi(x)fi(x)
∑N

i=1 wi(x)
,

where

wi(x) =











d(x, xi)
−p, if d(x, xi) ≥ L

L−p, if d(x, xi) < L

Here, fi(x) is the prediction result for unknown observation x, given by the

ith local model. wi(x) is the weight, which decreases as distance d(x, xi) increases

between x and the local model’s kernel centroid. p is a positive real number, called

the power parameter. L applies a lower bound to the distance function, to avoid the

situation in which x is so close to a local model that renders all others useless. This

situation is generally not a problem when IDW is used for interpolation purposes

but is harmful in our case. Being close to the centroid of a kernel doesn’t make the
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data point a better fit for the local model than others. As a general rule of thumb,

L should be smaller than G (grid cell size), and here we use L = G/2 in our model.

Its value can be fine-tuned. But experiments show that as long as L stays close to

G/2, its value doesn’t have an observable impact on overall accuracy.

There are multiple reasons why this inverse distance weighted approach works.

For one, the idea is in accordance with the first law of geography “everything is

related to everything else, but near things are more related than distant things”,

which was proposed by Tobler in 1970 [Tob70]. Spatial heterogeneity is accounted

for in this method by assigning larger weights to closer local models. Another

reason is that the adoption of large kernels significantly improves the local model’s

accuracy, which then benefits the entire model. Although ensembling local models

trained from the same data could increase the variance of the generalization error,

this possibility is eliminated by adopting Random Forests as the underlying local

model, which doesn’t over-fit no matter how many decision trees are trained, as

discussed in the previous section.

5.3.5 Exhaustive Grid Search with Cross-Validation

So far, the algorithm is almost complete except several parameters are not yet

determined: grid cell size G, kernel size α, and the power parameter p in the IDW

formula. Best values for these parameters depend on the dataset and have to be

fine-tuned on a case-by-case basis. As a general idea, datasets with larger scales of

non-stationarity tend to favor a large G value. The smaller the dataset is, the larger

α should be to offset the impact on accuracy brought by small training data size.

And large p values should be used when the data is highly non-stationary.
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To get the best performance, our research utilizes the Grid Search method to

determine the best G, α, and p. The grid search method runs an exhaustive search

on a predetermined hyper-parameter space. Each parameter has a lower bound, an

upper bound, and the number of steps. The method will attempt all parameter

combinations to find the best one. This process is considered to be computationally

expensive. However, since we only run this process during the training stage, it is

generally not a problem for most applications that are not sensitive to long training

time.

Still, Grid Search alone is not effective enough as it is prone to variance prob-

lems. Model performance obtained from one test may differ from the others due

to randomness in the tests performed. If not dealt with, this variance may propa-

gate further down the line and cause the parameters learned from the Grid Search

process to be biased. For this reason, we add Cross-Validation [All74] to the evalua-

tion process of the Grid Search. A straight-forward K-Fold Cross-Validation would

be sufficient for a general problem, but the story is very different for a geographic

dataset. A randomly generated training set from the regular K-Fold algorithm is

not necessarily equally random at all locations. Many researches have noticed that

this could lead to potential issues and proposed different cross-validation strategies

[Lie11]. In our study, we adopt the Block Cross-Validation method, which splits

data into blocks from which samples are equally withdrawn. For this method, there

is no set rule on how large the blocks should be and how many folds (i.e., the value

of K) work the best. Generally speaking, the blocks should be of the same scale on

which the data remains stationary. And although a higher K gives better results, it

would significantly extend the Grid Search process. Thus, K should be set as high

as the computing time limitations allow.
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Figure 5.3: Histogram of Price vs. log(Price).

5.4 A Case Study: Melbourne Housing Market

In this section, the IDW-RF algorithm will be applied to the Melbourne Hous-

ing Market data (downloaded from the Kaggle website [Pin18]). The dataset con-

tains 8,841 (records with missing fields are stripped) real estate transaction records

in the city of Melbourne in Australia from 2016 to 2018, during which the area

was experiencing a housing bubble. As shown in Figure 5.1, this is a very typical

non-stationary human geography dataset in which data is extremely unevenly dis-

tributed. In densely populated areas, there are more than enough data points to

outline the Port Phillip Bay’s coast. But rural areas only see sparse data points
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scattered all over the space. Thus, this is a perfect dataset to test the capability of

the IDW-RF algorithm.

5.4.1 Data Cleaning and Exploratory Analysis

The original dataset has 21 features which can be categorized into these groups:

❼ Location related features: latitude/longitude, zip code, suburb, region, etc.

❼ Transaction related features: sale price, date, seller and sale method, etc.

❼ House related features: the number of bedrooms and bathrooms, garage space,

land size, etc.

Of all these features, the sale price is the target variable we would like to model

and predict. After plotting the house price value as a histogram, we immediately

realize that it spans over a broad range with a long tail, as illustrated in Figure

5.3. Thus we adopt log(Price) – which has a normal distribution – instead of using

Price directly as the target variable. Among the rest of the features, Latitude and

Longitude are the most important ones giving us the precise location of the house.

The address field is unnecessary as it’s inferior to the coordinates and cannot provide

any other useful information. However, other location-related features, like zip code

and suburb, are kept even though they are derivable form the coordinates, as they

have sharp boundaries affecting the tax and school district of the house. And all

transaction/house related features are also useful.

Figure 5.4 shows the Pearson correlation heatmap among the most important

features. From the figure, the sale price has an obvious positive correlation with the

number of rooms/bathrooms and the building’s area (square meters of the living

area). It also has a solid negative correlation with year built and house type. The
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Figure 5.4: Pearson correlation of all important features.

sale method (how the house was sold) is not correlated with anything; thus, it can

be removed from the modeling process. None of the rest of the feature pairs show a

strong positive or negative correlation. Therefore, it’s safe to retain all of them.

However, Fig. 5.4 only gives us the global average correlation among features,

which doesn’t tell anything about how it could vary across space. Therefore, we split

the entire coordinate space into 80 grids (10 ∗ 8). To reduce randomness introduced

by the small sample, grids with too few data points are removed from the rest

of the calculation. In each of the grids left, the Pearson correlation coefficient is

calculated between all regular features and the target variable log(Price). Then, all

the results are summarized to form Table 5.1. Here, we can see that Landsize has

the largest standard deviation among all features, which means it’s probably “more

non-stationary” than the others. Nevertheless, almost all features show a great

difference between the minimum and maximum correlation, which is an indication

that the level of non-stationarity cannot be overlooked in this dataset.
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Table 5.1: Statistics of Correlations across space

mean std min max

Suburb -0.01 0.18 -0.28 0.43
Rooms 0.68 0.11 0.47 0.87
Type -0.67 0.12 -0.84 -0.38
Distance -0.09 0.19 -0.39 0.22
Postcode 0.03 0.15 -0.27 0.27
Bathroom 0.48 0.12 0.24 0.74
Car 0.35 0.11 0.14 0.55
Landsize 0.31 0.28 -0.16 0.80
BuildingArea 0.61 0.13 0.28 0.83
YearBuilt -0.28 0.17 -0.57 -0.02

5.4.2 Assessment Measurements

Before proceeding, we still need to decide how to measure the accuracy of our

models. The choice of measuring method would affect the creation of Random

Forests and the Grid Search process during which parameters are optimized. The

most commonly used error measurements are: mean absolute error (MAE), mean

squared error (MSE), and root mean squared error (RMSE). Here, we prefer MAE

(see the equation below) as the latter two methods tend to penalize large errors,

which makes them unfavorable in our situation.

MAE =

∑n

i=1 |yi − xi|
n

5.4.3 Results

Now that everything is ready, we apply the IDW-RF algorithm to the data. Results

returned by the Grid Search are plotted as an Average-Max-Min chart, as shown in

Figure 5.5. We can see that a valley is present in all the three graphs, where MAE

is the lowest. According to the results, a kernel size of 0.22 (meaning 22% of all
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data points are used to form the kernel) is optimal for this particular dataset. This

observation matches our theory that when data points are sparse in most areas, a

large kernel will produce better overall results. But if the kernel becomes too big,

the model will fail to capture non-stationarity, as all local models tend to behave

the same.

Additionally, the optimal grid cell size is 0.039 (the difference in the longitude),

which translates to about 3.4 kilometers in the city of Melbourne. And our assump-

tion was that grid cell size should be roughly on the same scale with which the

data remain stationary. Although for this dataset there is no way to know on what

distance would the house price model remain stationary, it is reasonable to believe

it’s of the same scale of 3.4 kilometers. As for the power factor, its range of MAE

is way smaller than the others. The implication of this is that the optimization of

power factor p takes priority vs. the others. This makes sense as the local models’

training areas overlap each other heavily, and the power factor must be carefully

tuned to fuse them correctly.

Table 5.2: Results from different algorithms.

MAE

Linear regression 0.308
Neural Network 0.317
Random Forests 0.187
MGWR 0.186
RFsp 0.191
IDW-RF 0.174

As a comparison, we run several other algorithms on this dataset and list the

results in Table 5.2. Unsurprisingly, the non-geographic algorithms (Linear Re-

gression and Neural Network) perform poorly, as they are not capable of handling
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non-stationary geographic data. We also tested two state-of-the-art geographic ma-

chine learning algorithms RFsp [HNW+18] and MGWR [FYK17], using their R and

Python implementations. Both of them adopt the multiple-local-model method and

use RF as the underlying local model. Results show that their performance will

degrade to that similar to the original RF for such an unevenly distributed dataset.
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Figure 5.5: Calibrate Parameters with Grid Search.
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CHAPTER 6

LVRF: A LATENT VARIABLE BASED APPROACH FOR

EXPLORING GEOGRAPHIC DATASETS

Geographic datasets are usually accompanied with spatial non-stationarity – a

phenomenon that the relationship between features vary across space. Naturally,

non-stationarity can be interpreted as the underlying rule that decides how data

are generated alters over space. Therefore, traditional machine learning algorithms

are not suitable for handling non-stationary geographic datasets as they only ren-

der a single global model. To solve this problem, researchers usually adopt the

multiple-local-model approach, which uses different models to account for different

sub-regions of space. This approach is proven to be efficient, but not optimal be-

cause it’s inherently difficult to decide the size of sub-regions. Also, the fact that

local models are only trained from a subset of data will also limit its potential.

This paper proposes a entirely different strategy that interpret non-stationarity as

lack of data, and address it by introducing latent variables to the original dataset.

Back-propagation is then used to find the best values of these latent variables. Ex-

periments show that this method is at least as efficient as multiple-local-model based

approaches and has a greater potential.

6.1 Introduction

Geographic data is defined as information that implicitly or explicitly associated

with a location on the surface of earth [ISO11]. With the advancement in remote

sensing technologies and wide-spread use of GPS-enabled devices, the number of

available Physical and Human geography datasets has greatly increased during the

last few years [BBFRS12]. These data are studied and used for social good such
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as mitigating the damage brought by natural disasters [SA07], discovering mineral

resource [PM12], preventing crimes [WS20], improving traffics [MBS+17], etc.

However, when dealing with geographic datasets, researchers find that many tra-

ditional machine learning algorithms do not work very well due to the existence of

non-stationarity. For such data, the relationship between features does not necessar-

ily remain the same everywhere, which means the underlying model that decides the

data would alter over space. To solve this problem, a natural solution is to replace

the global model with many local models. Each of the local model is only responsible

for describing a much smaller region within which the data is supposed to be rela-

tively stationary. Most of studies took this approach (like [BFC96], [GGG+19] and

[FYK17]) and saw much better results, comparing with the traditional algorithms

which are not specifically designed to handle non-stationarity.

These multiple-local-model based approaches all suffer to similar challenges. For

one, the dataset used to train local models is only a subset of all available data. And

previous researches had shown that the accuracy of a model is strongly correlated

with the amount of data used to train this model. There would be a significant

performance decrease of the model if training data size drop below a certain degree

[MDHC03]. For the other, the size of sub-regions within which local models corre-

sponds to are hard to decide. A large size means more data could be used to train

local models, but the region is more likely to be non-stationary. And a small size

mean the opposite. Thus a compromise is always needed.

Our insight is that the source of non-stationarity can be explained as lack of

data, i.e., some dimensions of the data not being collected. For example, a crime

dataset could present a strong non-stationarity in it, as crime patterns in New York

could be very different from Washington DC. Even within New York, it’s hard to

imagine Brooklyn shares the same crime pattern with Manhattan. But eventually,
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this difference is caused by various factors like household income, population com-

position, culture, number of police officers per capita, etc. If one is able to collect

data on every single aspect of the area, the dataset would ultimately be stationary.

This theory is also in accordance with the fact that non-stationarity is quite often

observed in human geography datasets, but rarely found in physical geography data.

Since physical geography data – which is generated by Earth’s natural processes –

have less determine factors and are usually simpler to collect. Whereas human ge-

ography data is all about activities of human thus much more complicated. Even

some of the seemingly simplest datasets would have countless deciding factors that

are impossible to collect. For example, house sale price data generally includes all

features of the house itself, and nearby areas. But other factors – such as school,

traffic, population, crime – are usually not included, although they’re also important

and certainly would affect the pricing model. The lack of these data would then be

observed as non-stationarity in the data and affect the final model in a certain way.

Based on this insight, we propose a entirely different strategy that address non-

stationarity by introducing latent variables to the original dataset. This latent

variable would account for all the missing factors that not collected by the original

dataset, but observable as non-stationarity. Theoretically, assuming we have unlim-

ited calculating power, the optimal value of the latent variables can be easily found

by a brute-force search of the entire vector space. But this solution is obviously

impossible due to the tremendous size of the vector space. Thus, inspired by the

neural network, we use a back-propagation algorithm to find the optimal values of

the latent variable. Experiments show that this new approach can build models

as accurate as the state-of-the-art algorithm, whereas having the potential of being

further improved.
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6.2 Background

The first renowned method for exploring spatial non-stationarity, known as Geo-

graphically Weighted Regression (GWR), was proposed by Brunsdon, Fothering-

ham, and Charlton in 1996 [BFC96]. The “main characteristic of GWR is that

it allows regression coefficients to vary across space, and so the values of the pa-

rameters can vary between locations” [Mat10]. The motivation for inventing GWR

was that “a single global model cannot explain the relationship between some sets of

variables” [BFC96]. To address non-stationarity, GWR allows relationships between

features and labels to differ across spaces. The basic idea of how GWR works is to

learn a regression equation for every feature in the dataset, during which dependent

and explanatory components are accounted for by examine neighboring data points.

And the neighbors contribute differently to this process according to how far away it

is, which is why it is called a “weighted” regression. The closer a data point is, the

more weight it is assigned. This design complies with Tobler’s first law of geogra-

phy, “everything is related to everything else, but near things are more related than

distant things” [Tob70]. Later in 2002, Brunsdon further improved this algorithm

to Semiparametric GWR (SGWR) [FBC02] and allow some features to have fixed

regression equations across the space, whereas others can still be variable.

Due to the success of GWR, many later studies followed this multiple-local-model

design. One example is Multiscale GWR (MGWR), which was introduced in 2017 by

Fotheringham, Yang and Kang. This method “is similar in intent to Bayesian non-

separable spatially varying coefficients (SVC) models, although potentially providing

a more flexible and scalable framework in which to examine multiscale processes”

[FYK17]. It improves GWR in a way that it not only adapts to datasets on different

levels of non-stationarity, but also provides necessary information to evaluate the
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scales of different processes. The latest research using this approach is Geographical

Random Forest (GRF), which was proposed by Stefanos, Tais, et al. in 2019. It

adopts Random Forests [Bre01] as the base algorithm to create local models. The

principle idea of this method is to “disaggregate of RF into geographical space in

the form of local sub-models” [GGG+19], which is basically another version of the

multiple-local-model approach.

As a conclusion, all these methods are directly or indirectly based on the multiple-

local-model approach thus suffer from the same problems mentioned in the previous

section. Here we propose a completely different approach with the goal that the

intrinsic nature of non-stationarity can be better understood and accounted for.

6.3 Study Area

We choose the housing sales data from King County, US as the target study area

(obtained from [Kag16]). There are 21,613 records in the dataset, with each record

being a real estate transaction that happened between May 2014 and May 2015,

during which the housing market stayed relatively stable in the King County.

In this dataset, there are 20 features regarding the house’s location (latitude,

longitude, zip code), its basic information (size, number of stories and rooms, garage,

air conditioning), and its transaction related information (sale date and price). Some

of the features have missing values. This is not a problem for our algorithm, which

is based on the Random Forests algorithm thus be able to handle missing values.

However some other algorithms we use to compare the performance with are not

capable of doing this. Thus during the data preparation stage, we fill the missing

values with average value of that column.
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Figure 6.1: Distribution of the King County housing data.
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The goal of this dataset is to build a predictive model that is able to estimate

house sale price, given the house’s location and some of its basic information. This

is actually a well researched topic which had been studied for a long time. But even

the state-of-the-art algorithm in this area still has a lot of room to improve due

to the complicated nature of this task. It is also a very typical human geography

dataset within which data availability varies depending on the amount of human

activity. Figure 6.1 shows the distribution of the dataset over the map. As can be

see from the figure, the downtown area in Seattle is populated with data, with some

areas left blank which are mostly parks or commercial zones. The rural regions has

much less data scattered all over the place. The fact that this dataset is extremely

unevenly distributed over space brings additional challenges if the previously men-

tioned multiple-local-model was to be used, as local models which correspond with

rural areas will see much fewer training samples, thus generating inaccurate re-

sults. Whereas in urban areas, over crowded data points will only bring marginal

improvement to models built for that area.

One more problem for this dataset is that the house sale price spans over a

fairly large range with a long tail, as shown in figure 6.2 , which is not desirable.

To eliminate the tail, we convert Price to log(Price), which follows the normal

distribution thus a much better target variable to deal with.

6.4 Latent Variable Random Forests

In this section, we detail the key designs of the Latent Variable Random Forests as

below.
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Figure 6.2: Distribution of Price vs. log(Price)

6.4.1 Key Design of the Latent Variable

By introducing a new latent variable, we hope to use it to represent the hidden fac-

tor that cause non-stationarity. In our housing price model example, it would be the

various unknown factors combined that could affect how house price should be mod-

eled. For instance, how secure a community is will obviously have an impact on the

house value. Although we don’t have any information on which area is secure and

which is not, its influence on the sale price will be observable via non-stationarity.

Note that the target variable might be affected by multiple hidden factors like secu-

rity, traffic, nearby schools and so on. But no matter how many hidden factors there
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are, they will influence the target variable together. It is impossible to know which

factor has a larger impact. Fortunately we don’t need to care about that. Our only

concern is how these hidden factors as a whole would affect the target variable we

want to predict.

To better describe the problem, let (f1, f2, ..., fn) denote the features in the

dataset and t denote the target variable to be modeled and predicted. After adding

a latent variable lv, the feature vector becomes F (lv) = (f1, f2, ..., fn, lv). So, the

task is converted to finding the best ~lv that makes the model trained from F (lv)

(with a predetermined regular machine learning algorithm) has the best accuracy.

The vector space ~lv is obviously unlimited. Thus we introduce a value range of

[0, 1] to lv and define a minimum step interval of 0.01. The reason why we limit the

value range to [0, 1] is that the value range of lv actually doesn’t play any important

role in the final model. If lv is multiplied by 2, the resulting model will still be the

same. So, only the relative value matters and is what we should care about. Also,

during the machine learning stage, all the features of original dataset need to be

standardized and normalized anyway, thus a standardized lv will in fact benefit the

entire procedure. For the minimum step, the smaller it is the more fine-grained the

final model would be. But setting it too small will also considerably increase the

calculation time and may not worth the marginal return. So we recommend setting

it to 0.01 as a balance between speed and accuracy.

Theoretically, the value array of latent variable ~lv can be inferred by an exhaus-

tive brute-force search of the entire vector space. The time complexity of doing so

is as follows:

O(n) = (
R

S
)n ∗ (Ttrain + Ttest) (6.1)
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where n is the number of data points in the dataset, R is the value range, S

is the step size, Ttrain and Ttest are time needed for training and testing the model

respectively. Note that the value of n is usually very large. Even for a very small

dataset n will probably be greater than 1000. Thus, this brute-force method is

completely impractical considering the amount of calculation is needed.

6.4.2 Grid Based Latent Variable System

To solve the time complexity problem, we clearly need a smarter algorithm, for

example, a heuristic search which could greatly reduce the search space. But before

that, let’s examine the possibility of reducing the size of potential vector space,

which would greatly benefit the entire procedure even if a heuristic search is to be

adopted.

Here we introduce a grid based latent variable system. Let (xmin, xmax, ymin, ymax)

denote the minimum bounding box that contains the entire dataset. A step size of

s will evenly divide the space to this many grids:

G(s) = ⌈xmax − xmin

s
⌉ ∗ ⌈ymax − ymin

s
⌉ (6.2)

For each intersection of the grid system, we assign an Influence Center (abbre-

viated as IC) to it. For a data point with a coordinate of (x, y), we first determine

which grid it is located in. Then calculate its latent variable value from all the

nearby ICs located at the four corners of grid. Here we use an inverse distance

weighted method to combine the values from nearby ICs, in accordance with the

idea that nearby ICs should have stronger influence on the latent variable than

remote ones. The detailed formula is as follows:
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v(x, y) =

∑N

i=1 W (ICi)V (ICi)
∑N

i=1 W (ICi)
(6.3)

where W (ICi) is the weight for the ith influence center which equals to the

inverse of the euclidean distance between the data point and the IC.

This design simulates how the hidden factors create non-stationarity in the

dataset. No matter what hidden factors there are, as a general rule, it would affect

nearby data points more than remote ones. Thus we simulate this procedure by

introducing the concept of Influence Centers and make them impact nearby records

in a similar way. Another benefit brought by this design is that now the search space

is greatly reduced down to the number of ICs. Instead of finding the best values for

all the records, we only need to optimize the values for ICs now, which is way less

then the total number of records.

6.4.3 Random Forests as the Base Algorithm

Before proceeding, we still need to decide which base machine learning algorithm

is to be used to train models. Here, our choice is the Random Forests [Bre01]

algorithm. As suggested in the name, Random Forests will create many randomly

generated decision trees to perform the prediction task together. For classification

tasks, The final result would be a majority vote of results from all the decision trees.

For regression, this would be an average of all results. The core idea of RF is to

create a bagging procedure where the variance of the model is decreased but the

bias remains unchanged, thus will generate a better result from sub-optimal models.

There are multiple reasons why we choose RF as our base algorithm. First,

RF is based on decision tree which is naturally good at handling coordinates in

geographic datasets. Then, Random Forests is among the top machine learning
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algorithms available and often shows exceedingly good results when handling spatial

data, as proven by [BJKK12] and [NSB+18]. We will be able to inherit all of these

advantages by using RF as the base algorithm.

6.4.4 Back Propagation

With a reduced search space, the time complexity is till massive as we are only

replacing (R
S
)n in Formula 6.1 with Xn (X is the total number of influence centers)

if a brute-force search is to be used. Thus we must find a way to further reduce the

search space, i.e., a heuristic-search like method.

Here, inspired by the back propagation in the Neural Network algorithm [PW17],

we design a back propagation process to search for the best values for influence

centers, as detailed in algorithm BackPropagation(). In this function, a learning

rate α is introduced. It decides how fast the back propagation converges. A large

value will cause BackPropagation() to converge faster, but the generated result will

be more likely to be coarse-grained thus less than optimal. Conversely, a smaller

value will converge slower but produce better results. Generally speaking, the best

α value is recommended to set to the smallest value within acceptable training time.

The converge condition in the BackPropagation() algorithm is a little tricky.

Ideally, if IC Array remains the same after an iteration, one can definitely say the

algorithm is converged as future iterations will keep generating the same results.

But this could not necessarily happen as IC Array could always change slightly

with pretty much the same results. So, we insert a process at the end of each

iteration, which will evaluate the test accuracy under the current IC Array. If

the test accuracy remains not improved for more than 5 iterations, we consider
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1 Function BackPropagation()
2 Initialize IC Array
3 while IC Array has not converged do
4 foreach IC in IC Array do
5 foreach learn rate in [α, -α] do
6 IC new = IC + learn rate
7 if Trained model sees improvement in accuracy then
8 IC = IC new
9 else

10 continue
11 end
12 end
13 end
14 end
15 return IC Array
16 end

the algorithm as converged and stop the back propagation iteration. This extra

calculation will slow down the entire algorithm but it’s worth the cost.

6.4.5 Prediction

The prediction process is relatively simple. After IC Array is returned by Back-

Propagation(), the final Model will be trained from the orignal dataset plus the

latent vector generated from IC Array. When predicting an unknown observation,

first calculate its latent variable by using inverse distance weighted method from

Formula 6.3. Then, apply Mode to get the final prediction result.

6.4.6 Assessment Measurements and Results

One thing that wasn’t mentioned in the previous sections is that a proper assess-

ment measurement must be chosen. This actually plays an important role in the

algorithm, as the evaluation result generated by the measurement will be used to

determine how the back propagation process runs and guide it to generate a bet-
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ter result for each iteration.Some of the most commonly used measurements are

[HOFL+15]: mean absolute error (MAE), mean squared error (MSE), and root

mean squared error (RMSE). In our case, MAE is preferred as the other ones will

penalize large errors and cause bias in our algorithm.

Now that the algorithm complete, we run LVRF on the King County housing

dataset and get an MAE of 0.263. As a comparison, we run unmodified Ran-

dom Forests on the same dataset and get a result of 0.289. This means that the

learned latent variables offset some of the non-stationarity and make it easier for

the standard RF to generate a more accurate model. To compare with the others,

we also run the same dataset on two state-of-the-art algorithms RFsp [HNW+18]

and MGWR [FYK17], who are specifically designed to handle geographic datasets

and non-stationarity. The results are 0.261 and 0.272 respectively. This means the

idea of using latent variables to capture hidden factors that cause non-stationarity

works at least as well as the best results one could get using the multiple-local-model

approach.

6.5 Conclusion

This paper presents LVRF, a machine learning algorithm that is capable of creating

predictive models for non-stationary geographic datasets. Unlike other algorithms,

LVRF adopts a latent variable based approach, instead of the widely used multiple-

local-model strategy. Experiments show that LVRF can build models as accurate as

the state-of-the-art algorithms, whereas avoiding the common disadvantages of the

multiple-local-model approach. LVRF first establish a grid-based influence centers.

The latent variable value of any data point is decided by the nearby influence centers

using an inverse distance weighted method. It then use a back propagation algorithm
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to train the values of the influence centers. The training process will finish after the

value of influence centers converge. When used to predict unknown observations, the

data point’s latent variable will be calculated from the converged influence centers,

and fed into the model with its other features.

The insight of LVRF is that the design of influence center can mimic the hidden

factors which affect nearby data points in different ways depending the location. By

learning these hidden factors with a back propagation algorithm and then include

them in the model creation stage, the impact brought by non-stationarity will be

offset and a single global model can be used to describe the features plus the hidden

factors.

It is also worth mentioning that, although Random Forests is selected as the base

algorithm, LVRF is capable of using any other regular machine learning algorithm

as the base algorithm. Doing so may bring advantages in certain scenarios when

there is preknowledge regarding the dataset.
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[Lov93] László Lovász. Combinatorial problems and exercises. Amsterdam:
North-Holland, 2. ed. edition, 1993.

[LW01] Andy Liaw and Matthew Wiener. Classification and regression by ran-
domforest. Forest, 23, 11 2001.

[Mas99] Doreen Massey. Space-time, ‘science’ and the relationship between
physical geography and human geography. Transactions of the Institute
of British Geographers, 24(3):261–276, 1999.

[Mat10] Jorge Mateu. Comments on: A general science-based framework for
dynamical spatio-temporal models. Test, 19:452–455, 11 2010.

[MBS+17] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo,
Mart́ın Ochoa, Nils Ole Tippenhauer, and Yuval Elovici. Profiliot: A
machine learning approach for iot device identification based on network
traffic analysis. In Proceedings of the Symposium on Applied Computing,
SAC ’17, page 506–509, New York, NY, USA, 2017. Association for
Computing Machinery.

[MDHC03] James Morgan, Robert Dougherty, Allan Hilchie, and Bern Carey. Sam-
ple size and modeling accuracy with decision tree based data mining
tools. Acad Inf Manag Sci J, 6, 01 2003.

[Mic18] Microsoft. Bing maps tile system. https://docs.microsoft.com/

en-us/bingmaps/articles/bing-maps-tile-system, 2018.

[Mor50] P. A. P. Moran. Notes on continuous stochastic phenomena. Biometrika,
37(1/2):17–23, 1950.

118



[NSB+18] M. Nussbaum, K. Spiess, A. Baltensweiler, U. Grob, A. Keller,
L. Greiner, M. E. Schaepman, and A. Papritz. Evaluation of digital
soil mapping approaches with large sets of environmental covariates.
SOIL, 4(1):1–22, 2018.

[OBK+10] D. Oliver, A. Bannur, J. M. Kang, S. Shekhar, and R. Bousselaire. A
k-main routes approach to spatial network activity summarization: A
summary of results. In 2010 IEEE International Conference on Data
Mining Workshops, pages 265–272, 2010.

[Pin18] Tony Pino. Melbourne housing market data. https://www.kaggle.

com/anthonypino/melbourne-housing-market, 2018.

[PM12] Panagiotis Partsinevelos and Zinovia Mitraka. Change detection of sur-
face mining activity and reclamation based on a machine learning ap-
proach of multi-temporal landsat tm imagery. Geocarto International,
28:1–20, 01 2012.

[PW16] Hong-Gang Peng and Jianqiang Wang. A linguistic intuitionistic multi-
criteria decision-making method based on the frank heronian mean op-
erator and its application in evaluating coal mine safety. International
Journal of Machine Learning and Cybernetics, 12 2016.

[PW17] Sandy Putra and Anjar Wanto. Analysis of artificial neural network
accuracy using backpropagation algorithm in predicting process (fore-
casting). International Journal Of Information System & Technology
(IJISTECH), 1:34–42, 11 2017.

[SA07] Evaggelos Spyrou and Yannis Avrithis. A region thesaurus approach
for high-level concept detection in the natural disaster domain. volume
4816, pages 74–77, 12 2007.

[Sam84] Hanan Samet. The quadtree and related hierarchical data structures.
ACM Comput. Surv., 16(2):187–260, June 1984.

[SG16] Kristin Stock and Hans Guesgen. Chapter 10 - geospatial reasoning with
open data. In Robert Layton and Paul A. Watters, editors, Automating
Open Source Intelligence, pages 171 – 204. Syngress, Boston, 2016.

[She68] Donald Shepard. A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the 1968 23rd ACM Na-

119



tional Conference, ACM ’68, page 517–524, New York, NY, USA, 1968.
Association for Computing Machinery.

[SSV+02] S. Shekhar, P. R. Schrater, R. R. Vatsavai, Weili Wu, and S. Chawla.
Spatial contextual classification and prediction models for mining
geospatial data. IEEE Transactions on Multimedia, 4(2):174–188, 2002.

[SY18] Xingjian Shi and Dit-Yan Yeung. Machine learning for spatiotemporal
sequence forecasting: A survey. ArXiv, abs/1808.06865, 2018.

[SYA11] Imas Sitanggang, Razali Yaakob, and Nuruddin A. An extended id3
decision tree algorithm for spatial data. pages 48–53, 06 2011.

[SZHV03] Shashi Shekhar, Pusheng Zhang, Yan Huang, and Ranga Vatsavai.
Trends in spatial data mining. 10 2003.

[SZK14] Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. Local outlier
detection reconsidered: A generalized view on locality with applica-
tions to spatial, video, and network outlier detection. Data Mining and
Knowledge Discovery, 28, 01 2014.

[Tob70] W. R. Tobler. A computer movie simulating urban growth in the detroit
region. Economic Geography, 46:234–240, 1970.

[Wik20] Wikipedia. Partition of a set. https://en.wikipedia.org/wiki/

Partition_of_a_set, 2020.

[Wil20] Robin Wilson. Individual country/area datasets. https://

freegisdata.rtwilson.com/, 2020.

[WS20] Andrew Wheeler and Wouter Steenbeek. Mapping the risk terrain for
crime using machine learning, 01 2020.

[ZGHW07] Feng Zhou, Huai-Cheng Guo, Yuh-Shan Ho, and Chao-Zhong Wu. Sci-
entometric analysis of geostatistics using multivariate methods. Scien-
tometrics, 73:265–279, 12 2007.

[Zil17] Zillow. Zillow’s home value prediction competition. https://www.

kaggle.com/c/zillow-prize-1/overview, 2017.

120



VITA

LIANGDONG DENG

2014-Present Ph.D., Computer Science
Florida International Univerisity
Miami, Florida

2013 M.S., Software Engineering
Beihang University
Beijing, China

2010 B.S., Software Engineering
Beihang University
Beijing, China

PUBLICATIONS AND PRESENTATIONS

Liangdong Deng, Yuzhou Feng, Dong Chen, and Naphtali Rishe. Iotspot: Identify-
ing the iot devices using their anonymous network traffic data. In MILCOM 2019 –
2019 IEEE Military Communications Conference (MILCOM), pages 1-6, 2019.

Liangdong Deng, Malek Adjouadi, and Naphtali Rishe. Inverse Distance Weighted
Random Forests: Modeling Unevenly Distributed Non-Stationary Geographic Data.
ICACSIS 2020 (in press).

Liangdong Deng, Malek Adjouadi, and Naphtali Rishe. Geographic Boosting Tree:
Modeling Non-Stationary Spatial Data. ICMLA 2020 (in press).

Liangdong Deng, Malek Adjouadi, and Naphtali Rishe. LVRF: A Latent Variable
Based Approach for Exploring Geographic Datasets. (submitted to SDM21).

Yuzhou Feng, Liangdong Deng, and Dong Chen. 2019. IoT devices discovery and
identification using network traffic data: poster. In Proceedings of the 12th Confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec ’19), pages
338–339, 2019.

121


	Geographic Data Mining and Knowledge Discovery
	Recommended Citation

	Geographic Data Mining and Knowledge Discovery

