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Abstract

The paper gives an overview of some of the large, shallow, semi-enclosed coastal
systems (SECS) in Europe, These SECS are important both from the ecological and
the economic perspective (socioecological systems) and provide many valuable
ecosystem goods and services. Although some of the systems are transitional
waters under theWater Framework Directive, this is not the case for all of the
systems. The paper adopts a Driver-Pressure-State-Impact-Response approach to
analyse the ecological status, vulnerability and future perspectives of these
systems in the context of global change.
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1. Introduction and scope, definitions and characteristics of
shallow, semi-enclosed coastal systems (SECS)

1.1. Scope

This overview addresses some of the largest European shallow,
semi-enclosed coastal systems (SECS), including lagoons and
transitional waters (TW). These SECS are not only important
ecological systems, but also have considerable historical and socio-
economic value (Lassere, 1979). In recent years, there has been
increasing recognition of the economic importance of SECS through
their provision of ecosystem services, although these services are
increasingly threatened as SECS are among the most vulnerable
coastal systems to both natural and human pressure (Eisenreich,
2005). The overview of SECS is presented from the perspective of
the Driver-Pressure-State-Impact-Response adaptive management
framework that links human drivers and pressures through to
ecological state and the impact on human welfare, and then on to
societal responses. The results are interpreted in the context of
European environmental legislation, such as the Water Framework
Directive (WFD) (EU, 2000) and from the perspective of global
change and coastal vulnerability.

Transitional waters include a wide range of typologies including
some lagoons (Basset et al., 2006). The WFD does not include a
definition of lagoons, but the definition of TW specifies a salinity
gradient and significant freshwater inputs. This means that some
SECS, such as the Ria Formosa and the Mar Menor, are considered to
be sheltered coastal waters (CW) rather than TW, with respect to
the WFD. The “legal” classification of these systems as TW or as CW
has important implications in the assessment of ecological status,
because the type-specific reference conditions for TW are naturally
very different from those for CW.

Although many of the SECS are European coastal lagoons, they
are not fully representative of the heterogeneity of lagoons, because
small eu-haline and hyper-haline lagoons and a myriad of small
systems are not included. Most of the systems described can also be
considered as coastal wetlands (Perillo et al., 2009). In addition,
similar but deeper systems, such as the Gulf of Riga and Pucks Bay,
are also considered for purposes of comparison; as well as systems
that are not strictly lagoons, such as the Wadden Sea.

The geomorphology of SECS makes them particularly vulnerable
to global changes, such as sea-level rise, increased temperatures,
storminess, droughts, floods and changes in sediment dynamics.
They are “hotspots” of global change and vulnerability to environ-
mental, economic and social pressures, especially when they are
associated with river-mouths systems (Newton et al., 2012). Human
activities cause changes in demographics, urbanisation, agriculture
and land-use, as well as industrial development and shipping that
affect the structure and function of these vulnerable and valuable
coastal ecosystems.

The overview includes a range of coastal systems, so this section
explores the definitions that have been applied to these systems.
There is a gradient between the open sea, semi-enclosed bays,
coastal lagoons and transitional waters. The United Nations glos-
sary of environment statistics (UNSD, 2006) defines coastal lagoons
as “Sea-water bodies situated at the coast, but separated from the sea
by land spits or similar land features. Coastal lagoons are open to the
sea in restricted spaces”. Most of the systems included in this

overview fit this definition. Coastal lagoons are therefore regions of
restricted exchange. However, this is also the case for some
enclosed bays and some fjords that may be much deeper (Tett et al.,
2003; Newton and Icely, 2006). Geomorphology, in particular the
length of the width of marine entrances at high tide relative to the
total length of the enclosing barriers, has been used to distinguish
enclosed bays from lagoons (Lassere, 1979). This allows for some
quantitative interpretation, rather than qualitative, especially with
respect to the size of the connection to the adjacent sea. Never-
theless, the degree of connectivity with the sea depends not only on
geomorphology and openness, but also on tidal amplitude and the
general hydrological regime.

Coastal lagoons are often sub-divided into “choked”, “restricted”,
“leaky” (Kjerfve, 1994) and even “open” (Lassere, 1979; Bird, 1994)
with respect to the characteristics of their hydrodynamic exchange
properties with the adjacent open sea. The Wadden Sea (southern
part of the North Sea) and its extensive intertidal areas behind the
Frisian barrier islands has been classified as an “open lagoon”
(Lassere, 1979; Bird, 1994). Leaky lagoons are connected by many
entrances to the adjacent sea and are therefore characterised by
almost unimpaired water exchange (Kjerfve, 1986). However,
choked lagoons are connected to the sea by a single or few narrow
and shallow entrances, resulting in delayed and dampened tidal
oscillation or low water exchange with the open sea. The repletion
coefficient of a system (Wolanski, 2007) gives a more quantitative
definition based on residence time and tidal prism, but these data
are not always available and hence a more arbitrary and qualitative
classification is more frequently used.

Table 1 lists some examples of SECS, and similar systems for
comparison, and classifies them qualitatively as open, leaky,
restricted or choked. It also specifies how they are classified ac-
cording to the WFD, either as TW or CW.

1.2. Formation and development of SECS

Sediment transport processes are the main mechanism of SECS
formation. Barriers of sediment are deposited parallel to the
coastline and maybe fragmented into islands and peninsulas. Six
main factors influencing the distribution and dynamics of coastal
lagoons are: antecedent geomorphology; material characteristics;
sediment supply; tectonics; tide range; and climate (Bird, 1994).

The development of SECS is favoured by a low-lying coastline
with a fractured geomorphology. Material for barrier formation is
sediment drifting along the shoreline. SECS formation also requires
sediments of a medium grain size originating either from cliff
erosion, riverine input of terrestrial origin, or input from the
adjacent seafloor. The evolution of SECS depends mainly on the
balance between sediment import and export. The fate of the
system is also influenced by: (1) the strength of tidal currents; (2)
the force of the wind; as well as (3) the rate of sediment supply.
The climate, especially the precipitation, storminess and storm
surges, also affects the sediment fluxes, overtopping events and
erosion. With respect to tectonics, subsidence potentially leads to
an increase in size and depth of the SECS and may even result in
reopening of the coastal inlets whereas the opposite will occur in
uplift areas (for a detailed review see: Bird, 1994 and references
therein).



Table 1

Classification and characteristics of some European SECS (semi-enclosed coastal
systems). C = Choked; R = Restricted; L = Leaky; O = Open; TW = Transitional
Water; CW = Coastal Water sensu WFD-Water Framework Directive; L:C = Ratio of
lagoon area to catchment area for some of the lagoons.

Lagoon names(s) Adjacent Sea/Ocean Country (ies) L:C
(EU
abbreviation)
Bassin d’Arcachon Atlantic Ocean FR R TW
Curonian Baltic Sea LT, RU c ™ 0.016
Darss-Zingst Baltic Sea DE cC ™
Boddenkette
Etang de Thau Mediterranean FR c ™
Gulf of Lyons
Gulf of Riga Baltic Sea LT, EE Bay C
Logarou Amvrakikos GR OR CW&TW 0.007
Gulf — Ionian Sea
Mar Menor Mediterranean SP c W 0.12
Nordriigensche Baltic Sea DE L ™
Bodden
Oder/Odra, Baltic Sea PL, DE R TW
Szczecin lagoon
Papas Ionian Sea GR R TW
Puck Bay Baltic Sea PL 0O W
Ria Formosa Atlantic Ocean PT L W 0.19
Ringkebing Fjord North Sea DK c ™ 0.08
Sacca di Goro Mediterranean, IT R TW 0.03
Adriatic
Salzhaff Baltic Sea DE cC ™ 0.29
Venice Mediterranean Sea, IT L ™
North Adriatic Sea
Vistula Baltic Sea PL, RU c ™
Wadden Sea North Sea DK, DE, NL 0O CW&TW
Wismar Bight Baltic Sea DE (e}

1.3. Salinity and hydrography

The climate, especially the precipitation conditions, also de-
termines the salinity regime of SECS, which is important for the
ecological conditions. The salinity regime is important in defining
transitional waters. These are defined as “shallow aquatic envi-
ronments located in the transitional zone between terrestrial and
marine ecosystems, which span from freshwater to hyper-saline
conditions depending on the water balance” (Kjerfve, 1986). How-
ever, the WFD defines TW as “bodies of surface water in the vi-
cinity of river mouths which are partly saline in character as a result
of their proximity to coastal waters but which are substantially
influenced by freshwater flows” (EU, 2000). Some European la-
goons have no significant freshwater inputs, and are thus
considered to be sheltered, coastal waters in the context of the
WEFD, whereas they are considered to be coastal lagoons and
therefore transitional in character by the scientific community.
This is one of the complications for the implementation of the
WED that arises from the characterisation of coastal lagoon sys-
tems (Pérez-Ruzafa and Marcos, 2008). In the Atlantic, the exis-
tence of significant tidal exchanges may dominate the
hydrography and the freshwater inputs may be relatively
important. In the Mediterranean, the large meteorological vari-
ability of precipitation and thus of freshwater runoff (from
drought to flood conditions) creates a very dynamic situation
making it particularly difficult to characterise transitional waters.
In the Baltic Sea, the low salinity gradients have also prevented
the TW classification in some cases.

In principle, all these systems should be considered as TW
systems. However, in practice this definition has created several
problems (McLusky and Elliott, 2007). There are two major con-
sequences to this problem of system definition. First, TW are
considered to be naturally eutrophic in comparison to CW, so the

type-specific reference conditions under the WFD are not the same.
Second, fish are one of the biological quality elements (BQE)
required in the WFD for monitoring TW, but are not a required BQE
for monitoring coastal waters.

2. Ecological and economic importance of SECS

SECS are ecologically valuable systems and their ecosystem
functions provide valuable ecosystem services. These goods and
services are not only economically valuable but also have societal,
heritage, aesthetic and scientific values.

2.1. Ecological importance of SECS

Many similarities exist among different European SECS, how-
ever there are also the peculiarities exhibited by each system. The
relative importance of one particular environmental process with
respect to the others is site specific. Important variations include
tidal regimes and the flood dominance in different areas of the
intertidal zone and the presence or absence of some components of
the ecosystem. As they are usually aligned along the coast rather
than perpendicular to it, SECS act as barriers for terrestrially
derived matter destined for the sea. SECS are complex ecosystems
characterised by a natural high spatial and temporal variability and
high productivity. They support a rich indigenous fauna and flora
because they are sheltered and, in most of the cases, shallow water
systems of high productivity. SECS have considerably elevated
organic matter concentrations relative to adjacent water masses. In
southern Europe, their sheltered nature may also lead to higher
water temperatures than the open sea or ocean, to which they are
connected. SECS are also spawning and nursery grounds for
migratory organisms of ecological as well as economic importance
(UNESCO, 1980). SECS are important feeding and nesting sites for a
multitude of bird species, as well as important stop-over sites for
bird migration or over-wintering sites. Knowledge about SECS
ecosystem function is still fragmentary despite the large effort put
into research. The main reason for this is the heterogeneity of SECS,
restricting cross-applicability of results from one system to another.
Table 2 gives examples of SECS that are National Parks, Ramsar
sites, Natura 2000 sites and Special Bird Habitats. This table also
shows the deterioration of key habitats in some SECS.

2.2. Economic importance of SECS: goods and services provided

The range of ecosystem services provided by SECS is extensive
and includes provisioning services, also known as ecosystem
goods, such as fish and shellfish; regulating services, such as water
purification; supporting services, such as oxygen production from
photosynthesis; and cultural services, such as recreation and
ecotourism (Millennium Ecosystem Assessment, 2005). The
ecosystem functions of SECS provide essential services including
decomposition, nutrient cycling, and nutrient production. They also
function in the regulation of fluxes of nutrients, water, particles,
and organisms to and from land, rivers, and the ocean. SECS serve
as buffers, sinks and transformers, e.g. due to processes like sedi-
mentation, transformation or de-nitrification. Riverine nutrients
are retained and SECS thus help to protect the adjacent sea from
eutrophication and pollution.

A global overview (UNESCO, 1980) reported a total of 181 pro-
grammes specifically dealing with SECS that are coastal lagoons. All
of these included the exploitation of lagoon resources demon-
strating that coastal lagoons are valuable ecosystems that provide
many ecological services. For example, several southern European
lagoons have the particularity of being subject to strong anthro-
pogenic pressures due to tourism and/or heavy shellfish/fish



Table 2

Semi-enclosed coastal systems (SECS) that are: National or Regional Parks (P); Ramsar sites (R); Natura 2000 sites (N) and Special Bird Habitats (B), ICZM demo site (D) and
Water Framework Directive intercalibration site (I). The table also indicates loss of habitat types |.

Lagoon Park Ramsar Natura Special bird ICZM WFD Sea-grass Salt Sand Forested Riparian
site site habitat demo site intercalibration meadows marsh dune areas vegetation
Bassin d’Arcachon N B
Curonian P R N B D
Darss-Zingst P N B
Boddenkette
Etang de Thau N B I
Logarou R N B U Il
Mar Menor R B U U I
Nordriigensche P N B
Bodden
Oder/Odra N B
Papas N I U U I
Ria Formosa P R N B D I U U I I3 Il
Ringkebing Fjord R N B ] U
Sacca di Goro P R N B U U I I
Venice R N B U U I I
Wadden Sea P R B ] I}

farming (DITTY Project, 2002). However, ongoing eutrophication,
socio-economic transformation processes and climate change are a
threat to the future structure and function of SECS since these
ecosystems are very vulnerable.

SECS are characterised by large fluctuations in the physical and
chemical parameters, and, over the last decades, have also shown
an enormous potential for residential, tourism, economic (mainly,
shellfish/fish farming), and recreational development. Building a
network of cause-effect relationships between the different human
actions and hydrographical and ecological processes has been
proposed as a useful tool for the management of human activities in
coastal lagoons (Pérez-Ruzafa and Marcos, 2005).

Table 3 gives a summary of some of the more important eco-
nomic activities, drivers and sectors in European SECS. It also
demonstrates that these areas provide multiple economic activ-
ities, adding to their value.

Worldwide, ecosystem services (Woodward and Wui, 2001) in
SECS are threatened by: (1) land reclamation, e.g. draining of wet-
lands that are important denitrifying zones (Murray et al., 2006);
(2) loss of coastal vegetation (Ehrenfeld, 2000) such as salt marshes
that trap carbon and nutrients; (3) loss of habitats such as sea-
grasses that provide nurseries for juveniles (Beck et al., 2001).

3. Distribution of SECS in Europe

SECS are important physiographic formations of the European
coastline and constitute transition zones between terrestrial,
freshwater and marine interfaces. In Europe, SECS occupy about
5.3% of the coastline (Barnes, 1980). The SECS have many common
features, although they cover a wide geographical distribution from
the Baltic to the Black Sea and, as such, are subjected to different
environmental conditions and pressures.

3.1. Baltic Sea SECS

SECS can be found in the Baltic along the southern coast, where
a long stretch from Germany up to Russia is characterised by a
pattern of eroding cliffs of Holocene material and deposition areas
rich in coastal lagoons. Tidal range decreases after the entrance to
the Baltic Sea and becomes undetectable in the Arkona Basin.
Nevertheless, despite being microtidal, wind driven water-level
changes, in combination with resonance phenomena, lead to
irregular but frequent water exchanges between the Baltic Sea and
its SECS. Furthermore, 10—20% of the waves are greater than the

2.4 m European average. The eastern and northern part of the Baltic
coast is an area of uplift, whereas subsidence has led to the for-
mation of fjord-like systems along the Jutland and Schleswig-
Holstein coast.

Some of the SECS, especially the Nordriigensche Bodden and the
Darss-Zingst Boddenkette are interconnected complex systems,
whereas the Salzhaff, the Vistula lagoon, and the Curonian lagoon
are classical “choked” systems with a rather simple morphology.
In addition, several smaller SECS exist along the coast of Holstein
(e.g. Burger Binnensee on the island of Fehmarn) and the Danish
Isles (e.g. Odense Fjord on Fyn), whereas along the eastern Polish
coast sediment deposition has cut off several former SECS and
converted them to coastal lakes. Beside coastal lagoons, the
southern Baltic coast is rich in systems that are semi-enclosed bays,
e.g. Puck Bay (Poland) and the Wismar Bight (Germany). However,
there are also numerous semi-enclosed coastal inlets that are
formed by other processes than barrier formation by sediment
transport. The largest of these systems is the Gulf of Riga that is
enclosed by the islands of Saarema and Muhu. The remaining
connection is less than 20% of the stretch covered by these islands
but it is a relatively deep system and therefore a semi-enclosed bay
rather than a SECS. Other examples are the numerous flads of the
Finnish Archipelago coast. These systems, still having substantial
water exchange with the adjacent sea, are formed by land uplift of
former bays. However, their principal hydrological conditions are
similar to coastal lagoons formed by sediment barriers. Schiewer
(2007) gives a comprehensive survey of the ecology of the coastal
lagoons and coastal inlets of the Baltic Sea. There are no in-
vertebrates of harvestable size living in the Baltic SECS, so there is
little shellfish harvesting activity.

3.2. Atlantic and North Sea SECS

There are a number of large SECS along the Atlantic coasts of
Europe, especially in France, e.g. the Bassin d’Arcachon; in Portugal,
e.g. the Ria de Aveiro and the Ria Formosa; and in Spain, e.g. the
Marismas de Odiel. The use of the term “Ria” in Portugal differs
from its use in Galicia, where they are drowned river-valleys,
therefore the Galician Rias are not included in the overview of
SECS. The eastern North Sea is fringed by the largest European SECS,
the Wadden Sea.

The Arcachon Basin is a triangular meso-tidal coastal lagoon of
156 km? in SW France on the Atlantic coast (de Wit et al., 2005). It
includes a delta and a long dune system. It is connected to the



Table 3

Major economic activities and drivers in European SECS (semi-enclosed coastal systems).

Industrial

Urbanisation

Land

Salt extraction
and salt pans

Dredging and

Inlet

Shipping,

Fishing Tourism and Watersports

Aquaculture
ponds

Golf Damming

Agriculture

Lagoon

reclamation development

sand extraction

consolidation

ports and
marinas

ecotourism

of streams

X

Bassin d’Arcachon

Curonian

Gulf of Riga
Logarou

Mar Menor
Papas

X X X

Ria Formosa

X

Ringkebing Fjord
Sacca di Goro

X

Oder- Szczecin

Thau

Venice

Vistula

Wadden Sea

Atlantic through several inlets, through which there is an important
tidal exchange. The intertidal area is about 140 km? and the tidal
currents are about 2 m s~ . These tidal currents also move the sand
banks in the lagoon and the position of the inlets. The lagoon is
estuarine as it receives the waters from several rivers and also
runoff from the land, and thus also qualifies as a TW under the
WEFD. The climate is temperate, although there can be violent
storms causing widespread destruction, such as cyclone Xynthia
(March 2010). The rich ecology of the lagoon supports abundant
birdlife. Economic activities in the lagoon include aquaculture of
the oyster Crassostrea angulata, which covers about 1800 ha of the
lagoon and produces about 18,000 tonnes per annum. There is also
some fish farming, but this is insignificant in comparison to the
oysters. Fishing, boating and tourism are other important economic
and leisure activities, as there are some well-known coastal resorts
along the lagoon.

There are a multitude of small systems called “lagoas” along the
coast of Portugal and two large semi-enclosed systems, the Ria de
Aveiro and the Ria Formosa. This is another example of confusing
nomenclature. The Ria de Aveiro has large freshwater inputs from
the Rio Ave and a number of smaller rivers, therefore it is classified
as a TW under the WFD. However, the Ria Formosa has only one
small permanent river that flows into the east of the lagoon, the Rio
Gildo. Fourteen small, torrential streams flow into the lagoon after
heavy rainfall. The Ribeira de Sdo Lourengo stream, which used to
flow into the west of the lagoon, was completely damned in the
1800’s with a dyke (Newton and Icely, 2002). As a consequence,
there is no significant freshwater input to the Ria Formosa coastal
lagoon and so it is not classified as a TW but instead as “sheltered
CW” in the context of the WFD typology.

The Wadden Sea is the largest SECS in the North Sea, stretching
500 km from the island of Texel in the Netherlands to north of
Esbjerg in Denmark. This trans-boundary system is separated from
the North Sea by a string of islands, the Dutch Frisians and the
Danish Jutland islands. The Wadden Sea is shallow and its
10,000 km? area includes large expanses of tidal flats and wetlands
that support a rich and diverse fauna, including seals and huge
numbers of birds (Colijn and van Beusekom, 2005). The Wadden
Sea is protected by a string of National Parks as well as being a
Ramsar and a UNESCO World Heritage site, thereby attracting large
numbers of tourists. Nuisance blooms of Phaeocystis frequently
affect the use of the shore.

Also on the North Sea but on a smaller scale, Ringkebing Fjord
covers an area of almost 300 km? (Petersen et al., 2008). It is not a
drowned glacial river valley, such as typical fjords, but a coastal
lagoon, also illustrating the varied nomenclature applied to SECS. It
is very shallow with an average depth of 2 m, and has a water
residence time of 3—4 months. The catchment area of this lagoon is
3500 km? and land use is dominated (60%) by intensive agricultural
activities especially animal husbandry. The lagoon has experienced
a regime shift in recent years (Hakanson and Bryhn, 2008).

3.3. Mediterranean European SECS

The study of coastal lagoons has a long tradition in the Medi-
terranean (see for example Petit, 1953, 1962; Mars, 1966; Lasserre
and Postma, 1982; Carrada et al., 1988, and the works in the com-
mittee of “étangs salés et lagunes” of the Commission Internationale
pour l'exploration scientifique de la Mer Méditerranée). However, the
information is dispersed, heterogeneous and the nomenclature
often confusing. In the Mediterranean, there are more than 50
coastal lagoons with some hydrological or ecological data pub-
lished in scientific literature (Pérez-Ruzafa et al., 2011). Sabetta
et al. (2007) list 26 coastal lagoons only for Italian waters,
excluding Sardinia. In Greece, there are at least 40 coastal lagoons



under aquaculture exploitation (Schmidt and Spagnolo, 1985).
There are also many coastal lagoons on the non-European shores of
the Mediterranean. From so many systems in the Mediterranean,
only 3 large European lagoons with abundant data are described as
examples: the Mar Menor (Spain), the Etang de Thau (France) and
the Lagoon of Venice (Italy).

The Mar Menor is a large SECS on the Mediterranean coast of
Spain. It is 21 km long and 135 km? but only 7 m at its deepest
point. The shores of the lagoon have been inhabited for centuries,
with records dating back to Phoenician and Arab settlements.
Nevertheless, in the 20 century it was used as a dumping site
for mine tailings, whereas now it is valued as an important
tourist resort. The Mar Menor includes several protected sites,
with important sea-grass meadows and a rich birdlife. However,
in recent years fisheries have declined and the jellyfishes Rhi-
zostoma pulmo and Cotylorhiza tuberculata have proliferated,
which affects the use of the beaches by swimmers (Pérez-Ruzafa
et al., 2002). Fisheries are mainly for marine migrant fishes that
use the lagoon as nursery areas and feeding grounds. The main
commercial species are fishes from the Families Sparidae,
Mugilidae, Anguillidae and Moronidae (Kapetsky and Lasserre,
1984), which are present in more than the 75% of the Mediter-
ranean lagoons (Pérez-Ruzafa et al.,, 2007b), but shrimps and
clams can be locally very important.

The microtidal Etang de Thau (de Wit et al., 2011) is the largest
of a string of coastal lagoons fringing the Mediterranean coast of
France. The area of the lagoon is about 7500 ha and it has an
average depth of 5 m. The deepest part of the lagoon is 32 m. The
volume of the lagoon is about 340 million m> but the tidal ex-
change, between 0.75 and 3.7 million m~3 d~, is far smaller than
in the Bassin d’Arcachon on the Atlantic coast. There are important
freshwater inputs from streams, runoff and groundwater inputs.
The climate is Mediterranean and the salinity increases during the
dry, summer months. The Thau lagoon supports a rich ecology and
is well-known for its abundant avifauna. Aquaculture of oysters
and mussels is an important economic activity. There are about
600 shellfish farms employing about 2000 people and producing
about 12,000 tonnes of oysters per annum. Other important ac-
tivities include fishing, sailing and navigation. The lagoon is linked
to the Canal du Midi and is therefore an important navigation
route.

The Venice Lagoon (Lasserre and Marzolla, 2000; Solidoro et
al,, 2010) is the largest lagoon of the Mediterranean Sea (Upper
Adriatic) with a surface area of about 550 km?, of which 418 km?
are intertidal (the largest tidal range in the Mediterranean). It is
connected to the northern Adriatic Sea through three inlets: Lido,
Malamocco and Chioggia. The Venice Lagoon supports different
kinds of ecosystems, including dunes, tidal channels, bare mud-
flats, sea-grass beds and salt marshes. Like all others wetlands, it
has an important function in animal and plant interaction, routes
for animal migration, plant dispersal (including seeds) and
maintenance of biodiversity. The extensive wetlands include a
salt-water lagoon and shallow water ponds that are sub-divided
by numerous natural and artificial canals. The historical town of
Venice is located on an island in the centre of the lagoon and the
city is frequently flooded when tides and storm surges result in
an “Aqua Alta” event.

3.4. Black Sea SECS

The Black Sea is an inland sea bounded by a coast shared by 6
countries: Ukraine, the Russian Federation, Georgia, Turkey,
Bulgaria, and Romania. The northwestern coast of the Crimea is
low-lying and abounds in coastal lakes, that are superficially
separated from the sea, although there may be groundwater

exchanges. There are also many coastal lagoons, called “limans”
that stretch north from the Danube to the mouth of the Dnieper.
Liman is the term used for lagoons found along the western and
northern coast of the Black Sea, as well as along the lowest part of
the Danube. Examples of limans include Lake Varna in Bulgaria,
Lake Razelm in Romania and the Dniester liman in the Ukraine. The
largest limans are those of the Dniester, Bug, and Dnieper rivers,
and they are connected with the sea. Smaller limans lose so much
water by evaporation that they form closed saline lakes (Kubijovy¢
and Teslia, 1984—1993).

4. Linking of river basins districts and catchments to SECS

Many processes and pollution in the SECS originate in the
catchment, including rivers and their drainage basins. SECS water
quality management therefore requires the management of
nutrient and pollutant load in the river basin. The EU WEFD links
rivers, TW and adjacent CW to river basin districts that are to be
managed as a single unit. The impact of a river depends on the
water discharge and the volume of the TW, CW or adjacent sea. The
water exchange time is a reasonable indicator for the impact of
river discharges. High river discharges are usually linked to high
nutrient and pollutant loads. The River Basin Management Plans
and the Programme of Measures represent the policy response of
Member States to implement all necessary measures to prevent
deterioration and to restore all water bodies to good ecological
status within 15 years of the entry into force of the WFD (Euro-Site-
Manager, 2012). The emissions and discharges of priority hazard-
ous substances will be phased out and eventually cease, which
should progressively reduce pollution. Member States must un-
dertake Risk Assessments to assess the status of water bodies in the
future. This task is linked to the analysis of pressures and impacts
and its objective is to identify water bodies at risk of not achieving
the WFD objective and breaching the “prevent deterioration”
principle.

In the wet climate of northern Europe, the river discharge and
nutrient loads have a much higher impact on SECS compared to the
dry Mediterranean region. In the Baltic region (river basin 1.74 x 10°
km?; average river discharge 14,000 m>s~ 1) 254,000 m> km 2y ' are
discharged by rivers. In the Black Sea region (1.87 x 10® km?;
11,100 m? s~ 1) about 187,000 m® km 2 a~! and in the Mediterranean
drainage basin the discharge is in the range of only 50,000 m> km2
y~ L This is also true for Atlantic lagoons in S. Europe, for example, the
Ria Formosa on the south coast of the Algarve has few freshwater
inputs, only one is permanent and the others are torrential.

4.1. Trans-boundary issues

Several European SECS are shared between two countries, and
many more have shared watersheds. The tri-lateral Wadden Sea plan
is an example of how trans-boundary cooperation between three
nations can work for the management of SECS. Since the 1980s, dra-
matic political, social, economic and natural changes and challenges
have affected the management of SECS in Europe. After the fall of the
Iron Curtain, political and social changes have been rapid in many of
the new EU member states. The EU-membership accelerated change,
not only because of the new agriculture and industry policies, but also
the implementation of new standards. The Curonian lagoon used to be
part of the coast of the Soviet Union, but now it is divided between
Lithuania, a member state of the EU, and Russia. The Oder/Odra lagoon
at the German/Polish border has been chosen for the following more
detailed discussion. The German part of the Odra region belonged to
the former German Democratic Republic. Like eastern Germany,
Poland was subject to social changes and its transitional economy is
still facing rapid changes. During the last decade, the economic and



social developments in Germany and Poland were largely indepen-
dent and caused strong social and economic gradients. Social prob-
lems are increasing the gap between the flourishing seaside resorts
and the hinterland. Cross-border cooperation as well as competition
will increase and cause social and economic transformations.
Furthermore, many legal challenges are taking place.

5. DPSIR framework and European SECS

This overview uses a conceptual framework in which environ-
mental problems affecting coastal lagoons may be assessed by the
evaluation of driving forces (D), pressures (P), states (S), impacts (I)
and policy responses (R). The DPSIR methodology is based on an
OECD-Organization for Economic Cooperation and Development
concept (OECD, 1994). It has also been further developed and
widely applied by projects such as LOICZ-Land ocean interactions in
the Coastal Zone and EU projects such as DITTY, as well as orga-
nisations such as the EEA-European Environment Agency and
UNEP-United Nations Environment programme. The DPSIR frame-
work can be used to assess a wide range of other pressures, con-
ditions and scenarios pertinent to the application of EU Directives
(Zaldivar et al., 2008). In recent years, there has been a gradual
change in the use of the DPSIR terminology. State is now considered
to be “state change” and Impact is “impact on human system”
(Elliott et al., 2006), and on human welfare. In this way, the
framework uses an integrated “system approach” that considers
the SECS as a Socio-Ecological System (Newton, 2012).

Eutrophication is a good example of a clear causal chain be-
tween the components of DPSIR. Drivers include urbanisation
(discharges of domestic sewage and detergents), agriculture (fer-
tilisers and manure) and industry (organic matter from food pro-
cessing and paper mills). The resulting pressures (inputs of organic
matter, nutrient load and enrichment) causes an adverse change
in the state of the physico-chemical quality elements (e.g. trans-
parency, oxygen conditions, nutrient stoichiometry), and state
changes in the biological quality elements (e.g. composition,
abundance and biomass of phytoplankton and other biota such as
macro-invertebrates). Water bodies that are eutrophic due to hu-
man induced nutrient enrichment fail to achieve Good Ecological
Status. The deteriorating state of the system has impacts on human
welfare and activities, such as the closure of shellfish harvesting,
decreasing fisheries catches and loss of tourism revenue. Member
States must respond by implementing management measures and
responses such as upgrading sewage treatment plants, improving
oxygenation by using fountains for example, or restoring fringing,
riparian vegetation.

5.1. Drivers of change in European SECS

SECS are complex ecosystems balancing ecological processes
and human activities. The multiple activities and sectors are drivers
of changes in SECS. European SECS are valuable not only for tourism
and recreation but also provide protected areas for harbours and
the aquaculture industry. An assessment has shown that fishing,
aquaculture and tourism were the most common and valued uses
in European lagoons (Seeram, 2008).

Table 3 gives a summary of some of the more important eco-
nomic activities in European SECS. It also demonstrates that these
areas provide multiple economic activities, adding to their value.

In general, Mediterranean lagoons support a wide range of hu-
man activities (drivers) including urban development and land
reclamation, salt mining, harbours, tourism and nautical activities,
fisheries and aquaculture. Most of these activities can be concen-
trated in a given lagoon, as the Mar Menor (Pérez-Ruzafa and
Marcos, 2005).

Agricultural practices, food processing and urbanisation lead to
pressures (nutrient and organic matter inputs) that cause the
eutrophication of SECS. However, eutrophication is not the only
important watershed-lagoon interaction. Other sectors, such as
industry, introduce effluents that are a contaminants pressure to
SECS, e.g. metals and persistent organic pollutants, so that the
seafood maybe unfit for human consumption because of high
concentrations of contaminants.

Construction of coastal defenses and port structures, as well as
the dredging of navigational channels for maritime transport are
other important drivers that change hydro-morphology and lead to
pressures on SECS. Several fish species, like eel, salmon and trout
migrate through lagoons into the river system to spawn and con-
structed structures, such as dams and dykes, place physical obsta-
cles in the river that hamper the fish migration.

Shipping and ballast water also causes pressures by the intro-
duction of anti-foulant contaminants and non-indigenous species
(NIS). Linked river-TW-CW systems provide a convenient path for
the spreading and migration of species. The degradation of the
ecosystems in the river catchment and the TW is a serious threat
that has already altered the fauna in many cases. The large number
of Natura 2000 sites (see Table 2) in the SECS demonstrates the
need for an integrated response including nature protection
management for river-TW-CW systems.

5.1.1. Urbanisation and tourism

European SECS are attractive and productive environments with
associated urban and tourism development. SECS are valued rec-
reational and touristic areas because of their shelter and consequent
lack of strong wave action. Many areas of coastal wetland have been
drained for the construction (driver) of urban areas, tourist resort,
marinas, golf courses and even airports (e.g. Faro, Venice and Bar-
celona). SECS in Europe are situated along the coastline in highly
populated areas. The increasing development of SECS for tourism is
resulting in greater pressure from domestic effluents and seasonal
variability of population and inputs. The more popular touristic la-
goons include Venice, Mar Menor and Ria Formosa.

In southern Europe, SECS also play important roles for migratory
and wintering birds. The Ria Formosa has become a major
contributor to the Algarve’s tourism (driver), either by directly
attracting bird watchers, or indirectly by supporting restaurants,
hotels, car rentals etc. In 2002, tourism from this lagoon contrib-
uted €2,585,000 to Portugal’s economy (Serpa et al., 2006). How-
ever, runoff from golf courses contributes to high nutrient inputs
(pressure) into the lagoon and the high number of tourists,
particularly during the summer, places increased stress on the
sewerage disposal system (Loureiro et al., 2005; Mudge et al,,
2007).

The Mar Menor shows a similar situation with 400,000 visitors
in 2008, mainly concentrated in the summer season, and a mean
inter-annual rate rising close to 10% and maintained during the last
decade (Pérez-Ruzafa and Marcos, 2008). Increasing pressures
originate from golf courses, urban and marina development
(driver) in the watershed and the Mar Menor coastline.

Venice is an extreme case of imbalance between residents and
visitors. Venice has an ageing and decreasing population of only
60,000 residents in the historic centre of Venice, and a total of
400,000 living in the municipalities around the lagoon (CORILA,
2008). The local residents are moving out of the city because of
the decline in the provision of basic services. Costs and taxes are
increasing due to the strain on infrastructure from the over-
whelming numbers of visitors. Venice has an annual influx of 2
million tourists (driver). The economy is dominated by the tourism
sector, which provides the main income for Venice. However,
tourism places stress upon the city infrastructure and pressures on



the natural system. Problems include an increase in boat transport,
pollution, habitat destruction, and waste treatment. The increased
pressure of nitrogen (N) and phosphate (P) from untreated sewage
of the residents and numerous tourists has caused great changes in
the state of the macrophytes and the ecological status (state) of the
lagoon (Ravera, 2000), but a reversal in the eutrophication trends
has been observed in the last decade (Solidoro et al., 2010).

5.1.2. Civil engineering, alterations in hydrography and substrate

The construction of ports, marinas and consequent dredging for
navigation alters the geomorphology, sediment transport, sea-floor
integrity and hydrodynamics of SECS. There is an excellent histor-
ical record of the civil engineering measures adopted in Venice to
preserve the equilibrium between the opposing aquatic and
terrestrial forces, and so Venice serves as an example for this sec-
tion: see Lasserre and Marzolla (2000), and references therein.

Venice is a European lagoon that has been intensively urbanised
and profoundly modified morphologically. The city was founded in
AD 400, and the morphology and water dynamics of the lagoon
have been always of great concern, with a growing awareness that
the city was sinking. The objective of the multiple interventions has
been to control the excessive sedimentation of the canals of Venice,
in order to maintain a permanent balance between land and water.
In the XIV century, the lagoon of Venice was very different from
today. There were large rivers flowing into the lagoon, 5—8 unstable
inlets, and a large area of wetland and marshes. The tidal flats were
prone to siltation, with a consequent risk of infilling the lagoon.
Venice was one of the richest cities of Europe and became a great
Mediterranean power. The siltation therefore jeopardised the sur-
vival of Venice as a commercial and military power, as well as the
physical existence of the lagoon. From the XIV to the XVII century,
great care was taken by the Serenissima Repubblica to defend the
lagoon “against sea, rivers and man”. During this period, the lagoon
was subjected to huge engineering works that diverted most of the
rivers to the sea. At the end of the 18th century, the Venetian Re-
public started the building of the sea-defenses along the coastal
strip, called Murazzi, that are still in existence.

Present conditions are somehow reversed with respect to the
XIV century. Industrial development and the port of Mestre and
Porto Maghera were the main drivers for various actions such as
the construction of long jetties. Port structures were constructed
and channels were dredged for navigation. The jetties were built
between the late 19™ and the early 20™ centuries, and changed the
hydrography of the three inlets, thereby preventing sediment
transport from the sea. River flow into the lagoon was also diverted,
so riverine sediment input was reduced and land subsidence
increased water depth. In addition, natural phenomena such as sea-
level rise and subsidence have led to sinking of the city (about
23 cm in the last century). The cumulative pressures caused
morphological deterioration and frequent flooding. The increased
frequency of high water floods “Aqua Alta” has led to a societal
response in the form of a large engineering project, known as
MOSE-MOdulo Sperimentale Elettromeccanico (Experimental
Electromechanical Module), to protect the city of Venice from
floods. It consists of rows of mobile gates able to isolate the lagoon
from the Adriatic Sea when the tide reaches above 110 cm and up to
a maximum of 3 m.

5.1.3. Agricultural drivers: crops, animal rearing and aquaculture
Agricultural drivers are some of the most important causes of
change in European SECS. Many areas of coastal wetland have been
drained and converted to agriculture. Fertiliser application in the
EU has remained high, despite the Nitrate Directive (EU, 1991b). In
addition to the cultivation of food crops, a new agricultural driver is
the increase in biofuel-crops because of the high price of energy.

Changes in European lifestyles are resulting in an increase in de-
mand for protein. Intensive animal raising such as pig, chicken and
poultry farms results in increased pressures from the resulting
manure and farm effluents.

Another important driver is the increase in intensive aquacul-
ture giving rise to pressures from the resulting effluents or exces-
sive organic matter from waste feed. In some countries, aquaculture
contributes significantly to the national economy and aquaculture
is expected to play an important role in the future as a supplement
to stagnant fisheries and the increasing demand of marine products
for human consumption (Olsen et al., 2008). As a consequence,
there is a rapid increase in aquaculture in the SECS, as well as
expansion of open ocean aquaculture. Aquaculture has grown
rapidly in SECS due to the easy access and the sheltered locations
available. Many fish farms and shellfish farms are located in areas
with rapid water exchange, since there are large environmental
impacts if the farms are placed in sheltered locations with low
water exchange (Holmer et al., 2005).

Coastal lagoons are extensively exploited for aquaculture,
especially for mollusc farming (Zaldivar, 2006; Melaku Canu et al.,
2011). Shellfish farming is one of the main economic activities in
SECS. Mollusc farming has undergone rapid expansion over recent
decades attaining 13 x 10° tons in 2008, which represents up to
25% of the total aquaculture yield (FAO, 2010). More than 90% of
seafood production is of bivalve molluscs, mainly mussels, oysters
and clams that are farmed principally in shallow and sheltered
SECS. Examples where more than 50% of the SECS is exploited for
shellfish farming include Thau, Prévost, Sacca di Goro, some sub-
basins in the Venice lagoon and the Ria Formosa. In Portugal, 90%
of the bivalve production comes from the Ria Formosa and this
industry supports 7000 families.

The shallow depth and low tidal exchange make SECS sensitive
to aquaculture pressures and are expected to alter both sediment
and water quality (Kaiser et al.,, 1998). However, shellfish aquacul-
ture is assumed to have less pressure than fish and crustacean
farming, since bivalve molluscs feed on natural phytoplankton and
seston and do not require external feed supply (Naylor et al., 2000).
In contrast to the culturing of fish, shellfish production is considered
as a possible tool to compensate nutrient loading, and shellfishes are
in several countries grown to compensate N and P loading, e.g. from
agriculture (Lindahl et al., 2005; Ferreira et al., 2009). However,
above certain biomass densities the mollusc metabolism may
exacerbate eutrophication.

The main pressures to SECS from the agricultural drivers are
increased inputs of organic matter (manure and aquaculture
effluent), fertilisers (N and P) and inputs of contaminants, such as
pesticides and herbicides.

5.14. Industrial drivers

Many SECS are associated with industrial areas. Striking exam-
ples are the industries of Porto Maghera near Venice, the industrial
complexes near the Marismas de Odiel in S.W. Spain and the in-
dustries centred on Aveiro in Portugal. Power generation can also
impact lagoons by altering the temperature regime (thermal
pollution) or the hydrological regime. A good example of this is the
Etang de Berre, on the Mediterranean coast of France where elec-
tricity generation has significantly altered the salinity of the lagoon
and consequently the fisheries.

Industrial drivers increase the pressure of many different types
of effluents to European SECS. Industrial effluents (pressure)
include a huge variety of different substances and these are mainly
addressed in the sections below on metal pollution and organic
pollution. The food processing industry and the paper industry
(drivers) is addressed in the section on eutrophication, because the
main pressures are nutrient and organic matter pollution.



5.1.5. Other drivers

Because the SECS are shallow, fishing boats are usually small and
for artisanal fisheries (driver). This limits the development of
fisheries in SECS, although landings of catch may be quite high. This
is because the SECS are good harbours and there are usually fishing
ports. Dredged channels often connect these to the adjacent coastal
waters where the main fishing activity takes place. So, although the
catch maybe landed in a fishing port inside the SECS, the fish were
often captured offshore. Olhdo, a fishing port in the Ria Formosa is a
good example of this. It is the third port in Portugal for landings, but
the fish are mainly caught outside the lagoon.

The sheltered SECS provide natural harbours that have
frequently been developed into commercial harbours and marinas
for maritime transport (driver). However, because of the shallow
channels and sediment fluxes, hard structures are often con-
structed to consolidate the inlets and SECS need to be dredged
regularly (pressure). This is often combined with a mineral
extraction sector (driver) for the construction industry or beach
replenishment.

Another mineral extraction industry (driver) is salt extraction.
There has been extensive conversion of the wetlands (pressure) of
SECS to make evaporation ponds since Roman times, particularly in
the Mediterranean, but also in some Atlantic SECS, e.g. the Ria de
Aveiro and the Marismas de Odiel. This may also coincide with
chemical industries (driver) that use salt, such as highly polluting
chlor-alkali plants (pressure).

5.2. Pressures on European SECS

Many SECS are under the increasing influence of human activity.
Because of their economic and social importance, SECS are sub-
jected to severe anthropogenic pressures exacerbated due to
restricted water exchange with the adjacent coastal waters.
Anthropogenic pressures are evident at all scales, from local pollu-
tion and interference with natural deposition and sediment trans-
port regimes as well as the global alteration of sea levels due to
human-induced climatic change. Coastal zones are under
increasing human pressures, which make them very sensitive and
vulnerable to perturbations (Crossland et al., 2005) and hotspots of
global change (Newton et al., 2012). SECS are often developed as a
regional resource and may receive waste materials (pressures) from
urbanisation and other types of human activities (drivers). The
pressures can be direct, from commercial and recreational activities
within the lagoon, or indirect, primarily through loading with nu-
trients, organics and contaminants lost from urban areas and in-
dustrial and agricultural activities in the catchment area (Nixon,
1995; Conley et al., 2000). Pressures on SECS include the disrup-
tion of sediment cycles, the hydrological cycle, biogeochemical

Table 4
Effluent pressures and runoff into European SECS (semi-enclosed coastal systems).

cycles, habitat loss and overexploitation of biotic and abiotic re-
sources. The main pressures are an excess of organic matter and
nutrient inputs from the watershed, which impact water quality and
ecosystem good and services (Nixon, 1995; Cloern, 2001). In
conclusion, SECS experience significant pressures, which are ex-
pected to increase in the future as the coastal population grows.

5.2.1. Pressures from effluents

Urban sewage, industrial effluents, agricultural runoff and
aquaculture effluents are characterised by a relatively high con-
centrations of phosphorous, nitrogen, metals, organic matter, and
organic contaminants such as pesticides and herbicides. This
complex mixture may have multiple adverse effects: ecologically
(state), aesthetically and also for public health (impact). The con-
taminants may be retained, accumulated and even concentrated in
SECS. The pressures from urban waste increased dramatically in
Europe up to the 1980s as a result of increasing urban population
(Nixon, 1995; Howarth and Marino, 2006; Conley et al., 2007).
Table 4 summarises the effluent and runoff into European SECS.

Two systems in Portugal provide an interesting contrast. The
Aveiro lagoon was the site of industrial development in the 20th
century with some very polluting industries (Abreu et al., 2000) and
effluents from chlor-alkali plants. In contrast, the Ria Formosa lies in
an agricultural area, now increasingly developed for tourism and
golf. Nutrient inputs to the lagoon also come from the surrounding
area (Campina de Faro) that is intensively farmed and several golf
courses that border the lagoon (Newton et al., 2003). The lagoon is
vulnerable to anthropogenic eutrophication because of the local
resident population (100,000 inhabitants) that is multiplied by a
factor of 4 or 5 in the summer months, when the plant capacity of
Urban Waste Water Treatment (UWWT) is overwhelmed.

5.2.11. Nutrient and organic matter pollution. After the 2" world
war, the use of synthetic fertiliser increased dramatically leading to
the severe eutrophication of lakes and coastal waters from about
1970 (Howarth and Marino, 2006; Conley et al., 2007; Viaroli et al.,
2008). Also, reclamation of wetlands, the straightening of channels
and the destruction of riperain vegetation has reduced the natural
nutrient retention and de-nitrification resulting in increased
eutrophication problems in SECS. The time lag between the in-
crease in the use of fertiliser and eutrophication effects demon-
strates a large buffer capacity of aquatic ecosystems (Carstensen
et al,, 2006) and homeostatic mechanisms based on top-down
control in the trophic webs of some lagoons.

Eutrophication from agricultural sources was relatively low
until the 1950s. In 1995, the European Environment Agency (EEA)
report “Europe’s Environment: the Dobris Assessment” identified
eutrophication of inland and marine waters as a European wide

Lagoon name(s) Rainstorm Agricultural ~ Golf course  Chicken farms  Pig farms  Aquaculture  Untreated UWW Industrial ~ Food

urban runoff  runoff runoff effluent effluent ponds sewage effluent  effluent processing
effluent effluent effluent

Bassin d’Arcachon X X X X X

Curonian lagoon X X X X X X

Etang Thau X X X X X

Logarou X X X

Mar Menor X X X X X

Oder (Odra lagoon) X X

Papas X X X

Ria Formosa X X X X X X X X X

Ringkebing Fjord X X X X X

Sacca di Goro X X X X X X

Venice lagoon X X X X X X




problem of major concern. The EEA (2003) review “Europe’s water:
An indicator-based assessment” stated that progress was being
achieved in improving water quality and quantity particularly in
the European Union but many of Europe’s rivers, lakes, estuaries
and coastal waters are still affected by human activities leading to
eutrophication.

The main nutrients causing eutrophication problems in lagoons
are nitrogen (N) and phosphorus (P) (Vollenweider, 1992). The N
load delivered to coastal zones is considered as the main cause
of macro-algal blooms and ecosystem perturbations (Valiela et al.,
1997; Howarth and Marino, 2006). In nitrate-rich waters, nitro-
philic opportunistic species take advantage of their capacity to
exploit transient nitrate availability and store nitrate. However, the
nitrate storage capacity can be saturated, lowering their growth
potential (Naldi and Viaroli, 2002). Table 5 summarises the symp-
toms of eutrophication in European SECS.

Lagoon water quality and sensitivity to nutrient and organic
loadings from the watershed have been assessed mainly with water
chemistry and phytoplankton indicators, basically referring to the
trophic reference system proposed by Vollenweider and Kerekes
(1982) and Nixon (1995). Vollenweider et al. (1998) proposed a
trophic index (TRIX) that integrates chlorophyll-a, oxygen satura-
tion, total N and total P to characterise the trophic state of coastal
marine waters. This index has been applied to coastal lagoons
(Coelho et al.,, 2007; Salas et al., 2008). TRIX is based on the
assumption that eutrophication processes are related primarily to
the phytoplankton community, which may not be the case for
shallow coastal lagoons where both micro-phytobenthos (MPB)
and benthic vegetation are important components of the primary
producer community. Other indices that consider the coverage of
benthic phanerogams and opportunistic macro-algal species are
more suitable in these cases (Giordani et al., 2009). Newton et al.
(2003) used and compared several indices of eutrophication in
the Ria Formosa.

The issues to be analysed when assessing eutrophication are
complex and cannot be resolved by considering only simple vari-
ables and linear relationships. Nevertheless, a set of basic variables
that are indicative of ecosystem properties and functions (state)
can be easily measured and are suited for classification and
assessment of sensitivity to external stressors (Viaroli and
Christian, 2003; Viaroli et al., 2004). Basic morphometric parame-
ters, hydrological variables, sediment characteristics and biological
elements have been extensively applied and validated in deep
aquatic ecosystems. Nevertheless, applications to shallow coastal
lagoons require ad hoc calibration and further validations using the
weight-of-evidence approach. In order to bring together informa-
tion from multiple indicators, metrics that allow integration or
combination of multiple variables will also greatly improve the
capacity of representing ecological status or sensitivity to a given
stressor (Viaroli et al., 2004). The mean depth is an indicator of the
development of the water—sediment interface with respect to the
water volume. The ratio of freshwater discharge to recipient vol-
umes could be either a measure of freshwater flushing or a proxy of
sensitivity to pressures from watershed. According to Vollenweider
(1992), the combination of hydrological variables with loading es-
timates gives an assessment of the lagoon sensitivity to eutrophi-
cation. However, this approach is more appropriate for deep
aquatic ecosystems, dominated by phytoplankton communities.
Water budgets and nutrient loadings have been widely used for
assessing the net ecosystem metabolism (NEM) of coastal lagoons
with a wide array of primary producer communities (Giordani et al.,
2005, 2008). Basically, NEM is calculated with the LOICZ biogeo-
chemical model from P loadings; thus NEM gives a measure of the
trophic status and of its dependency on nutrient delivery from the
watershed.

Table 5

Diarrhetic Shellfish Poisoning.

Prorocentrum sp., A = Alexandrium catenella, D
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The susceptibility to eutrophication is not only a simple function
of nutrient loadings, but also depends on sedimentary processes
that are mainly controlled by a suite of sedimentological and
geochemical variables. Granulometry and sedimentary organic
matter provide basic information on sediment composition and are
important determinants of exchanges of oxygen and nutrients
across the water—sediment interface. The C:N ratio of the sediment
organic matter pool is a good indicator of organic matter lability
(Enriquez et al., 1993). The sedimentary carbonate content can be
used to assess the capacity of the sediment to retain phosphate
through the calcium/carbonate/phosphate system (Golterman,
1995a,b; Rozan et al., 2002). Reactive iron provides an indication
of the sediment capacity to buffer against sulphides and phosphate
(de Wit et al., 2001). Yet, the above biogeochemical variables are
also related to benthic vegetation and, to some extent, the macro-
algae to sea-grass ratio could be a proxy of their relative
dominance.

Sedimentary variables can be integrated with water quality
using simple metrics, namely the lagoon quality index (LWQI),
which integrates oxygen saturation, dissolved inorganic N and P,
phytoplankton chlorophyll-a, macro-algal and sea-grass coverage
(Giordani et al., 2009). LQWI is a modified version of the WQ], in
which utility functions and weight criteria are used to transform
measured variables into quality scores (Cude, 2001; Said et al.,
2004).

Another approach is that used in ASSETS (2009)-Assessment of
Estuarine Trophic Status. This builds on the U.S. National Estuarine
Eutrophication Assessment (NEEA) developed by National Oceanic
and Atmospheric Administration (NOAA). Although developed for
estuaries, the method has also been tested in SECS, including the
Ria Formosa, and several USA lagoons (Nobre et al., 2005). However,
ASSETS does not include the benthos or fish that are required BQE
under the WFD.

The conceptual model of eutrophication is still evolving (Cloern,
2001) and knowledge gaps can be identified, e.g. variations in
nutrient limitation along spatial and temporal scales, and nutrient
limitation as a trigger of potentially harmful or bloom-forming
phytoplankton species. This is mainly because SECS respond to
increased nutrient loading in different ways, depending on the
intrinsic buffering mechanisms of the ecosystem. There is a general
need to develop more and better quantitative relations between
vegetation indicators and water quality. The current quantitative
relations have only low predictive power and do not provide suf-
ficient foundation for assessing water quality or predicting quality
future.

Metal pollution and organic pollution may even impact SECS
with little industrial development. A good example is the Ria For-
mosa (Bebianno, 1995). A wide range of contaminants was detected
including metals such as cadmium, anti-foulants such as the ban-
ned tri-butyl Tin (Coelho et al., 2002), polyaromatic hydrocarbons
(PAHSs) (Barreira et al., 2007) and polychlorinated biphenyls (PCBs)
(Barreira et al., 2005). Other lagoons with greater anthropogenic
pressures include the Venice Lagoon, which receives dioxin-like
compounds and metals from industrial processes. Mercury and
PAHs are responsible for ecotoxic effects in the Aveiro Lagoon,
Portugal. Organochlorine pesticides and PCBs are having measur-
able effects in the Orbetello Lagoon, Italy.

The pressures from pollutants and contaminants may be exac-
erbated by the residence time and poor flushing in SECS as well as
effects such as bio-accumulation and bio-magnification (Carafa et
al., 2007, 2009). Some compounds are persistent and subject to
bio-accumulation throughout trophic compartments of the food
web in coastal lagoons (Pérez-Ruzafa et al., 2000). Some of these
compounds accumulate in the fatty tissues of animals thereby
contaminating seafood. Compounds that decompose can produce

degradation products that are known to have adverse biological
effects. Eco-toxicological studies (Coelho et al., 2001; Serafim et al.,
2002) highlight the pressures of organic compounds to the state of
the biota in the lagoons.

5.2.2. Pressures from aquaculture

Animal densities in shellfish aquaculture maybe two orders of
magnitude greater in farmed areas than in natural populations,
which enhances bio-deposition rates of organic matter from 10 to
100 fold (Graf and Rosenberg, 1997). Field studies have addressed
the influence of high densities of clams and mussels on different
ecosystem components and processes (Mazouni et al., 1996; Bartoli
et al., 2001a,b; Nizzoli et al., 2005, 2006a,b). The extent of pres-
sures from shellfish farming depends upon the ecological charac-
teristics of the different species as well as being greatly influenced
by farming practices.

Bivalve filter feeders are recognised for having important func-
tional roles in aquatic ecosystems, as they affect both the water
column and bottom substrates, modifying the particulate to dis-
solved nutrient ratio, changing sediment composition (Prins et al.,
1998; Newell, 2004) and controlling the benthic—pelagic coupling
(Strayer et al., 1999). Several studies demonstrate that mollusc
farming also stimulates mineralisation rates, sediment oxygen
consumption, P and ammonium (NH4") recycling to the water
column (Baudinet et al., 1990; Gilbert et al., 1997; Kaiser et al., 1998;
Magni et al., 2000). The grazing of phytoplankton by bivalves
effectively removes N from the system, a valuable ecosystem ser-
vice (Ferreira et al., 2009).

Shellfish aquaculture stimulates benthic metabolism, and
mussel-farming also induces anaerobic processes and sediment
reduction. There are large differences between the effects of clam
and mussel-farming. Clams and infaunal species stimulate the
transfer of both organic matter and oxygen to the sediment,
whereas suspended culture practices of mussels enhance only
organic matter enrichment. Under these circumstances, a feedback
loop establishes between biogeochemical processes and the
farmed molluscs. Mussels are usually farmed in suspended cul-
tures, and influence benthic fluxes only through bio-deposition,
which leads to an organic matter enrichment in the upper sedi-
ment horizon. In addition, the mussel bulk on the ropes consumes
oxygen and releases NHj at very high rates, directly in the water
column. In contrast, the infaunal manila clam (R. philippinarum) is
completely buried in the sediment, where it causes particle
reworking and sediment mixing and supports greater suspended
organic carbon, dissolved inorganic carbon and NHZ fluxes than in
natural benthic systems.

Mollusc harvesting can also induce perturbations in biogeo-
chemical cycling. For example, clams and infaunal species are
sometimes harvested by dredging the upper sediment horizon,
which is some 10 cm thick. Dredging causes an amplification of
benthic fluxes, which is transient and followed by sediment re-
oxidation and further stabilisation (Viaroli et al., 2003). The
extent of such perturbation also depends on the dredging
technique (Castadelli et al., 2003). Manual harvesting, as prac-
ticed in the Ria Formosa, seems to have only local and to some
extent negligible effects, whilst mechanical dredging, as prac-
ticed in the Venice lagoon, leads to great effects on sea-floor
integrity with a relevant loss of the finest sediment fraction
and a strong modification of sediment texture (Pranovi et al.,
2003).

5.2.3. Pressures from bio-pollution and invasive species

Aquatic invasive species (AIS) are a descriptor of the Marine
Strategy Directive but this is applicable to offshore waters and does
not include SECS. AIS are considered as biological pollution as a



concern for the ecological state of SECS, but also impact human
welfare through threats to human health and socio-economic costs
(Leppdkoski, 2002; Elliott, 2003). Climate change stresses some
species beyond the physiological tolerance limits and other species
can expand their geographical distribution. This increases the in-
tensity of invasion of SECS by exotic species or non-indigenous
species (NIS). Some species are deliberately introduced by a
sector, such as mariculture (e.g. Manila clam in Venice). Shipping
and maritime transport is the main vector for the introduction of
exotics to polluted harbours.

SECS are also gateways for bio-invasions where invading species
represent an emerging threat to maintaining high biodiversity.
Today the biota of SECS are exposed to each other because of the
breakdown in geographical barriers due to ship traffic, leading to an
exchange of species and further homogenisation of aquatic animal
and plant life worldwide. SECS are interesting areas for studies on
alien species since there are steep gradients in the physico-
chemical environment, biological communities, degree of pollu-
tion and other human activities. SECS biota is a mixture of native
and non-native species of marine, brackish and freshwater origin.
In comparison with other coastal inlets, European SECS seem to be
more easily invaded, and the effects of introductions are more
evident (Olenin and Leppakoski, 1999).

SECS are considered as important bridgeheads for NIS, since
most harbours worldwide are located at river mouths or in coastal
inlets of reduced salinity. Low native species richness and diversity
of functions provide available empty niches that facilitate the
successful introduction and establishment of AIS in SECS (Paavola
et al,, 2005). There is evidence of significant changes in the envi-
ronmental and ecological status of SECS caused by alien species
along the coasts of the Mediterranean, Black, North and Baltic Seas.

Some AIS can be of commercial interest and a significant num-
ber of exotic species have become valuable resources. There are 19
established alien species of marine invertebrates in the Venice
Lagoon (Pranovi et al., 2006). The Manila clam (R. philippinarum)
was introduced in 1983 and is the most successful of these species.
Some non-native fish (e.g. round goby Neogobius melanostomus) are
of interest to anglers, while both larval and adult stages of several
AIS are important food for native commercial fish.

Research into marine invasion biology focuses on the threats AIS
pose to the most infested SECS as well as ports and estuaries. Climatic
changes have resulted in changes of biodiversity due to the intro-
duction and establishment of exotic species (EEA, 2006). Impacts on
human welfare include economic losses caused by the massive in-
vasion of NIS species. Polluted or physically degraded environments
are more prone to invasion than pristine sites, so the occurrence of
NIS is an indicator of changes in environmental and ecosystem status
(state). Therefore, the tolerance of exotic species to pollution makes
them good candidates for assessing Ecological Quality Status (see
Section 5.3.3 on benthos). This is a strategic issue for both the WFD
and the European Thematic Strategy on the Protection and Conser-
vation of the Marine Environment (EEA, 2006).

5.2.4. Pressures from habitat loss

SECS are highly productive and structurally complex ecosys-
tems, typically with multiple habitats such as sand dunes, mudflats,
creeks and channels and associated eco-tones such as salt marsh
and sea-grass meadows. SECS in Europe experience pressures due
to an increasing human population and a still more intensified
agriculture industry. Urbanisation (driver) along coastlines result
in direct habitat loss (pressure), such as the loss of salt marshes by
the construction of airports, UWWT plants, salt pans, aquaculture
ponds and marinas.

The shipping and maritime transport sectors (drivers) cause
pressures on habitats because of the construction of ports and

maritime structures as well as dredging, that changes both sea-
floor integrity and hydrology.

Urbanisation (driver) along coastlines also results in the loss of
wetland and sea-grass habitat by the construction of resorts and
marinas. Nutrient loading (pressure) from agriculture and urban
sewage indirectly affects habitats. Increased phytoplankton pro-
duction decreases the light conditions for the benthic flora and
submerged aquatic vegetation (SAV), such as sea-grasses. SECS all
over Europe are therefore facing loss of habitats despite the intro-
duction of the Habitat Directive.

5.3. State of European SECS

Elliott et al. (2006) have revised the DPSIR framework so that
State is now interpreted as “State change”. The European WEFD-
Water Framework Directive uses “Status” and includes physico-
chemical “elements” and biological “elements” to describe the
ecological “status” of all water bodies, including coastal lagoons.
These cannot be considered separately, for example changes in
temperature may also affect the distribution of species (also see
Section 5.2.3) and changes in salinity affect osmotic pressure and
hence the survival of halo-tolerant species. The WFD “elements”
are the approach used in the following sections.

Key environmental variables (e.g. T °C, S, pH and Eh) in SECS are
all subject to global changes due to sea-surface warming, changes
in hydrology and evaporation, ocean acidification and increases in
hypoxic events and zones. These physico-chemical quality ele-
ments are fundamental to the chemical state of SECS and also
control chemical equilibria at the sediment interface (e.g. phos-
phate and metals).

5.3.1. Nutrient condition

In SECS, biogeochemical processes take place mainly in the
benthic compartment at the water—sediment interface, due to the
low water volume to sediment surface ratio (Golterman, 1995a,b;
Castel et al., 1996). Biogeochemistry and biogeochemical cycles in
lagoons have been reviewed in Kjerfve (1994). Due to the shal-
lowness and to the inherent high sediment surface area to water
volume ratios, the sediment and its resident benthic communities
are the most sensitive components of the ecosystems and act as
triggers for processes in the water column. Sedimentary and
benthic elements support also organic matter and nutrient recy-
cling and the reactivity of biogeochemical buffers (Golterman,
19953,b; de Wit et al., 2001).

Phosphate equilibrium at the sediment interface and P cycling
depends mainly on geochemical reactions with calcium, carbon-
ates, iron (Fe), aluminium and humic compounds (Golterman,
1995a; Jensen et al., 1998). However, only non-refractory organic
P and Fe bound P are considered to contribute to P exchanges be-
tween sediment and water, through organic matter decomposition
and the reduction of ferric iron species (Golterman, 2001; Rozan
et al, 2002). The amorphous ferric iron species (especially
FeOOH) retain phosphates in the solid phase through the formation
of complexes and/or loose-binding. Under persistent anoxic con-
ditions, bacterial sulphate reduction stimulates the iron reduction
thus favouring phosphate release to pore-water and thereby to the
water column (Giordani et al., 1996; Stal et al., 1996; Heijs et al.,
2000). In the sulphide/iron-monosulphide/pyrite system, a series
of reactions of iron with sulphides lead to the formation of the
highly insoluble FeS and FeS;, which not only represents a potential
mechanism for the removal of toxic hydrogen sulphide, but also
contrast the phosphate retention by sediment (Golterman, 1995a,b;
Heijs and van Gemerden, 2000; de Wit et al., 2001).

The sedimentary biogeochemistry of sulphur and iron has been
reviewed focussing on biological processes mediated by both



bacteria and benthic fauna (Meysman and Middleburg, 2005;
Rickard and Morse, 2005).

N cycling and transformations within coastal lagoons depend on
the interactions between benthic vegetation and microbial processes
(Eyre and Ferguson, 2002; Risgaard-Petersen, 2003) and varies be-
tween different primary producers groups (Pedersen et al., 2004;
Sundbdck and MacGlathery, 2005). Nitrogen uptake and retention
within biomass depends upon life cycle and tissue recalcitrance
(Buchsbaum et al., 1991; Banta et al., 2004). Therefore, sea-grasses
act as a nitrogen sink, keeping de-nitrification rates and benthic ef-
fluxes of nitrate and ammonium almost negligible (Risgaard-
Petersen and Jensen, 1997; Welsh et al, 2000; Bartoli et al.,
2001a,b; Eyre and Ferguson, 2002). Under these circumstances,
SECS store and retain N. Micro-phytobenthos is thought to favour the
development of sharp gradients at the water—sediment interface
(Sundback and MacGlathery, 2005), where oxic to anoxic gradients
can be established that promote coupled bacterial nitrification—de-
nitrification processes. Under these conditions, N is lost from the
water mass, to some extent counteracting the external loading and
avoiding ecosystem deterioration. However, the stability of the MPB
system depends on physical perturbation (e.g. turbulence and re-
suspension). Nitrification—de-nitrification coupling is regulated by
the autotrophy to heterotrophy ratio of the MPB system (Risgaard-
Petersen, 2003).

Microbial and geochemical processes at the water—sediment
interface are influenced by bio-turbation that can support primary
productivity and eutrophication processes with internal loadings
(see Kristensen et al., 2005 for a detailed review). Sediment
porosity, vertical distribution and quality of organic matter, min-
eralisation rates and solute transfer across the water—sediment
interface are greatly influenced by burrowing, particle reworking,
as well as ventilation and irrigation activities from benthic macro-
fauna. Moreover, the network of burrows walls within the upper-
most sediment horizons expands the sediment surface area to
volume ratio, thus enhancing sediment-water exchanges.

5.3.2. Oxygen condition

The oxygen condition of SECS is controlled by hydrological
conditions, bio-turbation by benthic infauna, geochemical re-
actions and biogeochemical reactions (see Kristensen et al., 2005
for review). These include primary production, organic matter
decomposition, microbial mineralisation and oxidation processes.

Pressures from sewage discharges and decaying autochthonous
material significantly increases the biochemical oxygen demand of
SECS and leads to large oscillations in the dissolved oxygen content.
During daylight hours, algal photosynthesis fuelled by nutrients
and light produces considerable oxygen and saturation values in
excess of 200% are possible. However, at night, respiration depletes
the oxygen and anoxic conditions in the waters can occur. When
this is coupled to the relatively poor flushing of the inner waters of
lagoons, poor water conditions might exist. Studies in the Ria For-
mosa Lagoon (Portugal) have demonstrated the transport and
deposition of sewage derived organic matter at sites remote from
discharge pipes for UWWT (Mudge and Duce, 2005). These sites
tend to be where the currents allow the settling of suspended
particles. The resulting sediments in many lagoons across Europe
are frequently black in colour due to the presence of metal sul-
phides in anoxic conditions and, in some cases, may produce
hydrogen sulphide gas that is toxic to aerobes. When this occurs,
there is a fundamental change in ecological status from aerobic to
anaerobic metabolism.

Different plant community typology makes a substantial dif-
ference in biogeochemical cycling, primarily in oxygen and dis-
solved inorganic carbon production and consumption rates
(Pedersen et al., 2004). The biogeochemical conditions in the water

column and the sediments experience large diurnal fluctuations
with oxygen depletion events during the night (Krause-Jensen
et al,, 1999), resulting in a poor environment for benthic flora and
fauna and loss of biodiversity. Most benthic flora and fauna are
sensitive to low oxygen concentrations and are lost under severe
depletions as observed for sea-grasses (Carlson et al., 1994; Rask
et al,, 1999) and mussel beds. Sea-grasses are sensitive to oxygen
depletion in the water column, as this stops the oxygen trans-
portation through the leaves to the below-ground system, which
turn anoxic (Pedersen et al., 2004). The roots can survive short
periods of anoxia by shifting to anaerobic metabolism, but if there is
an invasion of sulphide from the sediment at the same time, the
growth is reduced and mortality increases (Goodman et al., 1995;
Holmer and Bondgaard, 2001).

Eutrophication often results in organic enrichment of lagoons
increasing the risk of oxygen depletion events in particular in deep
and stratified lagoons (Ellegaard et al., 2006). MPB is responsible for
oxygen production at the water—sediment interface, thus allowing
oxygen penetration in the superficial sediment horizon, as well as
oxygen release through the whole water column. Rhizophytes and
benthic sessile macro-algae deliver oxygen through the water col-
umn allowing its oxygenation. Vegetation type and morphology
determine a physical stratification of the water mass, e.g. floating
foliose thalli induce water lamination and stratification, with oxy-
gen over-saturation in the superficial water mass above thalli and
anoxia in the deeper layers beneath thalli. Moreover, oxygen is
released in the root system through the radial oxygen release. In
healthy sea-grass meadows, production and respiration rates are
usually well balanced with smoothed fluctuations, whilst in macro-
algal mats a wide oscillation can occur with super-saturation fol-
lowed by anoxia (Viaroli et al., 2010).

Carbon cycling is to a great extent controlled by organic matter
production and microbial decomposition processes (Banta et al.,
2004). Organic matter decomposition is not only regulated by
quantity but also depends on quality and recalcitrance, elemental
and macro-molecular composition, growth rates and life cycles of
benthic vegetation (Buchsbaum et al., 1991; Enriquez et al., 1993).
Sea-grasses are composed of more refractory components in rela-
tion to macro-algae, which also grow and decompose much faster,
leading to shifts in oxygen metabolism (Neubauer et al.,, 2004,
Lomstein et al., 2006).

Dystrophic crises are one of the strongest perturbations of the
biogeochemical metabolism. These often occur in the summer in
Mediterranean SECS, when the accumulated macro-algal biomass
undergoes rapid decomposition, causing anoxia and the release of
both sulphides and phosphorus to the water column (Izzo and Hull,
1991; Castel et al., 1996; Solidoro et al., 1997; Viaroli and Christian,
2003; Viaroli et al., 2010).

5.3.3. Assessment of ecological status

The WFD (2000/60/EC) sets the legal requirements for the
classification of ecological status of SECS in its provisions for tran-
sitional waters. All European Union member states (MS), as well as
some other countries such as Norway, have adopted this legislation.
The WFD requires the ecological status classification to reflect
changes in the structure of the biological communities and in the
overall ecosystem functioning as a consequence of anthropogenic
pressures (e.g. nutrient loading, acidification, toxic and hazardous
contaminants, physical habitat alterations, etc.). Therefore, a pri-
ority is the development of systems for the monitoring, assessment
and classification of ecological status to inform management stra-
tegies to ensure the sustainable use of SECS, but this has proved to
be particularly difficult due to the complex dynamics of SECS.

The ecological status is defined in terms of the degree of devi-
ation from reference conditions of a surface water body type. Thus,



the process for the assessment of ecological status requires several
steps including: (1) grouping of water bodies into types (for la-
goons, two alternative typology systems are proposed in Annex V,
Article 1.2.3); (2) determination of type-specific reference condi-
tions for the biological quality elements; and (3) classification using
Ecological Quality Ratios (EQR). The EQR is defined as the ratio
between the type-specific reference value and the observed value
for a given biological metric and is divided into five quality classes
(high, good, moderate, poor, and bad) based on biological quality
elements and to which the principle of ‘one out all out’ applies.

However, the high spatio-temporal variability of SECS may be
higher than that expected in more open coastal assemblages
(Pérez-Ruzafa et al., 2007a). This means that the patterns in species
and community distribution, and the sources of such variability,
must be taken into account when designing sampling strategies to
evaluate anthropogenic pressures or to establish reference condi-
tions. This is necessary to distinguish when changes in the state of
the ecosystem are caused by human pressure and not due to nat-
ural variability. The quality status of the biological elements is
supported by the quality status of the hydro-morphological and
physico-chemical elements (see Sections 5.3.1 and 5.3.2), therefore
for SECS to classify in high or good ecological status, the quality of
the supporting elements should also be high or good.

At the time of the adoption of the WFD (end of 2000), there were
no comprehensive ecological classification systems for SECS and
relatively little attention had been given to these ecosystems with
regard to the development of ecological indicators (Kuuppo et al.,
2006). However, the need for new tools for the assessment of
ecological status in the WFD resulted in an impetus to develop
ecological assessment methodologies for SECS (e.g. Bricker et al.,
2003; Newton et al., 2003; de Jong, 2004; Marin-Guirao et al.,
2005; Koutrakis et al., 2005; Mouillot et al., 2005; Nobre et al.,
2005; Foden and Brazier, 2007; Austoni et al., 2007; Reizopoulou
and Nicolaidou, 2007). Nevertheless, there are still gaps, particu-
larly with respect to the ecological assessment of fish, and in the
determination of reference conditions for all biological elements.

At first, the quality assessment systems of SECS were mostly
targeted to detect changes in the trophic state as resulting from
increased pressures from nutrient loading. Depending on the hy-
drologic and hydrodynamic characteristics, such assessments are
either based on the phytoplankton assessment using simple Vol-
lenweider type relationships between input rate of nutrients and
mean Chl-a concentration (Vollenweider et al., 1998; Tett et al,,
2003), or based on SAV, angiosperms, macro-algae and epi-
benthic micro-algae (Short and Wyllie-Echeverria, 1996; de Jong,
2004). Supporting physico-chemical values for oxygen condition
and transparency, and zooplankton species and abundance are
often taken account in a final evaluation of the trophic status (e.g.
Margonski and Horbowa, 2003).

5.3.3.1. Phytoplankton status. Phytoplankton metrics were pro-
posed during the EU WFD intercalibration exercise for the assess-
ment of the phytoplankton biological quality element in coastal
waters and transitional waters, which include most SECS (Loureiro
et al., 2006; Goela et al., 2009).

5.3.3.2. Aquatic flora. The aquatic flora includes many different
plant assemblages. These are micro-phytobenthos, macro-phyte
algae, sea-grasses and salt marsh plants, all of which are important
in SECS. Benthic vegetation and MPB form the basis of community
structure and control ecosystem functioning (McGlatery et al.,
2004; Sundbdck and MacGlathery, 2005) in SECS. The community
typology depends on nutrient loading, water depth and flushing
rate (Dahlgreen and Kautsky, 2004). In nutrient poor and well
flushed ecosystems, rhizophytes dominate until they are limited by

light penetration and turbidity (depth effect). Increasing nutrient
loading pressures determine a shift towards the development of
epiphytic filamentous macro-algae, whilst well flushed and high-
load water masses become dominated by phytoplankton. The
community evolution can be represented with a four-phase suc-
cession model (Schramm, 1999), where pristine and well preserved
SECS are dominated by perennial sea-grasses and rhizophytes
taking advantage of nutrient supply from sediment (Borum, 1996;
Hemminga, 1998). An increasing nutrient input to the water col-
umn favours phytoplankton and epiphytic algae, which can damage
sea-grasses until they are displaced and substituted either by
floating, opportunistic macro-algae or by phytoplankton commu-
nities. In the later stages and/or in turbid waters, pico-plankton and
cyanobacteria species tend to dominate.

The European coastline includes many SECS where the depth of
the euphotic zone is greater than the compensation depth, or
which are optically shallow and in which sea-bed primary pro-
duction can be important. Due to the shallow depths, light reaches
the substratum and this provides suitable conditions for the
development of important benthic algal communities. MPB chlo-
rophyll concentrations are variable throughout Europe, ranging
from 60 to 125 mg chl m~?2 at Gulf of Fos in the Mediterranean Sea
(Barranguet, 1997), 80 to 500 mg chl m~ in the Ria Formosa lagoon
on the Atlantic coast (Brito et al., 2009a), 21 to 939 mg chl m~2 at
the Westerschelde estuary in the North Sea (Hamels et al., 1998)
and 20 to 100 mg chl m~2 in (Irigoien and Castel, 1997). Lucas et al.
(2001) showed that the benthic contribution of MPB cells to the
total diatom abundance in the water column can exceed 42% over
the flood-ebb. The re-suspension phenomenon is therefore essen-
tial in the benthic—pelagic interaction. In addition, MPB cells are
able to avoid photo-inhibition due to a continuous and rapid
pattern of individual specimens moving upwards and downwards
within the top layer of the sediment (Kromkamp et al., 1998). This
can be an evolutionary advantage, leading to higher rates of biofilm
productivity (Consalvey et al., 2005).

The WFD assessment of water column parameters and macro-
algal biomass therefore misses key components in shallow la-
goons (Brito et al., 2010). Although the importance of the micro-
phytobenthos has been studied to evaluate ecosystem changes, it
is not used as an indicator of ecological quality in coastal waters.
Diatom metrics could be developed for SECS to provide a more
comprehensive ecological quality assessment, as in the case of
freshwater systems. Furthermore, the understanding of sediment-
water interactions, such as the re-suspension phenomenon is
desirable.

Phytoplankton blooms in the nutrient rich Baltic Sea area and in
Danish SECS results in shading and the consequent decrease in
most light demanding benthic flora species, specifically the sea-
grasses (>11%) compared to macro-algae (<7%) and phyto-
plankton (<1%, Nielsen et al, 2002). Thus, macro-algae and
phytoplankton outcompete sea-grasses in many SECS. The suc-
cessful macro-algae are often fast growing, opportunistic species,
such as the leafy Ulva sp. or thread-like algae (e.g. Chaetomorpha
sp.), especially in nutrient rich lagoons. These species benefit from
enhanced nutrient availability in the water column as well as a fast
regeneration from the sediments (Valiela et al., 1997; Sundbdck
et al, 2003). These types of macro-algae may contribute to a
negative feedback loop, when the large biomass decomposes fast
and the nutrients become readily available in the water column
(Flindt et al., 1999; Solidoro et al., 1997). Oxygen depletion and
sulphide invasion are considered as important factors for such
dystrophic crises (see 5.3.2) and die-back events (Carlson et al.,
1994; Rask et al,, 1999; Holmer and Bondgaard, 2001). Recent
compilations of the depth limits of sea-grasses show that the
maximum depth of sea-grass distribution is now lower compared



to earlier compilations a decade ago, indicating that the light re-
quirements has increased. One reason may be an increased demand
for oxygen and thus higher rates of photosynthesis due to sulphide
stress in the sediments (Duarte et al., 2007). Several studies show
loss of sea-grass habitat due to the invasion of large and fast
growing macro-algae, such as Sargassum spp. into SECS (Thomsen
et al,, 2006) and this is expected to become an increasing pres-
sure in the future. The increased use of herbicides by agriculture in
the catchment is another pressure contributing to the decline of
sea-grasses.

Macrophyte-based indicators have been developed including
the Ecological Evaluation Index — EEI (Orfanidis et al., 2001, 2003)
and the IFREMER's classification scheme (Souchu et al., 2000). The
EEI uses benthic seaweeds as bio-indicators of ecosystem changes
from pristine status (Ecological Status Group I, ESG I) to deterio-
rated status (ESG II). ESG I includes species with low growth rates
and long life cycles, whereas ESG II includes opportunistic species
with high growth rates, short life cycles and high biodegradability
rates. The IFREMER classification scheme aims at implementing an
operational tool for assessing eutrophication levels in French
Mediterranean SECS. The scheme allows the classification into five
quality levels, which correspond to different macro-phyte com-
munities spanning climax species, mainly phenerogams, phyto-
plankton and macro-algae. The macro-phyte index is then
integrated with data on zoo-benthos, sediment and water quality.
A good agreement between exergy and macrophyte indicators has
been demonstrated (Austoni et al. 2007), although a wealth of
problems exist when considering animal species, especially
vertebrates.

5.3.3.3. Status of benthos. Macro-faunal assemblage composition
has been described in many Mediterranean SECS (Mars, 1966;
Casabianca et al,, 1973; Amanieu et al., 1977, 1981; Frisoni et al.,
1983; Fresi et al, 1985; Capaccioni et al., 1987; Diviacco and
Bianchi, 1987; Bianchi, 1988; Lardicci et al., 1993; Guelorget et al.,
1994; Millet and Guelorget, 1994; Arvanitidis et al., 2005; Mogias
and Kevrekidis, 2005; Chaouti and Bayed, 2008). Some soft-
bottom benthic macro-invertebrate metrics have been developed
specifically for nutrient pressure and organic pollution of SECS.
They include measures of diversity (e.g. species—area relationships,
Sabetta et al., 2007), community structure (e.g. index of size dis-
tribution, Reizopoulou and Nicolaidou, 2007) and composition (e.g.
Morgana and Naviglio, 1995; Koutsoubas et al., 2000; Ponti and
Abbiati, 2004; Bandelj et al., 2012). A number of indices have also
been developed taking into account the benthic macro-fauna (Grall
and Chauvaud, 2002; Magni et al., 2005). Among others, AMBI
(Borja et al.,, 2003) and BENTIX (Simboura and Zenetos, 2002)
indices are widely used in marine coastal areas. Both are based on
the principle of the ecological identity of benthic species according
to their response to pollution. Nevertheless, although they produce
similar results, there are discrepancies observed in the scoring of
species and further restrictions to their use in certain environ-
ments. A useful assessment is provided by the taxonomic
distinctness, which has the potential to evaluate the integrity of
benthic communities in relation to anthropogenic disturbances
(Warwick and Clarke, 2001), although its applicability to SECS has
been discussed (Salas et al., 2006). Attributes of these measures of
biodiversity are sample-size independence, low sensitivity to data
noise, not influenced by natural controlling factors (e.g. changes in
salinity), and high sensitivity to detection of pollution impacts.
SECS have a great internal patchiness and heterogeneity that can
either amplify or bias the stressor effects. Examples are given by
both taxonomic richness and body size which are chiefly related to
the surface area (Sabetta et al., 2007). Nonetheless, the size distri-
bution within the macro-zoobenthic community seems a simple

and promising tool for assessing the degree of disturbance and the
ecological status of SECS (Reizopoulou and Nicolaidou, 2007).

Further indicators of either state or health of benthic commu-
nities have been implemented by the IOC-Intergovernmental
Oceanographic Commission Study Group on Benthic Indicators
(http://www.ioc.unesco.org/benthicindicators). These include rele-
vant synoptic information on benthic faunal condition (e.g. mea-
sures of community composition), controlling natural abiotic factors
(e.g. sediment organic matter), and levels of contaminants and these
were tested worldwide (Hyland et al., 2005). This approach has also
been applied to SECS using organic carbon as a tracer of stressors
against the benthic community (Magni et al., 2009).

The benthos is a BQE of the WFD and has been identified as a
suitable ecological group for monitoring the effects of pollution.
However, most studies have utilised the macro-fauna exclusively,
largely ignoring the meio-fauna. This is mainly because meio-fauna
are considered to be a taxonomically difficult group. Heip et al.
(1988) present some of the potential advantages of meio-fauna
over macro-fauna in pollution monitoring. In particular, meio-
fauna are not affected by physical disturbance to the same degree
as macro-fauna. The pressures from discharges change the state of
the biological communities and these changes can be used diag-
nostically to identify the pollutant sources. Although meio-fauna
may be inherently more stable than macro-fauna, pressure from
pollutants results in a more rapid change of state in the meio-fauna
because of their shorter generation times. The field response of
macro-benthic abundances, biomass and diversity to organic
pollution is comparatively well documented (Pearson and
Rosenberg, 1978; Warwick et al., 1987) but studies of the effects
of pollution on meio-fauna are rarer (e.g. Marcotte and Coull, 1974;
Lambshead, 1986; Moore and Pearson, 1986; Moore, 1987; Bodin,
1988; Warwick et al., 1988; Austen et al., 1989).

Examples of SECS that are well studied with regard to benthic
NIS are in the Black Sea countries the Razim-Sinoe lagoon (RO)
system (Vadineanu et al., 1997), in the Mediterranean Europe,
Messolongi (GR), Venice (IT) and Thau (FR) Lagoons (Pranovi et al.,
2006; Corriero et al., 2007), the Northeast Atlantic Ria Formosa
(PT), and the coastal lagoons of the southeastern Baltic: Curonian
(LT, RU), Vistula (RU, PL) and Szczecin (PL, DE) lagoons (Balloon,
2007) and the lagoons of the German Baltic coast (Gollasch and
Nehring, 2006). Many SECS are connected to both the sea alone
and rivers. There may be connections with man-made canals and
with other neighbouring water bodies. Thus dispersal corridors
from and to inland waters have been opened (see Section 5.2.3). In
the Baltic, the Vistula and Curonian lagoons became historically
important nodes for further spread of the Ponto-Caspian zebra
mussel Dreissena polymorpha; most likely the introduction of
Dreissena into these lagoons in the early 1800s was due to trans-
portation of mussels attached to timber rafts. The next “destina-
tion” of the species was London (1824) and Amsterdam (1826), at
that time the recipient ports for the Baltic timber trade (Olenin
et al., 1999). Only after that, the species started to spread in
inland waters of western and central Europe (Lithuanian Invasive
Species Database, 2007).

Introduced species comprise 23% of the total (macro-algal) flora
of Thau lagoon, France (Verlaque, 2001, cit. in EEA, 2006), >40% of
the benthic fauna of the Curonian lagoon (Olenin and Leppdkoski,
1999), 20% of the estuarine biota in the North Sea (Reise et al.,
2002) and 18% of the total biota in the eastern Bothnian Sea
(Olenin and Leppdkoski, 1999). The Curonian lagoon, shared by
Lithuania and Russia, is one of the well-investigated SECS in Europe.
Here the Alien Invasive Species (AIS) richness (number of benthic
AIS per habitat) in lagoon habitats was significantly higher than in
the sea. The highest percentage of AIS biomass (relative to native
species biomass) occurred in artificial hard bottom habitats (up to
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97%), in the sandy littoral (94%) and in the zebra mussel shell de-
posits habitat in the lagoon (76%), while the highest proportion
(33%) of invasive species occurred in sandy littoral and euphotic
zone habitats (Zaiko et al., 2007). In the lagoon, the zebra mussel
D. polymorpha is a dominant species (mean biomass 880 g m~2, 86%
of total), the mussel beds covering 23% of the lagoon bottom area
(Olenin, 1997). In the Vistula lagoon, the soft-bottom community
structure was totally changed by the North American polychaete
Marenzelleria sp., when it became a biomass dominant species over
all sandy and muddy habitats in mid-1990s, making up to 95% of
total benthic biomass (Zmudzinski, 1996). Ecological impacts
include habitat modifying ability. AIS may alter the physical and
chemical structure of SECS sediments by, e.g. production of
calcareous shells, burrowing and trapping of particles.

In the Mediterranean SECS, the Manila clam R. philippinarum, in
addition to out-competing native species, have impacted the
physical environment because their harvesting has led to increased
loads of suspended material (Occhipinti Ambrogi, 2002). Changes in
macro-benthic community (1968—1999) of the lagoon resulting
from the introduction of R. philippinarum and subsequent harvest-
ing have been assessed (Pranovi et al., 2006). A sharp reduction of all
other filter feeder bivalves was documented and it was possible to
estimate that the filtration capacity of the benthic community had
more than doubled. This has altered the functioning of the
ecosystem, resulting in a stronger benthic—pelagic coupling. In this
context, R. philippinarum gains control of the system. As a result, the
Venice lagoon ecosystem has entered into a new state, probably
more resistant but less resilient, with implications for future man-
agement choices (Pranovi et al, 2006). Interestingly, there have
been several unauthorised attempts to introduce R. philippinarum in
the Ria Formosa, but these have been unsuccessful.

Secondary hard bottoms (underwater constructions) provide
open habitats to alien fouling organisms everywhere (Glasby et al.,
2007). In the Baltic, barnacles (Balanus) and mussels (Dreissena)
increase the area and volume available for associated macro- and
meio-fauna, and enhance detritus-based food chains by supplying
their habitat with particulate detritus. In soft bottoms, Mar-
enzelleria digs deeper than native species, thus increasing the
thickness of the populated surface sediment layer and depth limit
of bio-turbation. Shell deposits of Dreissena in the Curonian lagoon
have changed former soft bottoms (sand or silt) into shell gravel,
and created patches of hard substrate for sessile species on uniform
soft bottoms on sites. Mya shells form a secondary hard substrate
available for associated species in the sandy southeastern Baltic Sea
coastal zone. Empty shells of the barnacle Balanus improvisus also
serve as new microhabitats for small annelids, crustaceans and
chironomids. Nektobenthic AIS (e.g. mysids and amphipods) swim
actively and spend part of their time in the water column, and may
also dwell within or on the bottom. They form dense populations in
the Curonian lagoon, and serve as important links in energy
transfer between pelagic and benthic subsystems (Olenin and
Leppdkoski, 1999, and references therein).

Some functions of the AIS are unique and new for the ecosystem,
whereas some were already present if indigenous species had
performed this activity earlier. Examples of novel functions
include: (1) D. polymorpha — filter feeding in oligohaline and
freshwater parts of the Baltic Sea SECS where Mytilus edulis is ab-
sent; (2) B. improvisus — suspension filter feeding in the uppermost
hydrolittoral zone; (3) Marenzelleria sp. — deep bio-turbation of the
sediment; (4) Rithropanopeus harrisii and Eriocheir sinensis — epi-
benthic invertebrate predators and scavengers in the diluted parts
of the inlets where native marine decapod crustaceans do not occur
(Olenin and Leppdkoski, 1999).

Some of the most successful alien species tend to markedly alter
the SECS habitats that they have invaded or were intentionally

introduced to. Invaders in the species-poor native communities of
SECS along the coast of the Baltic Sea manifest their ability to modify
their novel habitats in several ways. They increase the three-
dimensionality of the benthic habitats, broaden the food base of
bottom and plankton eating fish, link benthic and pelagic sub-
systems, and create new micro-habitats for associated fauna. They
increase of physical diversity of homogenous sandy and muddy silty
bottoms by adding new space components into the benthic subsys-
tem (e.g. shells, shell fragments and burrows), and create new mi-
crohabitats for associated fauna. They increase the functional
diversity and bentho-pelagic linkages, and thus the 3-dimensionality
of benthic subsystems. This broadens the food base of both benthos
and plankton eating fish and hence modifies the impact of predation
on native species. They retain more of the river input of particulate
and dissolved nutrients in semi-enclosed coastal systems.

The seemingly “beneficial” contribution of non-native species to
the structural and functional diversity must be carefully evaluated
in relation to their capacity to compete for space and other resources
with indigenous biota and with the negative influence on the set-
tlement of larvae and juveniles of native species. The detrimental
(often catastrophic) effects of alien organisms on different uses of
coastal waters and impacts on human welfare are well documented.
In the Baltic Sea and elsewhere, the majority of established AIS occur
in SECS (Paavola etal., 2005). Thus, these areas should be considered
continent wide as “hotspots” for the introduction of alien species
and should be the focus of the corresponding monitoring programs.
Surveillance of AIS should target all taxonomic groups and focus on
high-risk sites (selected here from Genovesi and Shine, 2003; LIFE
Focus, 2004). These include the main entry points for tourist ar-
rivals (harbours and open moorings); entry points of natural
dispersal pathways (coasts, border crossings of water systems
shared with neighbouring countries); areas adjacent to facilities
where alien species are kept in captivity or containment (fish farms,
nurseries); areas where severe disturbance has occurred (land
clearance, storm damage, etc.).

5.3.3.4. Status of fish. Fish assemblages have been well studied in
SECS (Casabianca and Kiener, 1969; Herve and Brusle, 1980, 1981).
They have also been related to confinement gradients (Mariani,
2001). Despite the apparent mobility and migratory displace-
ments of many lagoon and estuarine fishes, the structure and
composition of fish assemblages are highly sensitive to changes in
lagoon morphology (Pérez-Ruzafa et al., 2007b; Franco et al., 2008)
and to the impact of coastal works that modify the substrate
characteristics (Pérez-Ruzafa et al., 2006). All the morphological
supporting quality elements strongly influence the biological
quality elements and characteristics of fish assemblages, including
species richness and fishing yields (Sabetta et al., 2007; Pérez-
Ruzafa et al., 2007b; Franco et al., 2008).

However, there are only a few attempts for developing fish
ecological indicators in lagoons (e.g. Mathieson et al., 2000;
Mouillot et al., 2005) and at present there is no experience in
Europe in monitoring and classification of transitional waters based
on ichtyofauna metrics (see Franco et al., 2008 for a first approach).
The Ria Formosa is considered to be a “sheltered CW” rather than a
“TW” because of the lack of significant freshwater inputs. So, fish
are not included in the assessment of ecological status. This is un-
fortunate since the Ria Formosa had the densest population of
Hippocampus guttulatus and H. hippocampus ever recorded, until
recently. The seahorse project http://seahorse.fisheries.ubc.ca/ has
documented the dramatic decline of these fish in the Ria Formosa
(Caldwell and Vincent, 2012).

5.3.3.5. Ecological status and ecosystem change. SECS are highly
sensitive to pressures and rapid shifts in ecosystem structure and
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function (Groffman et al., 2006). The multiple pressures on SECS
may cause dramatic ecosystem changes and remediation responses
are often not effective. Recent relaxations of pressures have failed to
show recovery to their origins, leaving a major challenge for sci-
entist and coastal zone managers. Several European lagoon eco-
systems have entered into a new state, probably more resistant but
less resilient, with implications for future management choices
(c.f. Pranovi et al., 2006). It will be difficult or even impossible to
return lagoons to their original conditions, as the impacted eco-
systems have changed considerably. Danish lagoons (fjords) are
examples of systems where sea-grasses are disappearing. Sedi-
ments that are organic-rich because of phytoplankton sedimenta-
tion and are also more fine-grained, may be inappropriate for seeds
of sea-grasses. As the phytoplankton production increases, sea-
grasses are lost from lagoons and an invasion of suspension
feeders may occur, such as that observed for M. edulis in Danish
SECS (Vinther et al., 2008). In the Ria Formosa, the sea-grasses are
disappearing while opportunistic algae are proliferating. M. edulis
not only compete with other benthic fauna and flora for substrate,
but also filter feed and improve the light conditions, thus pro-
moting benthic flora. However, the effects of mussel invasion are
primarily negative in eutrophied areas with organic enriched sed-
iments. The faeces enrich the sediments enhancing the sulphate
reduction rates and thereby the sulphide stress on the sea-grasses
(Vinther et al., 2008).

Another example of the consequences of agricultural drivers in
the watershed is the regime change in the Mar Menor (S Spain).
Agricultural drivers include a change in practices evolved from
extensive dry crop farming to intensively irrigated crops, with
increasing pressure of nutrient and pollutants to the lagoon. Top-
down control of the trophic web exerted by ichthyo-plankton and
jellyfishes (Pérez-Ruzafa et al., 2002, 2005) crop the phytoplankton
and keep the water clear.

5.4. Impacts on human welfare

The present interpretation of DPSIR (Elliott et al., 2006) con-
centrates on impact on the human system and human welfare. It is
therefore important to understand the linkages between changes in
environmental and ecological state leading to the loss of ecosystem
services and how these are linked to social and economic impacts
on human welfare. The most impacted sectors are fisheries, aqua-
culture and tourism. For example, jellyfish affect the recreational
uses of the Mar Menor for tourism leisure activities, and especially
bathing. Massive blooms of jellyfish are “dead-end” species with no
commercial value that negatively affect the fisheries and aquacul-
ture in Danish lagoons (Mgller and Riisgard, 2007). Magnan et al.
(2009) describe the “chain of impacts” on Mediterranean SECS.

5.4.1. Overexploitation of natural resources

SECS in Europe have long been exploited for products to support
human consumption, either through fisheries or aquaculture. Un-
fortunately, there are many examples of overexploitation, as fish-
eries regulations are some of the most difficult to enforce, even
locally. Many natural resources have been lost, and coastal fisheries
have declined adjacent to SECS (Myers and Worm, 2003). Products
such as algae, farmed fish and shellfish have been exploited, and
while the capture fisheries declined, shellfish landings increased.
Capture fisheries are now a subsidiary activity in SECS.

Shellfish production has also declined due to both known and
unknown reasons (Herlyn and Millat, 2000). The settling of mus-
sels has for instance been reduced for several years in Danish la-
goons (Sand-Kristensen, pers. comm.) and clam production has
declined in the Ria Formosa. Overall, the sustainability of shellfish
farming is not a simple function of a given environmental or

economical variable, but rather results from a wide array of pa-
rameters and variables that can be evaluated only with models
that integrate hydrodynamics, ecological components and eco-
nomic issues (Solidoro et al., 2000; Pastres et al., 2001; Solidoro
et al, 2003; Cellina et al, 2003; Zaldivar et al., 2003). For
example, the sustainability of clam farming in the Sacca di Goro
lagoon has been assessed by modelling exploited areas, biomass
bulk, risk of anoxia and sensitivity of clam farming to Ulva m~2,
with food supply being the main limiting factor. In sheltered areas,
an increase in clam production over 2 kg m~2 y~! is not beneficial,
since the gain is equivalent to or less than the cost of measures
taken to control nuisance macro-algal blooms. In other words, the
aquaculture productivity cannot be maximised but rather can be
only optimised, taking into account a suite of environmental var-
iables that identifies shellfish farming suitability (Vincenzi et al.,
2006a,b). Yet, the suitability is assessed with functions that eval-
uate sediment quality, food and oxygen availability, salinity range
and hydrodynamics. Blooms and anoxia may result (Marinov et al.,
2007; Viaroli et al.,, 2008). Either a sustained standing crop or
production per surface unit do not have fixed thresholds, but are
function of a number of interlinked variables. For clams in open
bays or highly dynamic lagoons, a sustainable threshold is close to
4 kg m2

In the Sacca di Goro the aquaculture yield is increasing due to
the Manila clam farming, whilst the indigenous R. decussatus has
almost disappeared. In the Lagoon of Venice, the poor control is
exerted over the catches of R. philippinarum. The introduction of
this species resulted in the disappearance of the indigenous R.
decussatus and contributed to change the state of the benthic
community as well as significantly increasing the erosion rate in
many lagoon areas.

5.5. Societal responses, EU policies and management of SECS

European SECS are subject to various kinds of anthropic pres-
sures, which are often sources of conflicts among the different
users. Balancing socio-economic interests with environmental
safeguards is an extremely difficult task. In this respect, integrated
management, together with the development of interdisciplinary
and multi-criteria approaches, is one possible key to the sustain-
able, equitable and efficient development of SECS resources.

SECS are dynamic environments and human inhabitants can be
threatened by floods and storm surges. As a consequence, coastal
defense structures result in extensive morphological modifications,
a technological response to control dynamics that affects the
perimeter, depth and communications with the adjacent coastal
waters.

Another technological response, this time to water quality, has
been the construction of sewage treatment plants. Municipal sewer
systems have reduced health risks and UWWT plants have signif-
icantly reduced organic matter. However, N and P diffuse inputs
remain a problem, as does eutrophication.

One of the societal responses to problems in European SECS has
been the implementation of EU policies and Directives by member
states. The societal response to the pressures of nutrient loading
and negative impacts of eutrophication in European SECS has been
the introduction of legislation and management measures to
reduce the nutrient availability in transitional and coastal waters.
The most important Directive in this context is the WFD.

The WFD aims at ensuring the protection of European surface
and ground waters, including transitional and coastal waters, from
a wide range of pollution sources (point and diffused sources,
among others: waste water treatment, intensive agriculture prac-
tices, industrial emissions etc.), as well as requiring Member States
(M.S.) to identify vulnerable or protected areas, undertake



monitoring programs and, where necessary develop remedial
measures for water bodies at risk.

Monitoring of key elements of SECS and research activities
studying ecological interactions are needed to continuously
improve knowledge, e.g. the threshold concept, to optimise the
management of SECS. European coastal SECS are areas of special
interest to local and regional authorities that have monitored these
systems with the aim of understanding and protecting their
biodiversity and economic sustainability. Under the WFD, the re-
sponsibility for monitoring passes to the M.S. “Competent Author-
ity” identified under Article 3(2) or 3(3). There are 3 levels of
monitoring: surveillance monitoring; operational monitoring, and;
investigative monitoring (WFD Annex V, 1.3). Which level of
monitoring is used depends on the status of the water body and
whether achieving “good” status is realistic.

EU policies are interlinked and can no longer be implemented
alone, so each policy decision needs to be considered in the light of
impacts from other sectors and policies relating to industry,
transport, agriculture, energy, regional planning etc. For example,
regulation of detergents and contaminants during the last three
decades, has reduced the impact of urban waste on aquatic eco-
systems (Howarth and Marino, 2006). There are numerous EU
policies relevant to SECS: the Marine Strategy Framework Directive,
the recommendations on Integrated Coastal Zone Management, the
Habitat Directive 2 and the Water Framework Directive, WFD
(2000/60/EC) (EU, 2000), the Urban Waste Water Treatment
Directive (91/271/EEC) (EU, 1991a), Nitrates Directive (91/676/EEC)
(EU, 1991b), Bathing Water Directive (2006/7/EC) (EU, 2006),
Habitats Directive (92/43/EEC) (EU, 1992) and the Birds Directive
(79/409/EEC) (EU, 1979). Areas designated under these Directives
will have the status of Protected Areas under the WFD (Annex IV).

Furthermore, there are a number of International and Regional
Conventions (OSPAR, 2001; HELCOM, Barcelona and Bucharest
Conventions) addressing measures to prevent and eliminate
pollution in regional Seas (Northeast Atlantic, Baltic, Mediterra-
nean, Black Sea), as well as Conventions for major river basins such
as the Rhine and Danube.

A number of Directives and regional sea conventions individu-
ally consider eutrophication in slightly different ways (either
directly or indirectly) depending upon the objective of the policy,
the pollution sources and the receiving waters (river, lake,
groundwater, transitional and coastal waters). These require a
common understanding and framework for eutrophication
assessments.

New methodologies in terms of economic assessment, social
requirements and resource management will be needed to opti-
mise EU policy decisions so as to reinforce measures to protect the
environment and ensure that the all environmental Directives are
implemented in such a way that they have a real chance to succeed
in their objectives. Modern concepts of the “system approach” to
ecosystem management (Newton, 2012) include concepts of public
information, public participation in decision making, social and
economic considerations (Viaroli et al., 2012). Most SECS are situ-
ated in highly populated areas and are affected by human activities.
Prohibitions and the transformation of SECS into reserves protected
from human influence are insufficient management responses to
ensure sustainability. Effective management requires a combina-
tion of regulation and the public understanding that SECS are
natural resources that should be conserved for the benefit of pre-
sent and future generations. The public must be allowed access to
the SECS to explore and enjoy these systems. Management must
interact with the stakeholders and users of the SECS in order to
obtain the acceptance of the necessary regulations in both the
lagoon and in the catchment. Decisions need to be taken in the light
of not only environmental considerations, but also their economic,

social, and political impacts and require the active participation of
stakeholders in the decision making process. The dissemination of
knowledge about SECS as important natural resources and their
relation to economic activities is essential for the public to under-
stand the basis of informed decisions. Interactions of the lagoon,
the catchment and the adjacent coast must be understood for in-
tegrated management to consider the most important direct and
indirect pressures. For integrated adaptive management using a
system approach to be successful, societal responses should
address all the drivers, not only some of them. For example, it may
be futile to build more advanced UWWT plants if the agricultural
practices in the watershed are responsible for the major pressures
relevant to the eutrophication of transitional and coastal waters.

Control of eutrophication (and contaminants) of SECS remains
one of the greatest challenges for managers and policy-makers
(Schindler, 2006). The management of eutrophication in Ring-
kebing Fjord, a coastal lagoon at the west coast of the mainland of
Denmark (Petersen et al., 2008) is a particularly well documented
example of societal responses to changes in state and resulting
impacts on human welfare. Historical records go back to the late
1800s. The main driver of change was agriculture, with agricultural
sources responsible for about 80% of the total nitrogen load. Large
areas of land were reclaimed and watercourses were straightened
to increase agricultural production in the catchment of Ringkgbing
Fjord. The lower 20 km of Skjern A, the river with the largest water
flow in Denmark, was channelled in the 1960s, and wetland in the
catchment was drained and decreased to about a quarter of the
former area. Up to the 1970s, Ringkebing Fjord seemed to be a
healthy coastal ecosystem with relatively transparent water and a
good coverage of sea-grasses submerged aquatic vegetation to a
depth of 3 m. However, a change in state was observed from 1979
to 1981 when the eutrophication threshold of the system the
lagoon was reached with increasing amounts of fast growing
macro-algae and epiphytes. The lagoon ecosystem collapsed when
huge amounts of phytoplankton and epiphytes shaded the bottom
plants.

The response was both the regulation of detergents and the
construction of sewage treatment plants in urban areas in the
catchment that reduced the pressure of P and other nutrients to the
lagoon in the late 1980s. Since the mid 1980s, the Danish Parlia-
ment adopted a number of action plans and strategies to reduce the
nitrogen load to aquatic systems from agricultural sources. From
the beginning of the 1990s this resulted in a slow but steady
reduction in the total N load to Danish coastal waters (&£rtebjerg
et al., 2003; Carstensen et al., 2006; Conley et al., 2007). The
point source share of the total P load decreased from 60—70% in the
1980s and early 1990s to about 40%. The N load to Ringkebing Fjord
decreased 30% less than the maximum load in the beginning of the
1990s when the inter-annual variations in freshwater discharge
were accounted for. However, due to a general wetter climate, a
possible effect of global climate changes, the actual reduction in the
nitrogen load to the lagoon is only about 15%.

The ecosystem subsequently started to recover slowly, however,
the system was unstable and experienced several setbacks and the
coverage of SAVs was limited to a depth of less than 1 m, despite a
50% reduction in the total P load. Meanwhile, national priorities
started to change and the lower part of Skjern A has been restored
involving the re-establishment of 2.200 ha of wetlands from former
agricultural land.

5.5.1. Modelling of SECS

Advances have also been made in ecological modelling
including biogeochemical and ecological processes. The need to
develop models for ecological and environmental management
problems has been steadily increasing since the late 1970s. Indeed



models provide both a keener understanding of causal relation-
ships driving ecological functioning, and the quantitative
knowledge which is required for evaluation, at ecological and
economic levels, of consequences of the implementation of
possible alternative scenarios of policy options. European SECS
have been frequently considered in model applications, since they
are valuable areas in which contrasting interests coexist and have to
be balanced. SECS also exhibit complex patterns and high space and
temporal variability of most environmental variables, because of
the superposition of different anthropogenic and natural sources of
variability.

Many mathematical models have been developed with the main
aim of gaining insights into given biogeochemical and ecological
processes, regardless of the relevance of the models for manage-
ment purposes. In most cases, spatial variability has not been taken
into consideration, but there have been attempts at coupling the
processes with the transport. Nevertheless, a proper understanding
of the temporal and spatial variability of hydrodynamics is funda-
mental to model SECS functions (Guelorget and Perthuisot, 1992;
Cucco et al., 2009; Melaku Canu et al., 2012), and for any man-
agement intervention. In fact, the inclusion of a transport module is
very often crucial when the models are applied to specific man-
agement problems, or when spatial variability is important in the
water bodies taken into consideration, as in the majority of large
SECS.

The modelling efforts first focused on eutrophication or other
biogeochemical aspects, and were quite successful in the investi-
gation of specific processes. These include: the kinetics of plankton
growth (Nyholm, 1978); macro-algal proliferation and nutrients
assimilation (Solidoro et al., 1997); the modality of inter and
intraspecific competition and the interaction among the cycles of
Nitrogen and Phosphorus and Dissolved Oxygen (Solidoro et al.,
1997; Chapelle et al., 2000); and the importance of the reminer-
alisation process (Chapelle, 1995). Other processes that have been
taken into consideration include population dynamics, growth and
energetic requirements of fishes, crabs, and filter feeders, with
particular emphasis on marketable species frequently reared in
lagoon waters, such as clams (Solidoro et al., 2000, 2003; Marinov
et al., 2007), oysters (Gangnery et al., 2001; Gangnery et al., 2004a)
or mussels (Gangnery et al., 2004b). Spatially explicit models are
particularly useful in the analysis of the influence of the physical
forcing functions and the transport process on the dynamics of
biogeochemical properties (Chapelle et al., 2000; Melaku Canu
et al., 2003; Plus et al., 2003; Trancoso et al., 2005; Solidoro et al.,
2005b). Notable research effort has been focused on selected
SECS, because of their ecological and socio-economic relevance.
These are the Venice lagoon (Pastres and Solidoro, 2012), the Etang
de Thau (Plus et al., 2006), the Ria Formosa (Nobre et al., 2005) and
the Sacca di Goro (Zaldivar et al., 2003). The attention of the sci-
entific community has focused on the modelling of the structure of
the trophic network (Carrer and Opitz, 1999; Olsen et al., 2001;
Zaldivar et al., 2003) and a more comprehensive understanding of
interactions among biogeochemical cycles, primary productivity,
and dynamics of higher trophic levels (Libralato and Solidoro,
2009). The results are a variety of approaches to incorporate
more ecological details, for instance by releasing stoichiometric
constraints and resolving community structure by the explicit
representation of several classes of plankton (Baretta et al., 1995;
Petihakis et al., 1999). More flexibility is made possible by allow-
ing the model to change its structure in time in agreement to
environmental conditions (Coffaro et al., 1997). More reliability is
possible by including processes that were poorly quantified in the
past, such as benthic—pelagic coupling (Serpa et al., 2007; Brito
et al, 2009b), or by incorporating novel numerical techniques
based on machine learning, artificial neural network and other data

based approaches (Bandelj et al., 2009). Indices as exergy and
specific exergy cope with these goals allowing the assessment of
ecosystem health and ecological status (Zaldivar et al., 2010).

There are also attempts at developing bio-accumulation and
ecological risk analysis models, usually by coupling of food web,
physico-chemical partition, and bio-accumulation sub-models.
Applications of this modelling approach (Carrer et al., 2000; Dalla
Valle et al., 2004; Micheletti et al., 2008) were successful in
describing the general trends, and are now being applied also to
spatially explicit context (Carrer et al., 2005; Carafa et al., 2006).
However, the results obtained cannot be considered as entirely
satisfactory from a quantitative point of view, in particular for
heavy metals and some organics. This is certainly due also to the
inherent complexity of these processes, and to the scarcity of field
data. Nevertheless, significant challenges still exist even when
considering the more traditional aspects mentioned above reasons
include: (1) the subjectivity in the definition of the functional
groups of the food web (Anderson, 2005); (2) the lack of quanti-
tative knowledge on many processes (Flynn, 2005); (3) the limited
understanding of how model ecosystem structures optimised to
present conditions might be adapted to future conditions.

More than 40 years after early attempts at modelling lagoons
(Jergensen, 1976; Di Toro et al., 1977), there are now several ex-
amples of management oriented studies in which reliable models
are used for analysing alternative policies connected with specific
ecosystem management issues. So far, most of these applications
are related to eutrophication, fisheries and aquaculture. In partic-
ular, models exist of the effect of nutrient loads from watershed on
trophic condition (Zaldivar et al., 2003; Plus et al., 2006) and water
transparency (Jacobsen et al., 2006), in the determination of the
maximum permissible loads compatible with predefined water
quality target (Pastres et al., 2001). These analyses also provide
interesting examples of how model results can be combined with
Geographic Information Systems to explore the economic conse-
quences of the implementation of different management re-
sponses. Examples of models application also include modelling-
based approaches to the rational management of aquaculture ac-
tivities, with particular attention to clams (Pastres et al., 2001;
Melaku Canu et al., 2012), mussels (Grant et al., 2007) and oyster
(Gangnery et al., 2004a) farming, and studies which download ef-
fects of global change to regional and local scale (Cossarini et al.,
2008). Another important application is the use of models for
assessment of systems state and inter-site comparison. Such
models provide information that: (1) may not be measurable, for
example indices of ecosystem functioning (Brando et al., 2004); or
(2) that are not measured, for example fluxes among compartments
(Solidoro et al., 2005a); or (3) the spatial distribution of some
variables (Cossarini et al., 2009). In turn, this information can be
used — often in combination with experimental observations — to
drive other models, such as habitat suitability models (Vincenzi
et al., 2006a,b), or simple screening model for rapid assessment
of system state, as in the NEEA (Bricker et al., 1999), OSPAR (OSPAR,
2001) or ASSETS (Nobre et al., 2005) schemes.

Numerical models now constitute a valuable framework for
integration and synthesis of existing knowledge about European
coastal lagoons, and offer important contributions for under-
standing the scale of human disturbance and the potential effec-
tiveness of restoration action.

5.5.2. Decision support system for the management of SECS
Multiple objectives can complicate the task of decision mak-
ing, especially when the objectives conflict. The concept of a
decision support system (DSS) is in fact extremely broad and
there exists no unique definition of it. Power (1997) describes a
DSS as an interactive information system intended to assist



decision making activities by helping managers retrieve, sum-
marise and analyse decision relevant data, thus improving and
speeding-up the processes by which people make and commu-
nicate decisions. A DSS is both a process and a tool for solving
problems that are too complex for humans alone, but usually too
qualitative for only computers. Decision Support Systems cover a
wide variety of systems, tools and technologies for informing and
supporting decision makers.

As a process, a DSS is a systematic method of leading decision
makers and other stakeholders through the task of considering all
objectives and then evaluating options to identify a solution that
best solves an explicit problem while satisfying the objectives to as
high a degree as possible. As a tool, a DSS includes functionalities
for the design of alternatives, and mechanisms for their compara-
tive analysis, ranking, and selection on the basis of the criteria,
objectives, and constraints provided by the users. A participatory
approach, involving users, planners and policy-makers at all levels,
is often quoted as a key factor in DSS success. Users are often unable
to specify all their expectations and requirements at an early
development stage, and a continuous involvement allows them to
evaluate the system and contribute to its improvement.

Many decision support systems have been developed to face the
problems of water-resource management. However, many of these
are relatively simple information and model systems that focus on
problem representation and, in most cases, “what-if” type scenario
analysis.

In the framework of the EU funded project DITTY, a Decision
Support Systems was developed for the management of coastal
lagoons (Mocenni et al., 2009). The DITTY DSS represents a unitary
framework for many DSS already designed and provides an answer
to “still open methodological questions about the development and
structure of operational decision support systems with and for Euro-
pean decision makers in the field of water resource management”
(Mysiak et al., 2002). Several important decision support systems
have been developed for specific application,s, such as Bayesian
Networks based DSS for the management of natural resources
(Bromley et al., 2005), MULINO-DSS for the computer-aided water-
resource management (Mysiak et al., 2002, 2005), DSS for coastal
areas sustainable development (Carvalho, 2002), WaterStrategy-
Man (WSM) DSS (ProGEA, 2013), DSS for Water-Resources Man-
agement under uncertainty (Pallottino et al., 2002) fit the general
structure proposed in the DITTY DSS (see also Casini et al., 2005;
Casini et al., 2007). The DSS was tested in the following lagoons:
Ria Formosa (Portugal), Mar Menor (Spain), Etang de Thau (France),
Sacca di Goro (Italy), and Gera (Greece). An application of the DITTY
DSS to the problem of microbial contamination in the Etang de
Thau is described in Loubersac et al. (2007).

6. Conclusions and the vulnerability of SECS in the context of
global change

The main conclusions with respect to the vulnerability of SECS
in the context of global change are outlined in this section.

6.1. SECS are sentinel systems and hotspots of coastal vulnerability
at a global scale (Eisenreich, 2005; IPCC, 2007; Newton, 2012)
especially vulnerable to large-scale impacts of climate change and
sea-level rise

SECS exist in many areas of the world, Kjerfve 1994, Barnes 1980,
and share many of the problems and issues in European SECS. SECS
all over Europe have been the focus of intense research activity and
legislation in the past 20 years. Nevertheless, as a consequence of
their situation between land and open sea, the integrated Europe-
wide WEFD is failing to address European transitional and coastal

waters in a unified manner. The main goal of the WFD for transi-
tional and coastal waters as well as for all surface waters would be
to achieve good ecological status. However, the environmental and
ecological state of SECS is affected by human activities. These
ecosystems of considerable ecological and economical value
(tourism, fish farming and aquaculture etc.) are susceptible to hu-
man activities in their watersheds. Nutrient and contaminants
fluxes lead to eutrophication and chemical contamination and the
problems are exacerbated due to their geomorphology that reduces
the exchanges with the open sea. An increase of 2—3 °C could result
in the loss of 50% of SECS in the Mediterranean due to sea-level rise
and storm surges (EEA, 2006). A 34 cm increase in sea level would
result in the loss of about 30% of SECS globally (IPCC, 2007), and
millions of coastal inhabitants would be threatened by flooding.

6.2. There is confusion about nomenclature and this hampers
knowledge

The terminology used for SECS varies in different parts of the
Europe and is extremely varied throughout the world. This ham-
pers the transfer of knowledge. Seeking information in the inter-
national literature about SECS is problematic. For instance, there is
a great diversity of terms used for coastal lagoons in the Americas,
although only 3 languages are used (English, Spanish and Portu-
guese). In French the term is “bassin”, as in Arcachon or “etang” as
in Etang de Thau. Italian uses Laguna as in Laguna di Venezia but
also other terms such as Sacca, e.g. Sacca di Goro. In Portuguese the
term is “lagoa” for some systems and “Ria” as in Ria de Aveiro and
Ria Formosa, which are not the same as the Galician rias. In Spain,
the term “marismas” is used, but also “laguna”, “albufera” and
“mar”, as in Mar Menor. Just as the north coast of the Mediterra-
nean has many lagoon systems, the south coast from Morocco to
Egypt also has many lagoons with very similar characteristics. The
Indian coast has extensive lagoons on the Arabian Sea, e.g. the
“lakes” of Kerela, and also on the Bay of Bengal, such as Lake Pulicat.
The extensive lagoon systems on the east coast of the USA are
known as “bays”, as in the case of the Maryland bays, or “sound” as
in the case of Pamlico sound. In California, both “bay” and “lagoon”
are used, e.g. San Diego Bay and Newport Bay, but San Elijo lagoon.
The term “laguna” is used in Texas and Mexico e.g. Laguna Madre
and Laguna Pueblo Viejo. But the term varies in Latin American
countries. “cienaga” is used in Columbia and Venezuela, e.g. Cie-
naga Grande de Santa Marta, but also “laguna”, e.g. laguna de Unare,
and also “bahia”, as in Bahia Hondita. In Brazil, the commonly used
term is “Lagoa”, as in Lagoa dos Patos. In Argentina, the term is
“caleta”, as in Caleta Valdez.

6.3. Knowledge is important because the systems are ecologically
valuable, and therefore provide important ecosystem services that
support economic activities and societies

While human activities change the state of SECS, the degrada-
tion of the lagoons also impacts human welfare. SECS are valuable
systems providing humans with ecosystem goods and services and
sustaining European livelihoods. The range of ecosystem services
provided by SECS is extensive and includes provisioning services,
regulating services, supporting services. However, these may not be
recognised or valued by the local inhabitants and decision makers,
so that many of these are compromised by land-use changes.
Despite their resilience, there is a threshold beyond which there is a
change in the state of the SECS, and sometimes a regime shift that is
very difficult and costly to reverse.

Key thresholds include natural resources, e.g. collapse of sea-
grass meadows or shellfish; social thresholds, e.g. closure of a
school; infrastructure thresholds, e.g. loss of a bridge or a sea wall;



pollution and contamination thresholds, e.g. loss of contaminated
seafood resources or forced evacuation of residents; unacceptable
risk threshold, e.g. repeated heavy loss of housing, unable to afford
or obtain insurance and, in extreme cases, death tolls.

Future technological innovations may mean that the ecosystem
services of SECS may change to accommodate energy generation
(tidal, wave, microbiofuels) and desalination.

6.4. The SECS, including their human populations, are also vulnerable
to natural change including climate change and sea-level rise

The most evident effects are environmental variations in sea-
level rise, sea current circulation, freshwater supplies and lagoon
salinity. Most European SECS are infilling environments. However,
the morphological and sedimentological evolution and stability of
SECS is not well understood, and the main driving processes such as
climate, relative sea-level, sediment availability and tidal action ur-
gently need to be described and interpreted. The impact on SECS of
changing relative sea-level is based only on scattered information of
sediment accumulation rates. Although the INDIA (Inlet Dynamics)
project yielded interesting results (Williams et al., 2003), further
studies are necessary to provide a breakthrough in the under-
standing of coastal lagoon sedimentation. These should provide a
strong basis for the evaluation of the morphological response of SECS
to changing sea levels.

The sea level has risen in the order of 120 m (Newton and Icely,
2008) during the Holocene as a consequence of the melting of the
large ice-caps which were formed during the preceding Weichse-
lian ice-age. All SECS possess some degree of ability to adjust to
changes in sea level. The sea level initially rose rapidly followed by a
period of a decreasing rate of sea-level rise. Eustatic sea-level
changes (changes associated with changes in the volume of oceanic
water) are generally believed to be less than 1 m for the last three
thousand years (IPCC, 2007). The rising sea level has had a strong
impact on the coastal landscape and the coastlines generally moved
landwards. This included a gradual translocation of barrier islands
and coastlines landwards. However, thick deposits of fine-grained
lagoonal deposits can be found in the SECS of the Wadden Sea
area, including both tidal flat and salt marshes sequences as well as
peat deposits (Hoselmann and Streif, 2004; Streif, 2004). This shows
that some of the SECS had been situated roughly at the present lo-
cations in spite of the rising sea level. Consequently, in some areas
the response to the rising sea level was deposition of sediments that
enabled the SECS to maintain a roughly stable location with limited
changes to the overall morphology of the coastal landscape.

The 4™ IPCC assessment report (IPCC, 2007) estimates that the
sea level by 2100 will have risen between 0.1 and 0.9 m compared
to 1990, depending on the emission scenarios and numerical
models which are used. The typical estimated rise is about 0.4 m by
2100. This will increase the water depth of SECS, but estimates of up
to 5 m are increasingly realistic. The area of tidal flats and salt
marshes will decrease in size if sedimentation is not able to keep
pace with the rising sea level. The vulnerability of SECS to sea-level
rise is obviously very dependent on sediment availability and local
subsidence, i.e. SECS situated in areas with ample sediment supply
will be less threatened by a sea-level rise than sites with reduced
sediment supply and/or local subsidence e.g. Venice lagoon (Day
et al., 1999; Madsen et al., 2007).

SECS usually contain large areas of tidal flats and fringing salt
marshes situated within the tidal frame of the sedimentological
units. Biological communities, which inhabit the sediments in these
environments, are likely to be sensitive to changes in sea level.
Global mean sea level has been rising at an average rate of 1-2 mm
y'! over the past 100 years, which is significantly larger than the
rate averaged over the last several thousand years. A rise of a few

mm per year by the sea is extremely important because low-lying
SECS may be damaged or destroyed. The effects of sea-level rise
may be aggravated if associated with other processes.

6.5. Long-term data sets are necessary for observing the changes in
SECS in the context of climate change

SECS are sentinel systems that are affected by change
across geographical gradients, ecosystem function, and particular
stressors. There is a need for information and knowledge to support
decision making for the management of SECS at the spatial local-
regional scale and the decadal-temporal scale. In many cases,
time series of climate records are too short and not sufficiently
reliable, making it hard to formulate future scenarios for SECS.
Observations of alterations on long time scale of erosion, biodi-
versity changes, modification in ecological processes and hydro-
logical regimes, land use and consequent economic modification
are necessary to understand changes in SECS, and these data are
often not available. However, data going back centuries is available
for the lagoon of Venice that show that regional land subsidence is
occurring at the same time as sea-level rise. This demonstrates the
importance of long data sets.

Results obtained in a downscaling experiment performed for
the Lagoon of Venice (Salon et al., 2008) confirmed that changes in
timing and volume of freshwater discharge and nutrient input
induced by climate change can be critical in defining seasonal dy-
namic of biogeochemical properties. In particular, future climate
projections for this specific area suggest that annual mean rain will
not change much in the watershed of the lagoon of Venice, whereas
the seasonal patterns will likely change, with summer and spring
becoming drier and winter and autumn more rainy (Salon et al.,
2008). This will potentially increase winter nutrient concentra-
tions but -because of unfavourable timing — annual primary and
secondary productions of the Lagoon of Venice will decrease and
nutrient surplus will be exported to the Adriatic Sea (Cossarini
et al., 2009). This impacts on clam species suitability, and poten-
tially impacts the aquaculture of R. philippinarum (Melaku Canu
et al.,, 2010).

6.6. Knowledge is needed for action and management to mitigate
and adapt to detrimental environmental change (freshwater
resources, ecosystem services, carbon budgets)

Climate change can induce changes in the tropho-dynamics of
SECS by altering rain regime and, as a consequence, riverine inputs
and run-off from drainage basin (Scavia et al., 2002). Water use
around SECS, particularly in summer months in S. Europe when the
population increases because of tourists, is often greater than the
recharge of the aquifers. Subsidence is partially due to the over
extraction of water and also leads to salt intrusion in the aquifers.
The impacts on human welfare include changes in agriculture,
fisheries, aquaculture and tourism. Responses must address social
behaviour, lifestyles and the related anthropogenic pressures and
drivers of the economy. Multidisciplinary approaches, such as
ecohydrology, are important in integrating surface and ground-
water management.

Ecosystem change has been observed in many SECS, especially
with respect to the loss of sea-grass meadows. This has important
consequences, not only for ecosystem services (such as the stabil-
ising of sediment, the provision of nursery services for juveniles of
commercial species of fish, and the production of oxygen), but also
for the carbon budgets as sea-grasses sequester carbon. This sig-
nifies that SECS could turn from being carbon sinks to carbon
sources.



6.7. Improvements are needed in forecasting extreme hazardous
events (storm surges and floods)

The most important long-term challenge to coastal SECS in
Europe will be the ongoing global and climate change. Global and
local climate changes are a complex mosaic of events, acting at
different time scales and affecting almost all the ecological pro-
cesses (sea-level rise, water and air temperature, wind, storminess,
etc.), influencing SECS and transitional environments with direct
and indirect interference. Climate change scenarios predict an
increased risk of extreme weather events. Ongoing sea-level rise as
well as changes in precipitation in the catchment, with subsequent
changes in river discharge, will increase the flooding risk in the
river basin and in the SECS. An increased risk of storms and storm
surges will have immediate negative effects on lagoon erosion,
protection measures and tourism infrastructure (sport boat har-
bours, beaches, piers, promenades). Imminent and evident varia-
tions playing at small spatial and time scale in the lagoon
ecosystem regard changes in flood intensity and frequency. In the
Venice Lagoon, average yearly occurrence of tide peaks over 80 cm
has gone from 10 cases in the first half of the century, to 40 in the
second half, reaching almost 60 cases in 2000—2005. The “Aqua
Alta” floods in December 2008 and also in 2012 illustrated the ur-
gency of the MOSES barrier for the protection of Venice.

6.8. Technological innovation and eco-innovations are needed

Innovation in forecasting flood events, technological innovation
and eco-innovation is also needed to improve the prognostic for
SECS. Examples of new technologies include synthetic biology ap-
plications to architecture (Armstrong and Spiller, 2010) Examples of
eco-innovation include the use of bivalves in aquaculture for
eutrophication abatement (Ferreira et al., 2009).

6.9. A system approach to adaptive management is an important in
management and governance response

Realistic management strategies should consider the conse-
quences of climate and global change in the implementation of
local solutions to come up with new answers to old problems. The
scale of SECS and their catchment make these systems ideal for the
adoption of local and regional strategies including stakeholders and
participatory decision making where science can inform policy and
decision makers in a nested governance framework. Because of the
geographical scale of SECS, these are often managed at the local
level with limited understanding of global issues and research that
are relevant.

An ecosystem based, system approach to management is key to
solving management challenges for SECS. In order to co-design
solutions to the problems and issues for the management of
SECS, it is necessary to bring together scientists from different
disciplinary backgrounds and with experience at different sites,
with local actors, stakeholders and decision makers. The System
Approach Framework (SAF) is such a procedure that has been
tested in several SECS (Newton, 2012), including the Mar Piccolo,
the Lagoon of Venice, the Oder-Odra and the Etang de Thau. The
DPSIR framework is also useful in a balanced analysis of SECS as
complex social-ecological and economic systems. Spatial planning
and an integrated approach are key tools for the management of
coastal lagoons and balancing the conflicting interests and uses.
Engaging public participation, for example in participatory moni-
toring or beach cleanup activities, provides an arena for members
of the public to interact with researchers and managers and feel
that they are part of the solution rather than the problem and
enable behavioural changes. The role of education and

dissemination is vital to establish effective science communication.
This may result in zoning and set back lines to protect the lives and
properties of inhabitants living in high-risk zones and vulnerable to
the threat of multiple natural hazards.

An international, interdisciplinary effort can generate the results
necessary for scientific advancement to achieve a global under-
standing of the effect of global change on SECS, and generate
knowledge for large-scale policy making and the management of
SECS worldwide.
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