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2
One of the most critical tasks for improving data quality and increasing the reliability of data analytics is 3
Entity Resolution (ER), which aims to identify different descriptions that refer to the same real-world entity. 4
Despite several decades of research, ER remains a challenging problem. In this survey, we highlight the novel 5
aspects of resolving Big Data entities when we should satisfy more than one of the Big Data characteristics 6
simultaneously (i.e., Volume and Velocity with Variety). We present the basic concepts, processing steps, and 7
execution strategies that have been proposed by database, semantic Web, and machine learning communities 8
in order to cope with the loose structuredness, extreme diversity, high speed, and large scale of entity descrip- 9
tions used by real-world applications. We provide an end-to-end view of ER workflows for Big Data, critically 10
review the pros and cons of existing methods, and conclude with the main open research directions. 11
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1 INTRODUCTION 21

In the Big Data era, business, government, and scientific organizations increasingly rely onmassive 22
amounts of data collected from both internal (e.g., CRM, ERP) and external data sources (e.g., the 23
Web). Even when data integrated from multiple sources refer to the same real-world entities, they 24
usually exhibit several quality issues such as incompleteness (i.e., partial data), redundancy (i.e., 25
overlapping data), inconsistency (i.e., conflicting data), or simply incorrectness (i.e., data errors). A 26
typical task for improving various aspects of data quality is Entity Resolution (ER). 27
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Fig. 1. (a) Movies, directors, and locations from DBpedia (blue) and Freebase (red), where e1, e2, e3, and e4
match with e7, e5, e6, and e8, respectively. (b) Value and neighbor similarity distribution of matches in four

datasets.

ER aims to identify different descriptions that refer to the same real-world entity appearing28
either within or across data sources, when unique entity identifiers are not available. Typically,29
ER aims to match structured descriptions (i.e., records) stored in the same (a.k.a., deduplication), or30
two different (a.k.a., record linkage) relational tables. In the Big Data era, other scenarios are also31
considered, such as matching semi-structured descriptions across RDF knowledge bases (KBs) or32
XML files (a.k.a., link discovery or reference reconciliation). Figure 1(a) illustrates descriptions of33
the same movies, directors, and places from two popular KBs: DBpedia (blue) and Freebase (red).34
Each entity description is depicted in a tabular format, where the header row is the URI of the35
description and the remaining rows are the attribute (left) -value (right) pairs of the description.36
ER aims to classify pairs of descriptions that are assumed to correspond to the same (vs. different)37

entity intomatches (vs. non-matches). An ER process usually encompasses several tasks, including38
Indexing (a.k.a., Blocking), which reduces the number of candidate descriptions to be compared in39
detail, andMatching, which assesses the similarity of pairs of candidate descriptions using a set of40
functions. Several ER frameworks and algorithms for these tasks have been proposed during the41
last three decades in different research communities. In this survey, we present the latest develop-42
ments in ER, explaining how the Big Data characteristics call for novel ER frameworks that relax43
a number of assumptions underlying several methods and techniques proposed in the context of44
the database [34, 50, 58, 106, 124], machine learning [72] and semantic Web communities [127].45

Our work is inspired by the Linked Open Data (LOD) initiative [37], which covers only a small46
fragment of the Web today, but is representative of the challenges raised by Big Data to core47
ER tasks: (a) how descriptions can be effectively compared for similarity, and (b) how resolution48
algorithms can efficiently filter the number of candidate description pairs that need to be compared.49

Big Data Characteristics. Entity descriptions published as LOD exhibit the 4 “V”s [49] that chal-50
lenge existing individual ER algorithms, but also entire ER workflows:51

—Volume. The content of each data source never ceases to increase and so does the number52
of data sources, even for a single domain. For example, the LOD cloud currently contains53
more than 1,400 datasets from various sources (this is a ×100 growth since its first edition)54
in 10 domains with >200B triples (i.e., < subject ,predicate,object >) describing more than55
60M entities of different types1; the life-science domain alone accounts for >350 datasets.56

1https://lod-cloud.net.
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—Variety. Data sources are extremely heterogeneous, even in the same domain, regarding 57
both how they structure their data and how they describe the same real-world entity. In 58
fact, they exhibit considerable diversity even for substantially similar entities. For example, 59
there are ∼700 vocabularies in the LOD cloud, but only ∼100 of them are shared by more 60
than 1KB.2 61

—Velocity. As a direct consequence of the rate at which data is being collected and continu- 62
ously made available, many of the data sources are very dynamic. For example, LOD data 63
are rarely static, with recent studies reporting that 23% of the datasets exhibit infrequent 64
changes, while 8% are highly dynamic in terms of triples additions and deletions.3 65

—Veracity. Data sources are of widely differing quality, with significant differences in the cov- 66
erage, accuracy, and timeliness of data provided. Even in the same domain, various forms 67
of inconsistencies and errors in entity descriptions may arise, due to the limitations of the 68
automatic extraction techniques, or of the crowd-sourced contributions. A recent empirical 69
study [44] shows that there are several LOD quality problems, as their conformance with a 70
number of best practices and guidelines is still open. For example, in Figure 1(a), the descrip- 71
tions of “A Clockwork Orange” from DBpedia (e2) and Freebase (e5) differ in their runtime. 72

Big Data Entity Resolution. Individual characteristics of Big Data have been the focus of 73
previous research work in ER. For example, there is a continuous concern for improving the 74
scalability of ER techniques over increasing Volumes of entities using massively parallel implemen- 75
tations [29]. Moreover, uncertain entity descriptions due to high Veracity have been resolved using 76
approximate matching [50, 69]. However, traditional deduplication techniques [35, 58] have been 77
mostly conceived for processing structured data of few entity types after being adequately pre- 78
processed in a data warehouse, and hence been able to discover blocking keys of entities and/or 79
mapping rules between their types. We argue that ER techniques are challenged when more than 80
one of the Big Data “V”s have to be addressed simultaneously (e.g., Volume or Velocitywith Variety). 81
In essence, the high Variety of Big Data entities calls for a paradigm shift in all major tasks of 82

ER. Regarding Blocking, Variety renders inapplicable the traditional techniques that rely on schema 83
and domain knowledge to maximize the number of comparisons that can be skipped, because they 84
do not lead to matches [133]. As far asMatching is concerned, Variety requires novel entity match- 85
ing approaches that go beyond approximate string similarity functions [107]. This is because such 86
functions are applied on the values of specific attributes among pairs of descriptions, which are 87
difficult to be known in advance. Clearly, schema-aware comparisons cannot be used for loosely 88
structured and highly heterogeneous entity descriptions, such as those found in LOD. Similarity ev- 89
idence of entities can be obtained only by looking at the bag of literals contained in descriptions; 90
regardless of the attributes, they appear as values. Finally, as the value-based similarity of a pairQ3

91
of entities may still be weak due to Veracity, we need to consider additional sources of matching 92
evidence related to the similarity of neighboring entities, which are connected via relations. 93
The previous challenges are exemplified in Figure 1(b), which depicts the two types of similarity 94

for entities known to match from four established benchmark datasets: Restaurant,4 Rexa-DBLP,5 95
BBCmusic-DBpedia,6 and YAGO-IMDb.7 Every dot corresponds to a different matching pair, while 96
its shape denotes the respective dataset. The horizontal axis reports the normalized value similarity 97

2https://lov.linkeddata.es/dataset/lov.
3http://km.aifb.kit.edu/projects/dyldo.
4http://oaei.ontologymatching.org/2010/im.
5http://oaei.ontologymatching.org/2009/instances.
6http://datahub.io/dataset/bbc-music, http://km.aifb.kit.edu/projects/btc-2012.
7http://www.yago-knowledge.org, http://www.imdb.com.
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based on the common words in a pair of descriptions (weighted Jaccard [111]), while the vertical98
one reports themaximum value similarity of their respective entity neighbors.We can observe that99
the value-based similarity of matching entities significantly varies across different datasets. For100
strongly similar entities (e.g., value similarity >0.5), existing duplicate detection techniques work101
well, but to resolve nearly similar entities (e.g., value similarity <0.5), we need advanced ways of102
exploiting evidence about the similarity of neighboring entities, due to the Variety in entity types.103
Additional challenges are raised by the Velocity of Big Data Entities. Even though ER is histori-104

cally framed as an offline task that improves data quality in data warehouses upon completion of105
data integration, many services now require one to resolve entities in real time. Such services strive106
for incremental ERworkflows over dynamic sources that can sacrifice completeness of the resulting107
matches as long as query-based [5, 17] or streaming [96] execution strategies can be supported.108

Contributions. Record linkage and deduplication techniques for structured data in data ware-109
house settings are the subject of numerous surveys and benchmarking efforts [34, 35, 54, 58, 80, 87,110
106, 124]. Approximate instance matching is surveyed in [50], link discovering algorithms in [127],111
and uncertain ER in [69]. Recent efforts to enhance scalability of ER methods by leveraging dis-112
tribution and parallelization techniques are surveyed in [29], while overviews of blocking and113
filtering techniques are presented in [132, 140]. In contrast, our goal is to present an in-depth sur-114
vey on all tasks required to implement complex ER workflows, including Indexing, Matching, and115
Clustering.116
To the best of our knowledge, this is the first survey that provides an end-to-end view of ER117

workflows for Big Data entities and of the new entity methods addressing the Variety in conjunc-118
tion with the Volume or the Velocity of Big Data Entities. Throughout this survey, we present119
the basic concepts, processing tasks, and execution strategies required to cope with the loose120
structuredness, extreme structural diversity, high speed, and large scale of entity descriptions ac-121
tually consumed by Big Data applications. This survey is intended to provide a starting point for122
researchers, students, and developers interested in recent advances of schema-agnostic, budget-123
aware, and incremental ER techniques that resolve nearly similar entity descriptions published by124
numerous Big Data sources.125
The remaining of this survey is organized as follows. Section 2 presents the core concepts and126

tasks for building end-to-end ER workflows. Each workflow task is then examined in a separate127
section: Blocking in Section 3, Block Processing in Section 4, Matching in Section 5, and Clustering128
in Section 6. All these sections study methods for batch ER, while budget-aware and incremental129
ER are described in Sections 7 and 8, respectively. Section 9 covers complementary ER methods130
along with the main systems for end-to-end ER, while Section 10 elaborates on the most important131
directions for future work. Finally, Section 11 summarizes the current status of ER research.132
Note that two of the authors have also published a survey on blocking and filtering (similarity133

join) techniques for structured and semi-structured data [140], which covers only two steps of134
the end-to-end ER workflow for Big Data entities: Blocking in Section 3 and Block Processing135
in Section 4. In contrast, this survey covers the entire end-to-end ER workflow, including Entity136
Matching, Clustering, and topics such as budget-aware, incremental, crowd-sourced, rule-based,137
deep learning–based, and temporal ER. The overlap of the two surveys is kept to the minimum.138

2 ER PROCESSING TASKS AND WORKFLOWS139

The core notion of entity description comprises a set of attribute-value pairs uniquely identified140
through a global id. A set of such descriptions is called entity collection. Two descriptions that are141
found to correspond to the same real-word object are called matches or duplicates. Depending on142
the input and its characteristics, the ER problem is distinguished into [56, 136, 153, 161]:143

ACM Computing Surveys, Vol. 53, No. 6, Article 127. Publication date: September 2020.
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Fig. 2. (a) The generic end-to-end workflow for Entity Resolution. (b) Budget-aware Matching.

(1) Clean-Clean ER, when the input comprises two overlapping, but individually clean (i.e., 144
duplicate-free) entity collections and the goal is to find the matches between them. 145

(2) Dirty ER, where the goal is to identify the duplicates within a single entity collection. 146
(3) Multi-source ER, when more than two entity collections are given as input. 147

All previous instances of the ER problem involve general processing tasks as illustrated in the 148
end-to-end workflow of Figure 2(a) [37, 166]. As every description should be compared to all oth- 149
ers, the ER problem is by nature quadratic to the size of the input entity collection(s). To cope 150
with large Volumes of entities, Blocking (a.k.a., Indexing) is typically applied as a first processing 151
task to discard as many comparisons as possible without missing any matches. It places similar 152
descriptions into blocks, based on some criteria (typically, called blocking keys) so that it suffices to 153
execute comparisons only between descriptions co-occurring in at least one block. In other words, 154
Blocking discards comparisons between descriptions that are unlikely to match, quickly splitting 155
the input entity collection into blocks as close as possible to the final ER result. 156
To address Variety in Big Data, Blocking operates in a schema-agnostic fashion that considers 157

all attribute values, regardless of the associated attribute names [141]. The key is redundancy, i.e., 158
the act of placing every entity into multiple blocks, thus increasing the likelihood that matching 159
entities co-occur in at least one block. On the flip side, the number of executed comparisons is ex- 160
tremely big. This is addressed, though, by a second processing task, called Block Processing. Its goal 161
is to restructure an existing block collection so as to minimize the number of comparisons, without 162
any significant impact on the duplicates that co-occur in blocks. This is achieved by discarding two 163
types of unnecessary comparisons: the redundant ones, which are repeated across multiple blocks 164
and the superfluous ones, which involve non-matching entities. 165

The next task is Matching, which, in its simplest form, applies a function M that maps each 166
pair of entity descriptions (ei , ej ) to {true, f alse}, withM (ei , ej ) = true meaning that ei and ej are 167
matches, and M (ei , ej ) = f alse that they are not. Typically, the match function is defined via a 168
similarity function sim that measures how similar two descriptions are to each other, according to 169
certain comparison criteria. Finding a similarity function that perfectly distinguishes all matches 170
from non-matches for all entity collections is rather hard. Thus, in reality, we seek a similarity 171
function that is only good enough, minimizing the number of false-positive or -negative matches. 172
Recent works have also proposed an iterative ER process, which interleavesMatchingwith Block- 173

ing [148, 194]: Matching is applied to the results of (Meta-)Blocking and the results of each iteration 174
potentially alter the existing blocks, triggering a new iteration. The block modifications are based 175
on the relationships between the matched descriptions and/or on the results of their merging. 176
The final task in the end-to-end ER workflow is Clustering [80, 126, 153–155], which groups 177

together the identified matches such that all descriptions within a cluster match. Its goal is actually 178
to infer indirect matching relations among the detected pairs of matching descriptions so as to 179
overcome possible limitations of the employed similarity functions. Its output comprises disjoint 180
sets of entity descriptions R = {r1, r2, . . . , rm } , such that (i) ∀ei , ej ∈ rk M (ei , ej ) = true , (ii) ∀ei ∈ 181

ACM Computing Surveys, Vol. 53, No. 6, Article 127. Publication date: September 2020.
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Fig. 3. Taxonomy of ER settings and approaches.

rk∀ej ∈ rl M (ei , ej ) = f alse , and (iii) ∪ri ri ∈ R = E, where E stands for the input entity collection.182
This partitioning corresponds to the resulting set of resolved entities in Figure 2(a).183
Figure 2(b) illustrates the additional processing tasks that are required when an ER workflow184

is subject to budget restrictions in terms of time or number of comparisons. These restrictions es-185
sentially call for an approximate solution to ER, as an indirect way of addressing Volume. Rather186
than finding all entity matches, the goal of budget-aware ER is to progressively identify as many187
matches as possible within a specified cost budget. It extends batch, budget-agnostic ER workflows188
with a Planning and Update phase that typically work on windows [2]. Planning is responsible for189
selecting which pairs of descriptions will be compared for matching and in what order, based on190
the cost/benefit tradeoff. Within every window, it essentially favors the more promising com-191
parisons, which are more likely to increase the targeted benefit (e.g., the number of matches) in192
the remaining budget. Those comparisons are performed first in the current window and thus, a193
higher benefit is achieved as early as possible. The Update phase takes into account the results194
of Matching, such that Planning in a subsequent window will promote the comparison of pairs195
influenced by the previous matches. This iterative ER process continues until the budget is ex-196
hausted. Both phases rely on a graph of dependencies among descriptions [48], which leverages197
budget-agnostic blocking methods.198
Finally, to resolve in real time entities provided as queries against a known entity collection,199

or arriving in high Velocity streams, incremental ER workflows should be supported. In the first200
case, a summarization of the entity collection can reduce the number of comparisons between a201
query description and an indexed entity collection, by keeping—ideally inmemory—representative202
entity descriptions for each set of already resolved descriptions [96]. Thus, each query (description)203
corresponds either to descriptions already resolved to a distinct real-world entity, or to a new one, if204
it does not match with any other description [17, 164, 191]. To boost time efficiency, ER workflows205
should support dynamic indexing/blocking at varying latencies and thus be able to compare only206
a small number of highly similar candidate pairs arriving in a streaming fashion. Fast algorithms207
are also required to incrementally cluster the graph formed by the matched entities in a way that208
approximates the optimal performance of correlation clustering [77].209

Taxonomy of ER settings and approaches.Overall, Figure 3 illustrates the taxonomy of ER set-210
tings based on the key characteristics. Blocking, Matching, and Clustering methods that operate211
on relational data are schema-aware, as opposed to the schema-agnostic methods, which are more212
flexible regarding the structure, since they consider all attribute values. In the context of Big Data,213
nearly similar entities are resolved by going beyond attribute-based ER techniques, which exam-214
ine each pair of descriptions independently from other pairs. To match graph-based descriptions215
of real-world entities, collective ER techniques [16] are used to increase their matching evidence216

ACM Computing Surveys, Vol. 53, No. 6, Article 127. Publication date: September 2020.
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either by merging partially matched descriptions of entities or by propagating their similarity to 217
neighbor entities via relations that will be matched in a next round. These techniques involve 218
several iterations until they converge to a stable ER result (i.e., no more matches are identified). 219
Thus, collective ER is hard to scale, especially in a cross-domain setting that entails a very large 220
number of sources and entity types. Finally, we distinguish between batch (or static) ER, which 221
operates on a given input entity collection, and incremental (or dynamic) ER, which operates on 222
entities arriving in streams or provided by users online as queries. A fine-grained classification of 223
the previous ER settings and approaches will be presented in the following subsections. 224

3 BLOCKING 225

This step receives as input one or more entity collections and returns as output a set of blocks 226
B, called block collection, which groups together similar descriptions, while keeping apart the dis- 227
similar ones. As a result, each description can be compared only to others placed within the same 228
block(s), thus reducing the computational cost of ER to the comparison of similar descriptions. 229
Blocking is thus crucial for successfully addressing the Volume of Big Data. 230
The desiderata of Blocking are [35] (i) to place all matching descriptions in at least one common 231

block, and (ii) to minimize the number of suggested comparisons. The second goal dictates skip- 232
ping many comparisons, possibly leading to many missed matches, which hampers the first goal. 233
Therefore, Blocking should achieve a good tradeoff between these two competing goals. 234
In this survey, we provide an overview of Blocking for semi-structured data, which require no 235

domain or schema knowledge, unlike the schema-aware methods that are crafted for structured 236
data (we refer the interested reader to [34, 35, 140] for more details). Instead of relying on human 237
intervention, they require no expertise to identify the best attribute(s) for defining blocking keys. 238
They operate in a schema-agnosticway that disregards the semantic equivalence of attributes, thus 239
being inherently crafted for addressing the Variety of highly heterogeneous semi-structured data. 240
We distinguish them into non-learning and learning-based methods. 241

Non-learning methods. Semantic Graph Blocking [131] considers exclusively the relations be- 242
tween descriptions, i.e., foreign keys in databases and links in RDF data. For every description ei , 243
it creates a block bi that contains all descriptions connected with ei through a path of restricted 244
length, provided that the block size does not exceed a predetermined limit. 245
The textual content of attributes is considered by Token Blocking (TB) [136], which creates a 246

block bt for every distinct attribute value token t , regardless of the associated attribute names: 247
two descriptions co-occur in bt ∈ B, if they share token t in any of their attribute values. This 248
crude operation yields high recall, due to redundancy (i.e., every entity participates in multiple 249
blocks), at the cost of low precision. This is due to the large portion of redundant comparisons, 250
which are repeated in different blocks, and superfluous ones, which involve non-matching enti- 251
ties [133, 136, 138]. 252

Discarding these two types of comparisons, especially the superfluous ones, we can raise TB’s 253
precision without any (significant) impact on recall. Attribute Clustering Blocking [136] clusters to- 254
gether attributes with similar values and applies TB independently to the values of every attribute 255
cluster. RDFKeyLearner [165] applies TB independently to the values of automatically selected at- 256
tributes, which combine high value discriminability with high description coverage. TYPiMatch 257
[116] clusters the input descriptions into a set of overlapping types and then applies TB indepen- 258
dently to the members of each type. Unlike TB, which tokenizes URIs on all their special charac- 259
ters, Prefix-Infix(-Suffix) Blocking [135] uses as blocking keys only the infixes of URIs—the prefix 260
describes the domain of the URI, the infix is a local identifier, and the optional suffix contains de- 261
tails about the format, or a named anchor. For example, in “https://dl.acm.org/journal/csur/authors,” 262
the prefix is “https://dl.acm.org/journal,” the infix is “csur,” and the suffix is “authors.” 263
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Another family of Blocking methods stems from generalizing TB’s functionality to the main264
schema-aware non-learning techniques. By using the same blocking keys as TB, we can apply265
traditional Blocking methods to heterogeneous semi-structured data [133] and significantly im-266
prove their recall, even over structured data. This has been successfully applied to the following267
techniques.268
Suffix Arrays Blocking [1] converts each TB blocking key (i.e., attribute value token) into the269

suffixes that are longer than a specific minimum length lmin . Then, it defines a block for every suf-270
fix that does not exceed a predetermined frequency threshold bmax , which specifies the maximum271
block size. Extended Suffix Arrays Blocking [35, 133] considers all substrings (not just the suffixes)272
of TB blocking keys with more than lmin characters, so as to support noise at the end of blocking273
keys (e.g., “JohnSnith” and “JohnSmith””). Similarly, Q-grams Blocking [35, 133] converts every TB274
blocking key into sub-sequences of q characters (q-grams) and defines a block for every distinct275
q-gram. Extended Q-Grams Blocking [35, 133] concatenates multiple q-grams to form more distinc-276
tive blocking keys.277
Canopy Clustering [35, 118] iteratively selects a random description ei and creates a new block278

bi for it. Using a cheap string similarity measure, it places in bi all descriptions whose TB blocking279
keys have a similarity to ei higher than tin ; descriptions with a similarity higher than tex (>tin ) par-280
ticipate in no subsequent block. Extended Canopy Clustering [35, 133] replaces the weight thresh-281
olds with cardinality ones: for each randomly selected description, the k1 most similar descriptions282
are placed in its block, while the k2 (≤ k1) most similar ones participate in no other block.283
Finally, Sorted Neighborhood [84] sorts TB blocking keys in alphabetical order. Awindow of fixed284

size w slides over the sorted list of descriptions and compares the description at the last position285
with all descriptions in the same window. This approach is robust to noise in blocking keys, but286
small w trades high precision for low recall and vice versa for large w [35]. To address this issue,287
Extended Sorted Neighborhood [35, 133] slides the windoww over the sorted list of blocking keys.288

Learning-based methods. Hetero [100] is an unsupervised approach that maps every dataset to289
a normalized TF vector, and applies an efficient adaptation of the Hungarian algorithm to pro-290
duce positive and negative feature vectors. Then, it applies FisherDisjunctive [99] with bagging291
to achieve robust performance. Extended DNF BSL [101] combines an established instance-based292
schema matcher with weighted set covering to learn supervised blocking schemes in Disjunctive293
Normal Form (DNF) with at most k attributes.294

Parallelization. Parallel adaptations of the above methods have been proposed in the literature.295
They rely on theMapReduce paradigm [43]: following a split-apply-combine strategy, MapReduce296
partitions the input data into smaller chunks, which are then processed in parallel. A Map function297
emits intermediate (key, value) pairs for each input split, while a Reduce function processes the list298
of values that correspond to a particular intermediate key, regardless of the mapper that emitted299
them. The two functions form a MapReduce job, with complex procedures involving multiple jobs.300
Using a single MapReduce job, TB builds an inverted index that associates every token with all301

entities containing it in their attribute values [37, 57]. For Attribute Clustering, four MapReduce302
jobs are required [37, 57]: the first one aggregates all values per attribute, the second one estimates303
the similarity between all attributes, the third one associates every attribute with its most similar304
one, and the fourth one assigns to every attribute a cluster id and applies the TB MapReduce job.305
Prefix-Infix(-Suffix) Blocking requires three jobs [37, 57]: the first two extract the prefixes and the306
optional suffixes from the input URIs, respectively, while the third one applies TB’s mapper to the307
literal values and a specialized mapper that extracts infixes to the URIs.308
A crucial aspect of the MapReduce paradigm is the load balancing algorithm. To balance the cost309

of executing the comparisons defined in an existing block collection, Dis-Dedup [38] formalizes310
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Table 1. A Taxonomy of the Blocking Methods Discussed in Section 3

(in the Order of Presentation)

load balancing as an optimization problem that minimizes not only the computational, but also 311
the communication cost (e.g., network transfer time, local disk I/O time). The proposed solution 312
provides strong theoretical guarantees for a performance close to the optimal one. 313

3.1 Discussion 314

Table 1 organizes the main schema-agnostic Blocking methods in a two-dimensional taxonomy 315
that is formed by two criteria: (i) Indexing Function Definition, which determines whether learning 316
is used to extract blocking keys from each entity description, and Redundancy attitude, which de- 317
termines whether the outcome is a redundancy-positive block collection, where the more blocks two 318
descriptions share, the more likely they are to be matching, or a redundancy-neutral one otherwise. 319
We observe that most methods involve a non-learning functionality that produces redundancy- 320
positive blocks. Among them, TB tries to maximize recall by assuming that duplicate entities share 321
at least one common token in their values. Extensive experiments have shown that this assumption 322
holds for KBs in the center of the LOD cloud [37, 57]. Yet, this coarse-grained approach typically 323
leads to very low precision, since most of the pairs sharing a common word are non-matches. 324
Attribute Clustering Blocking increases TB’s precision by requiring that the common tokens of 325
matching entities appear in attributes with similar values. Prefix-Infix(-Suffix) Blocking applies 326
only to RDF data. However, it has been shown that both methods perform poorly when applied to 327
KBs from the periphery of the LOD cloud [37, 57]. The reason is that they exclusively consider the 328
noisy content of descriptions, disregarding the valuable evidence that is provided by contextual 329
information, such as the neighboring descriptions, i.e., entities of different types connected via 330
important relations. TYPiMatch also attempts to raise TB’s precision, by categorizing the given 331
entities into overlapping types, but its recall typically drops to a large extent, due to the noisy, 332
schema-agnostic detection of entity types [141]. 333
Overall, the schema-agnostic Blocking methods address both Volume and Variety of Big Data 334

entities, consistently achieving high recall, due to redundancy. Their precision, though, is very 335
low, due to the large portion of redundant and the superfluous comparisons in their overlapping 336
blocks. We refer to [34, 35, 140] for a more detailed overview of Blocking methods. 337
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4 BLOCK PROCESSING338

This step receives as input a set of blocks B and produces as output a new set of blocks B ′ that has339
similar recall, but significantly higher precision. This is achieved by discarding most superfluous340
and redundant comparisons in B. The relevant techniques operate at the coarse level of entire341
blocks (Block Cleaning) or at the finer level of individual comparisons (Comparison Cleaning).342

4.1 Block Cleaning343

Methods of this type are static, i.e., independent of Matching, or dynamic, i.e., interwoven with it.344

Static methods. The core assumption is that excessively large blocks (e.g., those corresponding to345
stop-words) are dominated by unnecessary comparisons. In fact, the larger a block is, the less likely346
it is to contain unique duplicates, i.e., matches that share no other block. Hence, they discard the347
largest blocks, raising precision, without any significant impact on recall. To this end, Block Purging348
sets an upper limit on the number of comparisons [136] or the block size [135]. Block Filtering349
applies a limit to the blocks of every description, retaining it in r% of its smallest blocks [139, 141].350
More advanced methods, like a MapReduce-based blocking algorithm [119], learning-based (su-351

pervised) method Rollup Canopies [157], and Size-based Block Clustering [65], split excessively large352
blocks into smaller sub-blocks until they all satisfy the maximum block size limit. The last method353
may merge back small blocks with similar blocking keys, in order to raise recall.354

Dynamic methods. Assuming that Matching is performed by a perfect oracle, these methods355
schedule the processing of blocks on-the-fly so as to maximize ER effectiveness and time efficiency.356
For Dirty ER, Iterative Blocking [194] merges any new pair of matching descriptions, ei and ej , into357
a new one, ei, j , and replaces both ei and ej with ei, j in all blocks that contain them. The already358
processed blocks are reprocessed so that ei, j is compared with all others; the new content in ei, j359
may yield different similarity values that designate previously missed matches.360
For Clean-Clean ER, Block Scheduling orders blocks in ascending order of comparisons [163],361

or block size [136], so as to detect matches as early as possible. These matches are propagated362
to subsequently processed blocks in order to reduce the superfluous comparisons. This yields a363
block processing order with decreasing density of detected matches. Based on this observation,364
Block Pruning [136] terminates the entire ER process as soon as the average number of executed365
comparisons for detecting a new pair of duplicates drops below a predetermined threshold.366

4.2 Comparison Cleaning367

Most methods of this type operate on redundancy-positive block collections, where the more blocks368
two descriptions share, the more likely they are to be matching. This characteristic allows for369
weighting all pairwise comparisons in proportion to the matching likelihood of the corresponding370
descriptions, a process that has been formalized by Meta-blocking [137].371
Meta-blocking converts the input block collection B into a blocking graph GB , where nodes372

correspond to descriptions and unique edges connect every pair of co-occurring descriptions. The373
edges are weighted in proportion to the likelihood that the adjacent descriptions are matching.374
Edges with low weights are pruned, as they probably correspond to superfluous comparisons. A375
new block is then created for every retained edge, yielding the restructured block collection B ′.376
In this process, various techniques can be used for weighting and pruning the graph edges [137].377
For edge pruning, the following algorithms are available:Weighted Edge Pruning [137] removes378

all edges that do not exceed the average edge weight; Cardinality Edge Pruning retains the globally379
K top weighted edges [137, 200]; Weighted Node Pruning (WNP) [137] and BLAST [161] retain in380
each node neighborhood the descriptions that exceed a local threshold; Cardinality Node Pruning381
(CNP) retains the top-k weighted edges in each node neighborhood [137]; Reciprocal WNP and382
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Table 2. A Taxonomy of the Blocking Processing Methods Discussed in Section 4

(in the Order of Presentation)

CNP [139] retain edges satisfying the pruning criteria in both adjacent node neighborhoods. Other 383
methods perform edge pruning inside individual blocks [47], whileDisjunctive Blocking Graph [56] 384
associates every edge with multiple weights to express composite co-occurrence conditions. 385
On another line of research, Transitive LSH [167] converts LSH blocks into an unweighted block- 386

ing graph and applies a community detection algorithm, such as [40], while SPAN [160] uses ma- 387
trix representations and operations to enhance the input block collection. The only approach that 388
applies to any block collection B, even one that is not redundancy-positive, is Comparison Propa- 389
gation [136], which merely discards all redundant comparisons from B. 390

Learning-basedmethods. Supervised Meta-blocking [138] casts edge pruning as a binary classifi- 391
cation problem: every edge is annotated with a vector of schema-agnostic features, and is classified 392
as likely match or unlikely match. BLOSS [18] further cuts down on the labeling effort, by se- 393
lecting a very small training set that maintains high effectiveness. 394

Parellelization.Meta-blocking has been adapted to both multi-core [134] and MapReduce paral- 395
lelization [55]. Regarding the latter, the entity-based strategy [55] aggregates for every description 396
the bag of all description ids that co-occur with it in at least one block. Then, it estimates the edge 397
weight that corresponds to each neighbor based on its frequency in the co-occurrence bag. An 398
alternative approach is the comparison-based strategy [55]: the first pre-processing job enriches 399
each block with the list of block ids associated with every description. This allows for comput- 400
ing the edge weights and discarding all redundant comparisons in the Map phase of the second 401
job, while the superfluous comparisons are pruned in the ensuing Reduce phase. Both strategies 402
rely on the load balancing algorithm MaxBlock [55] to avoid the underutilization of the available 403
resources. BLAST is parallelized in [162], exploiting the broadcast join of Apache Spark for very 404
high efficiency. 405

4.3 Discussion 406

Table 2 presents an overview of the Block Processing methods discussed above. The resulting tax- 407
onomy consists of three criteria: granularity of functionality, matching awareness (i.e., whether a 408
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method is dynamic, depending on the outcomes of Entity Matching method, or static) and prun-409
ing definition (i.e., whether the search space is reduced through a learning process that involves410
labeled instances or not). Most Block Processing techniques involve a comparison-centric, static411
and non-learning functionality that can be seamlessly combined with any Blocking technique.412
Numerous studies have demonstrated that Block and Comparison Cleaning are indispensable for413
schema-agnostic Blocking, raising precision by orders of magnitude, without hurting recall [136,414
141, 161]. Multiple Block Cleaning methods can be part of the same end-to-end ER workflow, as415
they are typically complementary; e.g., Block Purging is usually followed by Block Filtering [139].416
Yet, at most one Comparison Cleaning method can be part of an ER workflow: applying it to417
a redundancy-positive block collection removes its co-occurrence patterns and renders all other418
techniques inapplicable. The top performer among non-learning techniques is BLAST [161], while419
BLOSS performs better by labelling just ∼50 instances [18]. We refer to [140] for a more detailed420
overview of Block Processing techniques.421

5 MATCHING422

At the core of ER lies the Matching task, which receives as input a block collection and for each423
pair of candidate matches that co-occur in a block, it decides if they refer to the same real-world424
entity.425

5.1 Preliminaries426

The matching decision is typically made by a match function M , which maps each pair of entity427
descriptions (ei , ej ) to {true, f alse}, withM (ei , ej ) = true meaning that ei and ej are matches, and428
M (ei , ej ) = f alse meaning that ei and ej are not matches.429

In its simplest form, M is defined via a similarity function sim, measuring how similar two en-430
tities are to each other, according to certain comparison attributes. sim can consist of an atomic431
similarity measure, like Jaccard similarity, or a composite one, e.g., a linear combination of sev-432
eral atomic similarity functions on different attributes of a description. To specify an equivalence433
relation among entity descriptions, we need to consider a similarity measure satisfying the non-434
negativity, identity, symmetry, and triangle inequality properties [198], i.e., a similarity metric.435
Given a similarity threshold θ , a simple matching function can be defined as436

M (ei , ej ) =




true, if sim(ei , ej ) ≥ θ ,

false, otherwise.

In more complex ER pipelines, such as when matching rules are manually provided, or learned437
from training data, thematching functionM can be defined as a complex function involving several438
matching conditions. For instance, two person descriptions match if their SSN is identical, or if439
their date of birth, zip code, and last names are identical, or if their e-mail addresses are identical.440
Finding a similarity metric which can perfectly distinguish all matches from non-matches using441

simple pairwise comparisons on the attribute values of two descriptions is practically impossi-442
ble. In particular, similarity metrics are too restrictive to identify nearly similar matches. Thus, in443
reality, we seek similarity functions that will be only good enough, i.e., minimize the number of444
misclassified pairs, and rely on collective ER approaches to propagate the similarity of the entity445
neighbors of two descriptions to the similarity of those descriptions. In this inherently iterative446
process, the employed match function is based on a similarity that dynamically changes from it-447
eration to iteration, and its results may include a third state, the uncertain one. Specifically, given448
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Fig. 4. (a) A merging-based collective ER example and (b) a relationship-based collective ER example. (c) Two

different descriptions of the movie A Clockwork Orange and its cast in XML.

two similarity thresholds θ and θ ′, with θ ′ < θ , the match function at iteration n,Mn , is given by 449

Mn (ei , ej ) =





true, if simn−1 (ei , ej ) ≥ θ ,

false, if simn−1 (ei , ej ) ≤ θ ′,

uncertain, otherwise.

Based on the characteristics of the entity collections (e.g., structuredness, domain, size), the na- 450
ture of comparisons (attribute-based or collective), as well as the availability of known, pre-labeled 451
matching pairs, different methodologies can be followed to identify an appropriate similarity func- 452
tion and thus, a fitting match function. In what follows, we explore alternative methodologies for 453
the matching task and discuss the cases in which those methodologies are more suited. 454

5.2 Collective Methods 455

To minimize the number of missed matches, commonly corresponding to nearly similar matches, 456
a collective ER process can jointly discover matches of inter-related descriptions. This is an inher- 457
ently iterative process that entails additional processing cost. We distinguish between merging- 458
and relationship-based collective ER approaches. In the former, new matches can be identified by 459
exploiting the merging of the previously found matches, while in the latter, iterations rely on the 460
similarity evidence provided by descriptions being structurally related in the original entity graph. 461

Example 5.1. Consider the descriptions in Figure 4 (a), which stem from the knowledge base 462
KB1. They all refer to the person, Stanley Kubrick. Initially, it is difficult to match KB1:SKBRK 463
with any other description, since many people named Kubrick may have been born in Manhat- 464
tan, or died in the UK, respectively. However, it is quite safe to match the first two descriptions 465
(KB1:Stanley_Kubrick andKB1:Kubrick). Bymerging the first two descriptions, e.g., using the union 466
of their attribute-value pairs, it becomes easier to identify that the last description (KB1:SKBRK) 467
also refers to the same person, based on the name and the places of birth and death. Consider now 468
the descriptions in Figure 4(b), which stem from the knowledge bases KB1 and KB2. The descrip- 469
tions on the left (KB1:SKBRK and KB2:SKubrick) represent Stanley Kubrick, while the descriptions 470
on the right (KB1:Manhattan and KB2: MNHT) represent Manhattan, where Kubrick was born. Ini- 471
tially, it is difficult to identify the match between the descriptions on the left, based only on the 472
common year of death and last name. However, it is quite straightforward to identify the match 473
between the descriptions of Manhattan, on the right. Having identified this match, a relationship- 474
based collective ER algorithmwould re-considermatchingKB1:SKBRK toKB2:SKubrick, since these 475
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descriptions are additionally related, with the same kind of relationship (birth place), to the descrip-476
tions of Manhattan that were previously matched. Therefore, a relationship-based ER algorithm477
would identify this new match in a second iteration.478

Note that the structuredness of the input entity collection to be resolved is a key factor for479
the nature of collective approaches. Merging-based methods are typically schema-aware, since480
structured data make the process of merging easier. On the other hand, collective methods dealing481
with semi-structured data are typically relationship-based, since merging would require deciding482
not only which values are correct for a given attribute, but also which values are available for483
similar attributes and can be used to merge two descriptions.484

5.2.1 Schema-Aware Methods. In merging-based collective ER, the matching decision between485
two descriptions triggers a merge operation, which transforms the initial entity collection by486
adding the new, merged description and potentially removing the two initial descriptions. This487
change also triggers more updates in the matching decisions, since the new, merged description488
needs to be compared to the other descriptions of the collection. Intuitively, the final result of489
merging-based collective ER is a new entity collection, which is the result of merging all the490
matches found in the initial collection. In other words, there should be a one-to-one correspon-491
dence between the descriptions in the resolution results and the actual real-world entities from492
the input entity collection.493
Considering the functions of matchingM and merging μ as black boxes, Swoosh [15] is a family494

of merging-based collective ER strategies that minimize the number of invocations to these poten-495
tially expensive black boxes; D-Swoosh [14] introduces a family of algorithms that distribute the496
workload of merging-based ER across multiple processors. Both works rely on the following set497
of ICAR properties, that, when satisfied byM and μ, lead to higher efficiency:498

— Idempotence: ∀ei ,M (ei , ei ) = true and μ (ei , ei )=ei .499
—Commutativity: ∀ei , ej ,M (ei , ej )=true ⇔ M (ej , ei )= true and μ (ei , ej ) = μ (ej , ei ).500
—Associativity: ∀ei , ej , ek , if both μ (ei , μ (ej , ek )) and μ (μ (ei , ej ), ek ) exist, μ (ei , μ (ej , ek )) =501
μ (μ (ei , ej ), ek ).502

—Representativity: If ek = μ (ei , ej ), then for any el such thatM (ei , el ) = true ,M (ek , el ) = true .503

Regarding the match function, idempotence and commutativity have been already discussed504
in Section 5.1, as reflexivity and symmetry, respectively, while representativity extends transi-505
tivity, by also including the merge function. Note that if associativity does not hold, it becomes506
harder to interpret a merged description, since it depends on the order in which the source de-507
scriptions were merged.508
R-Swoosh [15] exploits the ICAR properties as follows. A set E of entity descriptions is initialized509

to contain all the input descriptions. Then, in each iteration, a description e is removed from E510
and compared to each description e ′ of the, initially empty, set E ′. If e and e ′ are found to match,511
then they are removed from E and E ′, respectively, and the result of their merging is placed into512
E (exploiting representativity). If there is no description e ′ matching with e , then e is placed in E ′.513
This process continues until E becomes empty, i.e., there are no more matches to be found.514
In relationship-based collective ER, the matching decision between two descriptions triggers dis-515

covering new candidate pairs for resolution, or re-considering pairs already compared; matched516
descriptions may be related to other descriptions, which are now more likely to match to517
each other.518
To illustrate the relationships between the descriptions of an entity collection E, usually, an en-519

tity graph GE = (V ,E) is used, in which nodes, V ⊆ E, represent entity descriptions and edges,520
E, reflect the relationships between the nodes. For example, such a match function could be521
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of the form 522

M (ei , ej ) =

{

true, if sim(nbr (ei ),nbr (ej )) ≥ θ

f alse, else,

where sim can be a relational similarity function and θ is a threshold value. Intuitively, the neigh- 523
borhood nbr (e ) of a node e can be the set of all the nodes connected to e , i.e., nbr (e ) = {ej |(e, ej ) ∈ 524
E}, or the set of edges containing e , i.e., nbr (e ) = {(e, ej ) |(e, ej ) ∈ E}. 525

Collective ER [16] employs an entity graph, following the intuition that two nodes are more 526
likely to match, if their edges connect to nodes corresponding to the same entity. To capture this 527
iterative intuition, hierarchical agglomerative clustering is performed, where, at each iteration, the 528
two most similar clusters are merged, until the similarity of the most similar clusters is below a 529
threshold. When two clusters are merged, the similarities of their related clusters, i.e., the clusters 530
corresponding to descriptions related to the descriptions in the merged cluster, are updated. To 531
avoid comparing all the pairs of input descriptions, Canopy Clustering [118] is initially applied. 532
Hybrid Collective ER [48] is based on both partial merging results and relations between de- 533

scriptions. It constructs a dependency graph, where every node represents the similarity between 534
a pair of entity descriptions and every edge represents the dependency between the matching de- 535
cisions of two nodes. If the similarity of a pair of descriptions changes, the neighbors of this pair 536
might need a similarity re-computation. The dependencies between the matching decisions are 537
distinguished between Boolean and real-valued. The former suggest that the similarity of a node 538
depends only on whether the descriptions of its neighbor node match or not, while in real-valued 539
dependencies, the similarity of a node depends on the similarity of the descriptions of its neighbor 540
node. Boolean dependencies are further divided into strong (if a node corresponds to a match, its 541
neighbor pair should also be a match), and weak (if a node corresponds to a match, the similarity of 542
its neighbor pair is increased). Initially, all nodes are added to a priority queue. On each iteration, 543
a node is removed from the queue and if the similarity of the node is above a threshold, its de- 544
scriptions are merged, aggregating their attribute values, to enable further matching decisions; if 545
the similarity value of this node has increased, its neighbor nodes are added to the priority queue. 546
This iterative process continues until the priority queue becomes empty. 547

5.2.2 Schema-Agnostic Methods. Collective ER for tree (XML) data is studied in [190]. Entity de- 548
scriptions correspond to XML elements composed of text data or other XML elements, and domain 549
experts specify which XML elements are match candidates, thus, initializing a priority queue of 550
comparisons. Entity dependency takes the following form in this case: an XML element c depends 551
on another XML element c ′, if c ′ is a part of the description of c . Consequently, identifying the 552
matches of c is not independent of identifying the matches of c ′. Even if two XML elements are ini- 553
tially considered to be non-matches, they are compared again, if their related elements are marked 554
as matches. A similar approach is based on the intuition that the similarity of two elements reflects 555
the similarity of their data, as well as the similarity of their children [189]. Following a top-down 556
traversal of XML data, the DELPHI containment metric [6] is used to compare two elements. 557

Example 5.2. Figure 4(c) shows two different descriptions of the movie A Clockwork Orange in 558
XML. This representation means that the element movie consists of the elements title, year, and 559
cast, with the last one further consists of actor elements. To identify that the two XML descriptions 560
represent the same movie, we can start by examining the cast of the movies. After we identify that 561
actors a11 and a21 represent the same person, Malcolm McDowell, the chances that the moviesm1 562
andm2 match are increased. They are further increased when we find that actors a12 and a22 also 563
match, representing Patrick Magee. The same matching process over all the sub-elements of m1 564
andm2 will finally lead us to identify thatm1 andm2 match. 565
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SiGMa [111] selects as seed matches the pairs that have identical entity names. Then, it propa-566
gates the matching decisions on the compatible neighbors of existing matches. Unique Mapping567
Clustering is applied for detecting duplicates. For every new matched pair, the similarities of the568
neighbors are recomputed and their position in the priority queue is updated.569
LINDA [21] follows a very similar approach, which differs from SiGMa mainly in the similarity570

functions and the lack of a manual relation alignment. LINDA relies on the edit distance of the571
relation names used in the two KBs to determine if they are equivalent or not. This alignment572
method makes a strong assumption that descriptions in KBs use meaningful names for relations573
and similar names for equivalent relations, which is often not true in the Web of Data. Rather than574
using a similarity threshold, the resolution process in LINDA terminates when the priority queue575
is empty, or after performing a predetermined number of iterations.576
RiMOM-IM [114, 159] initially considers as matches entities placed in blocks of size 2. It also577

uses a heuristic called “one-left object”: if twomatched descriptions e1, e
′
1 are connected via aligned578

relations r and r ′, and all their entity neighbors via r and r ′, except e2 and e
′
2, have been matched,579

then e2, e
′
2 are also consideredmatches. Similar to SiGMa, RiMOM-IM employs a complex similarity580

score, which requires the alignment of relations among the KBs.581
PARIS [169] uses a probabilistic model to identify matching evidence, based on previous matches582

and the functional nature of entity relations. A relation is considered to be functional if, for a given583
source entity, there is only one destination entity (e.g., wasBornIn). The basic matching idea is584
that if r (x ,y) is a function in one KB and r (x ,y ′) is a function in another KB, then y and y ′ are585
considered to be matches. The functionality, i.e., degree by which a relation is close to being a586
function, and the alignment of relations along with previous matching decisions determine the587
decisions in subsequent iterations. The functionality of each relation is computed at the beginning588
of the algorithm and remains unchanged. Initially, instanceswith identical values (for all attributes)589
are considered matches and based on those matches, an alignment of relations takes place. In every590
iteration, instances are compared based on the newly aligned relations, and this process continues591
until convergence. In the last step, an alignment of classes (i.e., entity types) also takes place.592
On another line of research, MinoanER [56] executes a non-iterative process that involves four593

matching rules. First, it identifies matches based on their name (rule R1). This is a very effective594
and efficient method that can be applied to all descriptions, regardless of their values or neighbor595
similarity, by automatically specifying distinctive names of entities based on data statistics. Then,596
the value similarity is exploited to find matches with many common and infrequent tokens, i.e.,597
strongly similar matches (rule R2). When value similarity is not high, nearly similar matches are598
identified based on both value and neighbors similarity using a threshold-free rank aggregation599
function (rule R3). Finally, reciprocal evidence of matching is exploited as a verification of the600
returned results: only entities mutually ranked in the top matching candidate positions of their601
unified ranking lists are considered as matches (rule R4).602

5.3 Learning-Based Methods603

The first probabilistic model for ER [63] used attribute similarities as the dimensions of comparison604
vectors, each representing the probability that a pair of descriptions match. Following the same605
conceptual model, a large number of works try to automate the process of learning such probabil-606
ities based on manually or automatically generated, or even pre-existing training data. Next, we607
explore different ways of generating and exploiting training data.608

Supervised Learning. Adaptive Matching [41] learns from the training data a composite function609
that combines many attribute similarity measures. Similarly, MARLIN [20] uses labeled data at610
two levels. First, it can utilize trainable string similarity/distance measures, such as learnable edit611
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distance, adapting textual similarity computations to specific attributes. Second, it uses labeled 612
data to train a classifier that distinguishes pairs between matches and non-matches, using textual 613
similarity values for different attributes as features. 614
Gradient-Based Matching [150] proposes a model that can adjust its structure and parameters 615

based on aggregate similarity scores coming from individual similarity functions on different at- 616
tributes. Its design allows for locating which similarity functions and attributes are more signif- 617
icant to correctly classify pairs. For its training, it employs a performance index that helps to 618
separate descriptions that have already been matched from those that have not been matched as 619
yet. 620
BN-Based Collective ER [89] adapts a relationship-based collective ER approach (similar to [48]) 621

to a supervised learning setting. A Bayesian network is used to capture cause-effect relationships, 622
which are modeled as directed acyclic graphs, and to compute matching probabilities. The lexi- 623
cal similarity in the attribute values of the descriptions as well as their links to existing matches 624
constitute positive matching evidence, which incrementally updates the Bayesian network nodes, 625
similar to the incremental updates that take place in the graph-based dependency model of [48]. 626
GenLink [91] is a supervised, genetic programming algorithm for learning expressive linkage 627

rules, i.e., functions that assign similarity values to pairs of descriptions. GenLink generates linkage 628
rules that select the important attributes for comparing two descriptions, normalize their attribute 629
values before similarity computations, choose appropriate similarity measures and thresholds, and 630
combine the results of multiple comparisons using linear as well as non-linear aggregation func- 631
tions. It has been incorporated into the Silk Link Discovery Framework [180] (see Section 9.5). 632

Weakly Supervised Learning. Arguably, the biggest limitation of supervised approaches is the 633
need for a labeled dataset, based on which the underlying machine learning algorithm will learn 634
how to classify new instances. Methods of this category reduce the cost of acquiring such a dataset. 635
A transfer learning approach is proposed in [173] with the aim of adapting and reusing labeled 636

data from a related dataset. The idea is to use a standardized feature space in which the entity em- 637
beddings of the reused and the targeted dataset will be transferred. This way, existing labeled data 638
from another dataset can be used to train a classifier that can work with the target dataset, even if 639
there are no explicitly labeled data for the target dataset. A similar transfer learning approach is 640
also followed in [152] to infer equivalence links in a linked data setting. 641
Snorkel [149] is a generic tool that can be used to generate training data for a broader range of 642

problems than ER. It relies on user-provided heuristic rules (e.g., several matching functions) to la- 643
bel some user-provided data and evaluate this labeling using a small pre-labeled dataset. Instead of 644
attribute weighting, Snorkel tries to learn the importance of the provided matching functions. This 645
approach of weighting matching rules, instead of features, resembles and complements existing 646
works in ER. For example, the goal in [184] is to identify which similarity measure can maximize 647
a specific objective function for an ER task, given a set of positive and negative examples. Those 648
examples can be generated manually one-by-one, or by leveraging tools like Snorkel. 649

Unsupervised Learning. Unsupervised Ensemble Learning [94] generates an ensemble of auto- 650
matic self-learning models that use different similarity measures. To enhance the automatic self- 651
learning process, it incorporates attribute weighting into the automatic seed selection for each of 652
the self-learning models. To ensure that there is high diversity among the selected self-learning 653
models, it utilizes an unsupervised diversity measure. Based on it, the self-learning models with 654
high contribution ratios are kept, while the ones with poor accuracy are discarded. 655
Rather than relying on domain expertise or manually labeled samples, the unsupervised ER sys- 656

tem presented in [102] automatically generates its own heuristic training set. As positive examples 657
are considered the pair of descriptions with very high Jaccard similarity of the token sets in their 658
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attribute values. In the context of Clean-Clean ER, having generated the positive example (e1, e2),659
where e1 belongs to entity collection E1 and e2 to E2, for every other positive example (e3, e4),660
where e3 ∈ E1 and e4 ∈ E2, it further infers the negative examples (e1, e4) and (e3, e2). The result-661
ing training set is first used by the system for Schema Matching to align the attributes in the input662
datasets. The attribute alignment and the training sets are then used to simultaneously learn two663
functions—one for Blocking and the other for Matching.664

5.4 Parallel Methods665

We now discuss works that are able to leverage massive parallelization frameworks.666
A framework for scaling collective ER [16] to large datasets is proposed in [148], assuming a667

black-box ER algorithm. To achieve high scalability, it runs multiple instances of the ER algorithm668
in small subsets of the entity descriptions. An initial block collection is constructed based on the669
similarity of the descriptions using Canopy Clustering [118]. Each block is then extended by taking670
its boundarywith respect to entity relationships. Next, a simple message-passing algorithm is run,671
to ensure that the match decisions within a block, which might influence the match decisions in672
other blocks, are propagated to those other blocks. This algorithm retains a list of active blocks,673
which initially contains all blocks. The black-box ER algorithm is run locally, for each active block,674
and the newly identified matches are added in the result set. All the blocks with a description of675
the newly identified matches are set as active. This iterative algorithm terminates when the list of676
active blocks becomes empty.677
LINDA [21] scales out usingMapReduce. The pairs of descriptions are sorted in descending order678

of similarity and stored in a priority queue. Each cluster node holds (i) a partition of this priority679
queue, and (ii) the corresponding part of the entity graph, which contains the descriptions in the680
local priority queue partition alongwith their neighbors. The iteration step of the algorithm is that,681
by default, the first pair in the priority queue is considered to be a match and is then removed from682
the queue and added to the known matches. This knowledge triggers similarity re-computations,683
which affect the priority queue by (i) enlarging it, when the neighbors of the new match are added684
again to the queue, (ii) re-ordering it, when the neighbors of the identified match move higher in685
the rank, or (iii) shrinking it, after applying transitivity and the constraint for a unique match per686
KB. The algorithm stops when the priority queue is empty, or after a specific number of iterations.687
Finally, Minoan-ER [56] runs on top of Apache Spark. To minimize its overall runtime, it ap-688

plies Name Blocking, while extracting the top similar neighbors per entity and running Token689
Blocking. Then, it synchronizes the results of the last two processes: it combines the value simi-690
larities computed by Token Blocking with the top neighbors per entity to estimate the neighbor691
similarities for all entity pairs with neighbors co-occurring in at least one block. Matching rule692
R1 (finding matches based on their name) starts right after Name Blocking, R2 (finding strongly693
similar matches) after H1 and Token Blocking, R3 (finding nearly similar matches) after R2 and694
the computation of neighbor similarities, while R4 (the reciprocity filter) runs last, providing the695
final, filtered set of matches. During the execution of every rule, each Spark worker contains only696
the partial information of the blocking graph that is necessary to find the match of a specific node.697

5.5 Discussion698

Table 3 presents an overview of the Matching methods discussed in this section. They are or-699
ganized according to schema-awareness (schema-aware or schema-agnostic), nature of compar-700
isons (attribute-based or collective), and algorithmic foundations (non-learning or learning-based).701
Collective methods are further refined as merging-based (MB) or relationship-based (RB), and702
learning-based methods as supervised (S), weakly supervised (WS), and unsupervised (U).703
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Table 3. Taxonomy of the Matching Methods Discussed in Section 5

MB stands for Merging-based, RB for Relationship-based, S for Supervised, WS for Weakly Supervised,

and U for Unsupervised Learning.

We observe that all schema-agnostic methods that have been proposed are collective, and more 704
specifically, relationship-based. This happens because, unlike the schema-aware methods, the 705
schema-agnostic ones cannot rely on attribute-level similarities for attributes that are not known 706
in advance, or it is not known if they are actually used by the descriptions. Hence, those methods 707
propagate the information provided by entity neighbors as matching evidence whenever possible. 708
Consequently, as a rule of thumb that depends on the nature of the input data, we recommend 709
merging-based collective ER methods, which are schema-aware, for data coming from a single 710
dirty entity collection (e.g., for the deduplication of a dirty customer data base) and relationship- 711
based collective ER methods, which are schema-agnostic, for data coming from multiple, curated 712
entity collections (e.g., for finding equivalent descriptions among two or more Web KBs). 713
Note that the learning-based methods can be seen as attribute-based, since they essentially try 714

to learn the probability that two descriptions match based on previous examples of similar pairs, 715
or collective, since their models are trained on sets of pairs, or even on vectorial representations 716
of entity descriptions, or the words used in the values of those descriptions. For completeness, 717
Table 3 classifies them as attribute-based, following the traditional learning approach, because 718
their collective nature cannot be easily labeled as merging-based or relationship-based. We believe 719
that the learning-based methods are gaining ground as new and more effective ways to represent 720
individual or groups of entity descriptions appear (see Section 9.1). The emergence of weakly 721
supervised and transfer-learning methods seem to alleviate the problem of generating a labeled 722
set for training data. Therefore, when labeled examples are available (e.g., in transfer learning), or 723
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are easy to generate using existing tools (e.g., [149]), and the test data are not expected to deviate724
considerably from the training data, those methods seem to be the most promising ones. Before725
choosing learning-based or non-learning methods, one should also consider the desired frequency726
of re-training a new classification model, the memory footprint of each method (i.e., whether the727
whole model needs to reside in memory or not), and the time needed for training and classification.728
In general, recent studies [52, 104, 122] show that the learning-based techniques achieve higher729

accuracy than the rule-based ones that are used in several practical scenarios. Yet, despite some past730
efforts (e.g., [90, 105, 106]), we notice the lack of a systematic benchmarking of matching methods.731
A comprehensive benchmark should evaluate effectiveness (i.e., quality of the output matches),732
time and space efficiency (i.e., the time required for pre-processing, training, and matching, the733
memory and disk space required by each method), and scalability (i.e., using the same computa-734
tional and storage resources, what is the data limit that each method can handle).735

6 CLUSTERING METHODS736

Typically, clustering constitutes the final task in the end-to-end ER workflow, following Matching.737
Its input comprises the similarity graph, where the nodes correspond to the descriptions and each738
edge connects a pair of descriptions that were compared during Matching; the edge weights, typ-739
ically in [0, 1], are analogous to the matching likelihood of the adjacent descriptions. Clustering740
aims to infer more edges from indirect matching relations, while discarding edges that are un-741
likely to connect duplicates in favor of edges with higher weights. Hence, its end result is a set of742
entity clusters, each of which comprises all descriptions that correspond to the same, distinct real-743
world object.744
In the simplest case, Connected Components [80, 153] is applied to compute the transitive closure745

of the detected matches. This naive approach increases recall, but is rather sensitive to noise.746
False positives have a significant impact on precision, leading to entity clusters that are dominated747
by non-matching descriptions. For this reason, more advanced clustering techniques have been748
proposed to leverage the weighted edges in the similarity graph. In general, these techniques are749
distinguished into three categories, according to the type of ER task at hand:750
(1) For Clean-Clean ER, clustering typically relies on the one-to-one correspondence between751

the input data sources. The most popular technique is Unique Mapping Clustering [21, 111], which752
first sorts all edges in decreasing weight. At each iteration, the top edge is considered a match, if753
none of the adjacent descriptions has already been matched. The process ends when the top edge754
has a similarity lower than a threshold t . Essentially, this approach provides an efficient solution755
to the Stable Marriage problem for unequal sets [120], given that Clean-Clean ER forms a (usually756
unbalanced) bipartite similarity graph. The Hungarian algorithm is also applicable, though at a757
much higher computational cost, unless an approximation is used, as in [46, 108].758
(2) For Dirty ER, the core characteristic of clustering algorithms is that they produce a set of759

disjoint entity clusters without requiring as input the number of clusters or any labeled dataset760
for training [80]. Center Clustering [82] iterates once over all edges and creates clusters around761
nodes that are selected as centers. Its functionality is enhanced by Merge-Center Clustering [81],762
which merges together clusters with centers similar to the same node. Star Clustering [10] be-763
gins with sorting all similarity graph nodes in descending order of degree. Then, the top node764
becomes the center of a cluster that includes all its direct neighbors. The same process is repeat-765
edly applied to the remaining nodes, until all nodes belong to a cluster. The resulting clusters are766
overlapping, unless post-processing assigns each node to a single cluster. Ricochet Clustering [195]767
comprises a family of techniques based on two alternating stages: the first one determines the cen-768
ters of clusters (like Star Clustering), while the second one (re-)assigns nodes to cluster centers (like769
k-means).770
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Other techniques focus on the relative strength of the links inside and across clusters, i.e., the 771
intra- and inter-cluster edges. Markov Clustering [175] uses random walks to strengthen the intra- 772
cluster edges, while weakening the inter-cluster ones. Cut clustering [66] iteratively identifies the 773
minimum cut of maximum flow paths from a node to an artificial sink node. This way, it detects 774
small inter-cluster cuts, while strengthening intra-cluster links. Correlation Clustering [12] solves 775
an optimization task, where the goal is to maximize the sum of the intra-cluster edges, while 776
minimizing the sum of the inter-cluster ones. This is an NP-hard problem that is typically solved 777
through approximations, such as Clustering Aggregation [73] and Restricted Correlation Clustering 778
[109]. The latter is a semi-supervised approach that leverages a small labeled dataset, which is 779
carefully selected via an efficient sampling procedure based on LSH. 780
(3) For Multi-source ER [153], we can use most algorithms for Dirty ER, but the multitude of 781

input entity collections calls for specialized clusteringmethods. SplitMerge [126] applies Connected 782
Components clustering and cleans the resulting clusters by iteratively removing entities with low 783
similarity to other cluster members. Then, it merges similar clusters that are likely to correspond 784
to the same real-world entity. CLIP [155] assumes duplicate-free entity collections as input. First, it 785
computes the transitive closure of the strong links, i.e., the edges that correspond to the maximum 786
weight per source (entity collection) for both adjacent nodes. The remaining graph is cleaned from 787
the weak links, i.e., the edges that do not correspond to the maximumweight per source for neither 788
adjacent node. Finally, the transitive closure is computed and its clusters are processed to ensure 789
that they contain at most one description per source. 790

Discussion. The relative performance of Dirty ER methods has been experimentally evaluated 791
in [80]. As expected, Connected Components exhibits the worst accuracy. Ricochet Clustering 792
performs well only over entity collections with uniformly distributed duplicates, while Markov 793
Clustering consistently achieves top performance. Surprisingly enough, the highly scalable, single- 794
pass algorithms Center andMerge-Center clustering provide comparable, if not better, results than 795
more complex techniques, like Cut and Correlation Clustering. 796
The relative performance of Multi-source ER algorithms is examined in [153, 154], using 797

their parallelization in Apache Flink. The experiments show that SplitMerge and CLIP achieve 798
the top performance, with the latter providing a better balance between effectiveness and time 799
efficiency. 800

7 BUDGET-AWARE ER 801

Unlike the budget-agnostic methods presented above, budget-aware ER provides the best possible 802
partial solution, when the response time or the available computational resources are constrained. 803
It is driven by a pay-as-you-go paradigm that sacrifices the completeness of results, when the 804
number of data sources or the amount of data to be processed is ever increasing. For example, the 805
number of high-quality HTML tables on the Web is in the hundreds of millions, while the Google 806
search system alone has indexed ∼26 billion datasets [75]. This unprecedented volume of data 807
can only be resolved progressively, using matching pairs from former iterations to generate more 808
accurate candidate pairs in the latter iterations as long as the allocated budget is not exhausted. 809
Typically, budget-awaremethods rely on blocking as a pre-processing task that identifies similar 810

entity descriptions. They differ, though, on how they leverage the resulting blocks in the Planning 811
step (see Figure 2(b)). Four categories of granularity functionality are defined [163] as follows: 812

(1) Block-centric methods produce a list of blocks that are sorted in descending order of the 813
likelihood that they include duplicates among their descriptions. All the comparisons in- 814
side each block are generated iteratively, one block at a time, following that ordered list. 815
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(2) Comparison-centric methods provide a list of description pairs sorted in descending order816
of matching likelihood. These pairs of descriptions are emitted iteratively, one at a time,817
following that ordered list.818

(3) Entity-centric methods provide a list of descriptions sorted in descending order of dupli-819
cation likelihood. All comparisons of every description are generated iteratively, one de-820
scription at a time, following that ordered list.821

(4) The hybrid methods combine characteristics from two or all of the previous categories.822

Depending on their blocking keys, budget-aware methods are further classified into [163] the823
following:824

(1) Sort-based methods, which rely on the similarity of blocking keys. They produce a list of825
descriptions by sorting them alphabetically, according to their blocking keys, and assume826
that the matching likelihood of two descriptions is analogous to their proximity after827
sorting.828

(2) Hash-based methods, which consider identical blocking keys and typically assume829
redundancy-positive blocks, i.e., the similarity of two descriptions is proportional to their830
common blocks.831

In the sequel, we examine separately the schema-aware and the schema-agnostic methods.832

7.1 Schema-Aware Methods833

The budget-aware methods that are suitable for structured data rely on schema knowledge. This834
means that their performance depends heavily on the attribute(s) that provide the schema-aware835
blocking keys they leverage, typically requiring domain experts to fine-tune them.836
The core comparison-centric method is Progressive Sorted Neighborhood (PSN) [193]. Based on837

SortedNeighborhood [84], it associates every descriptionwith a schema-aware blocking key. Then,838
it produces a sorted list of descriptions by ordering all blocking keys alphabetically. Comparisons are839
progressively defined through a sliding window,w , whose size is iteratively incremented: initially,840
all descriptions in consecutive positions (w = 1) are compared, starting from the top of the list;841
then, all descriptions at distancew = 2 are compared and so on, until termination.842
The above approach produces a static list of comparisons, which remains immutable, regardless843

of the duplicates that are identified. As a result, PSN cannot react to the skewed distribution of844
duplicates. To ameliorate this issue, a dynamic version of the algorithm was proposed in [143]. Its845
functionality is integrated with Matching to adjust the processing order of comparisons on-the-fly.846
Arranging the sorted descriptions in a two-dimensional array A, if position A(i, j ) corresponds to847
a duplicate, the processing moves on to check positions A(i + 1, j ) and A(i, j + 1).848
The same principle lies at the core of the dynamic, block-centric method Progressive Block-849

ing [143]. Initially, a set of blocks is created and its elements are arranged in a two-dimensional850
array A. Then, all comparisons are executed inside every block, measuring the number of dupli-851
cates per block. Starting from the block with the highest density of duplicates in position A(i, j ),852
its descriptions are compared with those in the blocksA(i + 1, j ) andA(i, j + 1) in order to identify853
more matches.854
A static, block-centric method is the Hierarchy of Record Partitions (HRP) [193], which presumes855

that the distance of two records can be naturally estimated through a certain attribute (e.g., prod-856
uct price). Essentially, it builds a hierarchy of blocks, such that the matching likelihood of two857
descriptions is proportional to the level in which they co-occur for the first time: the blocks at the858
bottom of the hierarchy contain the descriptions with the highest matching likelihood, and vice859
versa for the top hierarchy levels. Then, the hierarchy of blocks is progressively resolved, level by860

ACM Computing Surveys, Vol. 53, No. 6, Article 127. Publication date: September 2020.



CSUR5306-127 ACMJATS Trim: 6.75 X 10 in September 24, 2020 23:9

An Overview of End-to-End Entity Resolution for Big Data 127:23

level, from the leaves to the root. A variation of this approach is presented in [3]: every block is 861
divided into a hierarchy of child blocks and an advanced strategy optimizes their processing on 862
MapReduce. 863
An entity-centric improvement of the HRP is the Ordered List of Records [193], which converts 864

the hierarchy of blocks into a list of records sorted by their likelihood to produce matches. In this 865
way, it trades lower memory consumption for a slightly worse performance than HRP. 866
Finally, a progressive approach for Multi-source ER over different entity types is proposed in 867

[2]. During the scheduling phase, it divides the total cost budget into several windows of equal 868
cost. For each window, a comparison schedule is generated by choosing the one with the highest 869
expected benefit among those with a cost lower than the current window. The cost of a schedule is 870
computed by considering the cost of finding the description pairs and the cost of resolving them. 871
Its benefit is determined by howmany matches are expected to be found by this schedule and how 872
useful they will be to identify more matches within the cost budget. After a schedule is executed, 873
the matching decisions are propagated to all related comparisons so that they are more likely to 874
be chosen by the next schedule. The algorithm terminates upon reaching the cost budget. 875

7.2 Schema-Agnostic Methods 876

The budget-aware methods for semi-structured data rely on an inherently schema-agnostic func- 877
tionality that completely disregards any schema information. Thus, they are independent of ex- 878
pert knowledge and require no labeled data for learning how to rank comparisons, blocks, or 879
descriptions. 880
The cornerstone of sort-based methods is the Neighbor List [163], which is created by the 881

schema-agnostic adaptation of Sorted Neighborhood [133]: every token in any attribute value is 882
considered as a blocking key and all descriptions are sorted alphabetically according to these keys. 883
Thus, each description appears in the Neighbor List as many times as the number of its distinct 884
tokens. 885
The naive progressive approach would be to slide a window of increasing size along this list, 886

incrementally executing the comparisons it defines, as in PSN. This approach, however, results in 887
many repeated comparisons and a random ordering of descriptions with identical keys. 888
To ameliorate this issue, Local Schema-agnostic PSN [163] uses weights based on the assumption 889

that the closer the blocking keys of two descriptions are in the Neighbor List, the more likely 890
they are to be matching. Every comparison defined by the current window size is associated with 891
a numerical estimation of the likelihood that it involves a pair of matches through the schema- 892

agnostic weighting function
f r j,i

f ri+f r j−f ri, j
, where f rk is the number of blocking keys associated 893

with description ek (i.e., its occurrences in the Neighbor List), while f r j,i denotes the frequency 894
of comparison 〈ei , ej 〉 within the current window. All repeated comparisons within every window 895
are eliminated, but there is no way to avoid emitting the same comparison in other window sizes. 896
To address this drawback, Global Schema-agnostic PSN [163] defines a global execution order for 897
all comparisons in a specific range of window sizes [1,wmax ], using the same weighting function. 898
A different approach is implemented by the hash-based method Progressive Block Scheduling 899

[163]. First, the input blocks are ordered in increasing cardinality such that the fewer comparisons 900
a block entails, the higher it is ranked. Then, the sorted list of blocks is processed, starting from 901
the top-ranked (i.e., smallest) block. Inside every block, one of Meta-blocking’s weighting schemes 902
is used to specify the processing order of comparisons, from the highest weighted to the lowest 903
one. During this process, all repeated comparisons are discarded before computing their weight. 904
Finally, Progressive Profile Scheduling [163] is a hybrid method that relies on the notion of du- 905

plication likelihood, i.e., the likelihood of an individual description to have one or more matches. 906

ACM Computing Surveys, Vol. 53, No. 6, Article 127. Publication date: September 2020.



CSUR5306-127 ACMJATS Trim: 6.75 X 10 in September 24, 2020 23:9

127:24 V. Christophides et al.

Table 4. A Taxonomy of the Budget-Aware Methods Discussed in Section 7 (in the Order of Presentation)

This is estimated as the average edge weight of its node in the corresponding blocking graph. This907
method processes the input descriptions in decreasing duplication likelihood. For each description,908
all non-repeated comparisons that entail it are ordered in decreasing weight, as estimated through909
a Meta-blocking weighting scheme, and the top-k ones are emitted.910

7.3 Discussion911

All budget-aware methods apply ER in a pay-as-you go manner. To address Volume, they all rely912
on blocking methods. The schema-agnostic budget-aware methods are also capable of address-913
ing Variety. Table 4 organizes all methods discussed above into a taxonomy formed by the four914
aforementioned criteria: schema-awareness, functionality of blocking keys, granularity of func-915
tionality, and type of ordering. We observe that there is no dynamic schema-agnostic method that916
adapts its processing order as more duplicates are identified. More research is required toward this917
direction. For dynamic schema-aware methods, a noisy matching method should be used, instead918
of the ideal one that is currently considered. Intelligent ways for tackling the errors introduced by919
noisy matchers are indispensable for a realistic budget-aware scenario.920
Regarding the relative performance of static methods, the schema-agnostic ones consistently921

outperform the schema-aware ones over several established structured datasets [163]. Among the922
schema-agnostic methods, the two sort-based ones achieve the best performance for structured923
datasets, with the difference between them being statistically insignificant. As a result, Local PSN924
is more suitable in cases of limited memory, but all other settings call for Global PSN, given that it925
avoids multiple emissions of the same comparisons. For large, heterogeneous datasets, Progressive926
Profile Scheduling exhibits the overall best performance, followed by Progressive Block Schedul-927
ing.928

8 INCREMENTAL ER929

Some Big Data applications need to resolve descriptions that arrive in high Velocity streams or are930
provided as queries against a known entity collection. Rather than a static, offline process over all931
available entity descriptions, such applications process as much entities as needed as long as they932
resolve specific (query) descriptions in (near) real time. The same applies to clean, but evolving933
data repositories, such as data warehouses and knowledge bases, where new entities should be934
incrementally added, without repeating the entire ER process to the already matched descriptions.935
As an example, consider an application resolving the entities described across news feeds, which936

arrive in a streaming fashion [9, 19, 96]. A journalist using this application could be provided937
with several facts regarding a breaking news story (e.g., persons, buildings, services affected by an938
earthquake), as they get published by different agencies or witnesses, enabling her/him to form a939
complete picture of the events as they occur, in real time. This would require storing only some940
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parts of the entire entity collection, and discarding the rest, as more descriptions are fed to the 941
system. To evaluate which parts of the collection are more useful to keep, we can design differ- 942
ent strategies. For example, we may want to keep the latest entities, since new input entities are 943
more likely to be connected to them. Another strategy would be to keep the entities with many 944
relationships with other entities, since they are more likely to influence the matching decisions. 945
Such applications call for small memory footprint and low latency, rendering inapplicable the 946

static approaches described above. Novel techniques that dynamically adapt to data are required. 947
Note that we could distinguish the dynamic methods into those answering to a user-provided 948
query and those resolving streams of entities, but this distinction is orthogonal—streaming meth- 949
ods can be seen as query-based ones that handle streams of queries instead of a single query (e.g., 950
[96]). 951

8.1 Dynamic Blocking 952

Unlike the works in Section 3, which produce immutable (static) blocks, the dynamic indexing 953
techniques update their blocks, depending on the descriptions that are submitted as queries. 954
One of the earliest approaches is the Similarity-aware Index [36]. The main idea is to pre- 955

calculate similarities between the attribute values that co-occur in blocks in order to avoid simi- 956
larity calculations at query time, and minimizing response time. This approach uses three indexes 957
that associate blocking keys to attribute values, that contain pre-calculated similarities between 958
attribute values that co-occur in a block, and that associate distinct attribute values with record ids. 959
This approach is extended by DySimII [147] so that all three indexes are updated as query en- 960

tities arrive. Both its average record insertion time and its average query time remain practically 961
stable, even when the index size grows. Interestingly, the index size can be reduced, without any 962
significant loss in recall, by indexing only a certain portion of the most frequent attribute values. 963
On another line of research, F-DySNI [145, 146] extends the Sorted Neighborhood method by 964

converting the sorted list of blocking keys into an index tree that is faster to search. This is actually 965
a braided AVL tree, i.e., a combination of a height balanced binary tree and a double-linked list 966
[151]: every tree node is linked to its alphabetically sorted predecessor node, to its successor node, 967
and to the list of ids of all entities that correspond to its blocking key. F-DySNI actually employs 968
a forest of such index trees, with each tree associated with a different blocking key definition. 969
This forest is updated whenever a query entity arrives and is compatible with both a fixed and an 970
adaptive window. The former defines the rigid number of neighboring nodes that are considered, 971
while the latter considers only the neighbors that exceed a predetermined similarity threshold. 972
Finally, summarization algorithms for speeding up dynamic ER are presented in [96]. SkipBloom 973

summarizes the input descriptions, using their blocking keys, to accelerate comparisons. BlockS- 974
ketch summarizes a block to achieve a fixed number of comparisons per given entity description 975
during Matching, yielding a bounded computational time. Each block is split into sub-blocks based 976
on the distances of the block contents to the blocking key. Each query description is then compared 977
against the sub-block with the smallest distance to its contents. SBlockSketch adapts BlockSketch to 978
streaming data, maintaining a fixed number of blocks in memory, with a time overhead each time 979
any of those blocks needs to be replaced with blocks residing in secondary storage. To minimize 980
this overhead, a selection algorithm chooses the blocks to be replaced (considering age and size). 981

8.2 Dynamic Matching 982

Thesemethods resolve online parts of the entity collection that are of interest to a user/application. 983
Query-driven ER [17] uses a two-stage expand-and-resolve query processing strategy. First, 984

it extracts the related descriptions for a query using two expansion operators. Then, it re- 985
solves the extracted descriptions collectively, leveraging an existing relevant technique [16]. Due 986
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to the complexity of the collective ER strategy, this approach cannot provide real-time answers for987
large datasets.988
InQuery-driven ERwith uncertainty [88], the attribute-level facts for the input entities are associ-989

ated with a degree of uncertainty, reflecting the noise from imperfect extraction tools. Matches are990
identified using existing ER algorithms and are assigned a probability value. At this offline stage,991
no merging takes place. When a query arrives, the descriptions that need to be merged in order to992
provide an answer to the query are identified. Then, different merging scenarios are explored and993
the one with minimum uncertainty is selected and returned as an answer.994
UDD [168] is an unsupervised method that identifies matches from the results of a query over995

multiple Web KBs. First, it removes duplicate descriptions stemming from the same KB, and it996
generates a training set. Based on this set of non-matching examples, as well as on similarity997
computations between descriptions, it iteratively identifies matches in the query results through998
two cooperating classifiers: a weighted component similarity summing and an SVM.999
Sample-and-clean [182] leverages sampling to improve the quality of aggregate numerical1000

queries on large datasets that are too expensive to resolve online. It resolves a small data sample1001
and exploits those results to reduce the impact of duplicates on the approximate answers to ag-1002
gregate queries.1003

QuERy [5] aims to answer join queries over multiple, overlapping data sources, operating on a1004
block level. It identifies which blocks need to be resolved for the requested join and then assumes1005
that any matching method can be applied for the matching task.1006

Complementary to this work, QDA [4] tries to reduce the data cleaning overhead and issues1007
the minimum number of necessary steps to answer SQL-like selection queries that do not involve1008
joins, in an entity-pair level. It performs vestigiality analysis on each block individually to identify1009
matching decisions whose answers are guaranteed to not affect the query answers and, thus, need1010
not be performed, reducing the matching tasks. In fact, it creates an entity graph for the contents1011
of a block and resolves edges belonging to cliques that may affect the query answer. As opposed1012
to Sample-and-Clean [182], QDA provides exact query results.1013

Finally, Adaptive Product Normalization [19] presents an online supervised learning approach1014
for resolving different descriptions of the same product. The steps of this approach include (i)1015
blocking [118], which defines an initial set of basis functions to compute the similarity between1016
specific attributes of the descriptions, (ii) a learning algorithm for training the parameters of a1017
composite similarity function, and (iii) clustering [92]. The composite similarity function is trained1018
incrementally, using an efficient, online variation of the voted perceptron algorithm [67].1019

8.3 Dynamic Clustering1020

Special care should be taken to update the entity clusters in an efficient way, as more entities arrive1021
in the form of queries or streams. To this end, Incremental Correlation Clustering [77] supports all1022
kinds of updates (i.e., inserting, deleting, and changing individual descriptions from clusters as well1023
as merging and splitting entire clusters), without requiring any prior knowledge of the number of1024
clusters. It also allows for fixing prior errors in view of new evidence. Due to its high complexity,1025
though, a greedy approximation of polynomial time is also proposed. Constrained versions of1026
incremental correlation clustering in other contexts have been proposed in [25, 117].1027

8.4 Discussion1028

Table 5 organizes all methods discussed in this section into a taxonomy formed by three criteria:1029
the ER workflow task corresponding to each method, its schema-awareness, and its algorithmic1030
foundation (learning-based or non-learning). These works are crafted for resolving entities in1031
(near) real time, not necessarily covering the whole input entity collections, but only a subset1032
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Table 5. A Taxonomy of the Incremental Methods Discussed in Section 8 (in the Order of Presentation)

that is associated with a user-defined query or a stream of descriptions. In these cases, resolving 1033
the whole input set of descriptions would be unnecessarily costly in terms of time and resources. 1034
We believe that in the new Big Data era of unprecedented Volume and Velocity, incremental ER 1035
methods are becoming far more prevalent, gradually displacing traditional, batch ER methods. 1036
Yet, all existing methods are schema-aware, being incapable of addressing Variety. More research 1037
is required toward schema-agnostic methods or other approaches that inherently support Variety. 1038
This also requires the development of incremental schema-agnostic block processing techniques. 1039

9 OTHER ER METHODS 1040

We now cover important ER systems and methods complementary to those presented above. 1041

9.1 Deep Learning 1042

The latest developments in deep learning have greatly influenced research in ER. The basic con- 1043
structs of deep learning methods for ER are Recurrent Neural Networks (RNNs) [59, 196] and word 1044
embeddings [13]. RNNs are neural networks with a dynamic temporal behavior. The neurons are 1045
fed information not only from the previous layer, but also from their own previous state in time, 1046
to process sequences of inputs. Word embeddings are vectorial representations of words, enabling 1047
words or phrases to be compared using their vectors. Word embeddings are commonly used with 1048
RNNs for speech recognition [121] and similar NLP tasks [32].Q4

1049
AutoBlock [202] trains on a set of matches to perform Blocking. First, it converts every token in 1050

an attribute value into a word embedding. Then, a neural network combines word embeddings into 1051
several attribute embeddings per description, which are fed into multiple indexing functions. The 1052
blocking model is learned from training data so that the difference between matching and non- 1053
matching descriptions is maximized. LSH is used to detect the most likely matches per description. 1054

DeepER [52] explores two methods to generate entity embeddings, i.e., vectorial representations 1055
of entity descriptions. The first one exploits word embeddings of tokens appearing in the values 1056
of the descriptions, while the latter uses RNNs to convert each description to a vector. DeepER can 1057
operate both with pre-trained word embeddings [144], and without, proposing ways to create and 1058
tune such embeddings, customized for ER. The embedding vector of every description is indexed 1059
by LSH, whose parameters are set according to a theoretical analysis and the desired performance. 1060
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Then, each entity creates a block that contains its top-N nearest neighbors. We note that more1061
efficient high-dimensional vector similarity methods (than LSH) are now available [53].Q5

1062
DeepMatcher [122] extends DeepER by introducing an architecture template for deep learning1063

ER methods with three main modules: (i) attribute embedding, which converts sequences of words1064
used in the attribute values of an entity description to word embedding vectors; (ii) attribute sim-1065
ilarity representation, which applies a similarity function on the attribute embeddings of two1066
descriptions to obtain a final similarity value of those descriptions (i.e., it learns the similarity1067
function); and (iii) a classifier, which uses the similarities between descriptions as features for a1068
classifier that decides if a pair of descriptions is a match (i.e., it learns the match function). For1069
each module, several options are available. The main ones (e.g., character-level vs. word-level em-1070
beddings, pre-trained vs. learned embeddings, fixed vs. learnable similarity function) are used as1071
representative points for those modules and are experimentally evaluated, showing their strengths1072
and weaknesses.1073
Multi-Perspective Matching [68] adaptively selects (among the similarity measures of Deep-1074

Matcher’s RNN, the Hybrid similarities for textual attributes, and several established approaches1075
for string and numeric attributes) the optimal similarity measures for heterogenous attributes.1076
First, a unified model for all attributes is built and the supported similarity measures are applied1077
to every attribute value pair. A gate mechanism adaptively selects the most appropriate similarity1078
measure per attribute and the selectedmeasures are concatenated into a comparison vector. Finally,1079
a neural network receives the comparison vector as input and produces the matching probability1080
as output.1081

Other works examine ways of optimizing the use of Deep Learning techniques: to minimize1082
the number of required labeled instances, transfer learning is examined in [203] and pre-trained1083
subword embeddings are combined with transfer and active learning in [97]; the use of the main1084
attention-based transformer architectures is examined in [22]; pre-trained word embeddings are1085
coupled with online user reviews for each entity description (e.g., restaurant) in [158].1086
As we have seen, conventional ER methods identify similar entities based on symbolic features1087

(e.g., names, textual descriptions, and attribute values). However, the computation of feature sim-1088
ilarity often suffers from the semantic heterogeneity between different Knowledge Graphs (KGs).1089
Recently, representation learning techniques have been proposed for Clean-Clean ER, also called1090
Entity Alignment, where the key idea is to learn embeddings of KGs, such that entities with similar1091
neighbor structures in the KG have a close representation in the embedding space. While several1092
existing techniques learn entity embeddings in the context of the same KG, doing the same for1093
entities of different KGs remains an open challenge. In this setting, MTransE [27] learns a map-1094
ping between two KG embedding spaces, using a seed set of aligned entities from the two KGs,1095
though this is rarely available. JAPE [170] jointly trains the attribute and structure embeddings1096
using skip-gram and translational models, respectively, to align entities. GCN-Align [188] employs1097
Graph Convolutional Networks (GCNs) to model entities based on their neighborhood informa-1098
tion. However, GCN-Align only considers the equivalent relations between entities, neglecting the1099
use of additional KG relationships. IPTransE [205] and BootEA [171] integrate knowledge among1100
different KGs by enlarging the training data (prior alignments) in a bootstrapping way.KDCoE [26]1101
iteratively co-trains multilingual KG embeddings and fuses them with entity description infor-1102
mation for alignment. The above iterative methods improve performance mainly by increasing1103
the number of pre-aligned training entity pairs, a strategy that could benefit most alignment ap-1104
proaches. Non-iterative methods could achieve better results through bootstrapping.1105

Methods leveraging additional types of features to refine relation-based embeddings include the1106
following. AttrE [174] uses character-level literal embeddings over a unified vector space for the1107
relationship embeddings after merging the two KGs based on predicate similarity (i.e., predicate1108
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alignment). [201] introduces a framework that unifies multiple views of entities to learn embed- 1109
dings for entity alignment that is capable of incorporating new features. Specifically, it embeds 1110
entities based on the views of entity names, relations, and attributes, with several combination 1111
strategies, and considers cross-KG inference methods to enhance the alignment between two KGs. 1112
A thorough experimental evaluation of supervised and semi-supervised methods for embedding- 1113
based entity alignment has been conducted in [172]. The results on sparse and dense datasets 1114
recognize the difficulty of existing methods in aligning (the many) long-tail entities [112]. Finally, 1115
we note that the hierarchical structure of KGs (in particular, ontologies) has not been well studied 1116
in this context. Thus, more complex KG embeddings (going beyond Euclidean models) are worth 1117
exploiting [129]. 1118

9.2 Crowdsourcing-Based ER Methods 1119

Crowd-sourcing is a recent discipline that examines ways of pushing difficult tasks, called Human 1120
Intelligence Tasks (HITs), to humans, a.k.a.,workers, at a small price [86]. In the case of ER, one of the 1121
most difficult tasks is to decide whether two descriptions match or not. Crowd-sourced ER assumes 1122
that humans can improve the effectiveness (i.e., accuracy) of Matching by leveraging contextual 1123
information and common sense. Therefore, it asks workers questions about the relation between 1124
descriptions for a small compensation per reply. Four main challenges arise in this context: 1125

—Challenge 1: How should HITs be generated? 1126
—Challenge 2: How should HITs be formulated? 1127
—Challenge 3: How can we maximize accuracy, while minimizing the overall monetary cost? 1128
—Challenge 4: How can we restrict the labor cost? 1129

Below, we examine the main solutions to each challenge. 1130

Challenge 1: To generate HITs, a hybrid human-machine approach is typically used [28, 113]. 1131
First, machine-based techniques are used to do an initial, coarse pass over all pairs of candidate 1132
matches, discarding themajority of non-matches, and then, the crowd is asked to verify only the re- 1133
maining candidate matches. This approachwas first introduced by CrowdER [181], which automat- 1134
ically computes the similarity between description pairs and discards those below a predetermined 1135
threshold. Similarly, ZenCrowd [45] combines machine-based pre-processing with crowd-sourced 1136
matching, with the latter clarifying low confidence matches produced by the former. A probabilis- 1137
tic framework is used to refine crowd-sourced matches from inconsistent human responses. 1138

Challenge 2: Two are the main approaches to formulating HITs [28]: pair-based and cluster-based 1139
(a.k.a. multi-item) HITs. The former type asks workers questions of the form “is ei matching 1140
with ej?” [64, 177, 179, 183, 192], whereas the latter type involves groups with more than two 1141
descriptions, requesting workers to mark all duplicates within each group [181]. There is a tradeoff 1142
between accuracy and efficiency in terms of cost and time between these two approaches [178]: 1143
pair-based HITs are simpler, allowing workers to provide more accurate responses, while the 1144
cluster-based HITs enable humans to mark many pairs of records with a few clicks, but their 1145
generation constitutes an NP-hard problem that is solved greedily by CrowdER [181]. Hybrid 1146
HITs are used byWaldo [178], which argues that the error rate of workers is different for different 1147
description pairs. Thus, the high error-rate pairs (i.e., the most “difficult” ones) should be formu- 1148
lated as pair-based HITs, whereas the low error-rate ones should form cluster-based HITs. Waldo 1149
formalizes the generation of the best hybrid HITs as an optimization task with a specific budget 1150
and provides solutions with probabilistic guarantees. Finally, Crowdlink [199] decomposes each 1151
pair of descriptions into attribute-level HITs to facilitate workers when processing descriptions 1152
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with overwhelming information, i.e., with complex structures and attributes. A probabilistic1153
framework then selects the k best attributes.1154

Challenge 3: To optimize the tradeoff between accuracy and monetary cost, the transitive rela-1155
tion is typically leveraged; if the relation between two descriptions can be inferred by transitivity1156
from the already detected duplicates, it is not crowd-sourced. This inference takes two flavors [28]:1157
positive transitivity suggests that if ei ≡ ej and ej ≡ ek , then ei ≡ ek , whereas negative transitivity1158
indicates that if ei ≡ ej , but ej � ek , then ei � ek . These relations lie at the core of several ap-1159
proaches [64, 98, 179, 183, 192] that minimize the number of HITs submitted to workers, reducing1160
significantly the crowd-sourcing overhead. Their key insight is that finding matches before non-1161
matches accelerates the ER process, by making the most of the transitive closure.1162

Yet, these works assume that workers are infallible, operating as an oracle, whichmeans that un-1163
certainty comes exclusively from the machine-generated similarities. In practice, though, the high1164
accuracy workers have an error rate up to 25%, due to lack of domain expertise, individual biases,1165
tiredness, malicious behaviors, as well as task complexity and ambiguity [185, 197]. When human1166
errors occur, the above methods amplify them, thus compromising the overall ER accuracy [185].1167
More realistic and robust approaches minimize HITs despite noisy workers, operating on top of a1168
noisy matcher that introduces uncertainty by returning possibly false results [23, 24, 103, 177, 197].1169
Other approaches correct the responses of an oracle through indirect “control queries” [70], or re-1170
fine the original crowd-sourced entities based on correlation clustering and additional HITs [185].1171

Challenge 4: Amajor disadvantage of Crowd-sourced ER is the development cost that is required1172
for applying it in practice. To address this issue, Corleone [74] implements a hands-off crowd-1173
sourcing solution for the entire ERworkflow that involves no software developers. It automatically1174
generates blocking rules, learns a matcher from the HITs that are iteratively answered by work-1175
ers (active learning minimizes the monetary cost), and finally returns the equivalence clusters.1176
However, Corleone does not scale to large datasets, as it exclusively runs in-memory on a sin-1177
gle machine. To address this issue, Falcon [42] runs Corleone on a MapReduce cluster, exploiting1178
crowd-time to runmachine tasks. Experiments have shown that it scales to 2.5 million descriptions1179
in 2–14 hours for only ∼$60. CloudMatcher [76] goes one step further, implementing Falcon as a1180
cloud service.1181

9.3 Rule-Based ER Methods1182

This category includes methods that leverage the knowledge of domain experts, who can provide1183
some generic initial rules (e.g., “if two descriptions have a similar address value, then they are1184
matches”) that will help an ER algorithm to find some or all matches in a given task.1185

HIL [83] is a high-level scripting language for expressing such rules. A HIL program determines1186
complex ER pipelines, capturing the overall integration flow through a combination of SQL-like1187
rules that link, map, fuse, and aggregate descriptions. Its data model makes uses of logical indices1188
to facilitate the modular construction and aggregation of complex entity descriptions. Its flexible,1189
open type system allows HIL to handle irregular, sparse, or partially known input data.1190
Reasoning and discovery techniques have also been proposed for automatically obtaining more1191

matching rules. Dependency-based reasoning techniques to help define keys for Matching and1192
Blocking are introduced in [61, 62]. At their core lie matching dependencies (MDs), which allow1193
one to infer matches, based on the similarity of database records on some attributes in relational1194
schemata. MDs can be used in both Blocking and Matching to directly infer matches, but they1195
can also be extended and used to infer new MDs, minimizing manual effort and leading to more1196
matches.1197
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Even though the MDs are looser versions of the strict functional dependencies in relational 1198
databases, they may still be too strict in practice. To address this issue, the conditional MDs (CMDs) 1199
[187] bind MDs to a certain subset of descriptions in a relational table and have more expressive 1200
power than MDs for declaring constraints with conditions, allowing a wider range of applications. 1201
Certus [110] introduces graph differential dependencies (GDDs) as an extension of MDs and 1202

CMDs that enables approximate matching of values. It adopts a graph model for entity descrip- 1203
tions, which enables the formal representation of descriptions even in unstructured sources, while 1204
a specialized algorithm generates a non-redundant set of GDDs from labeled data. Certus employs 1205
the learned GDDs for improving the accuracy of ER results. Unlike MDs and CMDs, which operate 1206
only on structured data, Certus can identify matches irrespective of structure and with no assumed 1207
schema. 1208

9.4 Temporal ER Methods 1209

Entity descriptions are often associated with temporal information in the form of timestamps (e.g., 1210
user log data or sensor data) [31, 123] or temporal validity of attributes (e.g., population, marital 1211
status, affiliation) [85]. ER methods exploiting such temporal information may show better per- 1212
formance than those ignoring it [30]; rather than deciding if two descriptions match, they try to 1213
decide if a new description matches with a set of descriptions that have been already identified 1214
as matches. The probability of a value re-appearing over time is examined in [30]. Intuitively, a 1215
description might change its attribute values in a way that is dependent on previous values. For 1216
example, if a person’s location has taken the values Los Angeles, San Francisco, San Jose in the 1217
past, then these values are more likely to appear in this person’s future location than Berlin or 1218
Cairo. SFDS [31] follows a “static first, dynamic second” strategy: initially, it assumes that all de- 1219
scriptions are static (i.e., not evolving over time) and groups them into clusters. These are later 1220
merged in the dynamic phase, if the different clusters correspond to the same entities that have 1221
evolved over time. 1222

9.5 Open-Source ER Tools 1223

We now elaborate on the main systems that are crafted for end-to-end Entity Resolution. We ex- 1224
amined the 18 non-commercial and 15 commercial tools that are listed in the extended version of 1225
[104]8 along with the 10 Link Discovery frameworks surveyed in [127]. Among them, we exclu- 1226
sively consider the open-source systems, since the closed-code and the commercial ones provide 1227
insufficient information about their internal functionality and/or their algorithms. 1228

A summary of the main open-source ER systems appears in Table 6. For each one, we report 1229
whether it involves one or more methods per workflow step of the general end-to-end ER pipeline 1230
in Figure 2(a), whether it supports parallelization, budget-aware or incremental methods, a graphi- 1231
cal user interface (GUI), as well as its programming language. To facilitate their understanding, we 1232
group all systems into three categories, depending on their input data: (i) systems for structured 1233
data, (ii) systems for semi-structured data, and (iii) hybrid systems. 1234

The tools for structured data include Dedupe [20], FRIL [93], OYSTER [125], RecordLinkage 1235
[156], DuDe [51], Febrl [33], Magellan [104], and FAMER [153]. All of them offer at least one 1236
method for Blocking and Matching, while disregarding Clustering. The only exception is FAMER, 1237
which exclusively focuses on Clustering, implementing several established techniques in Apache 1238
Flink. Febrl involves the richest variety of non-learning, schema-aware Blocking methods, which 1239
can be combined with several similarity measures and top-performing classifiers for supervised 1240

8http://pages.cs.wisc.edu/∼anhai/papers/magellan-tr.pdf.
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Table 6. The Main Open-Source ER Tools (a Feature in Parentheses is Partially Supported)

Tool Blocking Block Matching Clustering Parallelization Bugdet- Incremental GUI Language

Processing aware ER ER

Dedupe [20] � - � - multi-core - - - Python

DuDe [51] � - � - - - - - Java

Febrl [33] � - � - multi-core - - � Python

FRIL [93] � - � - - - - � Java

OYSTER [125] � - � - - - - - Java

RecordLinkage [156] � - � - - - - - R

Magellan [104] � - � - (Apache Spark) - - � Python

FAMER [153] - - - � Apache Flink - - - Java

Silk [91] � - � - Apache Spark - - � Scala

LIMES [128] � - � - (multi-core) - - � Java

Duke � - � - - - � - Java

KnoFuss [130] � - � - - - - - Java

SERIMI [8] � - � - - - - - Ruby

MinoanER [56] � � � - Apache Spark - - - Java

JedAI [142] � � � � Apache Spark � - � Java

matching. Magellan conveys a Deep Learning module, which is a unique feature among all ER1241
tools. Most systems are implemented in Java or Python, with just three of them offering a GUI.1242

The systems for semi-structured data receive as input RDF dump files or SPARQL endpoints.1243
The most prominent ones are Silk [91] and LIMES [128], which are crafted for the Link Discovery1244
problem (i.e., the generic task of identifying relations between entities). Restricting them to the1245
discovery of sameAs relations renders them suitable for ER. Both systems involve custom blocking1246
techniques along with a large variety of character- and token-based similarity measures. Combi-1247
nations of these similarity measures are learned in a (semi-)supervised way for effective Matching.1248
Both tools offer an intuitive GUI, unlike the remaining ones, namely, SERIMI [8], Duke,9 and Kno-1249
Fuss [130]. These systems merely apply simple Blocking techniques to literal values and focus1250
primarily on Matching, providing effective, but custom techniques based on similarity measures.1251

The hybrid tools, MinoanER [56] and JedAI [142], apply uniformly to both structured and semi-1252
structured data. This is possible due to the schema-agnostic functionality of their methods. In fact,1253
they implement the main non-learning, schema-agnostic techniques for Blocking, Matching, and1254
Clustering. They are also the only systems that offer Block Processing techniques.1255

Overall, we observe that all open-source systems focus onMatching, conveying a series of string1256
similarity measures for the comparison of attribute values. More effort should be spent on cover-1257
ing more adequately all workflow steps of the general end-to-end ER workflow. Most importantly,1258
except for Duke’s Incremental ER and JedAI’s Progressive ER, no system supports any other pro-1259
cessing mode other than budget-agnostic ER. This should be addressed in the future.1260

9.6 Discussion1261

Even though Rule-based and Temporal ER constitute important topics, more effort is lately directed1262
at leveraging Deep Learning techniques for ER. These efforts have already paid off, as the result-1263
ing techniques achieve the state-of-the-art performance for several established benchark datasets1264
[122], outperforming methods based on traditional machine learning. Yet, the time efficiency and1265
the availability of a representative set of labeled instances remain important issues. The latter is1266

9https://github.com/larsga/Duke.
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intelligently addressed by a series of Crowdsourcing-based ER methods. Despite the considerable 1267
recent advancements, though, Crowdsourced ER still suffers from significant monetary cost and 1268
high latency, while it can only be used by expert users. Systems like CloudMatcher contribute to 1269
its democratization, while systems like MinoanER and JedAI aim to act as libraries of the state-of- 1270
the-art methods for end-to-end ER over Big Data. 1271

10 DIRECTIONS FOR FUTURE WORK 1272

As we have just begun to realize the need for Entity Resolution Management Systems [104], we 1273
next highlight a few critical research directions for future work, which aim to support advanced 1274
services for specifying, maintaining, and making accountable complex ER workflows. 1275

Multi-modal ER. In the Big Data era, multi-modal entity descriptions are becoming increasingly 1276
common. Factual, textual, or image-based descriptions of the same real-world entities are available 1277
from different sources and at different temporal or spatial resolutions. Each modality carries a 1278
specific piece of information about an entity and offers added value that cannot be obtained from 1279
the other modalities. Recent years have witnessed a surge of the need to jointly analyze multi- 1280
modal descriptions [204]. Finding semantically similar descriptions from different modalities is 1281
one of the core problems of multi-modal learning. Most current approaches focus on how to utilize 1282
extrinsic supervised information to project one modality to the other, or map two modalities into 1283
a commonly shared space. The performance of these methods heavily depends on the richness 1284
of the training samples. In real-world applications though, obtaining matched data from multiple 1285
modalities is costly, or impossible [71]. Thus, we need sample-insensitive methods for multi-modal 1286
ER, and in this respect, we can leverage recent advances in multi-modal ML techniques [11]. 1287

Debugging and Repairing ER Workflows. Current ER research mainly focuses on developing 1288
accurate and efficient techniques, which in reality are constrained by a number of factors, such as 1289
low quality entity descriptions, ambiguous domain knowledge, and limited ground truth. Hence, it 1290
is difficult to guarantee the quality of ER workflows at specification time. To support a continuous 1291
specification of ER workflows, an iterative approach is needed to refine ER workflows by identify- 1292
ing and analyzing themistakes (false matches and non-matches) of ER enactments at each iteration 1293
step. Debugging ER workflows requires one to (a) understand the mistakes made by Blocking or 1294
Matching algorithms; (b) diagnose root causes of these mistakes (e.g., due to dirty data, problem- 1295
atic feature sets, or even tuning parameters of algorithms); and (c) prioritize mistakes and take 1296
actions to fix them [104]. We note that not all categories of mistakes have the same impact on the 1297
end-to-end quality of ER workflows. For example, the removal of outliers from input data often 1298
leads to overfitting problems of learning-based matchers. Recognizing patterns of mistakes repro- 1299
duced under similar conditions can provide valuable insights in order to repair ER workflows. The 1300
focus of ER work so far was in preventing rather than repairing mistakes in ER results. Recent 1301
work on debugging and repairing Big Data analytics pipelines can be leveraged in this respect [39, 1302
78, 115]. 1303

Fairness in Long Tail Entities Resolution. The reported accuracy scores of several ER ap- 1304
proaches are fairly high, giving the impression that the problem is well-understood and solved. 1305
At the same time, recent works (e.g., [60, 176]) claim that ER systems base their performance on 1306
entity popularity, while their performance drops significantly when focusing on the rare, long tail 1307
entities. However, the lack of formal definitions regarding what is popular and long tail entities 1308
for the ER task prevents the identification of the difficult cases for ER, for which systems need to 1309
be adapted or new approaches need to be developed [186]. Better understanding of such cases will 1310
be helpful for ER, since knowledge about long tail entities is less accessible, not redundant, and 1311
hard to obtain. 1312
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Diversity of Matching Entities. Works in budget-aware ER typically focus on maximizing the1313
reported matches, by potentially exploiting the partial matching results obtained so far in an itera-1314
tive process. Then, it will be interesting to measure the added knowledge that the ER process could1315
achieve after merging the matches, similar to the notion of diversity in information retrieval. Our1316
intuition is that merges resulting from somehow similar entities are more beneficial when com-1317
pared to merges from strongly similar entities. Thus, given a constraint in the number of possible1318
merges, the goal is to perform those that contribute most in diversifying the knowledge encoded1319
in the result. Added knowledge can be measured by the number of relationships of a merged en-1320
tity with other entities. We consider such relationships as a unit of knowledge increase: when two1321
relationships represent two different knowledge units, they are both useful; when they overlap,1322
they represent the same knowledge unit, so we do not gain by knowing both of them.1323

Bias in ER. Similarity measures lie at the core of Matching. However, it is well known that not1324
all similarity measures are appropriate for all types of data (e.g., strings, locations, and videos).1325
Moreover, when focusing on particular types of measures, e.g., measures for string matching, we1326
do not know beforehand which is the ideal measure for counting similarities with respect to the1327
semantics of the strings to be compared. For instance, we possibly need different measures for1328
computing similarities between American names than for Chinese names. In such scenarios, we1329
typically exploit some solid empirical evidence, which, based on some of the characteristics that1330
our data have, leads us to select, unintentionally, a particular measure. This fact can be considered1331
as algorithmic bias [79]. As a first step, for achieving unbiased and fair results, it is important to1332
experimentally study if there is bias in ER algorithms [7, 95]. Moving forward to the next genera-1333
tion of approaches, we need to propose solutions and provide guidelines that make ER algorithms1334
fair.1335

11 CONCLUSIONS1336

Although ER has been studied for more than three decades in different computer science commu-1337
nities, it still remains an active area of research. The problem has enjoyed a renaissance during1338
recent years, with the avalanche of data-intensive descriptions of real-world entities provided by1339
government, scientific, corporate, or even user-crafted data sources. Reconciling different entity1340
descriptions in the Big Data era poses new challenges both at the algorithmic and the system level:1341
Volume, due to the very high number of entities and data sources; Variety, due to the extreme1342
schema heterogeneity; Velocity, due to the continuously increasing volume of data; and Veracity,1343
due to the high level of noise and inconsistencies. In this survey, we have focused on how the main1344
algorithms in each step of the end-to-end ER workflow address the combination of these chal-1345
lenges. Blocking and Block Processing, two steps that by definition tackle Volume, also address1346
Variety mainly through a schema-agnostic, non-learning functionality. Most Matching methods1347
employ a schema-agnostic, collective functionality, which leverages information provided by re-1348
lated entities, in order to address Variety and Veracity. Budget-aware ER methods rely on Block-1349
ing and a usually schema-agnostic functionality to simultaneously address Volume and Variety,1350
while Incremental Methods address Volume and Velocity through Blocking, but their schema-1351
aware functionality prevents them from tackling Variety, too. In all cases, massive parallelization,1352
usually through the MapReduce framework, plays an important role in further improving scala-1353
bility and, thus, addressing Volume. Note, though, that we share the view of ER as an engineering1354
task by nature, and hence, we cannot just keep developing ER algorithms in a vacuum [104]. In1355
the Big Data era, we opt for open-world ER systems that allow one to plug-and-play different algo-1356
rithms and that can easily integrate with third-party tools for data exploration, data cleaning, or1357
data analytics.1358
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