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An overview of existing methods and recent

advances in sequential Monte Carlo
Olivier Cappé, Simon J. Godsill and Eric Moulines

Abstract— It is now over a decade since the pioneering con-
tribution of Gordon et al. (1993), which is commonly regarded
as the first instance of modern sequential Monte Carlo (SMC)
approaches. Initially focussed on applications to tracking and
vision, these techniques are now very widespread and have
had a significant impact in virtually all areas of signal and
image processing concerned with Bayesian dynamical models.
This article is intended to serve both as an introduction to
SMC algorithms for non-specialists and as a reference to recent
contributions in domains where the techniques are still under
significant development, including smoothing, estimation of fixed
parameters and use of SMC methods beyond the standard
filtering contexts.

Index Terms— State-space model; Filtering, prediction &
smoothing; Sequential Monte Carlo; Bayesian dynamical model;
Particle Filter; Hidden Markov Models; Parameter estimation;
Tracking; .

I. INTRODUCTION

Consider the following generic nonlinear dynamic system

described in state-space form:

• System model

xt = a(xt−1, ut) ↔

Transition Density︷ ︸︸ ︷
f(xt|xt−1) (1)

• Measurement model

yt = b(xt, vt) ↔

Observation Density︷ ︸︸ ︷
g(yt|xt) (2)

By these equations we mean that the hidden states xt and data

yt are assumed to be generated by nonlinear functions a(·) and

b(·), respectively, of the state and noise disturbances ut and vt.

The precise form of the functions and the assumed probability

distributions of the state ut and the observation vt noises

imply via a change of variables the transition probability

density function f(xt|xt−1) and the observation probability

density function g(yt|xt). We make the assumption that xt

is Markovian, i.e. its conditional probability density given

the past states x0:t−1
def
= (x0, . . . , xt−1) depends only on

xt−1 through the transition density f(xt|xt−1), and that the

conditional probability density of yt given the states x0:t and

the past observations y0:t−1 depends only upon xt through

the conditional likelihood g(yt|xt). We further assume that the

initial state x0 is distributed according to a density function

π0(x0). Such nonlinear dynamic systems arise frequently from
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many areas in science and engineering such as target track-

ing, computer vision, terrain referenced navigation, finance,

pollution monitoring, communications, audio engineering, to

list but a few.

To give a concrete example of such a model consider:

Example 1: Nonlinear time series model

We consider here a simple nonlinear time series model

which has been used extensively in the literature for bench-

marking numerical filtering techniques [1], [2], [3]. The state-

space equations are as follows:

xt =
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t) + ut ,

yt =
x2

t

20
+ vt ,

where ut ∼ N (0, σ2
u) and vt ∼ N (0, σ2

v) and here σ2
u = 10

and σ2
v = 1 are considered fixed and known; N (µ, σ2) denotes

the normal distribution with mean µ and variance σ2. The

initial state distribution is x0 ∼ N (0, 10). The representation

in terms of densities f(xt|xt−1) and g(yt|xt) is given by:

f(xt|xt−1) = N

(
xt

∣∣∣∣
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t), σ2
u

)

g(yt|xt) = N

(
yt

∣∣∣∣
x2

t

20
, σ2

v

)

The form of these densities was straightforward to obtain in

this case. For more complex cases a Jacobian term might be

required when either xt or yt is a nonlinear function of ut or

vt, respectively. Note that we usually consider only probability

density functions p(x) but in some specific cases, we will

use the notation p(dx) to refer to the associated probability

measure.

A dynamical model of this sort may easily be simulated ow-

ing to the Markovian assumptions on xt and yt, which imply

that the joint probability density of states and observations,

denoted π0:T,0:T (x0:T , y0:T ), may be factorised as

π0:T,0:T (x0:T , y0:T ) = π0(x0)g(y0|x0)

×
T∏

t=1

f(xt|xt−1)g(yt|xt) .

A graphical representation of the dependencies between dif-

ferent states and observations is shown in Figure 1.
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Fig. 1. Graphical model illustrating the Markovian dependencies between
states and observations.

In this model, states and data may be sampled one by one by

successively drawing random samples from the transition and

the observation densities as indicated in Algorithm 1 below.

Algorithm 1 Generating from a State-Space Model

Initialisation: sample x̃0 ∼ π0(x0), ỹ0 ∼ g(y0|x̃0).
for t = 1, . . . , T do

Sample x̃t ∼ f(xt|x̃t−1).
Sample ỹt ∼ g(yt|x̃t).

end for

(x̃0, . . . , x̃T , ỹ0, . . . , ỹT ) is a random draw from

π0:T,0:T (x0:T , y0:T ).

The ability to simulate random states and to evaluate the

transition and observation densities (at least up to an unknown

normalising constant) will be the chief components of the

particle filtering algorithms described later.

Statistical inference for the general nonlinear dynamic sys-

tem above involves computing the posterior distribution of a

collection of state variables xs:s′

def
= (xs, . . . , xs′) conditioned

on a batch of observations, y0:t = (y0, . . . , yt), which we

denote πs:s′|0:t(xs:s′ |y0:t). Specific problems include filtering,

for s = s′ = t, fixed lag smoothing, when s = s′ = t − L
and fixed interval smoothing, if s = 0 and s′ = t. Despite

the apparent simplicity of the above problem, the posterior

distribution can be computed in closed form only in very

specific cases, principally, the linear Gaussian model (where

the functions a() and b() are linear and ut and vt are Gaussian)

and the discrete hidden Markov model (where xt takes its

values in a finite alphabet). In the vast majority of cases,

nonlinearity or non-Gaussianity render an analytic solution

intractable [4], [5], [6], [7].

The classical inference methods for nonlinear dynamic

systems are the extended Kalman filter (EKF) and its variants,

which are based on linearisation of the state and measure-

ment equations along the trajectories [8]. The EKF has been

successfully applied to many nonlinear filtering problems.

However, the EKF is known to fail if the system exhibits

substantial nonlinearity and/or if the state and the measurement

noise are significantly non-Gaussian.

Many algorithms have been developed to correct poor per-

formance in the EKF algorithm. One of the earliest approaches

was to approximate the posterior distribution by expansion

in a pre-specified function basis. For example, the Gaussian

sum filter [9] approximates the posterior density by a mixture

of Gaussians; (see [10] for an in-depth discussion and some

generalisations).

More recently, several algorithms have been proposed that

attempt to choose a set of deterministic points to represent the

posterior distribution accurately. Two representative algorithms

in this class are the unscented Kalman filter (UKF) [11],

[12] and the Gaussian quadrature Kalman filter (QKF) [13].

The UKF is based on the so-called “sigma points”, and the

QKF is based on the Gauss-Hermite quadrature integration

rule. One of the significant advantages of these algorithms

is that they do not require the evaluation of the Jacobian

matrix, which is often a computationally intensive component

in the EKF algorithm. Whereas these techniques have been

applied successfully in certain settings, they are valid only

if the posterior distribution can be closely approximated by

a Gaussian distribution, which implies, in particular, that

it remains unimodal, which is typically not true in many

nonlinear state-space scenarios.

These limitations have stimulated the interest in alternative

strategies that can handle more general state and measurement

equations, and which do not put strong a priori constraints

on the behaviour of the posterior distributions. Among these,

Monte Carlo methods, in which the posterior distribution is

represented by a collection of random points, play a central

role.

The use of Monte Carlo methods for nonlinear filtering

can be traced back to the pioneering works of [14] and [15].

These early attempts were based on sequential versions of

the importance sampling paradigm, a technique that amounts

to simulating samples under an instrumental distribution and

then approximating the target distributions by weighting these

samples using appropriately defined importance weights. In

the nonlinear filtering context, importance sampling algorithms

can be implemented sequentially in the sense that, by defining

appropriately a sequence of instrumental distributions, it is not

necessary to regenerate the population of samples from scratch

upon the arrival of each new observation. This algorithm is

called sequential importance sampling, often abbreviated to

SIS. Although the SIS algorithm has been known since the

early 1970s, its use in nonlinear filtering problems was rather

limited at that time. Most likely, the available computational

power was then too limited to allow convincing applications

of these methods. Another less obvious reason is that the SIS

algorithm suffers from a major drawback that was not clearly

identified and properly cured until [3]. As the number of

iterations increases, the importance weights tend to degenerate,

a phenomenon known as sample impoverishment or weight

degeneracy. Basically, in the long run most of the samples

have very small normalised importance weights and thus

do not significantly contribute to the approximation of the

target distribution. The solution proposed by [3] is to allow

rejuvenation of the set of samples by replicating the samples
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with high importance weights and removing samples with

low weights, much as in the resampling step for the (non-

sequential) sampling and importance resampling (SIR) algo-

rithm [16]. The so-called bootstrap filter of [3] was the first

successful application of sequential Monte Carlo techniques

to the field of nonlinear filtering. Since then, there have

been several independent variants of similar filtering ideas,

including the Condensation filter [17], Monte Carlo filter [1],

Sequential imputations [18], and the Particle filter [19].

Sequential Monte Carlo (SMC) methods offer a number

of significant advantages compared with other techniques

currently available. These advantages arise principally as a

result of the generality of the approach, which allows inference

of full posterior distributions in general state-space models,

which may be both nonlinear and non-Gaussian. As a result

of this, SMC methods allow for computation of all kinds

of moments, quantiles and highest posterior density regions,

whereas EKF and UKF allow approximation of only the

first and second-order statistics. In particular, an appropriate

specification of the state-space model allows SMC to handle

constraints on the state-space, which may arise, depending

on the application, from physical limitations (target speed,

presence of obstacles, etc..), or general prior knowledge about

the range of the state values. SMC methods are scalable, and

the precision of the estimates depends only on the number of

particles used in approximating the distribution.

To date, SMC methods have been successfully applied

in many different fields including computer vision, signal

processing, tracking, control, econometrics, finance, robotics,

and statistics; see [20], [21], [6], [7] and the references therein

for a good review coverage.

The paper is organised as follows. In section II, we recall

the basics of simulation-based inference, importance sampling

and particle filters. In subsequent sections we cover a selection

of new and recent developments. In section III, we describe

methods to perform fixed-lag and fixed-interval smoothing. In

section IV, we present methods to estimate unknown system

parameters in batch and on-line settings. In section V, we

describe applications of SMC outside the filtering context,

namely, adaptive simulation of posterior densities over large

dimensional spaces and rare event simulations. This tutorial

aims to highlight basic methodology and up and coming areas

for particle filtering; more established topics and a range of

applications are extensively reviewed in a number of excellent

papers [22], [23], [24], [25], [26], [27].

II. SIMULATION BASICS

A. Importance Sampling and Resampling

In the Monte Carlo method, we are concerned with es-

timating the properties of some highly complex probability

distribution p, for example computing expectations of the

form:

h̄
def
=

∫
h(x)p(x)dx ,

where h(·) is some useful function for estimation, for example

the mean value is obtained with h(x) = x. In cases where this

cannot be achieved analytically, the approximation problem

can be tackled indirectly by generating random samples from

p, denote these {x(i)}1≤i≤N , and approximating the distribu-

tion p by point masses so that

h̄ ≈
1

N

N∑

i=1

h(x(i)) .

See Figs. 2 and 3 for a graphical example where a complex

non-Gaussian density function is represented using Monte

Carlo samples. Clearly N needs to be large in order to give a

good coverage of all regions of interest.

Fig. 2. Two-dimensional probability density function.

x
1

x 2

Samples x(i)

Fig. 3. Two-dimensional probability density function - representation by
random points, or ‘particles’.

More generally, when we cannot sample directly from the

distribution p, we can sample from another distribution q (the

importance distribution, or instrumental distribution) having

a support larger than p. So we make N random draws x(i),

i = 1, . . . , N from q instead of p. Now we have to make a

correction to ensure that the obtained estimate is an unbiased

estimator of h̄. This correction involves assigning a positive

weight to each of the random points. It turns out that the

required value of the weights is proportional to the ratio

r
def
= p/q evaluated at the random points; the function r is
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termed the importance function. The expectation h̄ can thus

be estimated using a weighted average:

h̄ =

∫
h(x)

q(x)p(x)

q(x)
dx

=

∫
h(x)r(x)q(x)dx ≈

N∑

i=1

ω̃(i)

∑N
j=1 ω̃(j)

h(x(i)) (3)

where ω̃(i) def
= r(x(i)) = p(x(i))/q(x(i)) is termed the

unnormalised importance weight.

Remark 1: In many situations, the target distribution p
or the importance distribution q are known only up to a

normalising factor (this is particularly true when applying

importance sampling ideas to state-space models and, more

generally, in Bayesian statistical inference; see below). The

importance function r = p/q is then known only up to a

(constant) scaling factor. In (3), the weights are renormalised

to sum to unity and hence the estimator of h̄ does not require

knowledge of the actual normalising factor. Theoretical issues

relating to this renormalisation are discussed in [28].

Although importance sampling is primarily intended to

overcome difficulties with direct sampling from p when ap-

proximating expectations under p, it can also be used for sam-

pling from the distribution p. The latter can be achieved by the

sampling importance resampling (or SIR) method originally

introduced by [16], [29]. Sampling importance resampling is a

two-stage procedure in which importance sampling is followed

by an additional random sampling step, as discussed below.

In the first stage, an i.i.d. sample (x̃(1), . . . , x̃(M)) is drawn

from the importance distribution q, and one computes the

normalised version of the importance weights,

ω(i) def
=

ω̃(i)

∑M
i=1 ω̃(i)

, i = 1, . . . ,M . (4)

In the resampling stage, a sample of size N denoted by

x(1), . . . , x(N) is drawn from the intermediate set of points

x̃(1), . . . , x̃(M), taking proper account of the weights computed

in (4). This principle is illustrated in Figure 4.

There are several ways of implementing this basic idea,

the most obvious approach being sampling with replacement,

with the probability of sampling each x(i) set equal to the

normalised importance weight ω(i). Hence the number of

times N (i) that each particular point x̃(i) in the first-stage

sample is selected follows a binomial Bin(N,ω(i)) distribu-

tion. The vector (N (1), . . . , N (M)) is distributed according to

Mult(N,ω(1), . . . , ω(M)), the multinomial distribution with

parameter N and probabilities of success (ω(1), . . . , ω(M)).
In this resampling step, the points in the first-stage sample

that are associated with small normalised importance weights

are most likely to be discarded, whereas the best points in

the sample are replicated in proportion to their importance

weights. In most applications, it is typical to choose M , the

size of the first-stage sample, larger (and sometimes much

larger) than N .

While this resampling step is unnecessary in the non-

recursive framework, and would always increase the Monte

Carlo variance of our estimators, it is a vital component of

the sequential schemes which follow, avoiding degeneracy

INSTRUMENTAL

TARGET

Resampled particles

Fig. 4. Principle of resampling. Top: the sample drawn from q (dashed line)
with associated normalised importance weights depicted by bullets with radii
proportional to the normalised weights (the target density corresponding to
p is plotted as a solid line); Bottom: after resampling, all particles have the
same importance weight, and some of them have been either discarded or
duplicated (here M = N = 6).

of the importance weights over time. While the multinomial

resampling scheme above is the most natural first approach, it

should be noted that improvements can be achieved through

variance reduction strategies such as stratification. Some of

these alternative sampling schemes guarantee a reduced Monte

Carlo variance, at a comparable computational cost [30], [31],

[32], [33]. We will sometimes refer to the resampling step as

a selection step in the sequel.

B. Sequential Monte-Carlo methods

We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.

Starting with the initial, or ‘prior’, distribution π0(x0), the

posterior density π0:t|0:t(x0:t|y0:t) can be obtained using the

following prediction-correction recursion [34]:

• Prediction

π0:t|0:t−1(x0:t|y0:t−1)

= π0:t−1|0:t−1(x0:t−1|y0:t−1)f(xt|xt−1) , (5)

• Correction

π0:t|0:t(x0:t|y0:t) =
g(yt|xt)π0:t|0:t−1(x0:t|y0:t−1)

ℓt|0:t−1(yt|y0:t−1)
,

(6)

where ℓt|0:t−1 is the predictive distribution of yt given

the past observations y0:t−1. For a fixed data realization,

this term is a normalising constant (independent of the

state); it will not be necessary to compute this term in

standard implementations of SMC methods.

We would like to sample from π0:t|0:t(x0:t|y0:t); since it is

generally impossible to sample directly from this distribution,

we resort to a sequential version of the importance sampling

and resampling procedure outlined above. Conceptually, we

sample N particle paths x̃
(i)
0:t, i = 1, . . . , N , from a conve-

nient importance distribution q0:t(x0:t|y0:t), and compute the
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unnormalised importance weights

ω̃
(i)
t =

π0:t|0:t(x̃
(i)
0:t|y0:t)

q0:t(x̃
(i)
0:t|y0:t)

, i = 1, . . . , N . (7)

Using this weighted sample {(x̃
(i)
0:t, ω̃

(i)
t )}1≤i≤N , we may

approximate the expectation of any function h defined on

the path space using the self-normalised importance sampling

estimator,

h̄ =

∫
h(x0:t)π0:t|0:t(x0:t|y0:t)dx0:t

≈
N∑

i=1

ω̃
(i)
t∑N

j=1 ω̃
(j)
t

h(x̃
(i)
0:t) . (8)

As in the case of the non-sequential importance sampling

above, we will use in the following the notation ω
(i)
t to refer

to the normalised weight, so that ω
(i)
t = ω̃

(i)
t /

∑N
j=1 ω̃

(j)
t . We

may also sample (approximately) from the posterior distribu-

tion π0:t|0:t by drawing N particle paths {x
(i)
0:t}1≤i≤N from the

collection {x̃
(i)
0:t}1≤i≤N according to the importance weights

{ω
(i)
t }1≤i≤N .

The trick behind the sequential importance sampling proce-

dure is to choose the importance distribution in a clever way so

that all these steps can be carried out sequentially. To achieve

this we construct the proposal such that it factorises in a form

similar to that of the target posterior distribution:

q0:t(x0:t|y0:t) =

Keep existing path︷ ︸︸ ︷
q0:t−1(x0:t−1|y0:t−1)

extend path︷ ︸︸ ︷
qt(xt|xt−1, yt) . (9)

The unnormalised importance weights then take the following

appealing form

ω̃
(i)
t =

π0:t|0:t(x̃
(i)
0:t|y0:t)

q0:t(x̃
(i)
0:t|y0:t)

(10)

∝ ω
(i)
t−1 ×

f(x̃
(i)
t |x̃

(i)
t−1)g(yt|x̃

(i)
t )

qt(x̃
(i)
t |x̃

(i)
t−1, yt)ℓt|0:t−1(yt|y0:t−1)

,

where the symbol ∝ is used to denote proportionality, up to

a normalisation constant (which does not matter here due to

the use of the self-normalised form of importance sampling).

This multiplicative decomposition implies that the importance

weights may be computed recursively in time as successive

observations become available, and without having to modify

past paths, prior to time t. In the sequential Monte Carlo

literature, the multiplicative update factor on the right-hand

side of (10) is often called the incremental weight. Note that

the scaling factor ℓt|0:t−1(yt|y0:t−1), which would in general

cases be difficult to evaluate, does not depend on the state

sequence, and hence need not in fact be computed, since the

weights will subsequently be renormalised as in (8).

An important feature of the basic sequential importance

sampling method, as originally proposed in [14], [15], is

that the N trajectories x̃
(1)
0:t , . . . , x̃

(N)
0:t are independent and

identically distributed. Following the terminology in use in

the nonlinear filtering community, we shall refer to the sample

at time index t, x̃
(1)
t , . . . , x̃

(N)
t , as the population (or system)

of particles and to x̃
(i)
0:t for a specific value of the particle

index i as the history (or trajectory, or path) of the ith particle.

The sequential importance sampling method is summarised in

Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i = 1, . . . , N do ⊲ Initialisation

Sample x̃
(i)
0 ∼ q0(x0|y0).

Assign initial importance weights

ω̃
(i)
0 =

g(y0|x̃
(i)
0 )π0(x̃

(i)
0 )

q0(x̃
(i)
0 |y0)

.

end for

for t = 1, . . . , T do

for i = 1, . . . , N do

Propagate particles:

x̃
(i)
t ∼ qt(x̃

(i)
t |x̃

(i)
t−1, yt) .

Compute weight:

ω̃
(i)
t = ω

(i)
t−1

g(yt|x̃
(i)
t )f(x̃

(i)
t |x̃

(i)
t−1)

qt(x̃
(i)
t |x̃

(i)
t−1, yt)

.

end for

Normalise weights:

ω
(i)
t = ω̃

(i)
t

/ N∑

j=1

ω̃
(j)
t , i = 1, . . . , N .

Compute filtering estimate:

h̄t =

N∑

i=1

ω
(i)
t ht(x̃

(i)
t )

end for

Despite quite successful results for short data records, it

turns out that the sequential importance sampling approach

discussed so far is bound to fail in the long run. In particular,

the weights will become highly degenerate after a few time

steps, in the sense that a small proportion of them contain

nearly all of the probability mass, and hence most particles

contribute nothing significant to the expectation estimates;

see for example [35]. The reason for this is that we are

effectively sampling from a very high dimensional state-space,

i.e. the entire path history of state variables up to time t,
which increases with each time increment. Hence it is naive

to imagine that the distribution may be sampled effectively

using a fixed and practically realisable sample size. In practice

we will often be concerned with low-dimensional marginals

such as the filtering distribution πt|0:t or predictive distribution

πt+1|0:t, and this suggests a solution based on the resam-

pling ideas discussed above. In the short-term, resampling

does imply some additional Monte Carlo variance; however,

resampling avoids accumulation of error over time and renders

the approximation to the filtering and predictive distributions

much more stable.

The basic resampling method comprises sampling N draws

from the current population of particles using the normalised
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weights as probabilities of selection. Thus, trajectories with

small importance weights are eliminated, whereas those with

large importance weights are replicated. After resampling, the

normalised importance weights are reset to 1/N . Resampling

will however have two important consequences. First, the

overall algorithm cannot anymore be seen as a simple instance

of the importance sampling approach since it implies repeated

applications of the importance sampling and resampling steps.

This obviously renders the complete algorithm much harder

to analyse from a theoretical perspective. Next, the resampled

trajectories x
(i)
0:t are no longer independent.

We now state in Algorithm 3 the standard particle filtering

algorithm, with general proposal function and optional resam-

pling at every step. There are straightforward variants of the

algorithm that propagate more particles than are selected, and

which have variable numbers of particles at each time step.

Algorithm 3 Particle Filter

for i = 1, . . . , N do ⊲ Initialisation

Sample x̃
(i)
0 ∼ q0(x0|y0).

Assign initial importance weights

ω̃
(i)
0 =

g(y0|x̃
(i)
0 )π0(x̃

(i)
0 )

q0(x̃
(i)
0 |y0)

.

end for

for t = 1, . . . , T do

if Resampling then

Select N particle indices ji ∈ {1, . . . , N} according

to weights

{ω
(j)
t−1}1≤j≤N .

Set x
(i)
t−1 = x̃

(ji)
t−1, and ω

(i)
t−1 = 1/N , i = 1, . . . , N .

else

Set x
(i)
t−1 = x̃

(i)
t−1, i = 1, . . . , N .

end if

for i = 1, . . . , N do

Propagate:

x̃
(i)
t ∼ qt(x̃

(i)
t |x

(i)
t−1, yt) .

Compute weight:

ω̃
(i)
t = ω

(i)
t−1

g(yt|x̃
(i)
t )f(x̃

(i)
t |x

(i)
t−1)

qt(x̃
(i)
t |x

(i)
t−1, yt)

.

end for

Normalise weights:

ω
(i)
t = ω̃

(i)
t

/ N∑

j=1

ω̃
(j)
t , i = 1, . . . , N .

end for

Notice that even when resampling (or selection) does occur,

estimation should be carried out using the weighted particles,

i.e. with
∑N

i=1 ω
(i)
t h(x̃

(i)
t ), since the particle representation

after resampling has lower Monte Carlo error than that before

resampling.

A practical issue concerning the weight normalisation is

numerical precision, since weights can be extremely large

or small. Thus weights are typically stored on a log-scale

and updated by addition of the log-incremental weight to

the previous log-weight. The normalisation step can still

fail, however, owing to numerical overflow or underflow. A

simple solution involves subtracting the largest log-weight

value at each time t from all log-weights, and then performing

normalisation using these adjusted log-weights. This ensures

that the largest (most important) weights are easily computable

within machine accuracy, while very small weights (which are

unimportant in any case) may be set to zero by underflow.
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Time = t 

Time = t+1 

x̃
(i)
t+1 ∼ f(·|x

(i)
t

)

ω
(i)
t+1 ∝ g(yt+1|x̃

(i)
t+1)

{x
(i)
t
}

πt|0:t(xt|y0:t)

πt+1|0:t(xt+1|y0:t)

{x̃
(i)
t+1, ω

(i)
t+1}

{x̃
(i)
t+1}

{x
(i)
t+1}

πt+1|0:t+1(xt+1|y0:t+1)

Fig. 5. The bootstrap filter in operation from time t to t + 1, nonlinear
time series Example 1. Asterisks show the positions of (a small selection of)
the particles at each stage. The solid line shows a kernel density estimate
of the distributions represented at each stage. 10,000 particles were used in
total. Notice that resampling concentrates particles into the region of high
probability.
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C. The bootstrap filter (after [3])

The bootstrap filter proposed by [3] uses the state transition

density f , or “prior kernel” as importance distribution. The

importance weight then simplifies to

ω
(i)
t ∝ ω

(i)
t−1g(yt|x

(i)
t ) .

In the original version of the algorithm resampling is carried

out at each and every time step, in which case the term

ω
(i)
t−1 = 1/N is a constant, which may thus be ignored. In more

sophisticated schemes, resampling is only carried out when the

distribution of the importance weights becomes degenerate,

which can be measured by monitoring the changes of the

coefficient of variation or the entropy of the weight pattern

over time [22], [36], [23]

A distinctive feature of the bootstrap filter is that the

incremental weight does not depend on the past trajectory of

the particles but only on the likelihood of the observation,

g(yt|xt). The use of the prior kernel is popular because sam-

pling is often straightforward, and computing the incremental

weight simply amounts to evaluating the conditional likelihood

of the new observation given the updated particle position.

A diagrammatic representation of the bootstrap filter in

operation is given in Fig. 5, in which the resampling (selection)

step is seen to concentrate particles (asterisks) into the two

high probability modes of the density function.

D. How to build better proposals?

Despite its appealing properties, the use of the state tran-

sition density f as importance distribution can often lead to

poor performance, which is manifested in a lack of robustness

with respect to the values taken by the observed sequence,

for example when outliers occur in the data (the observation

is not informative) or on the contrary when the variance

of the observation noise is small (the observation is very

informative). This results from a mismatch between the prior

predictive distribution and the posterior distribution of the

state conditioned on the new measurement. In order to reduce

this mismatch a natural option is to propose the new particle

position under the following distribution

qt(xt|xt−1, yt) =
f(xt|xt−1)g(yt|xt)∫
f(x|xt−1)g(yt|x)dx

, (11)

which may be recognised as the conditional distribution of

the hidden state xt given xt−1 and the current observation yt.

The normalisation constant can be seen to equal the predictive

distribution of yt conditional on xt−1, i.e. p(yt|xt−1). In the

sequel, we will refer to this kernel as the optimal kernel,

following the terminology found in the sequential importance

sampling literature. This terminology dates back probably to

[37], [38] and is largely adopted by authors such as [18], [39],

[23], [20], [26]. The optimal property of this kernel is that

the conditional variance of the weights is zero, given the past

history of the particles:

ω
(i)
t ∝ ω

(i)
t−1p(yt|xt−1) = ω

(i)
t−1

∫
f(x|x

(i)
t−1)g(yt|x)dx .

(12)

The incremental weight above depends only on the previous

position of the particle and the new observation. This is the

opposite of the situation observed previously for the prior

kernel, which depended only upon the new proposed state

and the observation. The optimal kernel (11) is attractive

because it incorporates information both on the state dynamics

and on the current observation: the particles move “blindly”

with the prior kernel, whereas when using the optimal kernel

the particles tend to cluster in regions where the conditional

posterior distribution for the current state has high probability

mass. While the optimal kernel is intuitively appealing, and

also satisfies an optimality criterion of some sort, it should be

noted that it is possible to sample directly from such a kernel

and to evaluate the weight integral analytically only in specific

classes of model.

Since the optimal kernel is itself intractable in most cases,

much effort has been expended in attempting to approxi-

mate the optimal kernel. One principal means to achieve

this is local linearisation and Gaussian approximation, using

techniques inspired by standard nonlinear filter methodology.

Here, however, linearisation is carried out per particle, and

a proper weighting is computed in order to correct for the

approximations introduced. Hence standard methodology may

be leveraged to good effect without losing the asymptotic

consistency of the particle representation. These techniques

are developed and extensively reviewed in [23], [24], [6], [7],

[12], [40].

E. Auxiliary Sampling

We now consider a more profound revision of the principles

exposed so far. Let us first remark that as (8) is valid for

any function h, it defines a weighted empirical distribution on

the path space which we will denote by π̂0:t|0:t, equivalently

writing

π̂0:t|0:t(dx0:t) =

N∑

i=1

ω
(i)
t δ

x
(i)
0:t

(dx0:t) , (13)

where the notation δ
x
(i)
0:t

denotes the Dirac mass at point x
(i)
0:t.

Under suitable technical assumptions, the weighted empirical

distribution π̂0:t|0:t is a consistent approximation to π0:t|0:t,

i.e. for any function h on the path space

π̂0:t|0:t(h)
def
=

N∑

i=1

ω
(i)
t h(x

(i)
0:t) ,

converges to π0:t|0:t(h) as the number N of particles increases

to infinity. The degree to which this assertion is correct is

discussed in [41], [42], [43], [44], [32], [7] but we only need

to know at this stage that the general intuition is justifiable.

The previous methods were aimed principally at improv-

ing the proposal distribution for the new states at time t.
However, it was realised that further improvements could

be achieved by replacing the standard resampling schemes

by more sophisticated algorithms. These attempt to favour

particles which are more likely to survive at the next time

step. Such schemes introduce a bias into the filtering density

representation which is corrected by associating with surviving
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particles an appropriately modified weight. The first exponents

of these ideas were probably Pitt and Shephard [45], and

the ideas link in closely with the biased sampling approaches

proposed by [46].

The formulation given here is equivalent to that given Pitt

and Shephard, although we avoid the explicit inclusion of an

auxiliary indexing variable by considering a proposal over the

entire path of the process up to time t. The starting assumption

is that the joint posterior at t − 1 is well approximated by

π̂0:t−1|0:t−1. Based on this assumption the joint posterior

distribution at time t is approximated as

π0:t|0:t(dx0:t|y0:t) ≈

×
1

Z

N∑

i=1

ω
(i)
t−1δx

(i)
0:t−1

(dx0:t−1)g(yt|xt)f(xt|x
(i)
t−1)dxt , (14)

where the normalisation factor Z is given by

Z =

N∑

j=1

ω
(j)
t−1

∫
f(x|x

(j)
t−1)g(yt|x)dx .

Now, in exactly the same way as we interpreted (9) as a joint

proposal for all states of indices 0 to t, we now consider a

general joint proposal for the entire path of the new particles

x
(i)
0:t, that is,

qt(dx0:t) = q0:t−1(dx0:t−1|y0:t)qt(dxt|xt−1, yt)

=

(
N∑

i=1

v
(i)
t−1δx

(i)
0:t−1

(dx0:t−1)

)

×
(
qt(dxt|x

(i)
t−1, yt)

)
,

where
∑N

i=1 v
(i)
t−1 = 1 and v

(i)
t−1 > 0. Notice that as before the

proposal splits into two parts: a marginal proposal q0:t−1 for

the past path of the process x0:t−1 and a conditional proposal

qt for the new state xt. Note that the first component is

constructed to depend explicitly on data up to time t in order

to allow adaptation of the proposal in the light of the new data

point yt (and indeed it may depend on future data points as

well if some look-ahead and latency is allowable). The first

part of the proposal is a discrete distribution centred upon the

old particle paths {x
(i)
0:t−1}, but now with probability mass for

each component in the proposal distribution designed to be

{v
(i)
t−1}. The weighting function v

(i)
t−1 can be data dependent,

the rationale being that we should preselect particles that are

a good fit to the new data point yt. For example, Pitt and

Shephard [45] suggest taking a point value µ(i) of the state,

say the mean or mode of f(xt|x
(i)
t−1), and computing the

weighting function as the likelihood evaluated at this point, i.e.

v
(i)
t−1 = g(yt|µ

(i)
t ); or if the particles from t− 1 are weighted,

one would choose v
(i)
t−1 = ω

(i)
t−1g(yt|µ

(i)
t ). The rationale for

this is as follows. Ideally, for filtering at time t, one would

wish to propose the past paths x0:t−1 from their marginal

conditional distribution π0:t−1|0:t. This can be written out and

expanded using the particle approximation from t − 1 as:

π0:t−1|0:t(dx0:t−1|y0:t)

∝

∫
π0:t−1|0:t−1(dx0:t−1|y0:t−1)f(xt|xt−1)g(yt|xt)dxt

≈
N∑

i=1

ω
(i)
t−1δx

(i)
0:t−1

(dx0:t−1)

∫
f(xt|x

(i)
t−1)g(yt|xt)dxt .

This integral may be approximated by any means available,

including Monte Carlo. In [45], it is suggested to use the crude

approximation f(dxt|x
(i)
t−1) ≈ δ

µ
(i)
t

(dxt), in which case we

have

π0:t−1|0:t(dx0:t−1|y0:t) ≈
N∑

i=1

g(yt|µ
(i)
t )ω

(i)
t−1δx

(i)
0:t−1

(dx0:t−1) ,

and hence the choice v
(i)
t−1 = g(yt|µ

(i)
t )ω

(i)
t−1. Other biasing

schemes based upon an unscented approximation to the in-

tegral can be found in [47], or on exploration of future data

points in [46].

Using this proposal mechanism it is then possible to define

a generalised importance ratio (in the Radon-Nikodym sense)

between the approximate posterior in (14) and the full path

proposal q, given by

ω̃
(i)
t =

ω
(i)
t−1

v
(i)
t−1

×
g(yt|x

(i)
t )f(x

(i)
t |x

(i)
t−1)

qt(x
(i)
t |x

(i)
t−1, yt)

.

Note that compared to the standard SIS sampler we have

had to account for the bias introduced in the sampler by a

correction to the importance weight equal to 1/v
(i)
t−1; the ratio

ω
(i)
t−1/v

(i)
t−1 is known as the first stage weight. Note that in

the original scheme a resampling stage was added to the first

stage selection; however, this is unnecessary and introduces

further Monte Carlo error into the filter. More general schemes

that allow some exploration of future data points by so-called

pilot sampling to generate the weighting function have been

proposed in, for example [46], while further discussion of the

framework can be found in [48]. A summary of the auxiliary

particle filter is given in Algorithm 4. We assume that the

selection step occurs at each point, although it may be omitted

exactly as in the standard particle filter, in which case of course

no weight correction is applied.

F. Simulation Example

We now provide brief simulation results for the particle

filter, using Example 1, the nonlinear time series model. This is

presented purely as an example of the type of results obtain-

able and their interpretation: others have provided extensive

simulation studies in this type of model. A single data set is

generated from the model, see Fig. 6. The full particle filter

(see Algorithm 3) is run on this data. The prior importance

function f is used, and resampling occurs at every time step

— this is then the bootstrap version of the particle filter. The

number of particles used is fixed over time to N = 10, 000,

a large number that may be reduced substantially in practice,

depending on the accuracy of inference required. Figs. 7–8

show two time snapshots of the filter output, i.e. estimates of
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Algorithm 4 Auxiliary Particle Filter

for i = 1, . . . , N do ⊲ Initialisation

Sample x̃
(i)
0 ∼ q0(x0|y0).

Assign initial importance weights

ω̃
(i)
0 =

g(y0|x̃
(i)
0 )π0(x̃

(i)
0 )

q0(x̃
(i)
0 |y0)

.

end for

for t = 1, . . . , T do

Select N particle indices ji ∈ {1, . . . , N} according to

weights

{v
(i)
t−1}1≤i≤N .

for i = 1, . . . , N do

Set x
(i)
t−1 = x̃

(ji)
t−1.

Set first stage weights:

u
(i)
t−1 =

ω
(ji)
t−1

v
(ji)
t−1

.

end for

for i = 1, . . . , N do

Propagate:

x̃
(i)
t ∼ qt(x̃

(i)
t |x

(i)
t−1, yt) .

Compute weight:

ω̃
(i)
t = u

(i)
t−1

g(yt|x̃
(i)
t )f(x̃

(i)
t |x

(i)
t−1)

qt(x̃
(i)
t |x

(i)
t−1, yt)

.

end for

Normalise weights:

ω
(i)
t = ω̃

(i)
t

/ N∑

j=1

ω̃
(j)
t , i = 1, . . . , N .

end for

πt|0:t. In these we plot the particle weights (unnormalised)

against raw particle values as small dots, i.e we plot the

set of {x̃
(i)
t , ω

(i)
t } points - note that the dots merge almost

into a continuous line in some places as there are so many

particles covering important regions. As a dashed line we

plot a kernel density estimate obtained from the weighted

sample, using a Gaussian kernel having fixed width of 0.5.

Notice that the filter is easily able to track multimodality

in the distributions over time. Notice also that the highest

weighted particles are not necessarily the most probable state

estimates: the kernel density estimator places the maximum

of the filtering density wherever the weights and the local

density of particles combine to give the highest probability

density. This is an elementary point which is often overlooked

by practitioners starting in the field. Finally, to give the

whole picture, the kernel density estimates over time are

compiled into an intensity image to show the evolution with

time of the densities, see Fig. 9. As a comparison we have

run the SIS algorithm, i.e. with no resampling incorporated,

as in Algorithm 2, under otherwise identical conditions. As

expected, this is unable to track the correct state sequence and

the particle distributions are highly degenerate, i.e. resampling

is an essential ingredient in this type of model - see Fig. 10.
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Fig. 6. Data set drawn from the nonlinear time series model of Example 1
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Fig. 7. Particle filter output, t = 40. Weighted samples {x̃
(i)
40 , ω

(i)
40 } (shown

as small dots - almost continuous line) and kernel density estimate (dashed)

G. Marginalised Particle Filters

In many practical scenarios, especially those found in the

tracking domain, the models are not entirely nonlinear and

non-Gaussian. By this we mean that some subset of the state

vector is linear and Gaussian, conditional upon the other

states. In these cases one may use standard linear Gaussian

optimal filtering for the linear part, and particle filtering for the

nonlinear part. This may be thought of as an optimal Gaussian

mixture approximation to the filtering distribution. See [23],

[39], [49] for detailed descriptions of this approach to the

problem, which is referred to either as the Rao-Blackwellised

particle filter, or Mixture Kalman filter. Recent work [50],

[51] has studied in detail the possible classes of model that

may be handled by the marginalised filter, and computational

complexity issues. The formulation is as follows1. First, the

state is partitioned into two components, xL
t and xN

t , referring

respectively to the linear (‘L’) and nonlinear (‘N’) components.

1[50], [51] present a more general class of models to which the marginalised
filter may be applied, but we present a more basic framework for the sake of
simplicity here.
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Fig. 8. Particle filter output, t = 50. Weighted samples {x̃
(i)
50 , ω
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50 } (shown

as small dots - almost continuous line) and kernel density estimate (dashed)
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Fig. 9. Full particle filter density output (shown as image intensity plot of
kernel density estimates). True state sequence overlaid (solid line with asterisk
markers)

The linear part of the model is expressed in the form of a

linear Gaussian state-space model as follows, with state-space

matrices that may depend upon the nonlinear state xN
t :

xL
t = A(xN

t )xL
t−1 + uL

t , (15)

yt = B(xN
t )xL

t + vL
t . (16)

Here uL
t and vL

t are independent, zero-mean, Gaussian distur-

bances with covariances Cu and Cv , respectively, and A() and

B() are matrices of compatible dimensions that may depend

upon the nonlinear state xN
t . At t = 0, the linear part of the

model is initialised with xL
0 ∼ N (µ0(x

N
0 ), P0(x

N
0 )).

t

x t
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Fig. 10. Full Sequential importance sampling (no resampling) filter density
output (shown as image intensity plot of kernel density estimates). True state
sequence overlaid (solid line with asterisk markers)

Now the nonlinear part of the state obeys a general dynam-

ical model (which is not necessarily Markovian):

xN
t ∼ f(xN

t |xN
0:t−1), xN

0 ∼ π0(x
N
0 ) . (17)

In such a case, conditioning on the nonlinear part of the

state xN
0:t and the observations y0:t, the linear part of the

state is jointly Gaussian and the means and covariances of

this Gaussian representation may be obtained by using the

classical Kalman filtering recursions [52]. The basic idea is

then to marginalise the linear part of the state vector to obtain

the posterior distribution of the nonlinear part of the state:

π0:t|0:t(x
N
0:t|y0:t) =

∫
π0:t|0:t(x

L
0:t, x

N
0:t|y0:t)dxL

0:t .

Particle filtering is then run on the nonlinear state sequence

only, with target distribution π0:t|0:t(x
N
0:t|y0:t). The resulting

algorithm is almost exactly as before, requiring only a slight

modification to the basic particle filter (Algorithm 3) to

allow for the fact that the marginalised system is no longer

Markovian, since

p(yt|y0:t−1, x
N
0:t) 6= p(yt|x

N
t ) .

Moreover, the dynamical model for the nonlinear part of the

state may itself be non-Markovian, see Eq. (17).

Thus, instead of the usual updating rule we have:

• Prediction

π0:t|0:t−1(x
N
0:t|y0:t−1) =

π0:t−1|0:t−1(x
N
0:t−1|y0:t−1)f(xN

t |xN
0:t−1) . (18)

• Correction

π0:t|0:t(x
N
0:t|y0:t) =

p(yt|y0:t−1, x
N
0:t)π0:t|0:t−1(x

N
0:t|y0:t−1)

ℓt|0:t−1(yt|y0:t−1)
, (19)

where as before ℓt|0:t−1 is the predictive distribution of

yt given the past observations y0:t−1, which is a fixed

normalising constant (independent of the state sequence

xN
0:t).

Note that if {(x
N,(i)
0:t , ω

(i)
t )}i=1,...,N denote the particles evolv-

ing in the state-space of the nonlinear variables according to

the above equations, and their associated importance weights,

estimation of the linear part of the state may be done using

a Rao-Blackwellised estimation scheme [53]: the posterior

density for the linear part is obtained as a random Gaussian

mixture approximation given by

πt|0:t(x
L
t |y0:t) ≈

N∑

i=1

ω
(i)
t p(xL

t |x
N,(i)
0:t , y0:t) , (20)

where the conditional densities p(xL
t |x

N,(i)
0:t , y0:t) are Gaus-

sian and computed again using Kalman filtering recursions.

Eq. (20) replaces the standard point-mass approximation (13)

arising in the generic particle filter. The Rao-Blackwellised

estimate is usually better in terms of Monte Carlo error

than the corresponding scheme that performs standard par-

ticle filtering jointly in both nonlinear and linear states. The
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computational trade-off is more complex, however, since the

marginalised filter can be significantly more time-consuming

than the standard filter per particle. These trade-offs have

been extensively studied by [51] and in many cases the

performance/computation trade-off comes out in favour of the

marginalised filter.

To give further detail to the approach, we first summarise

the Kalman filter itself in this probabilistic setting [34],

then we place the whole scheme back in the particle fil-

tering context. As a starting point, assume the distribution

p(xL
t−1|y0:t−1, x

N
0:t−1) has been obtained. This is a Gaussian,

denoted by

p(xL
t−1|y0:t−1, x

N
0:t−1) = N (xL

t−1|µt−1|0:t−1, Ct−1|0:t−1) ,

where the mean and covariance terms are dependent upon

both y0:t−1 and xN
0:t−1. Now, (15) shows how to update

this distribution one step, since xL
t is just a summation

of two transformed independent Gaussian random vectors,

A(xN
t )xL

t−1 and uL
t , which itself must be a Gaussian. Under

the standard rules for summation of independent Gaussian

random vectors, we obtain the predictive distribution for xL
t ,

conditioned upon y0:t−1 and xN
0:t, as follows:

p(xL
t |y0:t−1, x

N
0:t) = N (xL

t |µt|0:t−1, Ct|0:t−1) , (21)

where

µt|0:t−1 = A(xN
t )µt−1|0:t−1 ,

Ct|0:t−1 = A(xN
t )Ct−1|0:t−1A(xN

t )T + Cu .

As a second step in the update, the new data point yt is

incorporated through Bayes’ Theorem:

p(xL
t |y0:t, x

N
0:t) =

p(xL
t |y0:t−1, x

N
0:t) × p(yt|x

L
t , xN

t )

p(yt|y0:t−1, xN
0:t)

(22)

∝ N (xL
t |µt|0:t−1, Ct|0:t−1) ×N (yt|B(xN

t )xL
t , Cv)

= N (xL
t |µt|0:t, Ct|0:t)

where µt|0:t and Ct|0:t are obtained by standard rearrangement

formulae as

µt|0:t = µt|0:t−1 + Kt(yt − B(xN
t )µt|0:t−1) ,

Ct|0:t = (I − KtB(xN
t ))Ct|0:t−1 ,

Kt = Ct|0:t−1B
T (xN

t )(B(xN
t )Ct|0:t−1B

T (xN
t ) + Cv)−1 ,

and where the term Kt is known as the Kalman Gain. In

order to complete the analysis for particle filter use, one further

term is required, p(yt|y0:t−1, x
N
0:t). This is obtained by the so-

called prediction error decomposition, which is easily obtained

from (21), since yt is obtained by summing a transformed

version of xL
t , i.e. B(xN

t )xL
t , with an independent zero-mean

Gaussian noise term vL
t having covariance Cv , leading to:

p(yt|y0:t−1, x
N
0:t) = N (yt|µyt

, Cyt
) , (23)

where

µyt
= B(xN

t )µt|0:t−1 ,

Cyt
= B(xN

t )Ct|0:t−1B
T (xN

t ) + Cv .

In order to construct the marginalised particle filter, notice

that for any realisation of the nonlinear state sequence xN
0:t,

and data sequence y0:t, one may calculate the value of

p(yt|y0:t−1, x
N
0:t) in (23) through sequential application of the

formulae (21) and (22). The marginalised particle filter then re-

quires computation and storage of the term p(yt|y0:t−1, x
N,(i)
0:t )

in (23), for each particle realisation x
N,(i)
0:t . In the marginalised

particle filter the particles are stored as the nonlinear part of the

state xN
t , the associated sufficient statistics for each particle,

i.e. µt|0:t and Ct|0:t, and the weight for each particle. We do

not give the entire modified algorithm. The only significant

change is to the weighting step, which becomes

ω̃
(i)
t = ω

(i)
t−1

p(yt|y0:t−1, x̃
N,(i)
t )f(x̃

N,(i)
t |x

N,(i)
0:t−1)

qt(x̃
N,(i)
t |x

N,(i)
0:t−1, y0:t)

As an important aside, we note that the marginalised filter

may also be used to good effect when the linear states

are unknown but ‘static’ over time, i.e. f(dxL
t |x

L
t−1) =

δxL

t−1
(dxL

t ) with some Gaussian initial distribution or prior

xL
0 ∼ N (µ0(x

N
0 ), P0(x

N
0 )), as before. Then the marginalised

filter runs exactly as before but we are now able to marginalise,

or infer the value of, a static parameter θ = xL
t . Early versions

of such filters are found in the sequential imputations work of

[18], for example. This issue is explored more fully, including

an example, in the context of other parameter estimation

schemes in Section IV.

We have focused here on the linear Gaussian case of the

marginalised filter. However, another important class of mod-

els is the discrete state-space Hidden Markov model, in which

the states are discrete values and switching may occur between

one time and the next according to a Markov transition matrix.

As for the linear Gaussian case, the discrete state values may

be marginalised to form a marginalised particle filter, using

the HMM forward algorithm [54] instead of the Kalman filter

[23]. For simulations and examples within both frameworks,

see [23], [7].

As mentioned before, several generalisations are possible to

the basic model. The most basic of these allow the matrices

A(), B(), Cu and Cv to depend on time and on any or all

elements of the nonlinear state sequence xN
0:t. None of these

changes require any modification to the algorithm formulation.

Another useful case allows a deterministic function of the

nonlinear states to be present in the observation and dynamical

equations. These two features combined lead to the following

form:

xL
t = At(x

N
0:t)x

L
t−1 + c(xN

0:t) + uL
t ,

yt = Bt(x
N
0:t)x

L
t + d(xN

0:t) + vL
t ,

and again the form of the algorithm is unchanged; see [55] for

a good coverage of the most general form of Kalman filters

required in these cases.

One other important case involves nonlinear observations

that are not a function of the linear state. Then the linear

observation equation (16) can be generalised to yt ∼ g(yt|x
N
t ),

which is a general observation density. This form is quite

useful in tracking examples, where observation functions are

often nonlinear (range and bearings, for example, or range-

only), but dynamics can be considered as linear to a good

approximation [49], [50], [51]. If in addition the nonlinear
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state can be expressed in linear Gaussian state-space form with

respect to the linear state, i.e:

xN
t = B(xN

t )xL
t + c(xN

t−1) + vL
t ,

xL
t = A(xN

t )xL
t−1 + uL

t ,

then once again the Kalman filter can be run to marginalise

the linear state variable. In this case the weight expression

becomes:

ω̃
(i)
t = ω

(i)
t−1

g(yt|x̃
N,(i)
t )p(x̃

N,(i)
t |x

N,(i)
0:t−1)

qt(x̃
N,(i)
t |x

N,(i)
0:t−1, y0:t)

,

where now the term p(x̃
N,(i)
t |x

N,(i)
0:t−1) is computed using the

Kalman filter. In some cases the linear state transition matrices

and observation matrices A() and B() for this Kalman filter

are independent of the nonlinear state and the observations;

then this form of marginalised particle filter may be computed

very efficiently, since the covariance matrices are identical for

all particles and thus need only be computed once at each time

step.

H. MCMC Adaptations

Another area where improvements can be made over the

basic methods is in Markov chain Monte Carlo (MCMC)

techniques. The general approach is that one would design

an MCMC transition kernel, such as a Gibbs sampler or

Metropolis Hastings scheme [53], having π0:t|0:t(x0:t|y0:t) as

its stationary distribution. The MCMC transition kernel is

then applied one or more times to each particle x
(i)
0:t, either

before or after the resampling step, the intuition being that

an adequate particle filter representation at time t can only

be improved with the application of MCMC moves having

the correct stationary distribution; see especially the resample-

move procedures [56], [57], [58], [48], [59], and also more

recent works on incorporation of MCMC into particle filtering

in [60]. MCMC schemes are found to be particularly effective

in fixed-lag smoothing approaches and in static parameter

estimation, as further discussed in Sections III and IV below.

To give a concrete example, consider a fixed-lag smoothing

approach with MCMC moves (see also [61]). In this case

one designs an MCMC kernel having the fixed-lag conditional

distribution as its stationary distribution:

π0:t|0:t(xt−L+1:t|x0:t−L, y0:t) , L > 0 .

Such a kernel also has by construction the joint posterior

as its stationary distribution [62], as required. As a simple

example that will work for many models, consider a Gibbs

sampling implementation that samples states within the fixed

lag window one by one from their conditional distribution:

x
(i)
t−l ∼ π0:t|0:t(xt−l|x

(i)
0:t\(t−l), y0:t) , l ∈ {0, . . . , L − 1}.

where x0:t\j denotes all elements of x0:t except for element

l. Such moves are applied successively, with replacement, to

all particles in the current set i ∈ {1, . . . , N}, and for all

lags l ∈ {0, . . . , L − 1}, for as many iterations as required

(usually dictated by the available computing resource). In

cases where a random draw cannot be made directly from

the conditional distributions, it will be necessary to split

the state xt into smaller sub-components [48], or to apply

Metropolis-Hastings moves instead of Gibbs sampling [63],

[64]. A common misconception with this type of scheme is

that a full MCMC-style burn-in period2 is required for each

time step and for each particle. This is not the case, since we

are initialising nominally from a ‘converged’ particle set, and

so any MCMC moves will remain converged and require no

burn-in (although in practice the schemes are often adopted

to improve on a poor particle representation and to introduce

variability between replicated particles following the selection

step). Note that we have not intended to give a tutorial in

this review on general MCMC methods, which are a whole

research discipline in themselves, and for this the reader is

referred on to the textbooks [65], [53], [7].

III. SMOOTHING

In this section we review methodology for Monte Carlo

smoothing based upon particle filters. We note that smoothing

is particularly relevant in complex dynamical systems, since

filtering alone will often yield only fairly uninformative state

estimates, while the ‘lookahead’ allowed by smoothing enables

much more accurate estimates to be achieved retrospectively.

The first thing to notice is that the basic ‘filtering’ version of

the particle filter (7) actually provides us with an approxima-

tion of the joint smoothing distribution at no extra cost, since

the equations are defined for the whole path of the process

from time 0 up to time t. Thus the stored particle trajectories

{x
(i)
0:t} and their associated weights {ω

(i)
t } can be considered

as a weighted sample from the joint smoothing distribution

π0:t|0:t(x0:t|y0:t). From these joint draws one may readily

obtain fixed lag or fixed interval smoothed samples by simply

extracting the required components from the sampled particles

and retaining the same weights; for example, if {(x
(i)
0:t, ω

(i)
t )} is

a weighted approximation to π0:t|0:t(x0:t|y0:t) then it automat-

ically follows that, for some smoothing lag L, {(x
(i)
t−L, ω

(i)
t )}

is a weighted approximation to πt−L|0:t(xt−L|y0:t). Simi-

larly, if we are interested in studying dependencies over

time of state variables these can be obtained by extracting

sub-sequences from the path particle representation, e.g. for

M > L, {(x
(i)
t−M+1:t−L, ω

(i)
t )} is a weighted approximation

to πt−M+1:t−L|0:t(xt−M+1:t−L|y0:t), where in this case we

are interested in a smoothed subsequence of length M − L
extracted from the state sequence.

While these appealingly simple schemes can be successful

for certain models and small lags L and M , it rapidly becomes

apparent that resampling procedures will make this a very

depleted and potentially inaccurate representation of the re-

quired smoothing distributions. This situation is schematically

represented on Figure 11 which shows that while the diversity

of the particles is satisfactory for the current time index,

successive resamplings imply that for time-lags that are back

in the past, the number of particle positions that are indeed

2In usual MCMC applications, the initial iterations of the chain are most
often discarded in an attempt to reduce the bias caused by the fact that the
chain is started from an arbitrary point (rather than from a point drawn from
the stationary distribution).
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Fig. 11. Typical plot of the particle trajectories after a few time steps; the
width of the lines is proportional to the number of current particles which
share a particular ancestor path.

different decreases, eventually reaching a point where all

current particles share a common ancestor.

There are various ways in which one can improve upon the

performance of the basic scheme. We first consider the use

of backward smoothing recursions, which can be thought of

as the natural extension of the Kalman backward smoothing

recursions to nonlinear and non-Gaussian state-space models.

We first note that the joint smoothing distribution may be

factorised as follows

π0:T |0:T (x0:T |y0:T ) = πT |0:T (xT |y0:T )

T−1∏

t=0

p(xt|xt+1:T , y0:T )

(24)

= πT |0:T (xT |y0:T )

T−1∏

t=0

p(xt|xt+1, y0:t)

(25)

where the term in the product can be expressed as

p(xt|xt+1, y0:T ) =
πt|0:t(xt|y0:t)f(xt+1|xt)∫
πt|0:t(xt|y0:t)f(xt+1|xt)dxt

(26)

∝ πt|0:t(xt|y0:t)f(xt+1|xt) . (27)

These formulae then form the basis of a sequence-based

smoother using the weighted sample generated in the forward

pass of the SMC procedure, see [66], and also [67], [32].

Assume initially that Monte Carlo filtering has already been

performed on the entire dataset, leading to an approximate

representation of the filtering distribution πt|0:t(xt|y0:t) for

each time step t ∈ {0, . . . , T}, consisting of weighted particles

{(x
(i)
t , ω

(i)
t )}i=1,...,N .

Using this weighted sample representation, it is straightfor-

ward to construct a particle approximation to p(xt|xt+1, y0:T )
from (27) as follows:

p(dxt|xt+1, y0:T ) ≈
N∑

i=1

ρ
(i)
t (xt+1)δx

(i)
t

(dxt) , (28)

where the modified weights are defined as

ρ
(i)
t (xt+1)

def
=

ω
(i)
t f(xt+1|x

(i)
t )

∑N
j=1 ω

(j)
t f(xt+1|x

(j)
t )

. (29)

This revised particle-based distribution can now be used to

generate states successively in the reverse-time direction, con-

ditioning upon future states, using the sampling importance

resampling idea. Specifically, given a random sample x̃t+1:T

drawn approximately from πt+1:T |0:T , take one step back in

time and sample x̃t from the particle approximation (28) to

p(dxt|x̃t+1, y0:T ). The pair (x̃t, x̃t+1:T ) is then approximately

a random realization from πt:T |0:T . Repeating this process

sequentially back over time produces the general particle

smoother outlined in Algorithm 5.

Algorithm 5 Particle Smoother

for t = 0 to T do ⊲ Forward Pass Filter

Run Particle filter, storing at each time step the particles

and weights {x
(i)
t , ω

(i)
t }1≤i≤N .

end for

Choose x̃T = x
(i)
T with probability ω

(i)
T .

for t = T − 1 to 0 do ⊲ Backward Pass Smoother

Calculate ρ
(i)
t ∝ ω

(i)
t f(x̃t+1|x

(i)
t ), for i = 1, . . . , N ;

and normalise the modified weights.

Choose x̃t = x
(i)
t with probability ρ

(i)
t .

end for

Further independent realizations are obtained by repeating

this procedure as many times as required. The computational

complexity for each random realisation is O(NT ), so the

procedure is quite expensive if many realisations are required.

Developments to these basic techniques that consider the Rao-

Blackwellised setting can be found in [68], see Section II-G.

To illustrate this smoothing technique, consider the nonlin-

ear time series model of Example 1. Smoothing is carried out

using the above particle smoother, applying 10,000 repeated

draws from the smoothing density. A simple bootstrap particle

filter was run through the data initially, itself with 10,000

particles, and the weighted particles {(x
(i)
t , ω

(i)
t )}1≤i≤N were

stored at each time step, exactly as in the simulations for this

model presented in the section on particle filtering. Smoothing

then follows exactly as in the above algorithm statement. A

small random selection of the smoothed trajectories drawn

from π0:100|0:100(x0:100|y0:100) is shown in Fig. 12. Note some

clear evidence of multimodality in the smoothing distribution

can be seen, as shown by the separated paths of the process

around t = 46 and t = 82. We can also show the posterior dis-

tribution via grey-scale histograms of the particles, see Fig. 13.

Finally, see Figs. 14 and 15 for visualisation of an estimated

bivariate marginal, π3:4|0:100(x3:4|y0:100), using 2-dimensional

scatter plots and kernel density estimates, again showing

evidence of multimodality and strong non-Gaussianity that will

not be well captured by more standard methods.

This algorithm is quite generic in that it allows joint random

draws from arbitrary groupings of state variables over time.

See also [67] for related methods that generate smoothed
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Fig. 12. Smoothing trajectories approximating π0:100|0:100(x0:100|y0:100).
True simulated states shown as ‘*’ (from [66]).
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Fig. 13. Histogram estimates of smoothing densities, πt|0:100(xt|y0:100),
shown as gray scale intensities in vertical direction. True simulated states
shown as ‘*’ (from [66]).

sample paths by rejection sampling ideas. Sometimes how-

ever one is specifically interested in the marginal smoothing

distributions, i.e. πt|0:T for some t < T . There are several

specialised methods available for this, based on the following

backward recursion (see [69]) over a fixed interval 0 to T :

πt|0:T (xt|y0:T )

= πt|0:t(xt|y0:t)

∫
πt+1|0:T (xt+1|y0:T )f(xt+1|xt)∫

πt|0:t(x|y0:t)f(xt+1|x)dx
dxt+1

=

∫
πt+1|0:T (xt+1|y0:T )p(xt|xt+1, y0:T )dxt+1 , (30)

where p(xt|xt+1, y0:T ) simplifies as before in (26). In [23],

[70] marginal smoothing is achieved by a direct Monte Carlo

implementation of (30). One recursively obtains particle es-

timates of the marginal smoothing distribution at the next

time point, i.e. πt+1|0:T and combines these with the particle

filtering estimate of πt|0:t in (30). A complication compared

with the sequence-based smoothers of [66] is that one cannot

in these schemes ignore the denominator term in (26), that

is, πt+1|0:t(xt+1|y0:t) =
∫

πt|0:t(xt|y0:t)f(xt+1|xt)dxt, as a

normalising constant, and instead a Monte Carlo estimate must

also be made for this term.

If we approximate the smoothing distribution πt+1|0:T using

Fig. 14. Kernel density estimate for π3:4|0:100(x3:4|y0:100) (from [66]).
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Fig. 15. Scatter plot of points drawn from π3:4|0:100(x3:4|y0:100) (from
[66]).

the weighted sample {(x
(i)
t+1, ω

(i)
t+1|0:T )}1≤i≤N , i.e.,

πt+1|0:T (dxt+1|y0:T ) ≈
N∑

i=1

ω
(i)
t+1|0:T δ

x
(i)
t+1

(dxt+1) ,

then we may substitute this and the approximation of the

filtering distribution from time t into (30) and (26) to obtain

πt|0:T (dxt|y0:T ) ≈
N∑

i=1

ω
(i)
t|0:T δ

x
(i)
t

(dxt) ,

where the new weight is recursively updated according to

ω
(i)
t|0:T = ω

(i)
t




N∑

j=1

ω
(j)
t+1|0:T f(x

(j)
t+1|x

(i)
t )

∑N
k=1 f(x

(j)
t+1|x

(k)
t )ω

(k)
t


 .

Note that this procedure inherently requires of the order of

O(N2T ) operations, and hence, is very expensive to compute

as the number of particles becomes large.

Other forms of marginal smoothing can be obtained using

the so-called two-filter formula, see [1], [71], although it

should be noted that it is not always straightforward to

initialise or implement the required backward filtering pass.

The required two-filter factorisation is:

πt|0:T (xt|y0:T ) =
πt|0:t(xt|y0:t)p(yt+1:T |y0:t, xt)

p(yt+1:T |y0:t)

∝ πt|0:t(xt|y0:t)p(yt+1:T |xt) .
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Note that this requires the approximation from the usual

forward filter plus a backward ‘anti-causal prediction’ function

p(yt+1:T |xt)
3. See also [74] for further developments in this

area. Some restrictive assumptions in the two-filter smoothers

have been removed, and schemes for making them compu-

tationally more tractable have been introduced in [72], [73].

Note that these two-filter methods focus on approximation

of smoothed marginals πt|0:T (xt|y0:T ) rather than the full

sequence π0:T |0:T (x0:T |y0:T ) as in [66].

In some applications, a Maximum a posteriori (MAP)

estimate is required for the state sequence rather than samples

from the posterior distribution, i.e. one is interested in

argmax
x0:T

π0:T |0:T (x0:T |y0:T ) =

argmax
x0:T

π0(x0)

T∏

t=1

f(xt|xt−1)

T∏

t=0

g(yt|xt) .

This can be obtained in several ways from the particle filter

output. A common misconception is that the MAP estimate

may be found by simply choosing the particle trajectory with

largest weight ω
(i)
T . This, however, is not correct as the weights

depend upon the target distribution π0:T |0:T and the proposal

distribution. A suitable on-line procedure is given in [75]. In

this the particle representation is considered as a randomised

adaptive discrete grid approximation to the target distribution.

Since we can evaluate the transition probabilities between any

two states at adjacent times (via f(xt|xt−1)) and also the

observation probabilities g(yt|xt), the discrete approximation

may be interpreted as a Hidden Markov Model with N states.

Thus the classical Viterbi algorithm [76] may be employed

to find a particle estimate of the MAP sequence at any given

time. Specifically, the Viterbi algorithm here finds the exact

maximiser of the target distribution π0:T |0:T , subject to the

constraint that individual states lie on the discrete particle

grid, xt ∈ {x
(i)
t }1≤i≤N , for t ∈ {0, . . . , T}. The procedure

is summarised in Algorithm 6.

Note that this algorithm is genuinely sequential in that x̂0:t

approximates the MAP estimator for each and every t that

the above algorithm operates, but that the algorithm is again

O(N2) at each time step. The methods of [73] have also been

applied to speeding up of this expensive algorithm.

IV. PARAMETER ESTIMATION

We now consider the practically important problem of cal-

ibrating system parameters to observations, otherwise known

as ‘parameter estimation’. In this section we thus assume that

both the state transition density and the conditional likelihood

function depend not only upon the dynamic state xt, but also

on a static parameter vector θ, which will be stressed by use

of the notations f(xt|xt−1, θ) and g(yt|xt, θ).
Depending on the requirements of a given application,

calibration of model parameters can be carried in two very

different modes. If the calibration data is available in a batch

beforehand, the estimation of the parameters will generally be

3It should be noted that the backward function is not a probability
distribution (it is not, and in some cases it may not be, normalised), see
[72], [7], [73] for further discussion of this isssue.

Algorithm 6 Particle MAP Sequence Estimator

Run particle filter for t = 0 to obtain particle locations

{x
(i)
0 , i = 1, . . . , N}

for i = 1 to N do

α
(i)
0 = π0(x

(i)
0 )g(y0|x

(i)
0 ).

z
(i)
0 = x

(i)
0 .

end for

jmax
0 = argmax

j

α
(j)
0 .

x̂0 = x
(jmax

0 )
0 .

for t = 1 to T do

Run particle filter for time t to obtain particle locations

{x
(i)
t }1≤i≤N .

for i = 1 to N do

α
(i)
t = max

j
α

(j)
t−1f(x

(i)
t |x

(j)
t−1)g(yt|x

(i)
t ).

j
(i)
t = argmax

j

α
(j)
t−1f(x

(i)
t |x

(j)
t−1)g(yt|x

(i)
t ).

z
(i)
0:t = (z

(jmax
t

)
0:t−1 , x

(i)
t ).

end for

jmax
t = argmax

j

α
(i)
t .

x̂0:t = z
(jmax

t
)

0:t .

end for

done prior to the state inference (filtering or smoothing) task.

We refer to this situation as batch-mode or off-line estimation.

On the other hand, in some cases the parameters have to be

estimated sequentially without the data being stored, which

we refer to as on-line estimation.

A. Batch methods

In the batch setting, the parameters can be estimated with

non-sequential Monte Carlo methods, such as Markov Chain

Monte Carlo [53]. It has now been recognised however that the

use of sequential Monte Carlo methods offers some significant

advantages over these non-sequential methods in certain cases

[77], [78], [7]. A first point to note is that running a sequential

Monte Carlo method for a given value θ of the parameter does

itself provide a simple way of evaluating the data likelihood

ℓ0:T (y0:T |θ) =

∫
p(y0:T , x0:T |θ)dx0:T

by use of the following decomposition:

ℓ0:T (y0:T |θ) = ℓ0(y0|θ)
T−1∏

t=1

ℓt+1|0:t(yt+1|y0:t, θ), (31)

where the individual predictive likelihood terms are defined

as:

ℓt+1|0:t(yt+1|y0:t) =

∫
p(yt+1, xt+1|y0:tθ)dxt+1.



16

These terms may be easily estimated from the weighted

particles {(x
(i,θ)
t , ω

(i,θ)
t )}1≤i≤N as

ℓt+1|0:t(yt+1|y0:t, θ) =

∫∫
g(yt+1|xt+1, θ)f(xt+1|xt, θ)

πt|0:t(xt|y0:t, θ)dxtdxt+1 (32)

≈
N∑

i=1

ω
(i,θ)
t

∫
g(yt+1|xt+1, θ)f(xt+1|x

(i,θ)
t , θ)dxt+1 . (33)

The superscript θ highlights the fact that both the weights

ω
(i,θ)
t and particle positions x

(i,θ)
t depend on the parame-

ter value θ used to construct the weighted sample approx-

imation {(x
(i,θ)
0:t , ω

(i,θ)
t )}1≤i≤N of the filtering distribution.

The integral in (33) may be evaluated within the sequential

importance sampling framework, using the new particle po-

sitions x
(i,θ)
t+1 . For instance, when using the bootstrap filter

discussed in Section II-C, the new particle positions x̃
(i)
t+1 are

drawn from the mixture distribution
∑N

i=1 ω
(i,θ)
t f(x|x

(i,θ)
t , θ)

and the associated unnormalised importance weights write

ω̃
(i,θ)
t = g(yt+1|x̃

(i)
t+1, θ); in this case, the predictive likelihood

approximation simplifies to

ℓt+1|0:t(yt+1|y0:t, θ) ≈
N∑

i=1

ω̃
(i,θ)
t+1 .

In models where the dimension of the parameter vector θ is

small, a first natural solution for parameter estimation consists

in using directly the particle approximation to the likelihood

ℓ0:T (y0:T |θ) (or rather its logarithm), for instance evaluated on

a grid of values of θ. All of [40], [70], [79] discuss the practical

and theoretical aspects of this approach, and in particular

ways in which the Monte Carlo variance of the log-likelihood

evaluation may be controlled.

When the model dimension gets large however, optimising

ℓ0:T (y0:T |θ) through a grid-based approximation of its values

becomes computationally cumbersome, leading to a necessity

for more efficient optimisation strategies. A natural option

consists in using iterative optimisation algorithms, such as

Gauss-Newton or the steepest ascent algorithm (and variants of

it) or the EM (Expectation-Maximisation) algorithm [80], [81],

[82], [7]. From a practical perspective, these two options imply

similar computations as both the evaluation of the gradient of

the log-likelihood function ∇ℓ0:T (y0:T |θ) or the E-step of the

EM algorithm require computation of quantities in the form

τT |0:T (y0:T , θ) = E

[
T−1∑

t=0

st(xt, xt+1)

∣∣∣∣∣ y0:T , θ

]
, (34)

where s0 to sT are vector-valued functions which may im-

plicitly also depend on the observations and the parameter.

The full derivation of the EM or gradient equations would

require lengthier developments (see, e.g., [83] and [7]) and

we simply note that in the EM approach, the appropriate

functions are of the form st(xt, xt+1) = log f(xt+1|xt, θ
′) +

log g(yt+1|xt+1, θ
′) for t ≥ 1 and s0(x0) = log g(y0|x0, θ

′)
(assuming that the prior distribution π0 of the initial state does

not depend on the parameter); while for gradient based meth-

ods, the proper choice of functions in (34) is st(xt, xt+1) =

∇ log f(xt+1|xt, θ) + ∇ log g(yt+1|xt+1, θ) (for t ≥ 1) and

s0(x0) = ∇ log g(y0|x0, θ) (using the so called Fisher iden-

tity [84])4. The most natural sequential Monte Carlo approxi-

mation to (34) is given by:

τ̂T |0:T (y0:T , θ) =

N∑

i=1

ω
(i,θ)
T

T−1∑

t=0

st(x
(i,θ)
t , x

(i,θ)
t+1 ) , (35)

which obviously admits a simple recursive form that can be

evaluated without storing the whole particle path but keeping

track only of
∑T−1

t=0 st(x
(i,θ)
t , x

(i,θ)
t+1 ), for i = 1, . . . , N , in

addition to the current particle positions and weights. This

approximation has been derived by [87], [88], [89], [90] using

different arguments (see also [89], [83], [91] for alternative

proposals). Such approximations have been used with reason-

able successes either using Monte Carlo versions of the EM

algorithm [7] or stochastic gradient procedures [89]. There are

however some empirical and theoretical evidences that, when

the number of observations T becomes large, the number N of

particles should be increased to ensure the convergence of the

optimisation procedure [7], [92]. This observation is closely

related to the unsatisfactory behaviour of the basic particle

filter when used to approximate smoothing distributions, as

illustrated by Figure 11. It has been observed in practice,

that the mean squared error between τT |0:T and τ̂T |0:T can be

reduced, sometimes very significantly, by replacing (35) by an

approximation based on fixed-lag smoothing [7], [93]. Recent

theoretical analyses confirm that the Monte Carlo error of the

fixed-lag approximation to (35) can be controlled uniformly in

T (in a suitable sense), under mild assumptions on the number

N of particles and on the lag used in the smoothing procedure

[94].

In [92], the degeneracy of the joint smoothing distribution

is addressed using a technique originally introduced in [95],

which consists in splitting observations into blocks of equal

sizes and defining a proxy of the log-likelihood of the full

observations by summing the log-likelihood of these individual

adjacent blocks. Because the size of the block is fixed, the

accuracy of the likelihood estimator over each individual block

does not depend on the number of observations T , making

the procedure usable even if the sample size is very large; the

downside is that choosing an appropriate size for the individual

blocks introduces an additional parameter in the design of the

procedure, which is not always easy to set.

B. On-line methods

The methods discussed above have on-line variants as dis-

cussed, for instance, in [89], [88], [83], [92]. The most obvious

options consist in embedding the previously discussed SMC-

based gradient approximations in a stochastic approximation

framework; see [96] and the references therein.

4As a side comment, note that it is possible to rewrite (34) in a form which
is suitable for recursive implementation, although it does involve updating
an auxiliary quantity in addition to τt|0:t itself and πt|0:t, following the
approach first described in [85] (see also [86], [7]). When the quantity of
interest is the gradient of the log-likelihood, the obtained recursions are fully
equivalent to the so-called sensitivity equations which may be obtained by
formally differentiating with respect to the parameter θ the logarithm of (31)
and (32) [7]. This recursive rewriting however is mostly useful in models
where exact computations are feasible.
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For Bayesian dynamic models, however, the most natural

option consists in treating the unknown parameter θ, using

the state-space representation, as a component of the state

which has no dynamic evolution, also referred to as a static

parameter. Hence, we can reformulate our initial objectives

as trying to simulate from the joint posterior distribution of

the unobservable states and parameters π0:t|0:t(x0:t, θ|y0:t).
Unfortunately, the direct use of particle filtering techniques

described so far is bound to fail in this particular case since the

absence of evolution for θ implies that the exploration of the

parameter space is limited to the first time index: at subsequent

times the initial parameter samples will only be reweighted or

resampled but will not be moved around. A pragmatic solution

consists in running the sequential Monte Carlo filter using

an artificial, hopefully negligible, dynamic equation on the

parameter θ (typically a random walk-like dynamic with a

small variance); see [3], [97], [98]. This approach can also be

related to kernel estimate ideas where the target filtering and

smoothing distributions are smoothed using a kernel with a

small bandwidth [99], [100].

The idea put forward in [101], [56], [59] is based on using

Markov chain Monte Carlo (MCMC) moves, as briefly dis-

cussed in Section II-H, in order to maintain the diversity of the

samples in the parameter space. Here the stationary distribu-

tion for the MCMC will be the full joint posterior distribution

of states and parameters, π0:t|0:t(x0:t, θ|y0:t), and a natural

choice of algorithm structure might be to apply Metropolis-

within-Gibbs sampling steps separately to π0:t|0:t(θ|x0:t, y0:t)
and π0:t|0:t(x0:t|θ, y0:t). Note, however, that in general models

this will not be feasible for large datasets, since sampling from

π0:t|0:t(θ|x0:t, y0:t) may involve recomputing statistics based

on the entire path x0:t and y0:t. In many models of interest,

however, this will not be necessary, since the influence of the

path x0:t and y0:t may be summarised by low-dimensional

sufficient statistics. To give a simple example of this situation,

consider the nonlinear time series model of Example 1 where

the observation equation takes the form yt = θb(xt)+vt where

vt ∼ N (0, σ2
v), b(x) = x2 and θ is a scalar parameter, which

is here assumed unknown for illustration purposes. It is easily

checked that the conditional distribution of the observation and

the state variables given the parameter θ is proportional to

p(θ|x0:T , y0:T ) ∝ N

(
θ

∣∣∣∣∣

∑T
t=0 ytb(xt)∑T
t=0 b2(xt)

,

∑T
t=0 b2(xt)

σ2
v

)

Hence if θ is equipped with a prior distribution p(θ) chosen

in the conjugate family [102], which here will be any Gaus-

sian distribution, the posterior distribution p(θ|x0:T , y0:T ) is

known and depends upon the observation and the state vari-

ables through only two low-dimensional sufficient statistics,∑T
t=0 ytf(xt) and

∑T
t=0 f2(xt). Note that the argument used

here turns out to be very similar to the situation encountered

when approximating the behaviour of gradient-based or EM

methods — see (34) and associated discussion. In such a case,

it is possible devise a particle filter which simulates from

the posterior distribution of the states, with the parameter

θ, directly regenerated from its full conditional distribution

p(θ|x0:t, y0:t) using a single Gibbs sampling step. For exam-

ple, we may place this within the setting of the bootstrap filter

of Section II-C, denoting by St the, possibly vector-valued,

sufficient statistic at time t and by s the function such that

St = St−1 + s(xt, yt).
Note that in some models featuring conditionally Gaussian

distributions, an alternative version of this algorithm would

marginalise θ directly and run a fully marginalised particle

filter on just x0:t, as in Section II-G, see also [18] for models

with static parameters of this kind.

Algorithm 7 Bootstrap Filter with parameter regeneration

for i = 1, . . . , N do ⊲ Initialisation

Sample θ
(i)
0 ∼ p(θ(i)) and x̃

(i)
0 ∼ π0(x0|θ

(i)
0 ).

Compute statistics S̃
(i)
0 = s(x̃

(i)
0 , y0).

Assign initial importance weights

ω̃
(i)
0 = g(y0|x̃

(i)
0 , θ

(i)
0 ) .

end for

for t = 1, . . . , T do

Select N particle indices ⊲ Resampling

ji ∈ {1, . . . , N} according to weights

{ω
(j)
t−1}1≤j≤N .

Set x
(i)
t−1 = x̃

(ji)
t−1, θ

(i)
t−1 = θ

(ji)
t−1 and S

(i)
t−1 = S̃ji

t−1, i =
1, . . . , N .

for i = 1, . . . , N do ⊲ Propagation and weighting

Propagate

θ
(i)
t ∼ p(θ

(i)
t |S

(i)
t−1) ,

x̃
(i)
t ∼ f(x̃

(i)
t |x

(i)
t−1, θ

(i)
t ) .

Update statistics S̃
(i)
t = s(x̃

(i)
t , y0) + S

(i)
t−1.

Compute weight

ω̃
(i)
t = g(yt|x̃

(i)
t , θ

(i)
t ) .

end for

Normalise weights

ω
(i)
t = ω̃

(i)
t

/ N∑

j=1

ω̃
(j)
t , i = 1, . . . , N .

end for

At any time point, one may estimate by
∑N

i=1 ω
(i)
t h(x̃

(i)
t )

the expectation E[h(Xt)|Y0:t], where the unknown parameter

θ has been marginalised out. Similarly,
∑N

i=1 ω
(i)
t θ

(i)
t provides

an approximation to expectation of θ given Y0:t, that is, the

minimum mean square estimate of the parameter θ given the

observations up to time t. As an alternative, we may also

consider instead
∑N

i=1 ω
(i)
t p(θ|S̃i

t) with provides a smooth

approximation to the complete parameter posterior as well

as
∑N

i=1 ω
(i)
t E(θ|S̃i

t) which has reduced variance, by virtue

of the Rao-Blackwell principle. Other more sophisticated

examples of this approach are discussed in [103], [104], [105].

Note that as in the case of batch estimation discussed in

the previous section, the successive resamplings performed

on the accumulated statistics S̃
(i)
t may lead to a sample



18

impoverishment phenomenon and ultimately compromise the

long-term stability of the method [92]. Here again, it is likely

that the forgetting ideas discussed at the end of Section IV-A

can be put in use to robustify the basic algorithms described

above.

V. NON-FILTERING USES OF SEQUENTIAL MONTE CARLO

Thus far, sequential Monte Carlo has been presented as

a technique that is intrinsically related to the filtering and

smoothing problems in state-space models. We will now

consider the technique from a more general standpoint and

review some recent contributions where SMC methods are

used for other inference tasks, which are not necessarily

intrinsically sequential (see also Section IV-A). In particular,

recent population-based sampling algorithms provide methods

for parameter estimation in high dimensional batch processing

problems where MCMC would typically have been thought of

as the method of choice. i As a starting point, note that the

basic structure for applying SMC approaches is given by (5)–

(6), which we may rewrite in the following more compact

form

π0:t(x0:t) = c−1
t π0:t−1(x0:t−1)kt(xt−1, xt) , (36)

where π0:l is a l-dimensional probability density function, kl is

an unnormalised transition density function (i.e. kl(x, x′) ≥ 0
and

∫
kl(x, x′)dx′ = C(x) < ∞ but where C(x) may differ

from unity), and finally, cl is the normalising constant defined

by

cl =

∫
· · ·

∫
π0:l−1(x0:l−1)kl(xl−1, xl)dx0:l , (37)

which we may rewrite as cl =
∫∫

πl−1(x)kl(x, x′)dxdx′ upon

defining by πk(xk) =
∫∫

π0:k(x0:k)dx0:k−1 the marginal of

π0:k. Equation (36) is referred to by [44] as a (discrete-

time) Feynman-Kac system of probability distributions. This

structure is encountered in various contexts outside of the stan-

dard filtering and smoothing applications, notably in statistical

physics [106], [107]. Note that, as with standard filtering, in

some cases only the marginals of π0:l are of interest and (36)

takes the simpler form

πt(xt) = c−1
t

∫
πt−1(xt−1)kt(xt−1, xt)dxt−1 , (38)

where πl(xl) are the one-dimensional marginals.

An example of (38) which is of particular interest oc-

curs when considering the successive posterior distributions

of the parameter in a Bayesian model, as more and more

observations are incorporated at successive times t. We have

already touched upon this topic in the context of parameter

estimation for state-space models in Section IV-B, where the

matter is complicated due to the Markov dependence in the

unobservable states. Both [77] and [108], [109] consider the

case where independent observations y0, . . . , yt with common

marginal likelihood ℓ(y|θ) are used to estimate the parameter

θ. It is then easy to check that the ratio of the posterior

corresponding to different observation lengths satisfy

π(θ|y0:t+k)

π(θ|y0:t)
∝

k∏

l=1

ℓ(yt+l|θ) ,

which is a (very specific) instance of (38). The methods pro-

posed by [77], [108], [109] combine pure iterated importance

sampling steps with techniques that are more characteristic of

SMC such as resampling, resample-move proposals [56], or

kernel smoothing [99], [100]. It is argued in [77], [108], [109]

that the resulting algorithms can be far less computationally

demanding than complete-sample Markov Chain Monte Carlo

approaches when dealing with large datasets.

A simple example of (36) occurs when considering a target

of the form

π0:t(x0:t) =

t∏

l=1

π(xl), (39)

i.e. when considering repeated samplings from a fixed distribu-

tion πt = π. We can now envisage schemes which iteratively

propose new particles with target distribution π(xt), based on

particles from earlier distributions π(xl), l < t, in order to

refine the approximation to π(xt) as t increases. By analogy

with (10), if at iteration l the new particle positions x
(i)
l are

proposed from ql(·|x
(i)
l−1), then the corresponding importance

weights are given by

ω
(i)
l−1 ×

π(x
(i)
l )

ql(x
(i)
l |x

(i)
l−1)

. (40)

This strategy, termed Population Monte Carlo by [110], is

mostly of interest when dynamically adapting the form of

the importance transition ql between iterations, as indicated

above (see also [2] for an early related approach). Here, the

target distribution π(xl) is fixed but one determines, from

the output of the simulations, the best possible form of the

importance density, given some optimality criterion (such as

minimising the Monte Carlo variance). Hence adaptive pop-

ulation Monte Carlo offers an alternative to adaptive MCMC

algorithms as proposed by [111] and others. The advantages

of population Monte Carlo in this context are twofold: first,

the possible computational speedup achievable by parallelising

the computations; and second, there are less stringent technical

requirements on the adaptation scheme since, for large enough

population sizes, the fact that the whole procedure indeed

targets π is guaranteed by (40), which implies that weighted

averages (Monte Carlo expectations) are unbiased estimates of

the expectation under π. Provably efficient rules for adapting

mixture importance sampling densities — i.e. transitions of

the form q(x′|x) =
∑m

j=1 αjqj(x
′|x), where qj are fixed and

α1, . . . αm are the parameters of the proposal to be adapted

are given in [112], [113].

Also of interest are cases where the target density is of

the form πt(x) ∝ πγt(x), where γt are positive numbers.

Using γt strictly smaller than one (and generally converging

to one) flattens the target π and is often advocated as a

solution for simulating from highly multi-modal distributions,

in a process called simulated tempering [53]. Conversely,

simulated annealing which consists in letting γt tends to

infinity at a sufficiently slow rate is a well-known method

for finding the global maximiser(s) of π [114], [101]. Other

examples occur in the simulation of rare events where the

successive targets πt correspond to distributions under which
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the event of interest is less likely than under the original

distribution π ([115] use a classic exponential tilting to achieve

this goal, whereas the construction of [116] makes a more

thorough use of the Markov property).

In this context, [78] point out that the choice of the product

target π0:t(x0:t) =
∏t

l=1 πl(xl) is mostly arbitrary. Instead,

it is possible to postulate the existence of a time-reversed

transition density rt such that
∫
···
∫

π0:t(x0:t)dx0:t−2 =
rt(xt−1|xt)πt(xt), see also [117]. This implies that, if the

particles x
(i)
t−1 at iteration t are perturbed using a draw from

qt(xt|x
(i)
t−1), the importance weights become

ω
(i)
t ∝ ω

(i)
t−1 ×

rt(x
(i)
t−1|x

(i)
t )πt(x

(i)
t )

πt−1(x
(i)
t−1)qt(x

(i)
t |x

(i)
t−1)

,

where both the choice of the importance density qt and the

time-reversed density rt are user-defined. This scheme, termed

the Sequential Monte Carlo Sampler by [78], offers much

more flexibility in the type of importance density qt that

may be used and, in addition, rt can, to some extent, be

selected so as to reduce the variance of the simulation. The

theoretical analysis of the resulting algorithm in [78] is more

complicated than for the adaptive population Monte Carlo

methods mentioned above since it is not based on repeated

applications of basic importance sampling (with resampling)

steps, hence lacking the simple unbiasedness property. Several

applications of this approach are presented in [118], [119],

[120], see also [121] for its application in variable dimension

settings.

VI. CONCLUSION AND DISCUSSION

In this article we have reviewed a range of existing core

topics in sequential Monte Carlo methodology, and described

some of the more recent and emerging techniques. In particular

we see the expansion of SMC methods into realms more

routinely handled by MCMC or other batch-based inference

methods, both for static parameter estimation in dynamical

models and for more general inference about high-dimensional

distributions. Our coverage is aimed at the methods them-

selves, so we have not provided a full list of application ref-

erences, of which there are now many hundreds, nor have we

given any details of theoretical analysis, which is now a mature

and sophisticated topic. A primary resource for new papers in

SMC methods is the SMC Methods Homepage, hosted on the

website of The Signal Processing and Communications Group

in the University of Cambridge, see www-sigproc.eng.

cam.ac.uk/smc/. There are several emerging areas which

we have not been able to cover, either for reasons of space or

because the topics are too new to have generated publications

as yet. Amongst these we identify particularly particle methods

for random finite set models, see [122], and particle methods

for continuous time diffusion models ([123] provides the basic

theory for this development in the batch (MCMC) setting). For

a snapshot of current emerging work see the proceedings of

two recent conferences relevant to the topic: the Workshop

on Sequential Monte Carlo Methods: filtering and other ap-

plications (Oxford, UK, July 2006), Proceedings to appear

in European Series in Applied and Industrial Mathematics

(ESAIM), under the auspices of Société de Mathématiques

Appliquées et Industrielles (SMAI); and the IEEE Nonlinear

Statistical Signal Processing Workshop: Classical, Unscented

and Particle Filtering Methods (Cambridge, UK, September

2006).
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[67] H. R. Künsch, “State space and hidden markov models.” in Complex

Stochastic Systems, O. E. Barndorff-Nielsen, D. R. Cox, and C. Kluep-
pelberg, Eds. Boca raton: CRC Publisher, 2001, pp. 109–173.

[68] W. Fong, S. Godsill, A. Doucet, and M. West, “Monte carlo smoothing
with application to audio signal enhancement,” IEEE Trans. Signal

Process., vol. 50, no. 2, pp. 438–449, 2002.
[69] G. Kitagawa, “Non-Gaussian state space modeling of nonstationary

time series,” J. Am. Statist. Assoc., vol. 82, no. 400, pp. 1023–1063,
1987.
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