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The remarkable properties of shape memory alloys have facilitated their applications in

many areas of technology. The purpose of this paper is to present an overview of thermo-

mechanical behavior of these alloys, discussing the main constitutive models for their

mathematical description. Metallurgical features and engineering applications are ad-

dressed as an introduction. Afterwards, five phenomenological theories are presented. In

general, these models capture the general thermomechanical behavior of shape memory

alloys, characterized by pseudoelasticity, shape memory effect, phase transformation phe-

nomenon due to temperature variation, and internal subloops due to incomplete phase

transformations.

Copyright © 2006 A. Paiva and M. A. Savi. This is an open access article distributed un-

der the Creative Commons Attribution License, which permits unrestricted use, distri-

bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The interest on intelligent materials has grown in the last decades due to their remarkable

properties. This class of materials, usually applied as sensors and actuators in the so-

called intelligent structures, has the ability of changing its shape, stiffness, among other

properties, through the imposition of electrical, electric-magnetic, temperature, or stress

fields. Nowadays, the most used materials on intelligent structures applications are the

shape memory alloys, the piezoelectric ceramics, the magnetostrictive materials, and the

electro- and magnetorheological fluids.

Shape memory alloys (SMAs) are metallic alloys that are able to recover their origi-

nal shape (or to develop large reaction forces when they have their recovery restricted)

through the imposition of a temperature and/or a stress field, due to phase transforma-

tions the material undergoes. SMAs present several particular thermomechanical behav-

iors. The main phenomena related to these alloys are pseudoelasticity, shape memory

effect, which may be one-way (SME) or two-way (TWSME), and phase transformation

due to temperature variation.
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In order to explore all potentialities of SMAs, there is an increasing interest on the

development of mathematical models capable to describe the main behaviors of these

alloys. SMA thermomechanical behavior can be modeled either by microscopic or by

macroscopic points of view. The first approach, actually, considers either microscopic or

mesoscopic phenomena. The microscopic approach treats phenomena in molecular level

while mesoscopic approach is related to the level of lattice particles, and its modeling

assumes negligible fluctuations of the molecular particles. These approaches have been

studied by several authors including Warlimont et al. [82], Perkins [57], Nishiyama [52],

Achenbach, and Müller [3], Sun and Hwang [75, 76], Fischer and Tanaka [21], Com-

stock et al. [15], Lu and Weng [43], Levitas et al. [39], Gall et al. [26], Sittner and Novák

[71], Kloucek et al. [34], Muller and Seelecke [49], among others. On the other hand, the

macroscopic approach is interested in SMAs’ phenomenological features. In the following

paragraphs, the authors briefly discuss some macroscopic models found in the literature,

which will be better explored later on in the paper.

Falk [17, 18] and Falk and Konopka [19] propose a one-dimensional model based

on Devonshire’s theory. This model assumes a polynomial-free energy potential, which

allows pseudoelasticity and SME description. The great advantage of Falk’s model is its

simplicity.

There is a class of models in literature known as models with assumed phase transfor-

mation kinetics that consider preestablished simple mathematical functions to describe

the phase transformation kinetics. This kind of formulation was first proposed by Tanaka

and Nagaki [78] that motivated other researchers who present modified transformation

kinetics laws as Liang and Rogers [41], Brinson [13], Ivshin and Pence [32, 33], Boyd and

Lagoudas [12], among others. These models probably are the most popular in the litera-

ture, and therefore they have more experimental comparisons, playing an important role

within the SMA’s behavior modeling context.

Other authors explore the well-established concepts of the elastoplasticity theory (Simo

and Taylor [69]) to describe SMA’s behavior. Bertran [9] proposes a three-dimensional

model using kinematics and isotropic hardening concepts. Mamiya and coworkers (Silva

[68]; Souza et al. [74]) also present a model capable of describing pseudoelasticity and

SME behaviors using plasticity concepts. The models proposed by Auricchio and cowork-

ers can be included in this class as well. Firstly proposed for a one-dimensional media

(Auricchio and Lubliner [5]), the model was extended to a three-dimensional context

(Auricchio et al. [7]; Auricchio and Sacco [6]). There are still other models that exploit

plasticity concepts as those proposed by Govindjee and Kasper [29], Leclercq et al. [37],

among others.

Knowles and coworkers (Abeyaratne et al. [1, 2]) present a one-dimensional model,

which sets nucleation criteria for volumetric phases to express the internal variables based

on the energetic barrier to be overlapped, so that phase transformations occur. Besides,

the authors apply evolution laws for the phase transformation kinetics.

Fremond [22, 23] developed a three-dimensional model that is able to reproduce the

pseudoelastic and shape memory effects by using three internal variables that should

obey internal constraints related to the coexistence of the different phases. Afterwards,

a new one-dimensional model, built up on the original Fremond’s model, is developed
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and reported in different references (Savi et al. [66], Baêta-Neves et al. [8], Paiva et al.

[56], Savi and Paiva [65]). This new model allows the description of a greater phenom-

ena variety considering the effect of thermal and plastic strains, and including a plastic-

phase transformation coupling, which turns the TWSME description possible. Besides,

this model also describes tension-compression asymmetry—a point of great relevance.

The goal of this work is to discuss the main features associated with SMAs, their ap-

plications, and their constitutive modeling. The models here presented constitute an im-

portant tool for application design.

2. Metallurgical features

Several authors have discussed SMAs’ metallurgical features (Matsumoto et al. [47], Shaw

and Kyriakides [67], Otsuka and Ren [54], Gall et al. [26], among others). The mar-

tensitic-phase transformation phenomenon is responsible for the remarkable SMA’s

properties. These transformations are nondiffusive processes involving solid phases that

occur at a very high speed. Experimental studies (Wasilevski [83]) reveal that these trans-

formations are caused by the free-energy difference between the microconstituent phases

involved in the process, which induces chemical bond changes. Therefore, phase trans-

formations can be interpreted as being essentially crystallographic.

Basically, there are two relevant microconstituent phases associated with SMAs—the

austenite (stable at high temperatures) and the martensite (stable at low temperatures).

While the austenite has a well-ordered body-centered cubic structure that presents only

one variant, the martensite can form even twenty four variants for the most generic case

(Funakubo [24]) and its structure depends on the type of transformation the material

has undergone (Otsuka and Ren [54]; Wu and Lin [85]). The martensite usually forms

plates known as correspondence variant pair (CVP), due to the growth of two twin-related

variants.

During phase transformation from austenite into twinned martensite (or temperature-

induced martensite (TIM)), a geometric crystallographic change occurs. However, there is

one plane that does not suffer any distortion called habit plane. The nucleation process of

each CVP begins with the appearance of a share stress in a parallel direction to the most

favorably oriented habit plane of each crystal.

According to Gall et al. [26], the detwinned martensite (or stress-induced martensite

(SIM)) formation process involves two distinct deformation mechanisms that do not oc-

cur simultaneously, namely the deformation due to martensite nucleation (CVP forma-

tion) and the deformation due to reorientation process (CVP detwinning). During the

reorientation process, a considerable amount of strain takes place due to the growth of

the most favorable oriented variant in relation to the loading direction. At the end of this

detwinning process, a completely martensitic reoriented structure remains stable.

Experimental studies reveal that during the cooling process, there is an intermedi-

ate rhomboedral phase between martensite and austenite called R-phase, according to

the differential scanning calorimeter (DSC) thermogram presented in Figure 2.1 (Shaw

and Kyriakides [67]). Similarly to the martensite, the R-phase can be either tempera-

ture induced (twinned R-phase) or stress-induced (detwinned R-phase). Since the strain
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Figure 2.1. DSC thermogram for Ni− 49.9wt%Ti alloy.

amount developed during R-phase detwinning process is insignificant as compared to the

one developed during martensite detwinning process, it can be neglected.

Macroscopically speaking, for one-dimensional media analysis, it is enough to con-

sider only three variants of martensite together with austenite (A) on SMAs: the twinned

martensite (M), which is stable in the absence of a stress field, and two other martensitic

phases (M+, M−), which are induced by positive and negative stress fields, respectively.

The martensitic transformation creates strong orientation dependence, which influ-

ences tension-compression asymmetry (Gall et al. [26]). Several works on the literature

verify this asymmetry for the most employed types of SMAs despite being mono or poly-

crystalline alloys. Sittner and coworkers observe the asymmetry phenomenon for mono

(Sittner et al. [72]) and polycrystalline Cu-Al-Zn-Mn alloys (Sittner et al. [73]). Polycrys-

talline Fe-based alloys also exhibit this behavior (Nishimura et al. [50, 51]). Comstock

et al. [15] and Sittner and Novák [71] certify this occurrence for polycrystalline Ni-Ti,

Ni-Al, and Cu-based alloys. Gall and coworkers also studied mono and polycrystalline

Ni-Ti that present tension-compression asymmetry (Gall et al. [25]).

According to the previously mentioned experimental studies, due to their strong ori-

entation dependence (for monocrystal) or texture dependence (for polycrystal), SMA

samples usually present higher critical transformation stress levels, smaller recoverable

strain levels, and steeper transformation stress-strain slopes under compression tests.

SMAs Ni-Ti-based alloys (commercially known as Nitinol) present exceptional me-

chanical and physical properties with excellent biocompatibility; therefore, they have

been the most employed in a great number of applications. The manufacturing process to

obtain these alloys should be carefully observed, since small deviations from equal atomic

proportion between Nickel and Titanium may produce Ti3Ni4 precipitates, which inhibit

martensitic transformations and block up dislocation motions.

Besides tension-compression asymmetry, another important phenomenological fea-

ture related to SMAs thermomechanical behavior concerns plasticity. Plastic strains have
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Figure 3.1. SMA multiactuated hydrofoil prototype (Rediniotis et al. [60]).

been broadly explored in different articles in order to describe both TWSME and the in-

teraction between plastic strains and phase transformations (Zhang et al. [88], Lim and

McDowell [42], Hebda and White [30], Zhang et al. [88], Goo and Lexcellent [27], Prader

and Kneissl [58], Fischer et al. [20], Bo and Lagoudas [11], Dobovsek [16], Govindjee and

Hall [28], Zhang and McCormick [86, 87], Lexcellent et al. [40], Miller and Lagoudas

[48], Savi et al. [66], Kumar et al. [35]). The loss of actuation due to repeated cycling

involving plasticity represents another point of interest related to the plastic strain effects

on SMAs.

3. Applications

The remarkable properties of SMAs are attracting significant technological interest in sev-

eral fields of sciences and engineering, from medical to aerospace applications. Machado

and Savi [45, 46] and Machado [44] make a review of the most relevant SMA applications

within orthodontics, medical, and engineering fields.

SMA biomedical applications have become successful due to the noninvasive charac-

teristic of SMA devices and also due to their excellent biocompatibility. SMAs are usually

employed in surgical instruments, cardiovascular, orthopedic, and orthodontic devices,

among other applications. Besides medical applications, SMAs are widely explored in

most engineering fields. A limiting factor to the design of new applications is SMAs’ slow

rate of response—their main drawback. In the following paragraphs, some engineering

applications are briefly discussed.

The use of SMAs in flexible intelligent structures has a great potential. Naval industry

is one of the areas that are investing in the development of these materials. As an illus-

trative example, one can cite the development of a SMA multiactuated flexible hydrofoil

prototype, which simulates fishtail swimming dynamics, through hydrodynamic propul-

sion study (Rediniotis et al. [60]). The SMA wires are externally actuated by an electrical

heating source. Figure 3.1 presents a picture of the hydrofoil prototype in a water tunnel.

Naval industry also exploits SMA to design a hydrostatic robot (Vaidyanathan et al.

[80]). It consists of three fluid-filled bladders with wooden circular disks inserted between

them. Four SMA springs are longitudinally attached to these five elements. Due to its

concept, the robot is not only able to bear high depth pressures, but also to contour and

to overlap obstacles due to its waving motion (Figure 3.2).
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Figure 3.2. (a) SMA actuated hydrostatic robot prototype under water; (b) SMA actuated robot con-

touring an obstacle; (c) SMA actuated robot waving motion sequence (Vaidyanathan et al. [80]).

Vibration control is an important field within mechanical engineering, whose the

main challenge is to attenuate primary system vibrations. SMAs are used for structures

passive control due to their high damping capacity, which is related to their hysteretic

behavior associated with the phase transformations the material undergoes. The great

advantage concerning this type of behavior is that the higher the vibration amplitude is,

the higher the damping is (van Humbeeck [81]). An alternative for vibration control is to

use SMA wires embedded in composite matrices that modify the mechanical properties

of slender structures (Birman [10]; Rogers [62]).

A classical passive control device is known as tuned vibration absorber (TVA), which

consists of a secondary oscillator coupled to the primary system. Adjusting the TVA’s

natural frequency to the primary system excitation frequency, it is possible to attenuate

primary system vibrations. Williams et al. [84] present an adaptive TVA (ATVA) device

using SMA wires (Figure 3.3). This type of control is suitable for systems where frequen-

cies vary or are unknown. SMA ATVAs are able to adjust their stiffness according to SMA

wires temperature. This feature allows SMA ATVAs to attenuate primary system vibra-

tions within a given frequency range.

A device successfully employed by the US Air Force in a F-14 chaser (used for the first

time in the 1970s) motivates other interesting application of SMAs related to assemble

pipes. This device is known as CryOfit, being developed by Raychem [59] (Figure 3.4). In

order to assemble the two parts, the SMA coupling should be immersed in a liquid Ni-

trogen bath (∼=−196◦C). Afterwards, its diameter is mechanically enlarged and remains

immersed in the Nitrogen bath. After being removed from bath, it is quickly assembled

to the two pipes to be connected. As the SMA coupling returns to room temperature,

it assumes its former shape, connecting the pipes. In some cases, the connection is bet-

ter than the one obtained by welded joints, without the inconvenience of the inherent

residual stress (Hodgson and Brown [31]).
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Figure 3.3. SMA adaptive tuned vibration absorber (Williams et al. 2002).
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Figure 3.4. CryOfit SMA coupling (Hodgson and Brown [31]).

Another interesting application concerning coupling and joints can be often found in

oil industry, where a SMA device is employed in pipe flanges (SINTEF [70]). A precom-

pressed cylindrical SMA washer is placed between the flange and the nut, see Figure 3.5.

When it is heated, it returns to its former shape and promotes an axial restitution force

on the bolt, connecting the two parts. This procedure avoids the application of torques,

which induces shear stress on the bolt. La Cava et al. [36] present modeling and simula-

tions related to this device and conclude that this form of assembling offers about twenty

percent of stress reduction on the bolt as compared to the traditional procedure.

SMAs are also used as actuators in microelectromechanical systems. For instance,

Figure 3.6(a) shows an SMA oscillator that can be used as a position micro-controller.

Basically, it involves a mass and two SMA springs attached to the mass, which can be
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Figure 3.6. (a) Micro-oscillator prototype in comparison with a matchstick; (b) SMA micro-claw.

connected to a more complex system. The springs are precompressed assembled in their

martensitic state. When the left SMA spring is heated, the system moves rightward. On

the contrary, when the right SMA spring is heated, it recovers its former shape and brings

the system to the neutral position. Figure 3.6(b) also shows a device related to microsys-

tems, a microclaw that helps optical systems assembly. Based on TWSME, it is used to

tweeze micro-lens that can measure less than 0.35 mm.

Robotics is another area where SMA applications find a great potential. Basically, it can

be used as actuators, trying to mimic the muscles movement. As an example, a flexible

claw is presented in Figure 3.7 (Choi et al. [14]), which consists of two flexible beams

connected to a gripper base. Each beam is connected to two springs. An SMA spring

is used as an actuator, while a conventional spring is responsible for the beam position

restoring. There is also a coil spring linking the two beams’ free edges. Strain gages are

responsible for monitoring the beams deflection. The SMA springs should be externally

actuated.
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Figure 3.7. (a) SMA actuated claw schematic representation; (b) SMA actuated claw prototype (Choi

et al. [14]).

4. Polynomial model

The polynomial model proposed by Falk and coworkers is based on Devonshire’s theory

and considers a polynomial-free energy. Initially proposed for a one-dimensional media

by Falk [17, 18], it was later extended for a three-dimensional context (Falk and Konopka

[19]). According to this model, neither internal variables nor dissipation potential is nec-

essary to describe pseudoelasticity and SME. Thus, the only state variables for this model

are strain ε and temperature T .

The form of the free energy is chosen in such a way that the minima and maxima

points represent stability and instability of each phase of the SMA. As usual, in one-

dimensional models proposed for SMAs (Savi and Braga [64]), three phases are con-

sidered: austenite (A) and two variants of martensite (M+, M−). Hence, the free energy

is chosen such that for high temperatures, it has only one minimum at vanishing strain,

representing the equilibrium of the austenitic phase. At low temperatures, martensite is

stable, and the free energy must have two minima at nonvanishing strains. At interme-

diate temperatures, the free energy must have equilibrium points corresponding to both

phases.

Therefore, the free energy is defined as a sixth-order polynomial equation in a way

that the minima and maxima points represent stability and instability of each phase

of the SMA. Three phases are considered: austenite (A) and two variants of martensite

(M+, M−). Hence, the form of the free energy is chosen such that for high temperatures

(T > TA), it has only one minimum at vanishing strain, representing the equilibrium of

the austenitic phase. For intermediate temperatures (TM < T < TA), there are three min-

ima corresponding to three stable phases-austenite (A), and detwinned martensite in-

duced by tension (M+) and by compression (M−). Lastly, at low temperatures (T < TM),

martensite is stable, and the free energy must have two minima at nonvanishing strains.

Therefore, the following free energy potential is defined:

W(ε,T)=
a

2

(

T −TM

)

ε2−
b

4
ε4 +

b2

24a
(

TA−TM

) ε6, (4.1)
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Figure 4.1. Free energy versus strain curves for Falk’s model.

where a and b are positive material constants,TA is the temperature above which austenite

is stable and TM is the temperature below which martensite is stable. Thus, the constitu-

tive equation is given by

σ =
∂W

∂ε
= a
(

T −TM

)

ε− bε3 +
b2

4a
(

TA−TM

) ε5. (4.2)

To analyze the results given by Falk’s polynomial model, qualitative tests at differ-

ent temperatures are carried out using the following properties: a= 1× 103 MPa/K; b =
40× 106 MPa/K; TM = 287K; TA = 313K. Numerical simulations for prescribed stresses

are solved using the Newton-Raphson method. Figure 4.1 shows free energy versus strain

curves for three different temperatures. The extreme points define the different stable

phases. Figure 4.2 shows stress-strain curves for the same three temperatures above. Fig-

ures 4.2(a) and 4.2(b) illustrate the martensite detwinning processes (M+ →M− and

M−→M+), while Figure 4.2(c) shows the pseudoelastic effect.

The great advantage of Falk’s polynomial model relies on its simplicity. This model

represents in a qualitatively coherent way both martensite detwinning process and pseu-

doelasticity, although it does not consider twinned martensite (M). In other words, there

is no stable phase for T < TM in a stress-free state.
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Figure 4.2. Stress-strain curves for Falk’s model.

5. Models with assumed phase transformation kinetics

Models with assumed phase transformation kinetics consider, besides strain (ε) and tem-

perature (T), an internal variable (β), used to represent the martensitic volumetric frac-

tion involved. The constitutive relation between stress and state variables, for SMA mod-

eling, is considered in the rate form as follows:

σ̇ = Eε̇−αβ̇−ΩṪ , (5.1)

where Erepresents the elastic tensor, α corresponds to the phase transformation tensor,

and Ω is associated with the thermoelastic tensor. Due to martensitic transformation

nondiffusive nature, the martensitic volumetric fraction can be expressed as function of

current values of stress and temperature β = β(σ ,T). Several authors propose different

functions to describe the volumetric fraction evolution. Some of them will be discussed

from here on.

The model firstly developed by Tanaka and coworkers (Tanaka and Nagaki [78],

Tanaka [77]) was originally conceived to describe three-dimensional problems involv-

ing SMAs. Nevertheless, its implementation became restricted to the one-dimensional

context. The authors consider exponential functions to describe phase transformations.

Thus, for A⇒M transformation, consider the following function:

β = 1− exp
[

− aM
(

Ms−T
)

− bMσ
]

+β0, (5.2)

where aM and bM are positive material parameters, Ms is the martensite formation start

temperature, and β0 represents the volumetric fraction when phase transformation takes

place. The critical stress for martensitic phase transformation (A⇒M+) beginning is

given by σMS ≥ aM/bM(T −Ms). Since an exponential function is adopted, there should

be an extra consideration for the phase transformation final bounds. When β = 0.99, the

transformation is considered complete. For the reverse transformation (M+⇒ A) there
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is another exponential function as follows:

β = β0 exp
[

− aA
(

T −As

)

− bAσ
]

, (5.3)

where aA and bA are positive material constants and As is the austenite formation start

temperature. Equation (5.3) applies for stress values such as σAS ≤ aA/bA(T −As). An

analogous procedure is taken for the reverse transformation final bounds determination.

Boyd and Lagoudas [12] rewrite Tanaka’s original model, for a three-dimensional the-

ory construction. For the sake of comparison, the model was here reduced to one-dimen-

sional context. Under this assumption, the relations used to describe phase transforma-

tion evolution remain the same as in Tanaka’s model, despite the definitions adopted for

the constants aM , bM , aA, and bA that are estimated as follows:

aM =
2ln(10)

Ms−M f
, bM =

aM
CM

, aA =
2ln(10)

A f −As
, bA =

aA
CA

. (5.4)

Liang and Rogers [41] present an alternative evolution law for the volumetric fraction

based on cosine functions. Hence, the volumetric fraction evolution equation for the

martensitic transformation (A⇒M+) is given by:

β =
1−β0

2
cos

[

AM

(

T −M f −
σ

CM

)]

+
1 +β0

2
(5.5)

and holds for CM(T −Ms) < σ < CM(T −M f ), where CM is a material parameter, M f

corresponds to the martensite formation finish temperature, and the coefficient AM is

defined by (5.7).

For the reverse transformation (M+⇒ A), the equation is given by

β =
β0

2

{

cos

[

AA

(

T −As−
σ

CA

)]

+ 1

}

(5.6)

and takes place when CA(T −A f ) < σ < CA(T −As).

Analogously, CA is a material parameter, As represents the austenite formation start

temperature, and AA is defined according to (5.7),

AM =
π

Ms−M f
; AA =

π

A f −As
. (5.7)

The above-presented model was applied to acoustic vibration control studies and its

results show good agreement with experimental data (Rogers et al. [63]; Anders et al.

[4]). The authors also developed a three-dimensional model, in which they suggest that

phase transformations are driven by the associated distortion energy.

Brinson [13] offers an alternative approach to the phase transformation kinetics, in

which, besides considering cosine functions, the internal variable β is split into two dis-

tinct martensitic fractions-one temperature induced βT , and the other stress induced βS,

in such a way that β = βT + βS. The author also considers different elastic moduli for

austenite EA and martensite EM , so that the elastic modulus is given by a linear combina-

tion such that: E(β)= EA +β(EM −EA).
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The martensitic transformation evolution is expressed by

βS =
1−βS0

2
cos

{

π

σCRIT
S − σCRIT

f

[

σ − σCRIT
f −CM

(

T −MS

)]

}

+
1 +βs0

2
,

βT = βT0 −
βT0

1−βS0

(

βS−βS0

)

,

(5.8)

both (5.8) hold for σCRIT
s +CM(T −Ms) < σ < σCRIT

f +CM(T −Ms) and T >Ms.

For T <Ms and σCRIT
s < σ < σCRIT

f , the martensitic transformation is given by

βs =
1−βs0

2
cos

[

π

σCRIT
s − σCRIT

f

(

σ − σCRIT
f

)

]

+
1 +βs0

2
,

βT = βT0 −
βT0

1−βS0

(

βS−βS0

)

+△T ,

(5.9)

where

△T =

⎧

⎪

⎨

⎪

⎩

1−βT0

2

{

cos
[

aM
(

T −M f

)]

+ 1
}

if M f < T <Ms,T < T0,

else 0.
(5.10)

The reverse transformation holds for CA(T −As) < σ < CA(T −As) and T > As and is

defined as

βS =
βS0

2

{

cos

[

aA

(

T −AS−
σ

CA

)]

+ 1

}

,

βT =
βT0

2

{

cos

[

aA

(

T −AS−
σ

CA

)]

+ 1

}

,

(5.11)

where the coefficients aM and aA are the same as those given by (5.7). βs0 and βT0 repre-

sent, respectively, the stress-induced and the temperature-induced martensitic volumet-

ric fractions immediately before transformations begin.

5.1. Numerical simulations for models with assumed transformation kinetics. Nu-

merical simulations for the models previously discussed are carried out for the stress driv-

ing case. Qualitative results are provided for a Nitinol alloy, whose properties are listed in

Table 5.1 (Brinson [13]).

Figures 5.1(a), 5.1(b), and 5.1(c) compare stress-strain curves given by the models pro-

posed by Tanaka and Nagaki, Liang and Rogers and Brinson at different temperatures,

since the results obtained for Boyd and Lagoudas model for one-dimensional case are

exactly the same as those found for Tanaka’s model. All models are able to describe pseu-

doelasticity, however, a relevant discrepancy in the critical stress for martensitic transfor-

mation compared to Brinson’s model is noticeable. Another difference is noticed in the

product phase elastic modulus, since Brinson considers different material properties for

each phase. This feature can be easily incorporated to the other models. It is worthwhile
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Table 5.1. Thermomechanical material properties for Nitinol alloy (Brinson [13]).

Material Transformation Model

properties temperatures parameters

EA = 67× 103 MPa M f = 282K CM = 8MPa/K

EM = 26.3× 103 MPa Ms = 291.4 K CA = 13.8 MPa/K

Ω= 0.55MPa/K As = 307.5 K σCRIT
S = 100 MPa

εR = 0.067 A f = 322K σCRIT
f = 170 MPa

to observe that only Brinson’s model is able to correctly describe the reorientation process

(M ⇒M+) for temperatures below Ms, since the other models have no stable phase for

T <Ms in a stress-free state, in other words, they do not consider the twinned martensite,

see Figure 5.3(c).

Figure 5.2(a) shows the stress-strain-temperature diagram provided by Brinson’s

model for the thermomechanical loading presented in Figure 5.2(b). During mechani-

cal cycles, it is possible to identify internal subloops due to incomplete phase transfor-

mations. After complete mechanical unloading (t = 16s), some residual strain is still

observed. This residual strain can be fully recovered by heating the sample above A f ,

attesting the model’s ability to describe SME. Figure 5.2(c) shows the volumetric frac-

tions evolution. In this case, the internal variable responsible for phase transformation is

βS. Thus, analogous results can be achieved for the other models (only for temperatures

above Ms).

Phase transformation phenomenon due to temperature variation for Brinson’s model

is represented in Figure 5.3(a) for a stress-free state. Again, different material properties

for austenite and martensite are verified for the linear regions, which correspond to the

thermal expansion phenomenon. This result also confirms the model’s ability to describe

internal subloops even duringM⇒ A andA⇒M transformations. Figure 5.3(b) presents

the associated thermomechanical loading, while Figure 5.3(c) shows the volumetric frac-

tions evolution. Note that, in this case, the internal variable βT is responsible for phase

transformation. Since the other models do not take this volumetric fraction into account,

they are not able to describe this phenomenon.

Experimental studies (Funakubo [24]) reveal that phase transformations are strongly

dependent on loading history. Thus, the critical stresses for phase transformation are

modified under cyclic loading. Usually, critical stress is reduced for martensitic transfor-

mation, while it is increased for reverse transformation, inducing loop height reduction.

The models with assumed transformation kinetics are not able to capture this feature,

since they have fixed critical stress limits (only temperature dependent). Tanaka et al. [79]

introduce some changes to the original model, which allow for critical stress sensitivity

description during subloop tests.

This class of models can describe compressive behavior by considering the marten-

sitic volumetric fraction within the interval −1≤ β ≤ +1 (Pacheco and Savi [55]), where

negative values of β are related to compressive behavior. Besides, it is necessary to con-

sider the stress modulus and to replace the σ stress by sign (σ) = σ/|σ| in the evolution

equations and their respective limits.
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Figure 5.1. Stress-strain curves for models with assumed transformation kinetics.

6. Models with internal constraints

Fremond [22, 23] originally proposed a three-dimensional model considering three vol-

umetric fractions. The first is associated with austenite (A), and the two others represent

detwinned martensite variants, which for the one-dimensional case can be interpreted

as induced by tension (M+) and by compression (M−). In its formulation, Fremond’s

model assumes a free energy potential for each phase as a function of strain (ε) and tem-

perature (T). The global free energy (ψ) is given by a balanced summation of the partial

free energies, where the weights correspond to the volumetric fraction of each phase.

Therefore, three internal variables are included in the model.
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Figure 5.2. SME and mechanical internal subloops for Brinson’s model: (a) stress-strain-temperature

diagram; (b) thermomechanical loading; (c) volumetric fractions evolution.
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Figure 5.3. Phase transformation due to temperature variation and thermal internal subloops for

Brinson’s model. (a) Strain-temperature diagram; (b) thermomechanical loading; (c) volumetric frac-

tions evolution.
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Savi and Braga [64] discuss some characteristics related to the original Fremond’s

model. Afterwards, a new one-dimensional model, built upon the original Fremond’s

model, is developed and reported in different references (Savi et al. [66], Baêta-Neves

et al. [8], Paiva et al. [56], Savi and Paiva [65]). This new model considers different ma-

terial properties and a new volumetric fraction associated with twinned martensite (M)

that helps the correct description of the phase transformation phenomenon due to tem-

perature variation. The model also considers the plastic strains effect and plastic-phase

transformation coupling, which makes possible TWSME description (Savi et al. [66]).

Moreover, a modification promotes the horizontal enlargement of the stress-strain hys-

teresis loop that leads to better adjustments with respect to experimental data (Baeta-

Neves et al. [8]). Recently, tensile-compressive asymmetry and internal subloops due to

incomplete phase transformation have been included in the model (Paiva et al. [56], Savi

and Paiva [65]).

The present contribution focuses on this modified model and, since both plasticity and

tensile-compressive asymmetry are out of this work’s scope, for the sake of simplicity, the

formulation presented herein does not consider such phenomena. For more information

about the complete model, see Paiva et al. [56].

The formulation of the model considers, besides elastic strain (εe) and temperature

(T), four more state variables associated with the volumetric fraction of each phase: β1

is associated with tensile detwinned martensite, β2 is related to compressive detwinned

martensite, β3 represents austenite, and β4 corresponds to twinned martensite. A free

energy potential is proposed by considering each isolated phase. After this definition, a

free energy of the mixture can be written by weighting each energy function with its

volumetric fraction. Since β1 + β2 + β3 + β4 = 1, it is possible to rewrite the free energy

of the mixture as a function of three volumetric fractions: βn(n = 1,2,3). After this, an

additive decomposition where the elastic strain may be written as εe = ε− αh(β1− β2) is

assumed. Parameter αh is introduced in order to define the horizontal width of the stress-

strain hysteresis loop. Finally, a pseudo-potential of dissipation is defined as a function of

the rates ε̇, Ṫ and β̇n. By employing the standard generalized material approach (Lemaitre

and Chaboche [38]), it is possible to obtain a complete set of constitutive equations that

describes the thermomechanical behavior of SMAs, as presented below:

σ = E
[

ε+αh
(

β2−β1

)]

+α
(

β2−β1

)

−Ω
(

T −T0

)

, (6.1)

β̇1 =
1

η

{

αε+Λ(T) +
(

2ααh +Eα2
h

)(

β2−β1

)

+αh
[

Eε−Ω
(

T −T0

)]

− ∂β1 Jπ
}

+ ∂β̇1
Jχ,

(6.2)

β̇2 =
1

η

{

−αε+Λ(T)−
(

2ααh +Eα2
h

)(

β2−β1

)

−αh
[

Eε−Ω
(

T −T0

)]

− ∂β2 Jπ
}

+ ∂β̇2
Jχ,

(6.3)

β̇3 =
1

η

{

−
1

2

(

EA−EM
)[

ε+αh
(

β2−β1

)]2
+Λ3(T)

+
(

ΩAΩM

)(

T −T0

)[

ε+αh
(

β2−β1

)]

− ∂β3 Jπ

}

+ ∂β̇3
Jχ,

(6.4)
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where E = EM + β3(EA − EM) is the elastic modulus, while Ω = ΩM + β3(ΩA −ΩM) is

related to the thermal expansion coefficient. T0 is a reference temperature when ε = 0.

Moreover, it should be pointed out that subscript A refers to austenitic phase, while M
refers to martensite.

The terms ∂βnJπ (for n = 1,2,3) are the subdifferentials of the indicator function Jπ
with respect to βn (Rockafellar [61]). The indicator function Jπ(β1,β2,β3) is related to

the following convex set π, which provides the internal constraints related to the phases’

coexistence:

π =
{

βn ∈R | 0≤ βn ≤ 1; β1 +β2 +β3 ≤ 1
}

(6.5)

so that

Jπ
(

βn
)

=

⎧

⎨

⎩

0 if βn ∈ π,

∞ if βn /∈ π.
(6.6)

With respect to evolution equations of volumetric fractions (6.2)–(6.4), η is the dis-

sipation coefficient and Jχ(ε̇, Ṫ , β̇1, β̇2, β̇3) is the indicator function related to the convex

set χ. This indicator function establishes conditions for the correct description of internal

subloops due to incomplete phase transformations and also to eliminate the phase trans-

formations M+⇒M or M−⇒M. Hence, the convex set χ may be written as follows for

a mechanical loading history with σ̇ �= 0:

χ =

⎧

⎨

⎩

ε̇n ∈R

∣

∣

∣

∣

∣

∣

ε̇β̇1 ≥ 0; ε̇β̇3 ≤ 0 if ε0 > 0

ε̇β̇2 ≤ 0; ε̇β̇3 ≥ 0 if ε0 < 0

⎫

⎬

⎭

, (6.7)

where

ε0 = ε−
Ω

E

(

T −T0

)

. (6.8)

On the other hand, when σ̇ = 0, the convex set χ is expressed by

χ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε̇n ∈R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ṫβ̇1

⎧

⎨

⎩

< 0 if Ṫ > 0, σ < σCRIT
M , βS1 �= 0

= 0 otherwise;

Ṫβ̇2

⎧

⎨

⎩

< 0 if Ṫ > 0, σ < σCRIT
M , βS2 �= 0

= 0 otherwise;

Ṫβ̇3 ≥ 0

− β̇2
1− β̇1β̇3 = 0 or − β̇2

2− β̇2β̇3 = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (6.9)

where βS1 and βS2 are the values of β1 and β2, respectively, when the phase transformation

begins to take place. Moreover, σCRIT
M is the critical stress value for both M ⇒M+ and

M⇒M− phase transformations.
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Now, it is important to consider the definition of the functions Λ and Λ3, which are

temperature dependent as follows:

Λ=−L0 +
L

TM

(

T −TM

)

,

Λ3 =−L
A
0 +

LA

TM

(

T −TM

)

.

(6.10)

Here, TM is the temperature below which the martensitic phase becomes stable. Be-

sides, L0, L, LA0 , and LA are parameters related to critical stress for phase transformation.

The definition of these functions establishes the phase transformation critical stress for

each phase. Actually, the definition of critical stress is essential to evaluate the convex set χ

when σ̇ = 0. It may be obtained from (6.1)-(6.2) by assuming that β̇1 = β1 = β2 = β3 = 0.

Therefore, the following expression is obtained:

σCRIT
M =

EM
α+EMαh

[

L0−
L
(

T −TM

)

TM
+αhΩM

(

T −T0

)

]

−ΩM

(

T −T0

)

. (6.11)

Another important characteristic of the model is that there is a critical temperature TC

below which there is no change in stress-strain hysteresis loop position. This temperature

limits the variation of the transformation critical stress and can be determined by evalu-

ating again the two first constitutive equations, by assuming that β̇1 = β2 = β3 = 0; β1 = 1;

T = TC, and ε = εR (εR being the maximum residual strain). With these assumptions, the

following parameters are defined:

αh = εR−
α

EM
−
ΩM

EM

(

TC −T0

)

,

TC = TM

[

LEM +α
(

ΩMT0−α
)

LEM +αΩMTM

]

.

(6.12)

Moreover, it is assumed that Λ(T) does not vary for T < TC. Besides, in order to dif-

ferentiate forward phase transformation from reverse phase transformation, the internal

dissipation parameter η is subdivided into ηL and ηU associated to loading and unloading

processes, respectively, as follows:

η =

⎧

⎨

⎩

ηL if ε̇ > 0

ηU if ε̇ < 0.
(6.13)

6.1. Numerical simulations for the model with internal constraints. The solution of

the constitutive equations employs an implicit Euler method together with the operator

split technique (Ortiz et al. [53]). For βn (n= 1,2,3) calculation, the evolution equations

are solved in a decoupled way. At first, the equations (except for the subdifferentials) are

solved by using an iterative implicit Euler method. If the estimated results obtained for βn
does not fit the imposed constraints, an orthogonal projection algorithm brings their value

to the nearest point on the domain’s surface.
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Figure 6.1. Orthogonal projection graphic representation.

Table 6.1. Parameters for the model with internal constraints.

EA (GPa) EM (GPa) α (MPa) εR

67 26.3 89.42 0.067

L0 L LA0 LA

0.15 41.5 0.15 253.5

ΩA (MPa/K) ΩM (MPa/K) TM (K) T0 (K)

0.55 0.55 291.4 298

—
ηL (MPa.s) ηU (MPa.s)

—
1 2.7

For instance, the domain of the constraint related to the coexistence of the material

phases, in other words β1 + β2 + β3 ≤ 1, can be geometrically interpreted as the internal

region (including the surface) of the tetrahedron shown in Figure 6.1. The orthogonal

projections correspond to the subdifferentials. For stress driving simulations, another

iterative method is necessary.

Numerical simulations are now carried out in order to show the potentialities of the

discussed model to describe SMA behavior. The parameters shown in Table 6.1 are set

based on the properties listed in Table 5.1 (Brinson [13]) and on typical Nitinol proper-

ties obtained in SMA-INC (2001).

Figure 6.2(a) shows the pseudoelastic effect for T = 333K, respecting the correspon-

dent thermomechanical loading (Figure 6.2(b)). It is possible to note the difference be-

tween the austenitic and the martensitic elastic moduli. Figure 6.2(c) presents the four

volumetric fractions evolution. First, the structure is fully austenite. When martensitic

transformation takes place, both phases A and M+ coexist. After it finishes, there is only

tensile detwinned martensite. During reverse transformation, M+ and A switch places as

well, so that after this process is finished, austenite becomes stable again and no residual

strain remains.
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Figure 6.2. Pseudoelastic effect: (a) stress-strain diagram T = 333K; (b) thermomechanical loading;

(c) volumetric fractions evolution.
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Figure 6.3(a) demonstrates the model ability to describe both SME and internal

subloops due to incomplete phase transformations (Savi and Paiva [65]), according to

the thermomechanical loading presented in Figure 6.3(b). The mechanical cyclic load-

ing is applied at such a temperature that upon final unloading, there is still some resid-

ual strain, which can be fully recovered by heating the sample until austenite becomes

stable and cooling back to test temperature. Figure 6.3(c) shows the volumetric frac-

tions evolution. Initially, the structure is fully austenitic, until phase transformation A⇒
M+ takes place. After that, the structure is 100% tensile detwinned martensitic. The

first reverse transformation partially converts M+⇒ A. During the mechanical subloops,

M+ and A switch places, with linear regions that correspond to each intermediate cycle

elastic behavior. The last phase transformation is associated with the thermal cycle, which

is responsible for residual strain recovery. By cooling back the SMA specimen to the test

temperature, no phase transformation occurs. The other two volumetric fractions (M
and M−) remain null.

Figure 6.4(a) presents the phase transformation phenomenon due to temperature vari-

ation together with internal subloops due to incomplete transformations, according to

the thermomechanical loading shown in Figure 6.4(b). Again, different material prop-

erties are identified for austenite and martensite as seen in the linear regions (thermal

expansion phenomenon). Figure 6.4(c) brings the volumetric fraction evolution in time.

Firstly, the structure is 100% austenite. For a free-stress state, an external loop is ob-

tained through cooling and heating the sample, involving two complete transformations

(A⇒M and M ⇒ A). After that, a thermal cyclic loading is imposed in such a way that

phase transformations are not complete, unless for the last cooling that fully converts the

sample in twinned martensite.

Therefore, the simplified version of the model with internal constraints presented is

capable of capturing the general thermomechanical behavior of SMA in the same way that

the model with assumed transformation kinetics does. It should be pointed out that other

phenomena as the TWSME and tensile-compressive asymmetry may also be described by

the complete version of the cited model (Paiva et al. [56], Savi and Paiva [65]).

7. Concluding remarks

The present contribution discusses the main features inherent to SMAs. Metallurgical as-

pects are addressed and a number of applications are illustrated, attesting SMAs’ poten-

tial for engineering applications. Numerical simulations for five one-dimensional phe-

nomenological theories are carried out considering pseudoelasticity, shape memory ef-

fect, phase transformation phenomenon due to temperature variation, and internal

subloops due to incomplete phase transformations. In general, the polynomial model is

simple and allow a qualitative description of pseudoelastic and shape memory behavior.

Models with assumed phase transformation kinetics are more sophisticated and allows

the description of other phenomena, such as the phase transformation due to tempera-

ture variations and internal subloops due to incomplete phase transformations. In gen-

eral, the model proposed by Brinson [13] presents better results than the others. More-

over, the model with internal constraints is capable of capturing the general thermome-

chanical behavior of SMA in the same way as Brinson’s model.
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Figure 6.3. SME and internal subloops: (a) stress-strain-temperature diagram; (b) thermomechanical

loading; (c) volumetric fractions evolution.
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