
S~dhand. Vol. 22, Part 5, October 1997, pp. 611-627. © Printed in India.

An overview of discrete event simulation methodologies and

implementation

RAJESH MANSHARAMANI

Tata Research Development & Design Centre, Plot #54B, Hadapsar Industrial

Estate, Pune 411 013, India

e-mail: rmansha@ pune.tcs.co.in

MS received 2 December 1996; revised 12 March 1997

Abstract. Discrete event simulation has been widely used to model and eval-

uate computer and engineering systems and has been an on-going area of

research and development. This paper presents an overview of the field. It

covers specifications of discrete event systems, simulation methodology, sim-

ulation languages, data structures for event management, and front and back-

end support in simulation packages including random number generation and

resource management. The emphasis of the survey is on simulation methodo-

logy and event scheduling, which forms the core of any simulation package or

environment.

Keywords. Discrete event simulation; event scheduling; process interaction;

priority queue; simulation languages.

1. Introduction

The design of a system or a process often needs to be evaluated for correctness and

engineering properties before its implementation. Simulation is a cost-effective mechanism

to evaluate system and process design. Likewise, to study the behaviour of an existing

system or process, simulation is often more cost effective than direct system or process

measurement. Depending on the underlying system model, the simulation will take the

form of solution of a set of equations, as in the case of a continuous system model, or

execution of event-based program code, as in the case of a discrete-event system model.

In this paper we will consider only simulation of discrete-event systems.

Ever since the sixties, discrete-event simulation has been widely used for modelling

and evaluating computer systems, computer networks, real-time systems, distributed sys-

tems, database management systems, manufacturing systems etc. For example, to evaluate

the configuration of a computer system for a banking application, to evaluate a resource

management policy in an operating system, to study the behaviour of a local area network

communication protocol, or to examine strategies for job shop scheduling. A number of

611

612 R Mansharamani

text-books and papers describe traditional as well as non-traditional uses of discrete event

simulation, for example, Banks & Carson (1984), Jain (1991), Law & Kelton (1993), Banks

& Norman (1996).

Given that several engineering disciplines have found the need for discrete event sim-

ulation, several languages and packages have been developed, both for general purpose

use, as well as for a suitable set of applications. Advances in software development such

as object-oriented design, data structures, and graphical user interfaces have caused ad-

vances in simulation techniques and software. As a result, discrete event simulation is an

active area of research and development. This paper presents a survey of state of the art

in sequential discrete event simulation I . The focus will be on simulation methodologies,

event scheduling, languages and modelling support in software packages.

The rest of this report is organised as follows. Section 2 defines the terms and formalisms

for discrete event systems. Section 3 surveys the different strategies that have been used

for discrete event simulation. Section 4 presents a survey of simulation languages and

packages. A core aspect of discrete event simulation, that is, future event scheduling is

reviewed in § 5. Front-end and back-end support issues are discussed in § 6. Finally, § 7

summarises the main aspects of this paper.

2. Discrete event systems and their specification

To model any system we first need to define its state space, i.e., the variables that govern

the behaviour of the system with respect to the metrics being estimated. If the variables

continuously change with time it is called a continuous system. If the system state instan-

taneously changes at discrete points in time, instead of continuously, it is called a discrete

system.

In discrete systems whenever some state variables instantaneously change value, this

occurrence is denoted by the term event. The general behaviour of a discrete event system

is that the system starts out with some initial state. The system remains in that state for a

duration of time. Then an event occurs which causes the system to instantaneously transit

to a new state. This behaviour repeats with the system transiting from state to state over

time but remaining in a specific state for a duration of time. This is opposed to continuous

systems where the system continuously changes state with time.

Let us consider a simple example of a discrete event system (DEVS), a single server

queue that serves customers in first-come-first-serve order. It is assumed that the system

is work-conserving, that is, the server will not be idle if there is a customer waiting for

service and the server will not abruptly stop serving a customer. We model the state to be

the number of customers in the system. The system starts out as empty. The first event

to occur is a customer arrival and the state changes to one customer in the system. At

this point the server begins service and the customer's departure is scheduled. The next

event to occur can either be the second customer's arrival or the first customer's departure,

whichever occurs first in time. In the former case, the state will change to two customers

1 Though distributed simulation is an active research topic, the majority of industry uses sequential discrete event
simulation on account of the simplicity in description

Discrete event simulation methodologies and implementation 613

and in the latter case the state will return to the system being empty. The events can also be

specified more elaborately, for example, start service and end service. In this case events

occur instantaneously. A customer arrival at an empty queue will cause a start service to

occur at the same time, without any change in state 2.

To model a DEVS we need to describe the state space of the system, the events in the

system, the state transitions upon events and the times at which events will occur. The

event space can be classified further as external input events, external output events and

internal events. External input events are events that are triggered from outside the system,

as in the case of a customer arrival at the queue. External output events are those that are

generated as output from the system, as in the case of customer departure. Internal events

are changes in state variables that do not affect the system environment, e.g., start service.

The simulation of the discrete event system is done by means of generating events and

executing the actions associated with the events.

A DEVS can be precisely modelled using the abstract specification first presented by

Zeigler (1976) (see also Evans 1988 and Fishwick 1993). This formalism has been widely

used in the DEVS literature. Let Z denote the set of external input event types to the discrete

event system. Let (9 denote the set of external output event types. Let S denote the set of

states of the system, where a subset of the state variables includes the list of future-event

times at the given time instant. Then the DEVS abstraction is given by the 7-tuple

(I , O , S , (~int, ~ext, ~-, T) ,

where ~int : S --+ ,.~ is the internal transition function dictating state transitions due to

internal events.

(~ext : Q × ~- ~ S is the external transition function dictating state transitions due to

external input events. Q = {(s, e)ls c S. 0 < e < r(s)} is the total state set of the model;

(s, e) represents the state of having been in state s for elapsed time e.

~. : S --+ 0 is the output function generating external events, and

r • S --+ 7~ + is the time advance function. If the system is in state s at time t then

the system will remain in that state until time t + r(s) . In other words, r () > 0 is the

minimum of future event times.

Composite models are constructed in Zeigler (1987) by coupling models (either atomic

or composite) by means of external input coupling, external output coupling, and internal

coupling. External input coupling specifies how input events of the composite model are

identified with the input events of the components. External output coupling specifies

how output events of the composite model are identified with the output events of the

components. Internal coupling specifies how the components inside the coupled model are

interconnected by means of connections from output events of components to input events

of others.

2 If the modeller so desires he can specify the state as the tuple (number of customers in queae, number of customers
in server) so that even instantaneous events are associated with a change in state

614 R Mansharamani

3. Methodologies of discrete event simulation

Section 2 defined discrete event systems. We now consider how to simulate discrete event

systems, specifically, from a programmer's viewpoint. We describe the most common

strategies for designing and implementing discrete event simulation programs. (See Evans

1988 for more details.) Three such methodologies are followed in the literature: event

scheduling, activity scanning, and process interaction.

3.1 Event scheduling

In this strategy a list of all events in the system is first constructed. Each event is taken

individually and described in terms of the particular interaction between entity (say cus-

tomer) and resource (say server). Associated with each event is the corresponding action

or procedure to be invoked when the event occurs. Consider for example a single server

queue: the events of interest are customer arrival, start service, end service, and leave

system. The processing required at say end service is to compute system metrics, e.g.,

response time, for the departing customer, clear its resource allocation (if needed), check

if there is another customer waiting in queue. If so, then schedule a start service event for

that customer.

While the approach of event scheduling is straightforward, it involves programming at

a low level. All events have to be enumerated in one place. Care must be taken to ensure

that reactivations are scheduled, as in the case of the start service event being scheduled as

soon as the previous end-service is completed. Likewise, the start service event must also

be scheduled if an arriving customer finds the queue empty. These reactivations typically

occur in zero time, but if they are not explicitly specified the simulation will terminate.

Thus, the responsibility of event scheduling lies entirely on the programmer, which is why

this strategy is so called. However, because of the explicit specification the efficiency of

this strategy is best as compared to the other strategies.

3.2 Activity scanning

The purpose of this strategy is to overcome the reactivation problem of event scheduling.

As before, the list of events is first drawn up. But now the events are classified into two

types: B-activities and C-activities. B-activities are activities that are Bound to occur,

whereas C-activities are those that are Conditional. For example, the arrival of a customer

is a B-activity since it is unconditional. However, the start service activity is a C-activity

since it occurs only if the previous event was end-service and the queue size is greater than

zero, or if the previous event was a customer arrival and the queue is empty.

In this strategy the programmer does not have to explicitly specify reactivations. The

system automatically handles them. The generic structure of a simulation written in this

strategy consists of three phases. The A-phase advances the time for simulation, the B-phase

checks the type of the B-activity that has occurred at that time and executes the procedure

associated with it, and the C-phase checks the C-activity (or activities), if any, that need to

be executed at that time, and executes the corresponding event-handling procedure. Note

that the A, B and C phases must proceed in sequential order. Each C-activity has a head

Discrete event simulation methodologies and implementation 615

part that is the condition under which it is true and a procedure to execute if the condition

evaluates to true.

While this strategy relieves the programmer from explicitly programming reactivations,

the execution is inefficient because all the C-activities need to be checked in the C-phase. If

many C-activities are rare-events, then most of the effort spent is wasted. Such inefficiency

was absent in event scheduling because of the explicit invocation of C-activities. To make

the processing efficient and yet retain the simulation strategy, attempts have been made to

group C-activities and B-activities that share the same entity. Thus, a set of C-activities is

grouped with all the B-activities from which they obtain their entities. During the C-phase

only those C-activities need to be examined which are grouped with the B-activity that

executed.

3.3 Process interaction

In the preceding discussion it seems natural to group B and C-activities pertaining to a

common entity~ and to order them in their actual sequence of succession. Thus, rather than

view the system as a set of event modules it is more natural to view the system as flows of

entities.

The process interaction methodology describes the system's workings from the view-

point of an entity flowing through the system. The model is thus described as a projected

life-history of a typical entity, called a process (Evans 1988). To start with, the resources

and entities are identified. Then the entity's resource requirements and interaction with

resources, duration of activities etc., are all described in the process.

Each new instance of an entity is a separate process instance. The execution of a process

simulation takes a single process instance and executes it until deactivation. That is, if the

process has to wait for a resource, or if the process is to spend a period of time in a given

activity (e.g, service time). At that time another process instance is taken and reactivated

from the position where it left off.

Thus, the process oriented approach is modular. All events and activities comprising a

process are described in the form of the entity model in one place. Note that processes may

also apply to resources. For example, a server process. In the single server queue example,

the process oriented simulation can be expressed by means of the entity customer. The

sequence of description is

generate customer every inter_arrival

acquire server (waits in queue if necessao')

get serviced for t time units

release server

destroy customer

In this case events are implicitly handled by the language. The modular approach makes it

very easy to concisely specify the customer's behaviour. To implement the process oriented

strategy the language needs to provide support for process suspension and reactivation. For

example, when the customer requests for the server and the server is busy then that customer

instance needs to be deactivated. When the server is released then the first waiting customer

in the queue needs to be reactivated. This is usually handled by means of a restricted form

616 R Mansharamani

of coroutine called semi-coroutine (Dahl 1968) or generator (Marlin 1980) construct

provided in the simulation language. In this form, the choice of coroutine to be resumed

is determined by a master module that decides on the basis of the next event that is to be

activated.

The process oriented approach allows for high level programming but requires that

the simulation language provide coroutine support, which is typically not the case with

general purpose languages such as C and C + + . (See § 4 for extensions to general purpose

languages.) Further, by its very nature it can cause the system to deadlock if two process

instances are waiting for each other to release their resources before acquiring those of

the other. This may not be the intended purpose in cases where more than one resource

is accessed at the same time, but the language does not support atomic access of multiple

resources, (See Evans 1988 for examples.) However, in most cases this is either a non-issue

or special constructs are provided in the language.

3.4 Summary

As described in this section, there are three prevalent forms of expressing discrete event

simulation programs: Event scheduling, activity scanning and process interaction. While

the expressive power is the same in each case, they differ in the level of programming.

Event scheduling is the most efficient mechanism in terms of execution speed but involves

explicit specification of events and their actions globally across all parts of the system,

as well as reactivations of conditional events. Activity scanning implicitly handles reac-

tivations by explicitly stating which events are unconditional and which are conditional.

However, it incurs a loss of efficiency due to explicit checks for conditional events at time

advances.

Process interaction or process orientation offers a more natural modelling environment

to the programmer since the focus is on the entity and its sequence of activities rather than

on a global.perspective of the entire system. It is efficient at run time but requires support for

coroutines in the specification language. With the emergence of distributed systems some

authors have proposed a message based approach to discrete event simulation (Bagrodia

et al 1987) where the physical system is modelled as a set of communication processes.

Events are modelled by message communications. An entity is modelled as a message

communicating process.

4. Discrete event simulation languages and APIs

Since discrete event simulation is an important field in its own right, a number of languages

have been designed specifically for the purpose. In other cases general purpose languages

have been enhanced. There is also a common trend to provide application programming

interfaces (APIs) for discrete event simulation in a general purpose high level language. In

this section we provide a survey of languages, enhancements and APIs. Our aim is not be

exhaustive or provide a critical review but to give a flavour of what exists in the discrete

event simulation world.

Discrete event simulation methodologies and implementation 617

4. l Discrete event simulation languages

Historically, discrete event simulation languages were promoted since the 60's. Simscript

used the event scheduling strategy, GSP the activity scanning and GPSS the process interac-

tion strategy. Later with the popularity of Algol60, Simula was proposed as a preprocessor

to perform simulation programming.

Currently, GPSS is generally regarded as the most popular simulation language. It

is a block-structured language that was conceived to run on mainframes and supported

by IBM. The GPSS/H processor, a product of Wolverine Software, USA, was first re-

leased in the late 1970s and is available on a variety of hardware platforms ranging from

PCs to Sun workstations (Scher 1991). The GPSS model is that transactions (i.e., en-

tities) flow through systems to produce dynamic effects. They interact with resources

by flowing into blocks or program statements. A block remains inactive until a transac-

tion attempts to enter it. Over 40 different blocks describe resource requirements, condi-

tional branching, queueing, data collection, report generation and attribute control (Evans

1988).

Simscript started out as a language for event scheduling but the modern version Sim-

script II.5 incorporates a process interaction strategy. Like GPSS, Simscript is commer-

cially available (Markowitz et al 1987). On the other hand Simula, which is more of an

object oriented language, has received less commercial support as a simulation language.

SLAM (Pritsker 1986) and SIMAN (Pegden et al 1990) have also been used over the last

decade. Recently, there is a trend towards object oriented simulation languages as in the

case of MODSIM IlI which is commercially available from CACI, and HSL which was

proposed in Sanderson et al (1991).

In general, event scheduling languages provide features for specifications of events and

associated actions. The actions will be the code necessary to update the system's state and

generation of a random time tbr a future event. The process-oriented languages, typically,

include a richer set of language constructs which apart from time delays include interaction

of processes with resources, such as suspend at a specific queue, resume once the head

of queue is reached, or suspend until is specific condition is satisfied in the form of a

wait-until construct. The constructs in GPSS, for example, include GENERATE an entity,

ENTER into a resource, ADVANCE the time spent at a resource, QUEUE at a resource,

LEAVE the resource and TERMINATE an entity.

A number of other languages have been proposed in the literature (see Evans 1988 for

example) and many comparisons have been done (cf. Tocher 1965, Dahl 1968 and Virjo

1972). Simulation languages commercially available for personal computers have also

been compared, e.g. the comparison between Simple I and Simian in Houten (1988).

4.2 Extensions and APls

The primary disadvantage of a special purpose simulation language is that it has to be

learned and compilers for it have to be bought. To overcome this problem a number

of extensions and application programming interfaces (APIs) for simulation have been

proposed for general purpose languages.

618 R Mansharamani

Such an effort started with GASP in the 60s. GASP is a collection of FORTRAN

subroutines for simulation, and has been very popular among FORTRAN users. Another

popular choice has been to extend Pascal for quasi-parallel programming (Kaubisch et al

1976; Kriz & Landmayr 1980) or provide APIs in it (Hac 1982; Marsden 1984). Extensions

to Algol68 have been proposed in Shearn (1975). Use of PL/I for discrete event simulation

has been proposed by Hac (1984), of Ada by Bruno (1984), of Modula-2 in HPSIM (Sharma

& Rose 1988) and of SR by Olsson (1990).

In the late 80's and in the 90's, several libraries for discrete event simulation are available

in C and C + + . In C + + it is possible to write class libraries that support coroutines

(cf. Stroustrup & Shapiro 1987) and this allows for process oriented simulation. Process

oriented packages in C or C + + include CSIM (Schwetman 1988, 1990), S IM++ (Lomov

& Baezner 1990) and YacSim from Rice University. Event scheduling packages include

SMPL (MacDougall 1987), and SimPack (Fishwick 1992). More recent packages in C + +

provide object-oriented simulation features, for example, C++SIM (Little & McCue 1994)

and Awesime (Grnnwald 1991).

Apart from extensions and libraries some packages use only diagrams as a means of

modelling and simulation. This obviates the need to learn a special purpose language, but it

can be rather cumbersome if there are a number of diagrammatic blocks as in GPSS. On the

other hand specific tools such as Petri-net analysers (cf. Evans 1988) or queueing network

simulators (cf. Melamed & Morris 1985, Funka-Lea et al 1991) are useful within the range

of applications they model. To model applications beyond their limits one must opt for

a programming language. More recently, Shanbagh & Gopinath (1997) have proposed a

C + + simulator generator from graphical specifications.

5. Future event management

No matter what be the simulation strategy or the simulation language, in discrete event

simulation the underlying mechanism is scheduling of events. Events are generated for

future times. At any time the next scheduling instant is the minimum of the future event

times. In practice, the number of future events may range from a handful, say in a single

server queueing system at light to moderate load, to a huge number of events, say in the

simulation of a wide area network.

The following operations are needed on the future event list data structure: insert an event

(represented by its time and a pointer to associated event information), delete minimum

time event and return the information pointer, delete or cancel any arbitrary event from

the list. The first two are the most common operations, the last one is used occasionally in

some simulation applications, e.g., resource preemption.

The abstract data type appropriate for future event scheduling is the priority queue,

which can be implemented in many ways. The performance of the implementation is

subject to the operational profile of inserts, delete-mins, and cancels. Not surprisingly, this

has led to a significant number of proposals in the literature for future event scheduling data

structures. In this section we discuss the various implementation techniques and follow it

with comparisons of the techniques that have appeared in the literature. For more detailed

surveys see Srikanth (1996) and Evans (1988).

Discrete event simulation methodologies and implementation 619

5.1 Future event list implementations

The simplest representation of the future event list is an array or linked list ordered by time.

Though simple to implement it is rather inefficient for large list sizes since search time is

linear in the size of the list. For this reason researchers have proposed index structures over

linked lists (Wyman 1976; Franta & Maly 1977, 1978; Henriksen 1977, 1983; Comfort

1979; Nevalainen & Teuhola 1979; Davey & Vaucher 1980; Blackstone et al 1981 ; O' Keefe

1985), a popular scheme among these being that of Henriksen (1977, 1983), which has

been incorporated into GPSS (Henriksen & Crain 1982).

Another common approach is to use a d-heap. The 2-heap was proposed by Williams

(1964) and then generalised to d > 2 by Johnson (1975). In a d-heap the nodes are

maintained in heap-order, where the value of a node is no less than the value of its parent.

The d-heap is a complete d-ao' tree satisfying heap order. Using breadth first search the

nodes can be indexed into a single array. Other heap-based implementations include the

leftist tree (Crane 1972, Knuth 1973b), pagoda (Francon et al 1978), skew heap (Sleator &

Tarjan 1983, 1986), binomial queue (Vuillemin 1978), pairing heap (Fredman et al 1986,

Stasko & Vitter 1987), Fibonacci heap (Fredman & Tarjan 1987), relaxed heap (Driscoll

et al 1988) and radix heap (Ahuja et al 1990).

Search tree-based structures have been popular as well. Binary search trees are the

natural choice and have been analysed for future event scheduling in Evans (1983) and

Vaucher & Duval (1975). A variant, called p-tree, to combine the advantage of linear list

and efficiency of tree structures was proposed in Jonassen & Dahl (1975). Among balanced

trees or partially balanced trees the most popular version for priority queues is the splay

tree (Sleator & Tarjan 1985).

A particular type of implementation called calendar queue was proposed by Brown

(1988) and also independently proposed by Davidson (1989). In this representation time

is split into buckets and keys fall within bucket ranges. Indices are wrapped around for the

'next year'. A more recent structure calledfishspear (Fischer & Paterson 1994) has worst

case performance as the d-heap but is oriented towards better performance in the common

case and can also be implemented for sequential storage.

5.2 Analyses and performance comparisons

Ordinary linked lists sorted by time require O (n) time for insert and O (1) time for delete-

min and delete. On the other hand d-heaps require O (log n) for insert, delete and delete-

min (Tarjan 1983). Bollobas & Simon (1985) analyse repeated random insertions into a

heap where each ordering of the inserted elements is equally likely. They obtain that the

number of exchanges per insertion is bounded by a constant of about 1.76. Fibonacci heaps

on the other hand have O(log n) amortised time for delete and delete-rain and O(1) for

insert (Fredman & Tarjan 1987). Driscoll et al (1988) show that these times hold in the

worst case for relaxed heaps.
Various comparisons of priority queue implementations have been reported in the liter-

ature. Several comparisons have been done under the hold model (Vaucher & Duval 1975)

where a hold operation is one that removes an event from the priority queue and schedules

a new event after an interval of time d from a specific distribution .Y. The hold model

620 R Mansharamani

consists of a sequence of hold operations and is parameterised by the number of events

in the event queue and the distribution ~. It has been used in many of the early studies

including Comfort (1979), Davey & Vaucher (1980), Englebrecht-Wiggans & Maxwell

(1978), Franta & Maly (1977, 1978), Henriksen (1977), Jonassen & Dahl (1975), Vaucher

& Duval (1975), and Vaucher (1977).

Jones (1986) compared several implementations under the hold model and showed many

to outperform heaps. The splay tree was shown to have best performance in his study. In a

later study Brown (1988) showed that under the hold model the calendar queue performs

better than the linear linked list and the splay tree. Chung et al (1993) used a Markov hold

model to evaluate 14 implementations. Also, using a token ring simulation for comparison

they recommend using the splay tree and the calendar queue while stating that heaps are

quite 'stable' albeit with lower performance.

McCormack & Sargent (198 I) compare several implementations from Comfort (1979),

Davey & Vaucher (1980), Franta & Maly (1977), Henriksen (1977), Taneri (1976), Ulrich

(1978), Vaucher & Duval (1975) and Wyman (1976), and show that results from real

simulation runs are different from that when the hold model is used. They show that

Henriksen's method (Henriksen 1977) and the modified heap perform well and are less

sensitive to scheduling distributions.

Thus, in general, it is not readily apparent which implementation works best for a

given simulation application. Worst case analyses do not reflect performance accurately

for the average case. Average case analyses have been done under restrictive assumptions

or special cases of applications. It will be desirable therefore for simulation packages to

adopt a variety of future event management mechanisms as in SimPack (Fishwick 1992).

A knowledgeable user can select the right mechanism but what would be more desirable is

a high level interface to select the right mechanism for the simulation's operational profile.

Typically, in simulations one needs to run several experiments in the debugging stage itself

and during this phase the various priority queue implementations can be compared.

6. Front end and back end support

Though scheduling of future events forms the core of discrete event simulation, there are

a number of other features that are desirable in a simulation environment. They can be

classified into front end requirements in the form of diagram editing and graphical output,

and back end support in the form of random number generation, resource management,

statistical libraries. This section first specifies desirable features of simulation front ends

and then desirable features of back ends.

6.1 Simulation front end

The simulation front end must in the least capture the system topology and possibly simplify

the model description in terms,of user input, and display graphical output of simulation

results.

The most general case of user input should allow for a diagram editor to specify user de-

fined icons to represent processes or resources, connectivity across icons, and connectivity

constraints if any. Few packages allow this, however. GPSS has a cumbersome diagram

Discrete event simulation methodologies and implementation 621

notation with over 40 different diagram types representing equivalence to program state-

ments. Typically, no package allows for general purpose model specifications. However,

specific application domains such as queueing network simulations capture all user spec-

ifications through the front end as in the case of PAW (Melamed & Morris 1985) and its

successor Q + (Funka-Lea et al 1991: also see Shanbagh & Gopinath 1997).

6.2 Simulation back end

All simulation environments include support for random number generation, and resource

management. Some also include statistical libraries. We elaborate on each of these features

below. Note that our emphasis is only on what is provided in standard packages. There are

other important aspects such as variance reduction of output and rare-event simulation,

which are not covered in this paper 3.

6.2a Random number generation: Random number generation forms an integral part

of a simulation environment. The underlying model of a discrete event system assumes

that the system remains for a given time in each state. This duration of time is modelled

using a random number distribution, for example, the inter-arrival time at a queue is often

modelled as an exponential distribution. Likewise, service time of a customer in a queue,

number of database items that a query will access can be modelled using random number

distributions.

Every operating system is usually equipped with a random number generator that gen-

erates uniform random variates. In simulation we additionally require generation of non-

uniform random variates. Generation of random numbers is more difficult than what one

might expect. As Knuth (1973a) says, "Random numbers should not be generated by a

method chosen at random."
Several packages and studies have used defective random number generators. For in-

stance, the study of Maj umdar et al (1988) that simulated performance of parallel processor

allocation policies used a defective technique for random number generation which led to

incorrect policy comparisons. This was later corrected in Leutenegger & Vernon (1990).

The 1988 version of CSIM (Schwetman 1988) used the rand() function which is well

known to have poor random number generation as given in the UNIX system manual

page for random(). A survey of more than 50 computer science text books that contained

software for random number generation revealed that most of these generators are unsatis-

factory (Park & Meller 1988). This shows the importance of using reliable random number

generators as given in Knuth (1973a), Park & Meller (1988), and L'Ecuyer (1988).

Any simulation environment must support a variety of distributions, both discrete and

continuous. There should be support for multiple random number streams. The package

should allow for transformations on random variables to support practical distributions

as well as allow for empirical distributions as obtained from measured data. Typical dis-

crete distributions include uniform, Bernoulli, binomial, geometric, Poisson and typical

continuous distributions include uniform, exponential, Erlang, hyper-exponential, normal

3The interested reader can find details in the July 1993 issue of ACM Transactions on Modellin,~ and Computer

Simulation

622 R Mansharamani

and gamma. Devroye (1986) provides several methods of generating non-uniform random

numbers for many distributions.

The general techniques that are used for non-uniform random number generation are

the inverse method and acceptance-rejection. In the former, a random number is generated

by first generating a uniform number between 0 and 1, and then using it as an argument

to the inverse of the distribution. In the latter method, the required density is bounded

by that of a scaled version of another distribution for which it is known how to generate

random samples. The samples from the known distribution are repeatedly taken until one

falls under the required distribution.

6.2b Resource management: Discrete event simulation is widely used to study the be-

haviour of resource contention. For example, contention for CPU and disk in computer

systems, contention for database in DBMS, contention for machines in job shops, con-

tention for toll booths on highways, etc. Associated with each resource is a resource handler

and contention queue(s) to store contending entities. The resource handler decides how to

schedule entities from the contention queue(s) on to the resource.

The resource by itself may contain multiple servers, as in the case of a parallel processor

or a petrol bunk. The entities may all contend in a single contention queue or may be

split across several queues each contending for a subset of the servers. Most simulation

environments provide support for single server single queue resources. Some provide

support for multiple server single queue resources.

The resource handling discipline can be preemptive or non-preemptive depending on

the application in hand. In computer systems preemption is very common at the CPU

(but not at disk) whereas in manufacturing systems preemption of executing jobs at plants

is typically absent. Among non-preemptive disciplines the most common ones are first

come first serve (FCFS) and fixed priority. Some systems also provide support for first fit

and best fit. Among preemptive disciplines the most common one is fixed priority with

preemptive resume. In CPU scheduling round robin is a common preemptive discipline

where preemption occurs on every time quantum.

Having built-in resource scheduling disciplines simplifies the work of the programmer

who is now given access to insertion and deletion of entities in contention queues. If the

programmer desires to use a very specific discipline, the interface for using the discipline

must be the same as that for ones provided by the simulation environment. The simulation

environment should provide the facility to integrate custom resource schedulers.

6.2c Statistical libraries: The purpose of discrete event simulation is to study the be-

haviour of a given system. The behaviour of interest to the user is usually captured in the

form of metrics such as average and variance of response time, throughput and resource

utilisation. To correctly estimate these metrics the programmer needs to insert measure-

mentprobes at appropriate places in the program. Good simulation environments provide

support for probes, that is, creation and initialisation, sampling, determining averages,

variance and distributions of accumulated data, as well as confidence intervals. A sophis-

ticated package will provide support for different types of probes, e.g., space average and

time average.

Discrete event simulation methodologies and implementation 623

Accumulation of samples can vary according to the estimation method being used. Two

common techniques tbr estimating results are regenerative simulation and the method

of batch means (Law & Kelton 1993). Regenerative simulation is widely applicable and

produces correct results (Welch 1983). It essentially estimates metrics at system regen-

eration points 4 and determines confidence intervals (i.e., estimates of the variance of the

metric being analysed) across regeneration points. When enough regeneration points have

been encountered to meet the desired confidence interval the simulation stops. While this

method produces correct results as per renewal theory, it can be rather costly in large sys-

tems to generate regeneration points. For this purpose the method of batch means is a more

efficient approach, where metrics are estimated at the end of a given batch size of samples

and confidence intervals are calculated across batches. The batch size must be chosen with

caution since a small batch size can cause correlation between successive batches. For more

details on statistical techniques to estimate steady state behaviour see Pawlikowski (1990).

7. Summary

We have surveyed the field of discrete event simulation on uniprocessors. We have sum-

marised the formal specifications for discrete event systems. Various strategies for sim-

ulation, that is, event scheduling, activity scanning and process interaction have been

reviewed. Discrete event simulation languages and extensions and APIs of general pur-

pose languages for discrete event simulation have been briefly covered. Data structures

for future event management have been surveyed. These include simple linked lists, heaps

and variants and a variety of search trees and assorted data structures. Front end and back

end support for simulation have been described. Note that topics such as output analysis,

variance reduction techniques, rare event simulation are specialised topics that deserve a

separate survey in their own right, and have been treated as outside the scope of this paper.

Likewise, emerging technologies such as object oriented simulation have not been covered.

Currently, the trend has been to enable the user to build a simulation model of the system

under consideration and to efficiently run the simulation code. Not much emphasis has been

given on separating modelling from simulation as is prevalent in the continuous simulation

world, e.g., simulation of chemical process plants. It would be desirable to create model

libraries of resources or of subsystems which can be used for a variety of applications to be

simulated. Typically, the approach is to rewrite code from simulation to simulation. This

is not only wasteful in terms of development time but also incurs greater chances of bugs

in the simulation.

The author would like to thank the anonymous referees for their valuable comments that

improved the quality of the paper. The author would also like to thank S Hanumantha

Rao for his valuable feedback on an earlier version of this report that greatly helped in

improving the exposition.

4A regeneration point is a state from which the system stochastically evolves afresh. For example, an empty queue

in a single server queueing system

624 R Mansharamani

References

Ahuja R K, Melhom K, Odin J B, Tarj an R E 1990 Faster algorithms for the shortest path problem.

J. Assoc. Comput. Mach. 37:213-223
Bagrodia R L, Chandy K M, Misra J 1987 A message-based approach to discrete event simulation.

IEEE Trans. Software Eng. 13:654-665
Banks J, Carson J S 1984 Discrete-event system simulation (Englewood Cliffs, NJ: Prentice

Hall)
Banks J, Norman V 1996 Second look at simulation software. Non-traditional uses can lead to

unexpected benefits. OR~MS Today 23:4
Blackstone J H, Hogg G L, Phillips D T 1981 A two-list synchronization procedure for discrete

event simulation. Commun. ACM 24:825-829
Boas P V E, Kaas R, Zijlstra E 1977 Design and implementation of an efficient priority queue.

Math. Syst. Theory. 10:99-127
Bollobas B, Simon J 1985 Repeated random insertions into a priority queue. J. Algorithms 6:

466--477
Brown R 1988 Calendar queues: a fast O(1) priority queue implementation for the simulation

event set. Commun. ACM 31:1220-1227
Bruno G 1984 Using Ada for discrete event simulation. Software Pract. Exper. 14:685-695
Chung K, Sang J, Rego V 1993 A performance comparison of event calendar algorithms: an

empirical approach. Software Pract. Exper. 23:1107-1138
Comfort J C 1979 A taxonomy and analysis of event set management algorithms for discrete

event simulation. In Proc. 12th Annu. Simulation Symposium, pp 115-146
Crane C A 1972 Linear lists and priority queues as balanced binary trees. Tech. Rep. STAN-CS-

72-259, Comput. Sci., Stanford, CA
Dahl O J 1968 Discrete event simulation languages. In Programming Languages (ed.) F Genuys

(London: Academic Press)
Davey D, Vaucher J 1980 Self-optimizing partition sequencing sets for discrete event simulation.

INFOR J. 18:21-41
Davidson G A 1989 Calendar P's and queues. Commun. ACM 32:1241-1243
Devroye L 1986 Non-uniform random variate generation (New York: Springer Verlag)
Driscoll J R, Gabow H N, Shrairman R, Tarjan R E 1988 Relaxed heaps: an altemative to Fibonacci

heaps with applications to parallel computation. Commun. ACM 31:1343-1354
Englebrecht-Wiggans R, Maxwell W L 1978 Analysis of the time indexed list procedure for

synchronization of discrete event simulations. Manage. Sci. 24:1417-1427

Evans J B 1983 Investigations into the scheduling of events and modelling of interrupts in discrete

event simulation. Ph D thesis, Dept. of Operations Research, Univ. of Lancaster

Evans J B 1988 Structures of discrete event simulation: An introduction to the engagement strategy

(Chichester: Ellis Horwood)

Fischer M J, Paterson M S 1994 Fishspear: a priority queue algorithm. J. Assoc. Comput. Mach.

41:3-30
Fishwick P A 1992 SimPack: getting started with simulation programming in C and C++. In

Proc. Winter Simulation Conference, Arlington, VA, pp 154-162
Fishwick P A 1993 A simulation environment for multimodeling. Discrete Event Dynamic Syst.:

Theor. Appl. 3:151-171
Francon J, Viennot G, Vuillemin J 1978 Description and analysis of an efficient priority queue

representation. In Proc. 19th Annual Symp. on Foundations of Computer Science, Piscataway,

NJ, pp 1-7

Discrete event simulation methodologies and implementation 625

Franta W R, Maly K 1977 An efficient data structure for the simulation event set, Commun. ACM

20:596-602

Franta W R, Maly K 1978 A comparison of HEAPS and the TL structure for the simulation event

set. Commun. ACM 21 : 873-875

Fredman M L, Tarjan R E 1987 Fibonacci heaps and their uses in improved network optimization

problems. J. Assoc. Comput. Mach. 34:596-615

Fredman M L, Sedgewick R, Sleator D D, Tarjan R E 1986 The pairing heap: a new form of

self-adjusting heap. Algorithmica 1 : 111-129

Funka-Lea C A, Kontogiorgos T D, Morris R J, Rubin L D 1991 Interactive visual modeling for

performance. IEEE Software 8(5): 58-68

Grunwald D 1991 A users guide to Awesime: an objected oriented parallel programming and

simulation system. Tech. Report CU-CS-552-91, University of Colorado, Boulder.

Hac A 1982 Computer system simulation in Pascal. Software Pract. Exper. 12:777-784

Hac A 1984 PL/I as a discrete event simulation tool. Software Pract. Exper. 14:692-702

Henriksen J O 1977 An improved events list algorithm. In Proc. Winter Simulation Conference,

pp 554-557

Henriksen J O 1983 Event list management - a tutorial. In Proc. Winter Simulation Conference,

pp 543-551

Henriksen J O, Crain R C 1982 GPSS/H user's manual 2nd edn (Annandale: Wolverine Software

Corp.)

Houten 1988 Simulation languages for PCs take different approaches. IEEE Software 5:

91-94

Jain R 1991 The art of computer system performance analysis: Techniques for experimental

design, measurement, simulation and modelling (New York: Wiley)

Johnson D B 1975 Priority queues with update and finding minimal spanning trees. Info. Proc.

Lett. 4:53-57

Jonassen A, Dahl O J 1975 Analysis of an algorithm for priority queue administration. BIT 15:

409-422

Jones D W 1986 An empirical comparison of priority queue and event set implementations.

Commun. ACM 29:300-311

Kaubisch W H, Perrott R H, Hoare C A R 1976 Quasiparallel programming. Software Pract.

Exper. 6:341-356

Knuth D E 1973a The art of computer programming: Vol. 2/Seminumerical algorithms (Reading,

MA: Addison-Wesley)

Knuth D E 1973b The art ~f computer programming: Vol. 3~Sorting and searching (Reading,

MA: Addison-Wesley)

Kriz J, Landmayr H 1980 Extensions of Pascal by coroutines and its application to quasiparallel

programming and simulation. Software Pract. Exper. |0:773-789

L'Ecuyer P 1988 Efficient and portable random number generation. Commun. ACM 31 : 742-749,

774

Law A M, Kelton W D 1993 Simulation, modeling and analysis (New York: McGraw-Hill)

Leutenegger S T, Vernon M K 1990 The performance of multiprogrammed multiprocessor

scheduling policies. In Proc. ACM SIGMETRICS 18:226-236

Little M C, McCue D L 1994 Construction and use of a simulation package in C++. C User's J.

12:3
Lomow G, Baezner D 1990. A tutorial introduction to object-oriented simulation and Sim÷÷. In

Proc. Winter Simulation Conference, pp 149-153

MacDougall M H 1987 Simulating computer systems: techniques and tools (Boston: MIT Press)

626 R Mansharamani

Majumdar S, Eager D, Bunt R 1988 Scheduling in multiprogrammed parallel systems. In Proc.

ACM SIGMETRICS 16:104-113

Markowitz H M, Kiviat P J, Villaneuva R 1987 Simscript II.5 programming language (Los

Angeles: CACI)

Marlin 1980 Coroutines. In Lecture notes in computer science 95 (Berlin: Springer-Verlag)

Marsden B W 1984 A standard pascal event simulation package. Software Pract. Exper. 14:

659-684

McCormack W M, Sargent R G 1981 Analysis of future event set algorithms for discrete event

simulation. Commun. ACM 24:801-812

Melamed B, Morris R J 1985 Visual simulation: the performance analysis workstation. IEEE

Comput. 18:87-94

Nevalainen O, Teuhola J 1979 Priority queue administration by sublist index. Comput. J. 22:

220-225

Olsson R A 1990 Using SR for discrete event simulation. Software Pract. Exper. 20:1187-1208

O'Keefe R M 1985 Comment on "Complexity Analysis of Event Set Algorithms". Comput. J.

28:245-272

Park S K, Meller K W 1988 Random number generators: good ones are hard to find. Commun.

ACM 31:1192-1201

Pawlikowski K 1990 Steady state simulation of queueing processes: a survey of problems and

solutions. ACM Comput. Surv. 22:123-170

Pegden C D, Sadowski R P, Shannon R E 1990 Introduction to simulation using SIMAN (Sewick-

ley: System Modeling)

Pritsker A A 1986 Introduction to simulation and SLAM II (New York: Halstead)

Sanderson P, Sharma R, Rozin R, Treu S 1991 The hierarchical simulation language HSL: a

versatile tool for process-oriented simulation. ACM Trans. Modeling Comput. Simulation 1:

113-153

Scher J M 1991 Reworked GPSS/H book is a strong standard. IEEE Software 8(4): 105-106

Schwetman H 1988 Using CSIM to model complex systems. In Proc. Winter Simulation Confer-

ence, pp 246-253

Schwetman H 1990 Introduction to process-oriented simulation and CSIM. In Proc. Winter Sim-

ulation Conference, pp 154-157

Shanbagh V K, Gopinath K 1997 A C + + generator from graphical specifications. Software Pract.

Exper. 27:395-424

Sharma R, Rose L L 1988 Modular design for simulation. Software Pract. Exper. 18:945-966

Sheam D C 1975 Discrete event simulation in ALGOL68. Software Pract. Exper. 5:279-293

Sleator D D, Tarjan R E 1983 Self-adjusting binary trees. In Proc. ACM SIGACTSymp. on Theory

of Computing, pp 235-245

Sleator D D, Tarjan R E 1985 Self-adjusting binary search trees. J. Assoc. Comput. Mach. 32:

652-686

Sleator D D, Tarjan R E 1986 Self-adjusting heaps. SIAMJ. Comput. 15:52-69

Srikanth S 1996 A software tool for performance analysis of data structure representations.

M Tech thesis, Dept. of Comput. Sci. & Eng., Regional Engineering College, Warangal

Stasko J T, Vitter J S 1987 Pairing heaps: experiments and analysis. Commun. ACM 30:

234-249

Stroustrup B, Shapiro J E 1987 A set of C ÷ + classes for co-routine style programming. In Proc.

USENIX C+÷ Workshop, pp 417439

Taneri D 1976 The use of subcalendars in event driven simulations. In Proc. Summer Simulation

Conference, pp 63-66

Discrete event simulation methodologies and implementation 627

Tarjan R E 1983 Data structures and network algorithms (Philadelphia: SIAM)

Tocher K D 1965 Review of simulation languages. Oper. Res. Q. 16:189-217

Ulrich E G 1978 Event manipulation for discrete simulations requiring large numbers of events.

Commun. ACM 21:777-785

Vaucher J G 1977 On the distribution of event times for the notices in a simulation event list.

INFOR J. 15:171-182

Vaucher J G, Duval P A 1975 A comparison of simulation event list algorithms. Commun. ACM

18:223-230

Virjo A 1972 A comparative study of some discrete-event simulation languages. In Proc. Nordata

Conference. Helsinki, pp 1532-1564

Vuillemin J 1978 A data structure for manipulating priority queues. Commun. ACM 21 : 309-314

Welch P 1983 Statistical analysis of simulation results. In Computer performance modeling hand-

book (ed.) S S Lavenberg (New York: Academic Press)

Williams J W J t964 Algorithms 232: Heapsort. Commun. ACM 7:347-348

Wyman F B 1976 Improved event scanning mechanisms for discrete event simulation. Commun.

ACM 19:350-353

Zeigler B P 1976 Theory of modelling and simulation (New York: Wiley) (Reissued by Krieger,

Malabar, FL in 1985)

Zeigler B P 1987 Hierarchical, modular, discrete-event modelling in an object-oriented environ-

ment. Simulation 49:219-230

