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Abstract 
Three main streams of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAevolutionary algoiithms (EAs), probabilistic optimization algorithms 
based on the model of natural evolution, are compared in this article: evolution rtmtegies 
(ESs), evolutionary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprogramming (EP), and genetic algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(GAS). T h e  comparison is 
performed with respect to certain characteristic components of EAs: the representation 
scheme of object variables, mutation, recombination, and the selection operator. Further- 
more, each algorithm is formulated in a high-level notation as an instance of the general, 
unifylng basic algorithm, and the fundamental theoretical results on the algorithms are 
presented. Finally, after presenting experimental results for three test functions repre- 
senting a unimodal and a multimodal case as well as a step function with discontinuities, 
similarities and differences of the algorithms are elaborated, and some hints to open re- 
search questions are sketched. 

1. Introduction 

Nearly three decades of research and applications have clearly demonstrated that modeling 
the search process of natural evolution can yleld very robust, direct computer algorithms, 
although these models are crude simplifications of biological reality. The resulting evolution- 
ary algorithms are based on the collective learning process within a population of individuals, 
each of which represents a search point in the space of potential solutions to a given prob- 
lem. The population is arbitrarily initialized, and it evolves toward better and better regions 
of the search space by means of randomized processes of selection (which is deterministic 
in some algorithms), mutation, and reconibiiiatioiz (which is completely omitted in some al- 
gorithmic realizations). The environment delivers quality information (fitness value) about 
the search points, and the selection process favors those individuals of higher fitness to re- 
produce more often than those of lower fitness. The recombination mechanism allows the 
mixing of parental information while passing it to their descendants, and mutation introduces 
innovation into the population. 

This informal description is put into concrete terms by introducing some notational 
conventions. The notation forms the basis for the description of particular evolutionary 
algorithms and is not repeated in the following sections. Instead, to allow quick access, the 
notation is summarized in Table 3 a t  the end of the paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR” 4 R denotes the objective function to be optimized, and without loss of general- 
ity we assume a minimization task in the following. In general, fitness and objective function 
values of an individual are not required to be identical, such that fitness @ : Z + R (Z being 
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the space of individuals) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf are distinguished mappings (but f is always a component 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@). While zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa‘ E I is used to denote an individual, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARn indicates an object variable 
vector. Furthermore, p 2 1 denotes the size of the parent population and X 2 1 is the 
offspring population size, i.e., the number of individuals created by means of recombination 
and mutation at  each generation (if the lifetime of individuals is limited to one generation, 
i.e., selection is not elitist, X > p is a more reasonable assumption). A population a t  genera- 
tion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, P(t) = {a‘l(t), . . . , ZP(t)} ,  consists of individuals &(t) E I, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAror : Zp + I’ denotes the 
recombination operator, which might be controlled by additional parameters summarized 
in the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,. Similarly, the mutation operator mem : I’ + I’ modifies the offspring popu- 
lation, again being controlled by some parameters 0,. Both mutation and recombination, 
though introduced here as macro-operators transforming populations into populations, can 
essentially be reduced to local operators m&, : I --f I and r& : IP  + I that create one indi- 
vidual when applied. These local variants will be used when the particular instances of the 
operators are explained in subsequent sections. Selection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsos : ( I x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu I@+’) + I” is applied to 
choose the parent population of the next generation. During the evaluation step the fitness 
function @ : I + R is calculated for all individuals of a population, and L : Zp -+ {true, false} 
is used to denote the termination criterion. The resulting algorithmic description is given 
below. 

ALGORITHM I (Outline of an Evolutionary Algorithm): 

t := 0; 
initialize P(0) := {&(O), . . . ,Zp(0)} E P; 
evaluate P(0) : {@(Zl(O)), . . . ,@(a;L(O))}; 
while (i(P(t)) # true) do 

recombine: P’(t) := r ~ ~ ( P ( t ) ) ;  
mutate: P”(t) := mQ,,,(P’(t)); 
evaluate P”(t) : {@(Zi’(t)), . . . , @(&,‘(t))}; 
select: P(t + 1) := so,(P”(t) U Q); 
t := t + 1; 

od 

Here, Q E {0,P(t)} is a set of individuals that are additionally taken into account 
during the selection step. The evaluation process yields a multiset of fitness values, which in 
general are not necessarily identical to objective function values. However, since the selection 
criterion operates on fitness instead of objective function values, fitness values are used here 
as a result of the evaluation process. During the calculation of fitness, the evaluation of 
objective function values is always necessary, such that the information is available and can 
easily be stored in an appropriate data structure. 

Three main streams of instances of this general algorithm, developed independently of 
each other, can nowadays be identified: evolutionary programming (EP), originally developed 
by L. J. Fogel, A. J. Owens, and M. J. Walsh in the United States (Fogel, Owens, and 
Walsh 1966) and recently refined by D. B. Fogel (Fogel 1991); evolution strategies (ESs), 
developed in Germany by I. Rechenberg (Rechenberg 1965; Rechenberg 1973) and H.- 
P. Schwefel (Schwefel 1977; Schwefel 1981); and genetic algorithms (GAS) by J. Holland 
(Holland 1975) in the United States as well, with refinements by K. De Jong (De Jong 
1975), J. Grefenstette (Grefenstette 1986; Grefenstette 1987b), and D. Goldberg (Goldberg 
1989). Each of these mainstream algorithms has clearly demonstrated its capability to yield 
good approximate solutions even in cases of complicated multimodal, discontinuous, non- 
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differentiable, and even noisy or moving response surfaces of optimization problems. A 
variety of applications have been presented in conference proceedings (Grefenstette 1985; 
Grefenstette 1987; Schaffer 1989; Belew and Booker 1991) (GAS), (Fogel and Atmar 1992) 
(EP), and (Schwefel and Manner 1991; Manner and Manderick 1992) (GAs and ESs as well 
as other natural metaphors), and in an annotated bibliography collected a t  the University of 
Dortmund actually contains 260 references to applications of EAs (Back et al. 1992). 

Within each research community, parameter optimization has been a common and 
highly successful theme of applications. Evolutionary programming and especially genetic 
algorithms, however, were designed with a very much broader range of possible applications 
in mind and confirmed their wide applicability by a variety of important examples in fields 
like machine learning, control, automatic programming, planning, and others. A compari- 
son of these algorithms as performed here can therefore never be complete with respect to 
the application range but must necessarily focus on the common denominator, the param- 
eter optimization problem. This is done here both to formulate and formalize a general 
description of the algorithms in their parameter optimization instance as well as to provide 
a first step toward more detailed empirical and theoretical comparison. 

Because these algorithms bear so many similarities due to their reliance on organic 
evolution, it is a surprising fact that general comparisons were not performed earlier. It is 
a central hope of the authors that this article may provide an appropriate overview of the 
strong similarities of the three mainstream algorithms in their parameter optimization form 
and thus may stimulate further discussions between the hitherto nearly isolated research 
groups. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Comparison 

To simplify the comparison of the algorithms, some categories of information guided along 
the algorithm’s outline (1) are presented for each of the three algorithms. Each subsection 
is introduced by a short historical overview of the algorithm and then describes the fit- 
ness evaluation and representation of search points, mutation, recombination, and selection 
mechanisms. Furthermore, the algorithms are presented in an abstract, high-level nota- 
tion emphasizing specific concepts of and differences between the algorithms, and a short 
overview of the basic theory is given for each of the algorithms. Because of their similar 
representation of search points, we start with discussing ESs and EP, then turn to GAS. Since 
the focus is on parameter optimization, search points-whatever way of representing them 
may be used by the particular algorithm-correspond to n-dimensional real-valued vectors 
x’E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIW”. 

To simplify the explanation of the algorithms, the following mathematical notations 
will be used: N(0, l )  denotes a realization of a normally distributed one-dimensional ran- 
dom variable having expectation zero and standard deviation 1, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN;(O, 1) indicates that 
the random variable is sampled anew for each value of the counter i. A realization of a nor- 
mally distributed one-dimensional random variable having expectation zero and standard 
deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo is then given by o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ N(0, I). 

2.1 Evolution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStrategies 
First efforts toward an ES took place in 1964 a t  the Technical University of Berlin (TUB) in 
Germany. Applications were mainly experimental and dealt with hydrodynamical problems 
like shape optimization of a bent pipe and a flashing nozzle. Different versions of the strategy 
were simulated also on the first available computer at TUB (Schwefel 1965). Rechenberg 
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developed a theory of convergence velocity for the so-called (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1)-ES, a simple mutation- 
selection mechanism working on one individual that creates one offspring per generation by 
means of Gaussian mutation, and he proposed a theoretically confirmed rule for changing 
the standard deviation of mutations exogenously (l/S-mcceSs rule) (Rechenberg 1973) (see 
also section 2.1.6). He also proposed a first multimembered ES, a ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp + 1)-ES where p > 1 
individuals recombine to form one offspring, which after mutation eventually replaces the 
worst parent individual in a similar way as within the Simplex method. This strategy, though 
never widelyused, provided the basic idea to facilitate the transition to ( p +  A)-ES and ( p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA)- 
ES introduced and investigated by Schwefel (Schwefel 1977; Schwefel 1981); the resulting 
strategies (especially the latter one) are state-of-the-art in ES research. In their most general 
form, these strategies are described here. 

2.1.1 Fitness Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Representation Search points in ESs are n-dimensional 
vectors? E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR", and the fitness value of an individual is identical to its objective function value, 
i.e., O(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=f(q where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is the object variable component of a'. Additionally, each individual 
may include up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn different variances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAci; = C' (i E { 1, . . . , n}), as well as up to n . (n - 1)/2 
covariances c;i (i E { I ,  . . . , n - 1 } , j  E { i + 1, . . . , n}) of the generalized n-dimensional normal 
distribution with expectation vector 6, having probability density function 

where A-' = (cy) represents the covariance matrix and z' denotes the random variable. Al- 
together, up to w = n . (n + 1)/2 strategy parameters can be combined with object vari- 
ables to form an individual a' E I = R7z+w. Often, however, only the variances are taken 
into account, such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa' E I = R22", and it is sometimes even useful to work with one 
common variance valid for all object variables, i.e., a' E I = R"". To ensure positive- 
definiteness of the covariance matrix A-', the algorithm uses the equivalent rotation an- 
gles a;i (tan2a;i = 2c;i/(aF - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~2)). Furthermore, (mean) mutation step sizes oi, i.e., the 

standard deviations, are used in the implementation rather than the variances 0'. In the fol- 
lowing, we use the notation 7?(6,.', 6) to denote a realization of a random vector distributed 
according to the generalized n-dimensional normal distribution having expectation 6, stan- 
dard deviations a', and rotation angles d. a' = (?,.',6) E R"'" is used to denote a complete 
individual. 

J 

2.1.2 Mutation 
(where I = R"'") yields a mutated individual m{7,T,,Pl(Z) = (9, Z ' ,  6') by first mutating the 
standard deviations and rotation angles and then mutating the object variables according 
to the now modified probability density function of individual a', i.e. Vi E { 1,. . . , n}, Vj E 

In its most general form the (local) mutation operator m;T,T,,rR) : I 4 I  

{1, ..., n . ( n -  1)/2}: 

q! = ai . exp (7' . N(O, I) + 'T . Ni(O, 1)) 

0; = ffJ + p . Nj(0, 1) 

2' = 2+7?(6,Z ' ,G' )  . (2 ) 

Mutations of the object variables now may be linearly cowelated according to the values 
of 6, and a' provides a scaling of the metrics. The global factor T' . N(0,l) allows for an 
overall change of the mutability, whereas 7 . Ni(0,l) allows for individual changes of the 
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“mean step sizes” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoi. The factors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  T ’ ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP are rather robust exogenous parameters, which 
Schwefel suggests to set as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a)-’ 
0.0873 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) 

Usually, the proportionality constants for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7- and r’ have the value 1, and the value sug- 
gested for P (in radians) equals 5”. This special mutation mechanism enables the algorithm 
to evolve its own strategy parameters (standard deviations and covariances) during the search, 
exploiting an implicit link between appropriate internal model and good fitness values. The 
resulting evolution and adaptation of strategy parameters according to the topological re- 
quirements has been termed self-adaptation by Schwefel(l987). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1.3 Recombination Different recombination mechanisms are used in ESs either in 
their usual form, producing one new individual from two randomly selected parent in- 
dividuals, or in their global form, allowing components to be taken for one new individ- 
ual from potentially all individuals available in the parent population. Furthermore, re- 
combination is performed on strategy parameters as well as on the object variables, and 
the recombination operator may be different for object variables, standard deviations, and 
rotation angles. Recombination rules for an operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT’ : Ib‘ + I creating an individ- 
ual r’(P(t)) = a” = (2, Z’, 6’) E I are given here representatively only for the object variables 
(VZE {1, . . . ,  n}): 

XS,l without recombination 
XS,, or XT,r discrete recombination 

XS,,, or X7-J global, discrete 

xslS + x, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xT,,, - XS,,,) 

xS,, + x . ( x ~ , ~  - XS,,) intermediate recombination 

global, intermediate 

(4) 

Indices S and T denote two parent individuals selected a t  random from P(t),  and x E 
[0,1] is a uniform random variable. For the global variants, for each component of 2 the 
parents S,, T, as well as y, are determined anew. Empirically, discrete recombination on 
object variables and intermediate recombination on strategy parameters have been observed 
to give best results. Recombination of strategy parameters has been shown to be mandatory 
for this mechanism to work. Historically, intermediate recombination and its global form 
have always been used with a fixed value of \ = 1/2; only recently Schwefel proposed the 
generalization indicated in (4). 

2.1.4 Selection Selection in ESs is completely deterministic, selecting the p best (1 5 
1-1 < A) individuals out of the set of A offspring individuals ( (p,  A)-selection) or out of the 
union of parents and offspring ( (p  + A)-selection). Although the (,u + A)-selection is elitist 
and therefore guarantees a monotonically improving performance, this selection strategy is 
unable to deal with changing environments and jeopardizes the self-adaptation mechanism 
with respect to the strategy parameters (internal model), especially within small populations. 
Therefore, the (p,  +selection is recommended today, with investigations indicating a ratio 
for p/A M 1/7 as optimal (Schwefel 1987). 
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2.1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConceptual Algorithm Combining the previous topics, the following conceptual 
algorithm of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ A)-ES and (p,  A)-ES, respectively, results: 

ALGORITHM 2 (Outline of an ES): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t := 0; 
initialize P(0) := zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{&(O), . . . , Zp(0)} E Zp 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI+” 
and Zh = (x i ,  (T;, (zi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVi E { 1,. . . ,n} , bj  E { 1,. . . , n . (n - 1)/2}); 

where @(Zk(O)) =f(&(O)); 

recombine: ZL(t) := zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ’(P(t)) Vk E { 1,. . . , A}; 
mutate: Z[( t )  := m;T,T,,al(Zi(t))lVk E { I , .  . . , A } ;  
evaluate: P”(t) := {Z,”(t), . . . ,aA ( t ) }  : 

select: P(t + 1) := if (p, A)-selection 

evaluate P(0) : {@(& (O)), . . . , @(Zp(0))} 

while ( L ( P ( ~ ) )  # true) do % while termination criterion not fulfilled 

{@(Z,”(t)), . . . , @(ii:(t))} where @(?it@)) =f(.?L(t)); 

then s(p,A)(P”( t ) ) ;  

else s(,+~)(P(t) u P”(t)); 
t : = t + l ;  

O d  

2.1.6 Theory 
investigating the model functions 

The 1/5-success rule for a (1 + 1)-ES was derived by Rechenberg by 

fi(4 = Lo + ClXl ( 5 )  

(corridormodel), where Vi E (2,. . . , n}  : -b/2 5 x; 5 b/2, and 
n 

(sphere model), where x” denotes the minimum and r is the actual Euclidean distance between 
2 and x” .  co and c1 # 0 denote arbitrary constants. For both functions, Rechenberg calcu- 
lated the expectation values PI, $92 for the rates of convergence, expressed here in terms of 
dimensionless, normalized variables a; = cTln/b, ‘pi = cpln/b, cri = a z n / ~ ,  and ‘pi = cpzn/r: 

where erf denotes the error function. Based on these expressions, it is possible to determine 
the optimal standard deviations u,!* by setting 

and to calculate the maximum convergence rates ’pi* = pf(a;*): 

a;* = fi z 1.253 a;* z 1.224 
$9;’ = - M 0.184 9s‘ M 0.2025 2e 
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Furthermore, expectation values of the probabilities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPCf;(m'(2)) 5 f;(2)} for a 
successful mutation were also calculated for both functions: 

thus allowing calculation of the optimal success probabilities pi* = pi(.,'*): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. M 0.184 p ;  x 0.270. (10) 

Both are close to the value 1/5, and based on this result Rechenberg formulated the 
1/S-success rule as a method for controlling the standard deviation during the optimization 
process according to the measured success frequency (Rechenberg 1973, 122): 

The ratio of successful mutations to all mutations should be 1/S. If it is greater 
than 1/S, increase the standard deviation, if it is smaller, decrease the standard 
deviation. 

Later, Schwefel suggested measuring the ratio over 10n trials and using a multiplicative 
factor 0.82 5 c 5 1 for decreasing and 1/c for increasing the standard deviation (Schwefel 
198 1). 

There are two problems, however, with respect to using the l/S-success rule. The first 
one arises when the topological situation does not lead to success rates larger than 1 / 5  by 
decreasing the mutation step size toward zero. This often happens along active constraints, 
or in the case of corners of level setsf = const iff is not continuously differentiable or even 
discontinuous. Second, the 1/S-success rule gives no hint to handling CT; individually and 
therefore does not enable a suitable scaling of mutation step sizes along different axes of the 
coordinate system. 

Therefore, these results are useful for an algorithm with one standard deviation only, 
which does not use a real population, recombination, or self-adaptation, the theoretical 
treatment of which is rather complicated. An extension to describe the expected progress 
rate of the population average for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p  + A)-ES and a (p,  A)-ES using one single standard 
deviation and without recombination or self-adaptation was performed by Schwefel, resulting 
in the general convergence rate expression (Schwefel 1981) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkmin = 0 for a ( p  + A)-ES, kmin = -m for a (p ,  A)-ES, and P k . - k '  @ k . < k ' )  denotes the 

probability that a certain offspring individual j covers exactly the improvement distance k' 
(a smaller one). Because the outermost integration cannot be performed even for a (1, A)- 
ES analytlcally, Schwefel had to rely on additional assumptions and finally arrived at  values 
A; = 6 and A; = 4.7 M 5 that maximize the functions cp,*/X, and therefore yleld the most 
reasonable compromise between computational effort (number of offspring individuals) and 
progress rate in the case of sequential processing. 

I -  I 
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This section concludes by mentioning the most recent proof of global convergence with 
probability 1 for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 + 1)-ES, formulated by Rudolph (1992). Assumingp, to denote the 
probability that the algorithm reaches the level set LptE in step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt , f  > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-00, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcz-,pt = M, 
p(Lp tE)  > 0 (Lebesgue measure), and a continuous density of the probability distribution 
used for mutations, he shows P{limt+w i ( t)  E LfetE} = 1. This proof may be extended 
to a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p + A)-ES, but not for a (p, A)-ES. Though such a result is of no practical worth, it 
demonstrates that the method fulfills the minimum demands made on global optimization 
algorithms. 

2.2 Evolutionary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProgramming 
In the mid-sixties, L. J. Fogel et al. described EP for the evolution of finite state machines to 
solve prediction tasks (Fogel, Owens, and Walsh 1966). The state transition tables of these 
machines were modified by uniform random mutations on the corresponding discrete, finite 
alphabet. Evaluation of fitness took place according to the number of symbols predicted 
correctly. Each machine in the parent population generated one offspring by means of 
mutation, and the best half number of parents and offspring were selected to survive, called 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p  + p)-strategy in ES terminology. EP has been extended by D. B. Fogel to work on 
real-valued object variables based on normally distributed mutations, and the following 
description is based on Fogel 1992a; Fogel 1992b. 

2.2.1 For initialization, EP assumes a bounded 
subspace n:=, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[u;, v,] c R" with u; < v;. Afterward, however, the search domain is extended 
to I = R", i.e., individuals are object variable vectors a' = 2 E I .  In Fogel 1992b, a concept 
of meta-evolutionary programming is presented that is rather similar to self-adaptation of 
standard deviations in ESs. To incorporate a vector v' E Rt" of variances (again initialized in 
a restricted domain [0, c]", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc > 0 being an exogenous constant) rather than standard deviations 
(v; = of), the space of individuals is extended to I '  = Rn x R'". Because EP is probably not 
known very widely, we will discuss both approaches in the following and therefore use the 
notation I for the standard EP individual space and I' for the space in meta-EP. The fitness 
values @(a are obtained from objective function valuesf(2) by scaling them to positive values 
and possibly by imposing some random alteration K :  @(Z) = S(f(2),  K), where S denotes the 
scaling function. To meet the requirement of a useful scaling, it is of the general form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 : R x S -+ Rt where S is an additional set of parameters involved in the process. 

Fitness Evaluation and Representation 

2.2.2 Mutation In case of a standard EP, the Gaussian mutation operator 
(3 = I ' ,  uses a standard deviation obtained 

for each component x; as the square root of a linear transformation of the fitness value @(a = 
@(2), i.e., (Vdi E { 1,. . . , n}) :  

mi01 ,..., P n , n  ,... 1 m) : I + mi01 I . . . ,  P">71,..., 7"). 

xi' = x; + n; . N;(O,l) 

n 1 =  d m  

The proportionality constants /3; and the offsets 7; together are 2n  exogenous parameters 
that must be tuned for a particular task. Often, however, ,@ and y, are set to one and zero, 
respectively, such that XI = x; + m. N;(O, 1). 
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To overcome the tuning difficulties with this approach, meta-EP self-adapts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn variances 
per individual quite similar to ESs. Mutation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW Z ; ~ )  : I’ --f I / ,  VZ;~) (L I )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5’)  works as 

follows (Vi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE { 1, . . . , n}): 

x: = x, + f i . N / ( O ,  1) 

v: = v, + Jnil.,.N,(O, 1) . 

Here, o denotes an exogenous parameter ensuring that v; tends to remain positive. 
Whenever by means of mutation a variance would become negative or zero, it is set to a 
small value E > 0. Although the idea is the same as in ESs, the underlylng stochastic process 
is fundamentally different. The log-normally distributed alterations in ESs automatically 
guarantee positiveness of o,, as well as no drift in the case of zero selection pressure, whereas 
fluctuations in the meta-EP algorithm are expected to be much larger than in the ES and 
are not neutral. This mechanism surely deserves further investigation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2.3 Recombination A recombination operator combining features of different indi- 
viduals occurring in the population similar to the recombination operator of ESs or GAs 
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot used within EP. In EP, however, each complete solution is generally viewed as a re- 
producing “population,” such that the operator called “mutation” simulates all changes that 
transpire between one generation and the next (D. Fogel, personal communication 1992). 
This includes mutations and errors in transcription during sexual recombination, but it raises 
a conceptual difference in the level of abstraction from the biological model between EP and 
ESs, GAS. 

2.2.4 Selection After creating p offspring from p parent individuals by mutating each 
parent once, a variant of stochastic q-tournament selection (q  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 being a parameter of the 
algorithm) selects p individuals from the union of parents and offspring, i.e., a randomized 
( p  + p)-selection is used. In principle, for each individual i ih E P(t) u P’(t), where P’(t) is 
the population of mutated individuals, q individuals are chosen a t  random from P(t) U P’(t) 
and compared to i ih with respect to their fitness values. Then, for i ih, one counts how many 
of the (I individuals are worse than &, resulting in a score wk E (0, . . . , q} .  After doing so 
for all 2p individuals, the individuals are ranked in descending order of the score values w, 
(i E { 1, . . . ,2p}), and the p individuals having the highest score w; are selected to form the 
next population. More formally, we have (Vi E { 1, . . . , 2 p } ) :  

-yl E { 1, . . . , 2 p }  is a uniform integer random variable, sampled anew for each com- 
parison. As the tournament size q is increased, the mechanism more and more becomes a 
deterministic ( p  + p)-scheme. Since the best individual is assigned a guaranteed maximum 
fitness score q, survival of the best is guaranteed (this property of an EA is usually called 
elitist). 

2.2.5 Conceptual Algorithm 
following formulation for a meta-EP algorithm is derived: 

In the framework of our general algorithm outline, the 
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ALGORITHM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 (Outline of an EP algorithm): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:= 0; 
initialize P(0) := zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Zl(O), . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZp(0)} E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI p  

where I = Rn x W n  
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xi ,  vj, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV i  E { 1,. . . , n}) ;  

evaluate P(0) : {a(& (O)), . . . , @(Zp(0))} 

while (i(P(t)) #true) do 
where @(a'k(O)) = 6(f(%(O)), d; 

% while termination criterion not fulfilled 
mutate: Zi(t) := mka1(&(t)) Vk  E { 1,. . . , p } ;  
evaluate: P'(t) := {Z,'(t), . . . ,Zh(t)}  : 

select: P(t + I) := stq}(P(t) u P'(t));  
t := t + 1; 

{@(Z{(t)), . . , , @(Zh(t))} where @(Zi(t)) = &(f(.?L(t)), nk); 

od 

2.2.6 Theory In his thesis, D. B. Fogel analyzes a standard EP algorithm with O(2) = 
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.f(& assuming P = 1 in general (Fogel 1992b, 142-151). The analysis aims at giving 
a proof of the global convergence with probability 1 for the resulting algorithm, and the 
result is derived by defining a Markov chain over the discrete state space that is obtained 
from a reduction of the abstract search space Rn to C,  where C c R denotes the finite set 
of numbers representable on a digrtal computer. By combining all possible populations that 
contain the grid point I E c" having objective function valuef(2) closest to the true global 
optimumf*, he defines an absorbing state in which the process will ultimately be trapped 
(due to the elitist character of selection). 

However, this argument is, strictly interpreted, a convergence proof for a grid search 
method. The convergence theorem for the (1 + 1)-ES can easily be transferred to standard 
EP and allows filling the gap between C" and R" . 

In the case of the simplified sphere model 

n 

i= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

the convergence rate theory can also be transferred from (1 + 1)-ES to (1 + 1)-EP (for 
population size p = 1, selection becomes deterministic in EP; see also Fogel 1992b, pp. 147- 
lSO), resulting in a standard deviation for EP on the sphere model of 

For p = 1, it can be shown that the convergence rate c p ~  ( ~ 2  = r) quickly approaches zero 
as n is increased, while on the other hand a choice /3 = n-' ylelds a nearly optimal convergence 
rate. The latter choice was suggested by D. B. Fogel for n > 2 (personal communication, 
August 1992). This clarifies again the importance of a clever step-size control (either by 
the 1/S-success rule or even better by self-adaptation) especially for increasing problem 
dimension. 

2.3 Gene tic Algorithms 
GAS are probably the best known evolutionary algorithms, receiving remarkable attention 
all over the world. J. Holland's research interests in the 1960s were devoted to the study 
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of general adaptive processes, concentrating on the idea of a system receiving sensory in- 
puts from the environment by binary detectors (Holland 1962; Holland 1975). Structures 
in the search space were progressively modified in this model by operators selected by an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
adaptive plan, judging the quality of previous trials by means of an evaluation measure. He 
points out how to interpret the so-called reproductive plans in terms of genetics, economics, 
game-playing, pattern recognition, and parameter optimization (Holland 1975, chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3).  
His genetic plans or genetic algorithms were applied to parameter optimization for the first 
time by K. De Jong (De Jong 1975), who laid the foundations of this application technique. 
Nowadays, numerous modifications of the original GA, usually referred to as the canonical 
GA, are applied to all (and more) fields Holland had indicated. However, many of these ap- 
plications show enormous differences from the canonical GA as explained in the following, 
such that the boundary to the other algorithms discussed above becomes blurred. Impor- 
tant examples of non-canonical GAS include D. Whitley's GENITOR system (Whitley 1989), 
J. Grefenstette's SAMUEL system (Gordon and Grefenstette 1990), and L. Davis's GAS (Davis 
1991). 

2.3.1 Fitness Evaluation and Representation As indicated, canonical GAS work on 
bit strings of fixed length I, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = (0, I}'. For pseudoboolean objective functions, this 
representation can be used directly. To apply canonical GAS to continuous parameter op- 
timization problems of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn:=, [u,, v,] + R (u, < v,), the bit string is logically 
divided into n segments of (in most cases) equal length 1, (i.e., I = n . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,), and each segment is 
interpreted as the binary code of the corresponding object variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  E [u,, v,]. A segment 
decoding function r' : (0, I}', + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a,, v,] typically looks like 

where (ail . . . a,L,) denotes the i-th segment of an individual a' = (a1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 . . . a,l,) E Z".', = I'. 
Nowadays, instead of the simple binary code a Gray code interpretation of the bit string is 
normally used for decoding purposes. Combining the segment-wise decoding functions P to 
an individual-decoding function r = r' x . . . x P I ,  fitness values are obtained by setting @(a = 

6(f(r(Z))), where again 6 denotes a scaling function ensuring positive fitness values such 
that the best individual receives largest fitness. Most commonly, a linear scaling is used 
that takes into account the worst individual of the population P(t - J) J time steps before 
(t ~ w < 0 =+ P(t - w) := P(0)): 

(1 8) 

where w is called the scaling window. Some other scaling methods are discussed by Goldberg 
(1989, 122-24). As an important remark, we emphasize the fact that this representation 
method is a special technique developed for the application of canonical GAS to parameter 
optimization problems. The wide range of alternative representations based on the binary 
code allows the application of canonical GAS to a variety of different problem domains. 

In terms of molecular genetics, there is an analogy to the discrete alphabet of nucleotide 
bases, double strands of which form the DNA. This information chain (the genotype) is de- 
coded in several steps to amino acids (by means of the genetic code), to proteins, and finally 
to the phenotype by means of the epigenetic apparatus. Therefore, the GA representation 
scheme can be interpreted to be slightly closer to the natural model than both other algo- 
rithms discussed here. However, the impact of this additional representational level on the 

~(f(r(a3>, P(t - m)) = maxCf(r(a;N I a; E P(t - w)) -f(r(a> 7 
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suitability for parameter optimization has still to be investigated further. The genetic code 
as well as the epigenetic apparatus have been completely ignored until now. 

2.3.2 Mutation Mutation in canonical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAs works on the bit string level and is tradi- 
tionally referred to as a “background operator” (Holland 1975). It works by occasionally 
inverting single bits of individuals, with the probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp m  of this event usually being very 
small brn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. per bit). Often, p m  depends neither on the number n of object variables 
nor on the total length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI of the bit string, This hnd  of mutation is ruled by pure randomness 
like the Monte Carlo method; one cannot speak of a (mean) step size. On a single individual, 
mutation mbm1 : I + I, mb,)(sl, . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,q) = (si,. . . ,$) works as follows (Vi E { 1, . . . ,I}): 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi E [0,1] is a uniform random variable, sampled anew for each bit. The reader 
should be very careful about mutation rate values given in the literature, because originally 
mutation was defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa substitution of a bit by a random element from the alphabet (0, I} 
(Holland 1975), such that mutation rates according to our definition are twice as large as 
mutation rates according to Holland’s original one. However, because it is more appropriate 
to interpret mutation as a real change (instead of a random toss with probability one-half), 
it is used as an inversion event by most GA researchers. 

2.3.3 Recombination In canonical GAS, emphasis is mainly concentrated on crossouer, 
the recombination operator of GAs, as the main variation operator that recombines useful 
segments from different individuals. Crossover rbc! : Ih’ + I is again an operator working 
entirely on the bit representation, completely ignoring the genetic code and the epigenetic 
apparatus. It does not respect the semantic boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, of the encoded variables. An 
exogenous parameter pc (crossover rate) indicates the probability per individual to undergo 
recombination. Typical values for p c  are in the range [0.6,1.0]. When two parent indi- 
viduals s’ = (q , . . . , q), 17 = (u1, . . . , v l )  have been selected (at random) from the population, 
crossover forms two offspring individuals S’, v“ according to the following scheme: 

As before, x E { I , .  . . ,I} denotes a uniform random variable, and one of the two 
offspring individuals is randomly selected to be the overall result of crossover. This one-point 
crossover can be extended naturally to a generalized m-point crossover by sampling more than 
one breakpoint and alternately exchanging each second resulting segment (De Jong 1975). 
The unifOm cyossouer operator drives the number of crossover points to an extreme by 
performing the random decision whether to exchange information between parents for each 
bit of the genotype anew (Syswerda 1989). On the genotype level this operator corresponds 
well to discrete recombination in ESs. Actually, however, neither clear theoretical nor 
empirical evidence exists to decide which crossover operator is most appropriate, although 
several investigations tried to shed light on these questions (Caruna et al. 1989; Eshelman et 
al. 1989; Schaffer et al. 1989). 

2.3.4 Selection Just as in EP, selection in canonical GAS emphasizes a probabilistic 
survival rule mixed with a fitness dependent chance to have (different) partners for producing 
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more or less offspring. By deriving an analogy to the game-theoretic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmulti-amzed bandit 
problem, Holland identifies a necessity to use proportional selection in order to optimize the 
trade-off between further exploiting promising regions of the search space while at  the same 
time also exploring other regions (Holland 1975, chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5). For proportional selection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ILL 4 I@,  the reproduction probabilities of individuals ii; are given by their relative fitness, 
i.e .,( ViE{ l ,  . . . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp}): 

Sampling p individuals according to this probability distribution yields the next genera- 
tion ofparents. Obviously, this mechanism fails in the case ofnegative fitness or minimization 
tasks, which explains the necessity to introduce a scaling function 6, as mentioned in 2.3.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3.5 Conceptual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlgorithm 
framework of our conceptual algorithm: 

ALGORITHM 4 (Outline of a canonical GA): 

As before, the canonical GA is embedded here in the 

t := 0; 
initialize P(0) := {Zi(O), . . . ,Zp(0)} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE I&‘ 

where I = ( 0 ,  I}‘; 
evaluate P(0) : {@(&(O)), . . . , @(Zp(0))} 

while ( L ( P ( ~ ) )  #true) do 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW k ( 0 ) )  = W l - ( Z k ( O N ) ,  P(0)); 

% while termination criterion not fulfilled 
wcontbine: Zi(t)  := Y{~~)(P(~)) Vk E { 1,. . . , p } ;  
mutate: ZL(t) := n ~ ~ ~ , , ~ ~ ( Z ~ ( t ) )  Vk  E { 1,. . . , p } ;  
evaluate: P”(t) := {Z,”(t), . . . , Z[:(t)} : 

select P(t + I )  := s(P”(t)) 

t : = t + l ;  

{@(Z,”(t)), . . . , O(&‘(t))} where @(Z;’(t)) = 6( f ( r (Z/ ( t ) ) ) ,  P(t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw)); 

where p.dZi’(t)) = Wi‘(t))/  c/”=, @(%”(t)); 

od 

Though the order of steps in the main loop does not exactly correspond to the order 
as defined by Holland, i.e., select, recombine, mutate, evaluate (Holland 1979, the difference 
caused by the formulation given here is likely to be marginal (practically, it is just one missing 
select operation after initialization and first evaluation). Experimental runs obtained with both 
alternative variants did not show statistically relevant differences. 

2.3.6 Theory The essentials of GA theory were derived by viewing a canonical GA 
as an algorithm that processes schemata. A schema H E {0,1, *}‘ is a description of a 
similarity template or hyperplane in 1-dimensional bit space. Instances of a schema H are all 
bit strings a E (0, l}’, which are identical to H in all positions where H has a value of 0 or 1 
[e.g., H = (01 * 1*) has four instances: (OlOlO), (0101 l), (011 lo), (01 1 ll)]. Letm(H‘) denote 
the number of instances of a schema H‘ in the population P(t). Furthermore, o(H)  denotes 
the order of H ,  i.e., the number of fixed positions, and S ( H )  denotes its defininglength, i.e., the 
distance between its first and last fixed position (e.g., o(0 * *I*) = 2, 5(0 * *1*) = 3). Using 
the average schema fitness 
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of schema zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH' in population P(t) and the average fitness? ofP(t), the schema growth equation 
for proportional selection turns out to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm(H'+') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= m(H') . f (H') / f f .  Under the assumption 
that H' is above average, i.e.,f(H') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=ff + $ with a constant value of c > 0, after t time steps 
starting with to = 0, we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m(W) = m(Ho) . (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc)' . (23) 

This means that proportional selection allocates exponentially increasing (decreasing) num- 
bers of trials to above (below) average schemata. 

So far, recombination and mutation are not incorporated into the analysis. This is 
done by calculating the survival probabilities of a schema H' under simple crossover (which 
is 1 - p. . S(Hf) / ( l  - 1)) and mutation ((1 - p,>"@)), resulting in the Scbema Theorem of 
canonical GAS: 

The schema theorem states that short, low-order, above-average schemata (building 
blocks) receive exponentially increasing trials in the following generations. The choice of a 
binary alphabet for encoding maximizes the number of schemata processed by a canonical 
GA and therefore supports the hyperplane sampling process. Building blocks and their 
combination to form longer and longer useful substrings are the most important worlung 
mechanism of a canonical GA. Therefore, consideration of the schema theorem and the 
building block hypothesis are the main design criteria for applying a canonical GA to a 
certain problem (Goldberg 1989). 

Besides the fact that there is no observer in GAS looking for hyperplane fitnesses, finite 
populations often do not contain all instances of a specific schema. Observed schema fitnesses 
thus might quite mislead the search process. Hyperplanes may well contain very good and 
very bad solutions of the problem a t  the same time, but this depends on the problem a t  
hand together with the encoding of the decision variables. Objective functions that mislead 
a canonical GA, so-called deceptive problems, are therefore an important field of research in 
GA-theory (Goldberg 1987; Goldberg et al. 1992; Page and Richardson 1992). 

3. Experimental Results 

Using a small test set of three objective functions, an experimental comparison of the al- 
gorithms was performed. The test functions are representatives of the classes of unimodal, 
multimodal, and discontinuous functions, the latter one being equipped with plateaus that 
do not guide the search by local gradient information. For unimodal functions emphasis 
is laid on convergence velocity, while €or multimodal functions convergence reliability is 
critical. These contradictory requirements reflect the trade-off between exploitative (path- 
oriented) and explorative (volume-oriented) search. The simplified sphere model5 (1 s), its 
discretization 

(25) 
n 

ji(~3 = C1.i + 0.51~ , 
i= 1 

andfg, a generalized variant of a multimodal function by Ackley (1987, 13-14), i.e., 
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are used with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 30 and a feasible region defined by -30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi 5 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Vi E { 1, . . . , n}). 
The functionfs has been transformed (by addition of the term 20 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe) such that the global 
minimum point is located at  the origin with a function value of zero. The test functions 
have been selected from a larger test suite without index changes, resulting in the name 
convention zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@,f3,f9) as used here. 

The following (more or less) standard parameterizations of the algorithms were used 
for experimental test runs: 

Evolution Strategy: (30,20O)-ES with self-adaptation of 12, = 30 standard deviations, 
no correlated mutations, discrete recombination on object variables, and global 
intermediate recombination on standard deviations. The standard deviations are 
initialized to a value of 3.0. This variant is denoted ES30 in the following. 

Evolution Strategy: (30,20O)-ES with self-adaptation of n,  = 1 standard deviation, no 
correlated mutations, no recombination, and standard deviations initialized to 3 .O. 
This variant is denoted ESI . 

Evolutionary Programming: Meta-EP with self-adaptation of n, = 30 variances, 
population size 
bound c = 25 for initialization of variances (Fogel 1992b, 168, 173).' 

Genetic Algorithm: Population size ~1 = 200, mutation ratep, = 0.001, crossover rate 
pc = 0.6, two-point crossover (De Jong 1975), Gray code, and bit string length 1 = 3072 

= 200, tournament size q = 10 for selection, N = 6, and an upper 

(= 900)*. 

Population size settings are oriented toward a comparability of the results with respect 
to the number of objective function evaluations, which is controlled by the size X = 200 of 
the offspring population. Because in EP a population size of p = X = 200 is always used, 
the other algorithms were adapted to this setting. All results were obtained by running 20 
experiments per algorithm and averaging the resulting data. For the sphere model, 40,000 
function evaluations were performed for each run, and in the case of the discretization5 
and Ackley's function this was increased to 100,000 function evaluations in order to identify 
runs that stagnate in contrast to those that approach the global optimum. 

Of course, a comparison on just three objective functions does not yield a general as- 
sessment of the behavior of evolutionary algorithms. For a more general picture, additional 
important classes of topological characteristics (noise, discontinuities, irregularities of the 
locations of local optima, narrow valleys, sharp peaks) and a range of different problem 
dimensions (e.g., n E [S, IOOO]) should be considered. Such a deeper experimental investi- 
gation is an important topic of further research. 

Furthermore, there are some doubts whether the comparison can be fair, since it can 
be argued that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAESs and EP are evolutionary algorithms that are relatively specialized to 
parameter optimization while a canonical GA with its binary encoding mechanism can be 
conceived of as a more general-purpose algorithm. 

However one may think about these questions, the results discussed in the following are 
intended to provide just an impression of the behavioral differences of ESs, EP, and canonical 
GAS on a small set of test cases. 

1 Variances arc initialized at random in the range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[0, ZS].  EP and ESs are handled differently w ~ t h  respect to this topic in order to be as close to thr 

2 30 bits per obiect variable are used in order to obtain a maximum resoluuon Ar, = (z,, - ~ , ) / ( 2 ~ "  - I )  of the search grid. 

proposed parameterizations as possible. 
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First, we discuss the results obtained for the sphere model as shown in figure 1, where 
the actual best objective function value is plotted over the number of function evaluations. 
Both variants of the ES show linear convergence, clearly demonstrating its capability to 
approach a single optimum quickly. The difference in convergence velocity of both variants 
reflects the large amount of additional information that must be learned when 30 standard 
deviations rather than one are used. For the totally symmetric, unimodal sphere model these 
additional degrees of freedom are unnecessary, such that no benefit can be expected from 
the variant ES30 that is more complex than needed. The same argument holds for EP, where 
seemingly the self-adaptation process works more slowly than for an ES that self-adapts the 
same amount of strategy parameters. The difference is likely to be caused by the absence of 
recombination in EP. The canonical GA applied to the sphere model gives a demonstration 
of its missing emphasis on convergence velocity and local optimization. 

For the step functionh the results shown in figure 2 were obtained. For this function, 
the self-adaptation capabilities of the ES1 algorithm are not sufficient to locate the globally 
optimal solution, and the search stagnates completely after an initial phase of rapid progress. 
Both the ES30 and EP have no difficulties in this case and locate the optimal plateau in 
each run, reflecting the good chance of leaving suboptimal plateaus due to their additional 
improvement capabilities introduced by 30 independently variable step sizes. The behavior of 
the canonical GAis almostidentical to that obtained on5 ,  i.e., the algorithm is “unimpressed” 
by the introduction of plateaus and discontinuities, but it remains the slowest of the three 
algorithms compared here. 
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A completely different behavior is observed on the continuous, multimodal objective 
functionh, for which the experimental data is shown in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  Here, convergence re- 
liability is the criterion that determines the quality of an algorithm, and the advantages of 
self-adapting 30 standard deviations in ESs are again clearly identified in the graph, since 
in all 20 experiments performed the ES30 variant located the global optimum (achieving 
objective function values better than lop4). In contrast to this, in 14 of 20 experiments an 
ES using just one mutability got trapped in local optima as reflected by the stagnating curve 
for ES1 shown in figure 3 (the other six runs located the global optimum). Experimental 
runs of more than 100,000 function evaluations would be necessary to assess the final re- 
sults of EP and the canonical GA, but the trend allows predicting a reasonable convergence 
reliability also for these algorithms in the long run. Within the 20 runs, EP identified the 
global optimum in one case. 

Table 1 summarizes the mean best objective function values within the last generation 
of the runs and their standard deviations (from 20 experiments) for the three functions. The 
small standard deviation of ES30 onfs reflects again the high convergence reliability of this 
ES variant, while standard deviations of the other variants, including ES1, indicate the large 
diversity of locally optimal solutions. On the sphere model, standard deviations and results 
for both EP and the canonical GA demonstrate that these strategies are some orders of 
magnitude slower than the ES. The results for the step function are added for reasons of 
completeness. 

These experiences do not allow for drawing general conclusions. On the small test 
set discussed here, the combination of self-adaptation, recombination, and relatively strong 
selective pressure as used in ESs has some advantages both for convergence velocity and 
convergence reliability. Though the general trade-off between these contradicting requjre- 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Mean best objective function values after 40,000 (5) / 100,000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV;,fg) function evaluations 
and corresponding standard deviations for the three objective functions. Results are averaged over 20 
experiments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh fg 
Mean best St. dev. Mean best St. dev. Mean best St. dev. 

ESI 1.075 . lo-' 4.730. lop6 4.100 3.177 1.326 1.039 
ES3o 6.672. lo-' 2.610. lo-' 0 0 1.618. 10-3 9.290. lo-' 
EP 1.998. lo2 6.564. 10' 0 0 1.976 6.300. lo-' 
GA 1.647. 10' 4.741 . 10' 5.390. 10' 1.286. 10' 5.253 5.130. lo-' 

ments cannot be avoided, a comparison to canonical GAS, where self-adaptation and high 
selective pressure are missing, and EP, where recombination and high selective pressure are 
missing, gives some hints that the trade-off can best be treated by the collective application 
of these principles. 

For canonical GAS, it has been demonstrated in different papers that  they can be turned 
into more powerful parameter optimization procedures by incorporating self-adaptation 
and increasing selective pressure (Back and Hoffmeister 1991; Back 1992). However, the 
discussion whether genetic algorithms should emphasize their parameter optimization prop- 
erties or alternatively their more general adaptive capabilities is still ongoing (i.e., De Jong 
1992), and it is clear that  they benefit from a broad range of possible applications even in 
combinatorial optimization (due to the discrete nature of the code). 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Main characteristics of evolutionary algorithms. 

ES EP GA 

Representation Real-valued Real-valued Binary-valued 

Self-adaptation Standard deviations Variances 
and covariances (in meta-EP) None 

Fitness is Objective Scaled objective Scaled objective 
function value function value function value 

Mutation Main operator Only operator Background operator 

Recombination Different variants, 
important for None Main operator 
self-adaptation 

Selection Deterministic, Probabilistic, Probabilistic, 
extinctive extinctive preservative 

Similarly, recombination and higher selective pressure may also be useful when incor- 
porated into EP, since the role of recombination on strategy parameters for supporting a 
successful self-adaptation has not been tested in EP so far (in contrast to recombination 
on object variables, which was identified in Fogel and Atmar 1990, using just one objective 
function, to be unnecessary for successful optimization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a result that may be worth further 
examination). 

4. Summary 

The main characteristic similarities and differences of the algorithms presented in this article 
are summarized in table 2 .  

It is a remarkable fact that each algorithm emphasizes different features as being most 
important for a successful evolution process. In analogy to repair-enzymes, which give evi- 
dence for a biological self-control of mutation rates of nucleotide bases in DNA, both ESs and 
meta-EP use self-adaptation processes for the mutabilities. In canonical GAS, this concept 
was successfully tested only recently (Back 1992), but it will need more time to be recognized 
and applied. Both ESs and EP concentrate on mutation as the main search operator, while 
the role of (pure random) mutation in canonical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAS is usually seen to be of secondary (if 
any) importance. On the other hand, recombination plays a major role in canonical GAS, is 
missing completely in EP, and is urgently necessary for use in connection to self-adaptation 
in ESs. One of the characteristics of EP is the strict denial of recombination as important 
for the search. Finally, both canonical GAS and EP emphasize a necessarily probabilistic 
selection mechanism, while from the ESs’ point of view selection is completely determinis- 
tic without any evidence for the necessity of incorporating probabilistic rules. In contrast, 
both ESs and EP definitely exclude some individuals from being selected for reproduction, 
i.e., they use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAextinctive selection mechanisms, while canonical GAS generally assign a nonzero 
selection probability to each individual, which we term a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApresemative selection mechanism. 
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Very naturally, the reader can deduce several interesting questions for future research. 
It is curious enough to see very different, sometimes contrasting design principles for evo- 
lutionary algorithms being emphasized by the different research communities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA clear goal 
of future research should be to identify the rational as well as not so rational reasons for 
this fact and to extract the general rules for designing components of new and maybe even 
better EAs. 

We conclude by mentioning again that this paper concentrated on the use of evolution- 
ary algorithms for solving real-valued parameter optimization problems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn interesting area 
of research involves understanding how far these ideas can be extended to other problem 
domains such as optimization problems with nonlinear constraints (in ESs, H.-P. Schwefel 
has solved this problem by repeating the creation and evaluation of offspring individuals as 
long as constraints are violated (Schwefel 1977) and by introducing correlated mutations 
(Schwefel 1981)), discrete optimization problems, and problems in which the response sur- 
face is changing during the evolutionary process. Examples pointing in these directions are 
reported in the field of ESs by modeling the concept ofsomatic mutations for solving discrete 
problems (Schwefel 197 5) and by using changing environments and dominanceh-ecessivity 
for successfully solving problems of multiple criteria decision making (Kursawe 199 I). 

5. A Guide to Relevant Literature 

Because this article contains references to the basic literature on each type of three evolu- 
tionary algorithms, it seems appropriate to guide the reader by providing a hint to further 
reading. For each algorithm discussed above, we can identify two generations of books: 

ESs: Rechenberg discusses the (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ l)-ES and its theory in Rechenberg 1973 (only in 
German). A look a t  Schwefel’s book (1981), where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p + A)-ES and (p, A)-ES are 
introduced and compared to traditional optimization methods, may be more useful. 
Furthermore, a convergence rate theory for these algorithms is developed for the test 
functions introduced by Rechenberg. 

EP: For historical reasons it is worth looking at  the early work of L. J. Fogel (Fogel et 
al. 1966) since his ideas were vehemently criticized a t  that time. For the modern EP 
algorithm, the reader is referred to D. B. Fogel’s book on using EP for system 
identification (Fogel 1991), to his thesis for meta-EP (Fogel 1992b). 

well as basic algorithms of a GA in his first book (Holland 1975). The modern 
state-of-the-art and a detailed historical overview are presented in the more practically 
oriented book by Goldberg (1989). 

GAs: Holland gives a detailed discussion of adaptive systems in general and theory as 

For those readers interested in a more detailed, implementation-oriented introduction 
to the algorithms, we recommend a look a t  Schwefel(l98 1) (ESs), Fogel (1 992 b) (EP), and 
Goldberg (1989) (GAS). Practical applications and unusual extensions of genetic algorithms 
are presented in Davis (1991) and Michalewicz (1992). Specialized articles can also be 
found in the conference proceedings (mentioned in section 1). The following-necessarily 
incomplete-reference list is sorted according to the special type of evolutionary algorithm 
that is mainly discussed and in each category by publication date to provide a quick overview 
of the historical development and literature categories. 
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6. Summary of Basic Notation 

Table 3. Notational conventions common to all evolutionary algorithms described in the paper. 

Notation Description 
Space of individuals 
A single individual 
Vector of object variables 
Objective function 
Fitness function 
Parent population size 
Offspring population size 
Population at generation t 
Recombination operator (global form, with parameter set Or) 

Recombination operator (local form, with parameter set Or) 
Mutation operator (global form, with parameter set Om) 
Mutation operator (local form, with parameter set Om) 
Selection operator (with parameter set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,) 
Termination criterion 
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