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Abstract. Discrete event simulation has been widely used to model and eval- 

uate computer and engineering systems and has been an on-going area of 

research and development. This paper presents an overview of the field. It 

covers specifications of discrete event systems, simulation methodology, sim- 

ulation languages, data structures for event management, and front and back- 

end support in simulation packages including random number generation and 

resource management. The emphasis of the survey is on simulation methodo- 

logy and event scheduling, which forms the core of any simulation package or 

environment. 
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1. Introduction 

The design of a system or a process often needs to be evaluated for correctness and 

engineering properties before its implementation. Simulation is a cost-effective mechanism 

to evaluate system and process design. Likewise, to study the behaviour of an existing 

system or process, simulation is often more cost effective than direct system or process 

measurement. Depending on the underlying system model, the simulation will take the 

form of solution of a set of equations, as in the case of a continuous system model, or 

execution of event-based program code, as in the case of a discrete-event system model. 

In this paper we will consider only simulation of discrete-event systems. 

Ever since the sixties, discrete-event simulation has been widely used for modelling 

and evaluating computer systems, computer networks, real-time systems, distributed sys- 

tems, database management systems, manufacturing systems etc. For example, to evaluate 

the configuration of a computer system for a banking application, to evaluate a resource 

management policy in an operating system, to study the behaviour of a local area network 

communication protocol, or to examine strategies for job shop scheduling. A number of 

611 



612 R Mansharamani 

text-books and papers describe traditional as well as non-traditional uses of discrete event 

simulation, for example, Banks & Carson (1984), Jain (1991), Law & Kelton (1993), Banks 

& Norman (1996). 

Given that several engineering disciplines have found the need for discrete event sim- 

ulation, several languages and packages have been developed, both for general purpose 

use, as well as for a suitable set of applications. Advances in software development such 

as object-oriented design, data structures, and graphical user interfaces have caused ad- 

vances in simulation techniques and software. As a result, discrete event simulation is an 

active area of research and development. This paper presents a survey of state of the art 

in sequential discrete event simulation I . The focus will be on simulation methodologies, 

event scheduling, languages and modelling support in software packages. 

The rest of this report is organised as follows. Section 2 defines the terms and formalisms 

for discrete event systems. Section 3 surveys the different strategies that have been used 

for discrete event simulation. Section 4 presents a survey of simulation languages and 

packages. A core aspect of discrete event simulation, that is, future event scheduling is 

reviewed in § 5. Front-end and back-end support issues are discussed in § 6. Finally, § 7 

summarises the main aspects of this paper. 

2. Discrete event systems and their specification 

To model any system we first need to define its state space, i.e., the variables that govern 

the behaviour of the system with respect to the metrics being estimated. If the variables 

continuously change with time it is called a continuous system. If the system state instan- 

taneously changes at discrete points in time, instead of continuously, it is called a discrete 

system. 

In discrete systems whenever some state variables instantaneously change value, this 

occurrence is denoted by the term event. The general behaviour of a discrete event system 

is that the system starts out with some initial state. The system remains in that state for a 

duration of time. Then an event occurs which causes the system to instantaneously transit 

to a new state. This behaviour repeats with the system transiting from state to state over 

time but remaining in a specific state for a duration of time. This is opposed to continuous 

systems where the system continuously changes state with time. 

Let us consider a simple example of a discrete event system (DEVS), a single server 

queue that serves customers in first-come-first-serve order. It is assumed that the system 

is work-conserving, that is, the server will not be idle if there is a customer waiting for 

service and the server will not abruptly stop serving a customer. We model the state to be 

the number of customers in the system. The system starts out as empty. The first event 

to occur is a customer arrival and the state changes to one customer in the system. At 

this point the server begins service and the customer's departure is scheduled. The next 

event to occur can either be the second customer's arrival or the first customer's departure, 

whichever occurs first in time. In the former case, the state will change to two customers 

1 Though distributed simulation is an active research topic, the majority of industry uses sequential discrete event 
simulation on account of the simplicity in description 
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and in the latter case the state will return to the system being empty. The events can also be 

specified more elaborately, for example, start service and end service. In this case events 

occur instantaneously. A customer arrival at an empty queue will cause a start service to 

occur at the same time, without any change in state 2. 

To model a DEVS we need to describe the state space of  the system, the events in the 

system, the state transitions upon events and the times at which events will occur. The 

event space can be classified further as external input events, external output events and 

internal events. External input events are events that are triggered from outside the system, 

as in the case of a customer arrival at the queue. External output events are those that are 

generated as output from the system, as in the case of customer departure. Internal events 

are changes in state variables that do not affect the system environment, e.g., start service. 

The simulation of the discrete event system is done by means of generating events and 

executing the actions associated with the events. 

A DEVS can be precisely modelled using the abstract specification first presented by 

Zeigler (1976) (see also Evans 1988 and Fishwick 1993). This formalism has been widely 

used in the DEVS literature. Let Z denote the set of external input event types to the discrete 

event system. Let (9 denote the set of  external output event types. Let S denote the set of  

states of the system, where a subset of  the state variables includes the list of  future-event 

times at the given time instant. Then the DEVS abstraction is given by the 7-tuple 

( I ,  O ,  S ,  (~int, ~ext, ~-, T) ,  

where ~int : S --+ ,.~ is the internal transition function dictating state transitions due to 

internal events. 

(~ext : Q × ~- ~ S is the external transition function dictating state transitions due to 

external input events. Q = {(s, e)ls c S. 0 < e < r(s)} is the total state set of  the model; 

(s, e) represents the state of  having been in state s for elapsed time e. 

~. : S --+ 0 is the output function generating external events, and 

r • S --+ 7~ + is the time advance function. If the system is in state s at time t then 

the system will remain in that state until time t + r(s) .  In other words, r (  ) > 0 is the 

minimum of  future event times. 

Composite models are constructed in Zeigler (1987) by coupling models (either atomic 

or composite) by means of external input coupling, external output coupling, and internal 

coupling. External input coupling specifies how input events of  the composite model are 

identified with the input events of  the components. External output coupling specifies 

how output events of the composite model are identified with the output events of the 

components. Internal coupling specifies how the components inside the coupled model are 

interconnected by means of connections from output events of components to input events 

of others. 

2 If the modeller so desires he can specify the state as the tuple (number of customers in queae, number of customers 
in server) so that even instantaneous events are associated with a change in state 
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3. Methodologies of discrete event simulation 

Section 2 defined discrete event systems. We now consider how to simulate discrete event 

systems, specifically, from a programmer's viewpoint. We describe the most common 

strategies for designing and implementing discrete event simulation programs. (See Evans 

1988 for more details.) Three such methodologies are followed in the literature: event 

scheduling, activity scanning, and process interaction. 

3.1 Event scheduling 

In this strategy a list of all events in the system is first constructed. Each event is taken 

individually and described in terms of the particular interaction between entity (say cus- 

tomer) and resource (say server). Associated with each event is the corresponding action 

or procedure to be invoked when the event occurs. Consider for example a single server 

queue: the events of interest are customer arrival, start service, end service, and leave 

system. The processing required at say end service is to compute system metrics, e.g., 

response time, for the departing customer, clear its resource allocation (if needed), check 

if there is another customer waiting in queue. If so, then schedule a start service event for 

that customer. 

While the approach of event scheduling is straightforward, it involves programming at 

a low level. All events have to be enumerated in one place. Care must be taken to ensure 

that reactivations are scheduled, as in the case of the start service event being scheduled as 

soon as the previous end-service is completed. Likewise, the start service event must also 

be scheduled if an arriving customer finds the queue empty. These reactivations typically 

occur in zero time, but if they are not explicitly specified the simulation will terminate. 

Thus, the responsibility of event scheduling lies entirely on the programmer, which is why 

this strategy is so called. However, because of the explicit specification the efficiency of 

this strategy is best as compared to the other strategies. 

3.2 Activity scanning 

The purpose of this strategy is to overcome the reactivation problem of event scheduling. 

As before, the list of events is first drawn up. But now the events are classified into two 

types: B-activities and C-activities. B-activities are activities that are Bound to occur, 

whereas C-activities are those that are Conditional. For example, the arrival of a customer 

is a B-activity since it is unconditional. However, the start service activity is a C-activity 

since it occurs only if the previous event was end-service and the queue size is greater than 

zero, or if the previous event was a customer arrival and the queue is empty. 

In this strategy the programmer does not have to explicitly specify reactivations. The 

system automatically handles them. The generic structure of a simulation written in this 

strategy consists of three phases. The A-phase advances the time for simulation, the B-phase 

checks the type of the B-activity that has occurred at that time and executes the procedure 

associated with it, and the C-phase checks the C-activity (or activities), if any, that need to 

be executed at that time, and executes the corresponding event-handling procedure. Note 

that the A, B and C phases must proceed in sequential order. Each C-activity has a head 
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part that is the condition under which it is true and a procedure to execute if the condition 

evaluates to true. 

While this strategy relieves the programmer from explicitly programming reactivations, 

the execution is inefficient because all the C-activities need to be checked in the C-phase. If 

many C-activities are rare-events, then most of the effort spent is wasted. Such inefficiency 

was absent in event scheduling because of the explicit invocation of C-activities. To make 

the processing efficient and yet retain the simulation strategy, attempts have been made to 

group C-activities and B-activities that share the same entity. Thus, a set of C-activities is 

grouped with all the B-activities from which they obtain their entities. During the C-phase 

only those C-activities need to be examined which are grouped with the B-activity that 

executed. 

3.3 Process interaction 

In the preceding discussion it seems natural to group B and C-activities pertaining to a 

common entity~ and to order them in their actual sequence of succession. Thus, rather than 

view the system as a set of event modules it is more natural to view the system as flows of 

entities. 

The process interaction methodology describes the system's workings from the view- 

point of an entity flowing through the system. The model is thus described as a projected 

life-history of a typical entity, called a process (Evans 1988). To start with, the resources 

and entities are identified. Then the entity's resource requirements and interaction with 

resources, duration of activities etc., are all described in the process. 

Each new instance of an entity is a separate process instance. The execution of a process 

simulation takes a single process instance and executes it until deactivation. That is, if the 

process has to wait for a resource, or if the process is to spend a period of time in a given 

activity (e.g, service time). At that time another process instance is taken and reactivated 

from the position where it left off. 

Thus, the process oriented approach is modular. All events and activities comprising a 

process are described in the form of the entity model in one place. Note that processes may 

also apply to resources. For example, a server process. In the single server queue example, 

the process oriented simulation can be expressed by means of the entity customer. The 

sequence of description is 

generate customer every inter_arrival 

acquire server (waits in queue if necessao') 

get serviced for t time units 

release server 

destroy customer 

In this case events are implicitly handled by the language. The modular approach makes it 

very easy to concisely specify the customer's behaviour. To implement the process oriented 

strategy the language needs to provide support for process suspension and reactivation. For 

example, when the customer requests for the server and the server is busy then that customer 

instance needs to be deactivated. When the server is released then the first waiting customer 

in the queue needs to be reactivated. This is usually handled by means of a restricted form 
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of coroutine called semi-coroutine (Dahl 1968) or generator (Marlin 1980) construct 

provided in the simulation language. In this form, the choice of coroutine to be resumed 

is determined by a master module that decides on the basis of the next event that is to be 

activated. 

The process oriented approach allows for high level programming but requires that 

the simulation language provide coroutine support, which is typically not the case with 

general purpose languages such as C and C + + .  (See § 4 for extensions to general purpose 

languages.) Further, by its very nature it can cause the system to deadlock if two process 

instances are waiting for each other to release their resources before acquiring those of 

the other. This may not be the intended purpose in cases where more than one resource 

is accessed at the same time, but the language does not support atomic access of multiple 

resources, (See Evans 1988 for examples.) However, in most cases this is either a non-issue 

or special constructs are provided in the language. 

3.4 Summary 

As described in this section, there are three prevalent forms of expressing discrete event 

simulation programs: Event scheduling, activity scanning and process interaction. While 

the expressive power is the same in each case, they differ in the level of programming. 

Event scheduling is the most efficient mechanism in terms of execution speed but involves 

explicit specification of events and their actions globally across all parts of the system, 

as well as reactivations of conditional events. Activity scanning implicitly handles reac- 

tivations by explicitly stating which events are unconditional and which are conditional. 

However, it incurs a loss of efficiency due to explicit checks for conditional events at time 

advances. 

Process interaction or process orientation offers a more natural modelling environment 

to the programmer since the focus is on the entity and its sequence of activities rather than 

on a global.perspective of the entire system. It is efficient at run time but requires support for 

coroutines in the specification language. With the emergence of distributed systems some 

authors have proposed a message based approach to discrete event simulation (Bagrodia 

et al 1987) where the physical system is modelled as a set of communication processes. 

Events are modelled by message communications. An entity is modelled as a message 

communicating process. 

4. Discrete event simulation languages and APIs 

Since discrete event simulation is an important field in its own right, a number of languages 

have been designed specifically for the purpose. In other cases general purpose languages 

have been enhanced. There is also a common trend to provide application programming 

interfaces (APIs) for discrete event simulation in a general purpose high level language. In 

this section we provide a survey of languages, enhancements and APIs. Our aim is not be 

exhaustive or provide a critical review but to give a flavour of what exists in the discrete 

event simulation world. 
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4. l Discrete event simulation languages 

Historically, discrete event simulation languages were promoted since the 60's. Simscript 

used the event scheduling strategy, GSP the activity scanning and GPSS the process interac- 

tion strategy. Later with the popularity of Algol60, Simula was proposed as a preprocessor 

to perform simulation programming. 

Currently, GPSS is generally regarded as the most popular simulation language. It 

is a block-structured language that was conceived to run on mainframes and supported 

by IBM. The GPSS/H processor, a product of Wolverine Software, USA, was first re- 

leased in the late 1970s and is available on a variety of hardware platforms ranging from 

PCs to Sun workstations (Scher 1991). The GPSS model is that transactions (i.e., en- 

tities) flow through systems to produce dynamic effects. They interact with resources 

by flowing into blocks or program statements. A block remains inactive until a transac- 

tion attempts to enter it. Over 40 different blocks describe resource requirements, condi- 

tional branching, queueing, data collection, report generation and attribute control (Evans 

1988). 

Simscript started out as a language for event scheduling but the modern version Sim- 

script II.5 incorporates a process interaction strategy. Like GPSS, Simscript is commer- 

cially available (Markowitz et al 1987). On the other hand Simula, which is more of an 

object oriented language, has received less commercial support as a simulation language. 

SLAM (Pritsker 1986) and SIMAN (Pegden et al 1990) have also been used over the last 

decade. Recently, there is a trend towards object oriented simulation languages as in the 

case of MODSIM IlI which is commercially available from CACI, and HSL which was 

proposed in Sanderson et al ( 1991 ). 

In general, event scheduling languages provide features for specifications of events and 

associated actions. The actions will be the code necessary to update the system's state and 

generation of a random time tbr a future event. The process-oriented languages, typically, 

include a richer set of language constructs which apart from time delays include interaction 

of processes with resources, such as suspend at a specific queue, resume once the head 

of queue is reached, or suspend until is specific condition is satisfied in the form of a 

wait-until construct. The constructs in GPSS, for example, include GENERATE an entity, 

ENTER into a resource, ADVANCE the time spent at a resource, QUEUE at a resource, 

LEAVE the resource and TERMINATE an entity. 

A number of other languages have been proposed in the literature (see Evans 1988 for 

example) and many comparisons have been done (cf. Tocher 1965, Dahl 1968 and Virjo 

1972). Simulation languages commercially available for personal computers have also 

been compared, e.g. the comparison between Simple I and Simian in Houten (1988). 

4.2 Extensions and APls  

The primary disadvantage of a special purpose simulation language is that it has to be 

learned and compilers for it have to be bought. To overcome this problem a number 

of extensions and application programming interfaces (APIs) for simulation have been 

proposed for general purpose languages. 
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Such an effort started with GASP in the 60s. GASP is a collection of FORTRAN 

subroutines for simulation, and has been very popular among FORTRAN users. Another 

popular choice has been to extend Pascal for quasi-parallel programming (Kaubisch et al 

1976; Kriz & Landmayr 1980) or provide APIs in it (Hac 1982; Marsden 1984). Extensions 

to Algol68 have been proposed in Shearn (1975). Use of PL/I for discrete event simulation 

has been proposed by Hac (1984), of Ada by Bruno (1984), of Modula-2 in HPSIM (Sharma 

& Rose 1988) and of SR by Olsson (1990). 

In the late 80's and in the 90's, several libraries for discrete event simulation are available 

in C and C + + .  In C + +  it is possible to write class libraries that support coroutines 

(cf. Stroustrup & Shapiro 1987) and this allows for process oriented simulation. Process 

oriented packages in C or C + +  include CSIM (Schwetman 1988, 1990), S IM++ (Lomov 

& Baezner 1990) and YacSim from Rice University. Event scheduling packages include 

SMPL (MacDougall 1987), and SimPack (Fishwick 1992). More recent packages in C + +  

provide object-oriented simulation features, for example, C++SIM (Little & McCue 1994) 

and Awesime (Grnnwald 1991). 

Apart from extensions and libraries some packages use only diagrams as a means of 

modelling and simulation. This obviates the need to learn a special purpose language, but it 

can be rather cumbersome if there are a number of diagrammatic blocks as in GPSS. On the 

other hand specific tools such as Petri-net analysers (cf. Evans 1988) or queueing network 

simulators (cf. Melamed & Morris 1985, Funka-Lea et al 1991 ) are useful within the range 

of applications they model. To model applications beyond their limits one must opt for 

a programming language. More recently, Shanbagh & Gopinath (1997) have proposed a 

C + +  simulator generator from graphical specifications. 

5. Future event management 

No matter what be the simulation strategy or the simulation language, in discrete event 

simulation the underlying mechanism is scheduling of events. Events are generated for 

future times. At any time the next scheduling instant is the minimum of the future event 

times. In practice, the number of future events may range from a handful, say in a single 

server queueing system at light to moderate load, to a huge number of events, say in the 

simulation of a wide area network. 

The following operations are needed on the future event list data structure: insert an event 

(represented by its time and a pointer to associated event information), delete minimum 

time event and return the information pointer, delete or cancel any arbitrary event from 

the list. The first two are the most common operations, the last one is used occasionally in 

some simulation applications, e.g., resource preemption. 

The abstract data type appropriate for future event scheduling is the priority queue, 

which can be implemented in many ways. The performance of the implementation is 

subject to the operational profile of inserts, delete-mins, and cancels. Not surprisingly, this 

has led to a significant number of proposals in the literature for future event scheduling data 

structures. In this section we discuss the various implementation techniques and follow it 

with comparisons of the techniques that have appeared in the literature. For more detailed 

surveys see Srikanth (1996) and Evans (1988). 
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5.1 Future event list implementations 

The simplest representation of the future event list is an array or linked list ordered by time. 

Though simple to implement it is rather inefficient for large list sizes since search time is 

linear in the size of the list. For this reason researchers have proposed index structures over 

linked lists (Wyman 1976; Franta & Maly 1977, 1978; Henriksen 1977, 1983; Comfort 

1979; Nevalainen & Teuhola 1979; Davey & Vaucher 1980; Blackstone et al 1981 ; O' Keefe 

1985), a popular scheme among these being that of Henriksen (1977, 1983), which has 

been incorporated into GPSS (Henriksen & Crain 1982). 

Another common approach is to use a d-heap. The 2-heap was proposed by Williams 

(1964) and then generalised to d > 2 by Johnson (1975). In a d-heap the nodes are 

maintained in heap-order, where the value of a node is no less than the value of its parent. 

The d-heap is a complete d-ao' tree satisfying heap order. Using breadth first search the 

nodes can be indexed into a single array. Other heap-based implementations include the 

leftist tree (Crane 1972, Knuth 1973b), pagoda (Francon et al 1978), skew heap (Sleator & 

Tarjan 1983, 1986), binomial queue (Vuillemin 1978), pairing heap (Fredman et al 1986, 

Stasko & Vitter 1987), Fibonacci heap (Fredman & Tarjan 1987), relaxed heap (Driscoll 

et al 1988) and radix heap (Ahuja et al 1990). 

Search tree-based structures have been popular as well. Binary search trees are the 

natural choice and have been analysed for future event scheduling in Evans (1983) and 

Vaucher & Duval ( 1975 ). A variant, called p-tree, to combine the advantage of linear list 

and efficiency of tree structures was proposed in Jonassen & Dahl (1975). Among balanced 

trees or partially balanced trees the most popular version for priority queues is the splay 

tree (Sleator & Tarjan 1985). 

A particular type of implementation called calendar queue was proposed by Brown 

(1988) and also independently proposed by Davidson (1989). In this representation time 

is split into buckets and keys fall within bucket ranges. Indices are wrapped around for the 

'next year'. A more recent structure calledfishspear (Fischer & Paterson 1994) has worst 

case performance as the d-heap but is oriented towards better performance in the common 

case and can also be implemented for sequential storage. 

5.2 Analyses and performance comparisons 

Ordinary linked lists sorted by time require O (n) time for insert and O (1) time for delete- 

min and delete. On the other hand d-heaps require O (log n) for insert, delete and delete- 

min (Tarjan 1983). Bollobas & Simon (1985) analyse repeated random insertions into a 

heap where each ordering of the inserted elements is equally likely. They obtain that the 

number of exchanges per insertion is bounded by a constant of about 1.76. Fibonacci heaps 

on the other hand have O(log n) amortised time for delete and delete-rain and O(1) for 

insert (Fredman & Tarjan 1987). Driscoll et al (1988) show that these times hold in the 

worst case for relaxed heaps. 
Various comparisons of priority queue implementations have been reported in the liter- 

ature. Several comparisons have been done under the hold model (Vaucher & Duval 1975) 

where a hold operation is one that removes an event from the priority queue and schedules 

a new event after an interval of time d from a specific distribution .Y. The hold model 
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consists of a sequence of hold operations and is parameterised by the number of events 

in the event queue and the distribution ~.  It has been used in many of the early studies 

including Comfort (1979), Davey & Vaucher (1980), Englebrecht-Wiggans & Maxwell 

(1978), Franta & Maly (1977, 1978), Henriksen (1977), Jonassen & Dahl (1975), Vaucher 

& Duval (1975), and Vaucher (1977). 

Jones (1986) compared several implementations under the hold model and showed many 

to outperform heaps. The splay tree was shown to have best performance in his study. In a 

later study Brown (1988) showed that under the hold model the calendar queue performs 

better than the linear linked list and the splay tree. Chung et al (1993) used a Markov hold 

model to evaluate 14 implementations. Also, using a token ring simulation for comparison 

they recommend using the splay tree and the calendar queue while stating that heaps are 

quite 'stable' albeit with lower performance. 

McCormack & Sargent (198 I) compare several implementations from Comfort (1979), 

Davey & Vaucher (1980), Franta & Maly (1977), Henriksen (1977), Taneri (1976), Ulrich 

(1978), Vaucher & Duval (1975) and Wyman (1976), and show that results from real 

simulation runs are different from that when the hold model is used. They show that 

Henriksen's method (Henriksen 1977) and the modified heap perform well and are less 

sensitive to scheduling distributions. 

Thus, in general, it is not readily apparent which implementation works best for a 

given simulation application. Worst case analyses do not reflect performance accurately 

for the average case. Average case analyses have been done under restrictive assumptions 

or special cases of applications. It will be desirable therefore for simulation packages to 

adopt a variety of future event management mechanisms as in SimPack (Fishwick 1992). 

A knowledgeable user can select the right mechanism but what would be more desirable is 

a high level interface to select the right mechanism for the simulation's operational profile. 

Typically, in simulations one needs to run several experiments in the debugging stage itself 

and during this phase the various priority queue implementations can be compared. 

6. Front end and back end support 

Though scheduling of future events forms the core of discrete event simulation, there are 

a number of other features that are desirable in a simulation environment. They can be 

classified into front end requirements in the form of diagram editing and graphical output, 

and back end support in the form of random number generation, resource management, 

statistical libraries. This section first specifies desirable features of simulation front ends 

and then desirable features of back ends. 

6.1 Simulation front end 

The simulation front end must in the least capture the system topology and possibly simplify 

the model description in terms,of user input, and display graphical output of simulation 

results. 

The most general case of user input should allow for a diagram editor to specify user de- 

fined icons to represent processes or resources, connectivity across icons, and connectivity 

constraints if any. Few packages allow this, however. GPSS has a cumbersome diagram 
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notation with over 40 different diagram types representing equivalence to program state- 

ments. Typically, no package allows for general purpose model specifications. However, 

specific application domains such as queueing network simulations capture all user spec- 

ifications through the front end as in the case of PAW (Melamed & Morris 1985) and its 

successor Q +  (Funka-Lea et al 1991: also see Shanbagh & Gopinath 1997). 

6.2 Simulation back end 

All simulation environments include support for random number generation, and resource 

management. Some also include statistical libraries. We elaborate on each of these features 

below. Note that our emphasis is only on what is provided in standard packages. There are 

other important aspects such as variance reduction of output and rare-event simulation, 

which are not covered in this paper 3. 

6.2a Random number generation: Random number generation forms an integral part 

of a simulation environment. The underlying model of a discrete event system assumes 

that the system remains for a given time in each state. This duration of time is modelled 

using a random number distribution, for example, the inter-arrival time at a queue is often 

modelled as an exponential distribution. Likewise, service time of a customer in a queue, 

number of database items that a query will access can be modelled using random number 

distributions. 

Every operating system is usually equipped with a random number generator that gen- 

erates uniform random variates. In simulation we additionally require generation of non- 

uniform random variates. Generation of random numbers is more difficult than what one 

might expect. As Knuth (1973a) says, "Random numbers should not be generated by a 

method chosen at random." 
Several packages and studies have used defective random number generators. For in- 

stance, the study of Maj umdar et al (1988) that simulated performance of parallel processor 

allocation policies used a defective technique for random number generation which led to 

incorrect policy comparisons. This was later corrected in Leutenegger & Vernon (1990). 

The 1988 version of CSIM (Schwetman 1988) used the rand( ) function which is well 

known to have poor random number generation as given in the UNIX system manual 

page for random(). A survey of more than 50 computer science text books that contained 

software for random number generation revealed that most of these generators are unsatis- 

factory (Park & Meller 1988). This shows the importance of using reliable random number 

generators as given in Knuth (1973a), Park & Meller (1988), and L'Ecuyer (1988). 

Any simulation environment must support a variety of distributions, both discrete and 

continuous. There should be support for multiple random number streams. The package 

should allow for transformations on random variables to support practical distributions 

as well as allow for empirical distributions as obtained from measured data. Typical dis- 

crete distributions include uniform, Bernoulli, binomial, geometric, Poisson and typical 

continuous distributions include uniform, exponential, Erlang, hyper-exponential, normal 

3The interested reader can find details in the July 1993 issue of ACM Transactions on Modellin,~ and Computer 

Simulation 
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and gamma. Devroye (1986) provides several methods of generating non-uniform random 

numbers for many distributions. 

The general techniques that are used for non-uniform random number generation are 

the inverse method and acceptance-rejection. In the former, a random number is generated 

by first generating a uniform number between 0 and 1, and then using it as an argument 

to the inverse of the distribution. In the latter method, the required density is bounded 

by that of a scaled version of another distribution for which it is known how to generate 

random samples. The samples from the known distribution are repeatedly taken until one 

falls under the required distribution. 

6.2b Resource management: Discrete event simulation is widely used to study the be- 

haviour of resource contention. For example, contention for CPU and disk in computer 

systems, contention for database in DBMS, contention for machines in job shops, con- 

tention for toll booths on highways, etc. Associated with each resource is a resource handler 

and contention queue(s) to store contending entities. The resource handler decides how to 

schedule entities from the contention queue(s) on to the resource. 

The resource by itself may contain multiple servers, as in the case of a parallel processor 

or a petrol bunk. The entities may all contend in a single contention queue or may be 

split across several queues each contending for a subset of the servers. Most simulation 

environments provide support for single server single queue resources. Some provide 

support for multiple server single queue resources. 

The resource handling discipline can be preemptive or non-preemptive depending on 

the application in hand. In computer systems preemption is very common at the CPU 

(but not at disk) whereas in manufacturing systems preemption of executing jobs at plants 

is typically absent. Among non-preemptive disciplines the most common ones are first 

come first serve (FCFS) and fixed priority. Some systems also provide support for first fit 

and best fit. Among preemptive disciplines the most common one is fixed priority with 

preemptive resume. In CPU scheduling round robin is a common preemptive discipline 

where preemption occurs on every time quantum. 

Having built-in resource scheduling disciplines simplifies the work of the programmer 

who is now given access to insertion and deletion of entities in contention queues. If the 

programmer desires to use a very specific discipline, the interface for using the discipline 

must be the same as that for ones provided by the simulation environment. The simulation 

environment should provide the facility to integrate custom resource schedulers. 

6.2c Statistical libraries: The purpose of discrete event simulation is to study the be- 

haviour of a given system. The behaviour of interest to the user is usually captured in the 

form of metrics such as average and variance of response time, throughput and resource 

utilisation. To correctly estimate these metrics the programmer needs to insert measure- 

mentprobes at appropriate places in the program. Good simulation environments provide 

support for probes, that is, creation and initialisation, sampling, determining averages, 

variance and distributions of accumulated data, as well as confidence intervals. A sophis- 

ticated package will provide support for different types of probes, e.g., space average and 

time average. 
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Accumulation of samples can vary according to the estimation method being used. Two 

common techniques tbr estimating results are regenerative simulation and the method 

of batch means (Law & Kelton 1993). Regenerative simulation is widely applicable and 

produces correct results (Welch 1983). It essentially estimates metrics at system regen- 

eration points 4 and determines confidence intervals (i.e., estimates of the variance of the 

metric being analysed) across regeneration points. When enough regeneration points have 

been encountered to meet the desired confidence interval the simulation stops. While this 

method produces correct results as per renewal theory, it can be rather costly in large sys- 

tems to generate regeneration points. For this purpose the method of batch means is a more 

efficient approach, where metrics are estimated at the end of a given batch size of samples 

and confidence intervals are calculated across batches. The batch size must be chosen with 

caution since a small batch size can cause correlation between successive batches. For more 

details on statistical techniques to estimate steady state behaviour see Pawlikowski (1990). 

7. Summary 

We have surveyed the field of discrete event simulation on uniprocessors. We have sum- 

marised the formal specifications for discrete event systems. Various strategies for sim- 

ulation, that is, event scheduling, activity scanning and process interaction have been 

reviewed. Discrete event simulation languages and extensions and APIs of general pur- 

pose languages for discrete event simulation have been briefly covered. Data structures 

for future event management have been surveyed. These include simple linked lists, heaps 

and variants and a variety of search trees and assorted data structures. Front end and back 

end support for simulation have been described. Note that topics such as output analysis, 

variance reduction techniques, rare event simulation are specialised topics that deserve a 

separate survey in their own right, and have been treated as outside the scope of this paper. 

Likewise, emerging technologies such as object oriented simulation have not been covered. 

Currently, the trend has been to enable the user to build a simulation model of the system 

under consideration and to efficiently run the simulation code. Not much emphasis has been 

given on separating modelling from simulation as is prevalent in the continuous simulation 

world, e.g., simulation of chemical process plants. It would be desirable to create model 

libraries of resources or of subsystems which can be used for a variety of applications to be 

simulated. Typically, the approach is to rewrite code from simulation to simulation. This 

is not only wasteful in terms of development time but also incurs greater chances of bugs 

in the simulation. 

The author would like to thank the anonymous referees for their valuable comments that 

improved the quality of the paper. The author would also like to thank S Hanumantha 

Rao for his valuable feedback on an earlier version of this report that greatly helped in 

improving the exposition. 

4A regeneration point is a state from which the system stochastically evolves afresh. For example, an empty queue 

in a single server queueing system 
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