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ABSTRACT

Full-waveform inversion �FWI� is a challenging data-fitting
procedure based on full-wavefield modeling to extract quantita-
tive information from seismograms. High-resolution imaging at
half the propagated wavelength is expected. Recent advances in
high-performance computing and multifold/multicomponent
wide-aperture and wide-azimuth acquisitions make 3D acoustic
FWI feasible today. Key ingredients of FWI are an efficient for-
ward-modeling engine and a local differential approach, in
which the gradient and the Hessian operators are efficiently esti-
mated. Local optimization does not, however, prevent conver-
gence of the misfit function toward local minima because of the
limited accuracy of the starting model, the lack of low frequen-
cies, the presence of noise, and the approximate modeling of the

wave-physics complexity. Different hierarchical multiscale
strategies are designed to mitigate the nonlinearity and ill-posed-
ness of FWI by incorporating progressively shorter wavelengths
in the parameter space. Synthetic and real-data case studies ad-
dress reconstructing various parameters, from VP and VS veloci-
ties to density, anisotropy, and attenuation. This review attempts
to illuminate the state of the art of FWI. Crucial jumps, however,
remain necessary to make it as popular as migration techniques.
The challenges can be categorized as �1� building accurate start-
ing models with automatic procedures and/or recording low fre-
quencies, �2� defining new minimization criteria to mitigate the
sensitivity of FWI to amplitude errors and increasing the robust-
ness of FWI when multiple parameter classes are estimated, and
�3� improving computational efficiency by data-compression
techniques to make 3D elastic FWI feasible.

INTRODUCTION

Seismic waves bring to the surface information gathered on the
physical properties of the earth. Since the discovery of modern seis-
mology at the end of the 19th century, the main discoveries have aris-
en from using traveltime information �Oldham, 1906; Gutenberg,
1914; Lehmann, 1936�. Then there was a hiatus until the 1980s for
amplitude interpretation, when global seismic networks could pro-
vide enough calibrated seismograms to compute accurate synthetic
seismograms using normal-mode summation. Differential seismo-
grams estimated through the Born approximation have been used
as perturbations for matching long-period seismograms, which can
provide high-resolution upper-mantle tomography �Gilbert and Dz-
iewonski, 1975; Woodhouse and Dziewonski, 1984�. The sensitivity
or Fréchet derivative matrix, i.e., the partial derivative of seismic
data with respect to the model parameters, is explicitly estimated be-
fore proceeding to inversion of the linearized system. The normal-
mode description allows a limited number of parameters to be in-

verted �a few hundred parameters�, which makes the optimization
procedure feasible through explicit sensitivity matrix estimation in
spite of the high number of seismograms.

Meanwhile, exploration seismology has taken up the challenge of
high-resolution imaging of the subsurface by designing dense, mul-
tifold acquisition systems. Construction of the sensitivity matrix is
too prohibitive because the number of parameters exceed 10,000. In-
stead, another road has been taken to perform high-resolution imag-
ing. Using the exploding-reflector concept, and after some kinemat-
ic corrections, amplitude summation has provided detailed images
of the subsurface for reservoir determination and characterization
�Claerbout, 1971, 1976�. The sum of the traveltimes from a specific
point of the interface toward the source and the receiver should coin-
cide with the time of large amplitudes in the seismogram. The reflec-
tivity as an amplitude attribute of related seismic traces at the select-
ed point of the reflector provides the migrated image needed for seis-
mic stratigraphic interpretation. Although migration is more a con-
cept for converting seismic data recorded in the time-space domain
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into images of physical properties, we often refer to it as the geomet-
ric description of the short wavelengths of the subsurface.Avelocity
macromodel or background model provides the kinematic informa-
tion required to focus waves inside the medium.

The limited offsets recorded by seismic reflection surveys and the
limited-frequency bandwidth of seismic sources make seismic im-
aging poorly sensitive to intermediate wavelengths �Jannane et al.,
1989�. This is the motivation behind a two-step workflow: construct
the macromodel using kinematic information, and then the ampli-
tude projection using different types of migrations �Claerbout and
Doherty, 1972; Gazdag, 1978; Stolt, 1978; Baysal et al., 1983; Yil-
maz, 2001; Biondi and Symes, 2004�. This procedure is efficient for
relatively simple geologic targets in shallow-water environments,
although more limited performances have been achieved for imag-
ing complex structures such as salt domes, subbasalt targets, thrust
belts, and foothills. In complex geologic environments, building an
accurate velocity background model for migration is challenging.
Various approaches for iterative updating of the macromodel recon-
struction have been proposed �Snieder et al., 1989; Docherty et al.,
2003�, but they remain limited by the poor sensitivity of the reflec-
tion seismic data to the large and intermediate wavelengths of the
subsurface.

Simultaneous with the global seismology inversion scheme,
Lailly �1983� and Tarantola �1984� recast the migration imaging
principle of Claerbout �1971, 1976� as a local optimization problem,
the aim of which is least-squares minimization of the misfit between
recorded and modeled data. They show that the gradient of the misfit
function along which the perturbation model is searched can be built
by crosscorrelating the incident wavefield emitted from the source
and the back-propagated residual wavefields. The perturbation mod-
el obtained after the first iteration of the local optimization looks like
a migrated image obtained by reverse-time migration. One differ-
ence is that the seismic wavefield recorded at the receiver is back
propagated in reverse time migration, whereas the data misfit is back
propagated in the waveform inversion of Lailly �1983� and Tarantola
�1984�. When added to the initial velocity, the velocity perturbations
lead to an updated velocity model, which is used as a starting model
for the next iteration of minimizing the misfit function. The impres-
sive amount of data included in seismograms �each sample of a time
series must be considered� is involved in gradient estimation. This
estimation is performed by summation over sources, receivers, and
time.

Waveform-fitting imaging was quite computer demanding at that
time, even for 2D geometries �Gauthier et al., 1986�. However, it has
been applied successfully in various studies using forward-model-
ing techniques such as reflectivity techniques in layered media �Kor-
mendi and Dietrich, 1991�, finite-difference techniques �Kolb et al.,
1986; Ikelle et al., 1988; Crase et al., 1990; Pica et al., 1990; Djik-
péssé and Tarantola, 1999�, finite-element methods �Choi et al.,
2008�, and extended ray theory �Cary and Chapman, 1988; Koren et
al., 1991; Sambridge and Drijkoningen, 1992�. A less computation-
ally intensive approach is achieved by Jin et al. �1992� and Lambaré
et al. �1992�, who establish the theoretical connection between ray-
based generalized Radon reconstruction techniques �Beylkin, 1985;
Bleistein, 1987; Beylkin and Burridge, 1990� and least-squares opti-
mization �Tarantola, 1987�. By defining a specific norm in the data
space, which varies from one focusing point to the next, they were
able to recast the asymptotic Radon transform as an iterative least-
squares optimization after diagonalizing the Hessian operator. Ap-
plications on 2D synthetic data and real data are provided �Thierry et

al., 1999b; Operto et al., 2000� and 3D extension is possible �Thierry
et al., 1999a; Operto et al., 2003� because of efficient asymptotic for-
ward modeling �Lucio et al., 1996�. Because the Green’s functions
are computed in smoothed media with the ray theory, the forward
problem is linearized with the Born approximation, and the optimi-
zation is iterated linearly, which means the background model re-
mains the same over the iterations. These imaging methods are gen-
erally called migration/inversion or true-amplitude prestack depth
migration �PSDM�. The main difference with the waveform-inver-
sion methods we describe is that the smooth background model does
not change over iterations and only the single scattered wavefield is
modeled by linearizing the forward problem.

Alternatively, the full information content in the seismogram can
be considered in the optimization. This leads us to full-waveform in-
version �FWI�, where full-wave equation modeling is performed at
each iteration of the optimization in the final model of the previous
iteration.All types of waves are involved in the optimization, includ-
ing diving waves, supercritical reflections, and multiscattered waves
such as multiples. The techniques used for the forward modeling
vary and include volumetric methods such as finite-element meth-
ods �Marfurt, 1984; Min et al., 2003�, finite-difference methods
�Virieux, 1986�, finite-volume methods �Brossier et al., 2008�, and
pseudospectral methods �Danecek and Seriani, 2008�; boundary in-
tegral methods such as reflectivity methods �Kennett, 1983�; gener-
alized screen methods �Wu, 2003�; discrete wavenumber methods
�Bouchon et al., 1989�; generalized ray methods such as WKBJ and
Maslov seismograms �Chapman, 1985�; full-wave theory �de Hoop,
1960�; and diffraction theory �Klem-Musatov andAizenberg, 1985�.

FWI has not been recognized as an efficient seismic imaging tech-
nique because pioneering applications were restricted to seismic re-
flection data. For short-offset acquisition, the seismic wavefield is
rather insensitive to intermediate wavelengths; therefore, the opti-
mization cannot adequately reconstruct the true velocity structure
through iterative updates. Only when a sufficiently accurate initial
model is provided can waveform-fitting converge to the velocity
structure through such updates. For sampling the initial model, so-
phisticated investigations with global and semiglobal techniques
�Koren et al., 1991; Jin and Madariaga, 1993, 1994; Mosegaard and
Tarantola, 1995; Sambridge and Mosegaard, 2002� have been per-
formed. The rather poor performance of these investigations that
arises from insensitivity to intermediate wavelengths has led many
researchers to believe that this optimization technique is not particu-
larly efficient.

Only with the benefit of long-offset and transmission data to re-
construct the large and intermediate wavelengths of the structure has
FWI reached its maturity as highlighted by Mora �1987, 1988�, Pratt
and Worthington �1990�, Pratt et al. �1996�, and Pratt �1999�. FWI at-
tempts to characterize a broad and continuous wavenumber spec-
trum at each point of the model, reunifying macromodel building
and migration tasks into a single procedure. Historical crosshole and
wide-angle surface data examples illustrate the capacity of simulta-
neous reconstruction of the entire spatial spectrum �e.g., Pratt, 1999;
Ravaut et al., 2004; Brenders and Pratt, 2007a�. However, robust ap-
plication of FWI to long-offset data remains challenging because of
increasing nonlinearities introduced by wavefields propagated over
several tens of wavelengths and various incidence angles �Sirgue,
2006�.

Here, we consider the main aspects of FWI. First, we review the
forward-modeling problem that underlies FWI. Efficient numerical
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modeling of the full seismic wavefield is a central issue in FWI, es-
pecially for 3D problems.

In the second part, we review the main theoretical aspects of FWI
based on a least-squares local optimization approach. We follow the
compact matrix formalism for its simplicity �Pratt et al., 1998; Pratt,
1999�, which leads to a clear interpretation of the gradient and the
Hessian of the objective function. Once the gradient is estimated, we
review different optimization algorithms used to compute the pertur-
bation model. We conclude the methodology section by the source
estimation problem in FWI.

In the third part, we review some key features of FWI. First, we
highlight the relationships between the experimental setup �source
bandwidth, acquisition geometry� and the spatial resolution of FWI.
The resolution analysis provides the necessary guidelines to design
the multiscale FWI algorithms required to mitigate the nonlinearity
of FWI. We discuss the pros and cons of the time and frequency do-
mains for efficient multiscale algorithms. We provide a few words
concerning the parallel implementation of FWI techniques because
these are computer demanding. Then we review some alternatives to
the least-squares criterion and the Born linearization. A key issue of
FWI is the initial model from which the local optimization is started.
We also discuss several tomographic approaches to building a start-
ing model.

In the fourth part, we review the main case studies of FWI subdi-
vided into three categories of case studies: acoustic, multiparameter,
and three dimensional. Finally, we discuss the future challenges
raised by the revival of interest in FWI that has been shown by the
exploration and the earthquake-seismology communities.

THE FORWARD PROBLEM

Let us first introduce the notations for the forward problem, name-
ly, modeling the full seismic wavefield. The reader is referred to
Robertsson et al. �2007� for an up-to-date series of publications on
modern seismic-modeling methods.

We use matrix notations to denote the partial-differential opera-
tors of the wave equation �Marfurt, 1984; Carcione et al., 2002�. The
most popular direct method to discretize the wave equation in the
time and frequency domains is the finite-difference method
�Virieux, 1986; Levander, 1988; Graves, 1996; Operto et al., 2007�,
although more sophisticated finite-element or finite-volume ap-
proaches can be considered. This is especially true when accurate
boundary conditions through unstructured meshes must be imple-
mented �e.g., Komatitsch and Vilotte, 1998; Dumbser and Kaser,
2006�.

In the time domain, we have

M�x�
d2u�x,t�

dt2 �A�x�u�x,t��s�x,t�, �1�

where M and A are the mass and the stiffness matrices, respectively
�Marfurt, 1984�. The source term is denoted by s and the seismic
wavefield by u. In the acoustic approximation, u generally repre-
sents pressure, although in the elastic case u generally represents
horizontal and vertical particle velocities. The time is denoted by t

and the spatial coordinates by x. Equation 1 generally is solved with
an explicit time-marching algorithm: The value of the wavefield at a
time step �n�1� at a spatial position is inferred from the value of the
wavefields at previous time steps. Implicit time-marching algo-
rithms are avoided because they require solving a linear system
�Marfurt, 1984�. If both velocity and stress wavefields are helpful,

the system of second-order equations can be recast as a first-order
hyperbolic velocity-stress system by incorporating the necessary
auxiliary variables �Virieux, 1986�.

In the frequency domain, the wave equation reduces to a system of
linear equations; the right-hand side is the source and the solution is
the seismic wavefield. This system can be written compactly as

B�x,��u�x,���s�x,��, �2�

where B is the impedance matrix �Marfurt, 1984�. The sparse com-
plex-valued matrix B has a symmetric pattern, although it is not sym-
metric because of absorbing boundary conditions �Hustedt et al.,
2004; Operto et al., 2007�.

Equation 2 can be solved by a decomposition of B such as lower
and upper �LU� triangular decomposition, leading to direct-solver
techniques. The advantage of the direct-solver approach is that once
the decomposition is performed, equation 2 is efficiently solved for
multiple sources using forward and backward substitutions �Mar-
furt, 1984�. The direct-solver approach is efficient for 2D forward
problems �Jo et al., 1996; Stekl and Pratt, 1998; Hustedt et al., 2004�.
However, the time and memory complexities of LU factorization
and its limited scalability on large-scale distributed memory plat-
forms prevent use of the approach for large-scale 3D problems �i.e.,
problems involving more than 10 million unknowns; Operto et al.,
2007�.

Iterative solvers provide an alternative approach for solving the
time-harmonic wave equation �Riyanti et al., 2006, 2007; Plessix,
2007; Erlangga and Herrmann, 2008�. Iterative solvers currently are
implemented with Krylov subspace methods �Saad, 2003� that are
preconditioned by solving the dampened time-harmonic wave equa-
tion. The solution of the dampened wave equation is computed with
one cycle of a multigrid. The main advantage of the iterative ap-
proach is the low memory requirement, although the main drawback
results from a difficulty to design an efficient preconditioner because
the impedance matrix is indefinite. To our knowledge, the extension
to elastic wave equations still needs to be investigated. As for the
time-domain approach, the time complexity of the iterative ap-
proach increases linearly with the number of sources in contrast to
the direct-solver approach.

An intermediate approach between the direct and iterative meth-
ods consists of a hybrid direct-iterative approach based on a domain
decomposition method and the Schur complement system �Saad,
2003; Sourbier et al., 2008�. The iterative solver is used to solve the
reduced Schur complement system, the solution of which is the
wavefield at interface nodes between subdomains. The direct solver
is used to factorize local impedance matrices that are assembled on
each subdomain. Briefly, the hybrid approach provides a compro-
mise in terms of memory savings and multisource-simulation effi-
ciency between the direct and the iterative approaches.

The last possible approach to compute monochromatic wave-
fields is to perform the modeling in the time domain and extract the
frequency-domain solution either by discrete Fourier transform in
the loop over the time steps �Sirgue et al., 2008� or by phase-sensitiv-
ity detection once the steady-state regime is reached �Nihei and Li,
2007�. One advantage of the approach based on the discrete Fourier
transform is that an arbitrary number of frequencies can be extracted
within the loop over time steps at minimal extra cost. Second, time
windowing can be easily applied, which is not the case when the
modeling is performed in the frequency domain. Time windowing
allows the extraction of specific arrivals for FWI �early arrivals, re-
flections, PS converted waves�, which is often useful to mitigate the
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nonlinearity of the inversion by judicious data preconditioning
�Sears et al., 2008; Brossier et al., 2009a�.

Among all of these possible approaches, the iterative-solver ap-
proach theoretically has the best time complexity �here, “complexi-
ty” denotes how the computational cost of an algorithm grows with
the size of the computational domain� if the number of iterations is
independent of the frequency �Erlangga and Herrmann, 2008�. In
practice, the number of iterations generally increases linearly with
frequency. In this case, the time complexities of the time-domain and
the iterative-solver approach are equivalent �Plessix, 2007�.

The reader is referred to Plessix �2007, 2009� and Virieux et al.
�2009� for more detailed complexity analyses of seismic modeling
based on different numerical approaches. A discussion on the pros
and cons of time-domain versus frequency-domain seismic model-
ing with application to FWI is also provided in Vigh and Starr
�2008b� and Warner et al. �2008�.

Source implementation is an important issue in FWI. The spatial
reciprocity of Green’s functions can be exploited in FWI to mitigate
the number of forward problems if the number of receivers is signifi-
cantly smaller than the number of sources �Aki and Richards, 1980�.
The reciprocity of Green’s functions also allows matching data emit-
ted by explosions and recorded by directional sensors, with pressure
synthetics computed for directional forces �Operto et al., 2006�. Of
note, the spatial reciprocity is satisfied theoretically for the unidirec-
tional sensor and the unidirectional impulse source. However, the
spatial reciprocity of the Green’s functions can also be used for ex-
plosive sources by virtue of the superposition principle. Indeed, ex-
plosions can be represented by double dipoles or, in other words, by
four unidirectional impulse sources.

Afinal comment concerns the relationship between the discretiza-
tion required to solve the forward problem and that required to re-
construct the physical parameters. Often during FWI, these two dis-
cretizations are identical, although it is recommended that the fin-
gerprint of the forward problem be kept minimal in FWI.

The properties of the subsurface that we want to quantify are em-
bedded in the coefficients of matrices M, A, or B of equations 1 and
2. The relationship between the seismic wavefield and the parame-
ters is nonlinear and can be written compactly through the operator
G, defined as

u�G�m� �3�

in the time domain or in the frequency domain.

FWI AS A LEAST-SQUARES LOCAL

OPTIMIZATION

We follow the simplest view of FWI based on the so-called length
method �Menke, 1984�. For information on probabilistic maximum
likelihood or generalized inverse formulations, the reader is referred
to Menke �1984�, Tarantola �1987�, Scales and Smith �1994�, and
Sen and Stoffa �1995�.

We define the misfit vector �d�dobs�dcal�m� of dimension N

by the differences at the receiver positions between the recorded
seismic data dobs and the modeled seismic data dcal�m� for each
source-receiver pair of the seismic survey. Here, dcal can be related to
the modeled seismic wavefield u by a detection operator R, which
extracts the values of the wavefields computed in the full computa-
tional domain at the receiver positions for each source: dcal�Ru.
The model m represents some physical parameters of the subsurface
discretized over the computational domain.

In the simplest case corresponding to the monoparameter acoustic
approximation, the model parameters are the P-wave velocities de-
fined at each node of the numerical mesh used to discretize the in-
verse problem. In the extreme case, the model parameters corre-
spond to the 21 elastic moduli that characterize linear triclinic elastic
media, the density, and some memory variables that characterize the
anelastic behavior of the subsurface �Toksöz and Johnston, 1981�.
The most common discretization consists of projection of the con-
tinuous model of the subsurface on a multidimensional Dirac comb,
although a more complex basis can be considered �see Appendix A
in Pratt et al. �1998� for a discussion on alternative parameteriza-
tions�. We define a norm C�m� of this misfit vector �d, which is re-
ferred to as the misfit function or the objective function. We focus be-
low on the least-squares norm, which is easier to manipulate mathe-
matically �Tarantola, 1987�. Other norms are discussed later.

The Born approximation and the linearization of the
inverse problem

The least-squares norm is given by

C�m��
1

2
�d†

�d, �4�

where † denotes the adjoint operator �transpose conjugate�.
In the time domain, the implicit summation in equation 4 is per-

formed over the number of source-channel pairs and the number of
time samples in the seismograms, where a channel is one component
of a multicomponent sensor. In the frequency domain, the summa-
tion over frequencies replaces that over time. In the time domain, the
misfit vector is real valued; in the frequency domain, it is complex
valued.

The minimum of the misfit function C�m� is sought in the vicinity
of the starting model m0. The FWI is essentially a local optimization.
In the framework of the Born approximation, we assume that the up-
dated model m of dimension M can be written as the sum of the start-
ing model m0 plus a perturbation model �m:m�m0��m. In the
following, we assume that m is real valued.

A second-order Taylor-Lagrange development of the misfit func-
tion in the vicinity of m0 gives the expression

C�m0��m��C�m0�� �
j�1

M
�C�m0�

�m j

�m j

�
1

2 �
j�1

M

�
k�1

M
� 2C�m0�

�m j�mk

�m j�mk�O�m3� .

�5�

Taking the derivative with respect to the model parameter ml results
in

�C�m�

�ml

�
�C�m0�

�ml

� �
j�1

M
� 2C�m0�

�m j�ml

�m j . �6�

The minimum of the misfit function in the vicinity of point m0 is
reached when the first derivative of the misfit function vanishes. This
gives the perturbation model vector:

�m��� � 2C�m0�

�m2 ��1�C�m0�

�m
. �7�
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The perturbation model is searched in the opposite direction of the
steepest ascent �i.e., the gradient� of the misfit function at point m0.
The second derivative of the misfit function is the Hessian; it defines
the curvature of the misfit function at m0. Of note, the error term
O�m3� in equation 5 is zero when the misfit function is a quadratic
function of m. This is the case for linear forward problems such as u

� G.m. In this case, the expression of the perturbation model of
equation 7 gives the minimum of the misfit function in one iteration.
In FWI, the relationship between the data and the model is nonlinear
and the inversion needs to be iterated several times to converge to-
ward the minimum of the misfit function.

Normal equations: The Newton, Gauss-Newton, and
steepest-descent methods

Basic equations

The derivative of C�m� with respect to the model parameter ml

gives

�C�m�

�ml

��
1

2 �
i�1

N �� �dcali

�ml

��dobsi
�dcali

�*

� �dobsi
�dcali

�
�dcali

*

�ml

�
���

i�1

N

R�� �dcali

�ml

�*
�dobsi

�dcali
��, �8�

where the real part and the conjugate of a complex number are denot-
ed by R and *, respectively. In matrix form, equation 8 translates to

�Cm�
�C�m�

�m
��R�� �dcal�m�

�m
�†

�dobs�dcal�m���
��R�J†

�d	, �9�

where J is the sensitivity or the Fréchet derivative matrix. In equa-
tion 9, �Cm is a vector of dimension M. Taking m�m0 in equation 9
provides the descent direction along which the perturbation model is
searched in equation 7.

Differentiation of the gradient expression 8, with respect to the
model parameters gives the following expression in matrix form for
the Hessian �see Pratt et al. �1998� for details�:

� 2C�m0�

�m2 �R�J0
†J0	�R� �J0

t

�mt
��d0

* . . .�d0
*�� . �10�

Inserting the expression of the gradient �equation 9� and the Hessian
�equation 10� into equation 7 gives the following for the perturbation
model:

�m��
R�J0
†J0�

�J0
t

�mt
��d0

* . . .�d0
*����1

R�J0
†
�d0	 .

�11�

The method solving the normal equations, e.g., equation 11, general-
ly is referred to as the Newton method, which is locally quadratically
convergent.

For linear problems �d�G.m�, the second term in the Hessian is
zero because the second-order derivative of the data with respect to

model parameters is zero. Most of the time, this second-order term is
neglected for nonlinear inverse problems. In the following, the re-
maining term in the Hessian, i.e., Ha�J0

†J0, is referred to as the ap-
proximate Hessian. The method which solves equation 11 when only
Ha is estimated is referred to as the Gauss-Newton method.

Alternatively, the inverse of the Hessian in equation 11 can be re-
placed by a scalar �, the so-called step length, leading to the gradient
or steepest-descent method. The step length can be estimated by a
line-search method, for which a linear approximation of the forward
problem is used �Gauthier et al., 1986; Tarantola, 1987�. In the linear
approximation framework, the second-order Taylor-Lagrange de-
velopment of the misfit function gives

C�m�� �C�m0���C�m�����C�m�
�C�m0��

�
1

2
�2Ha�m���C�m0�
�C�m0��,

�12�

where we assume a model perturbation of the form �m

�� �C�m0�. In equation 12, we replace the second-order deriva-
tive of the misfit function by the approximate Hessian in the second
term on the right-hand side. Inserting the expression of the approxi-
mate Hessian Ha into the previous expression, zeroing the partial de-
rivative of the misfit function with respect to �, and using m�m0

gives

� �
��C�m0�
�C�m0��

��Jt�m0��C�m0�
Jt�m0��C�m0���
. �13�

The term Jt�m0��C�m0� is computed conventionally using a first-
order-accurate finite-difference approximation of the partial deriva-
tive of G,

�G�m0�

�m
�C�m0��

1

�
�G�m0���C�m0���G�m0��,

�14�

with a small parameter �. Estimation of � requires solving an extra
forward problem per shot for the perturbed model m0���C�m0�.
This line-search technique is extended to multiple-parameter classes
by Sambridge et al. �1991� using a subspace approach. In this case,
one forward problem must be solved per parameter class, which can
be computationally expensive. Alternatively, the step length can be
estimated by parabolic interpolation through three points, ��,C�m0

�� �C�m0���. The minimum of the parabola provides the desired
�. In this case, two extra forward problems per shot must be solved
because we already have a third point corresponding to �0,C�m0��
�see Figure 1 in Vigh et al. �2009� for an illustration�.

Pratt et al. �1998� illustrate how quality and rate of convergence of
the inversion depend significantly on the Newton, Gauss-Newton, or
gradient method used. Importantly, they show how the gradient
method can fail to converge toward an acceptable model, however
many iterations, unlike the Newton and Gauss-Newton methods.
They interpret this failure as the result of the difficulty of estimating
a reliable step length. However, gradient methods can be significant-
ly improved by scaling �i.e., dividing� the gradient by the diagonal
terms of Ha or of the pseudo-Hessian �Shin et al., 2001a�.
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Numerical algorithms: The conjugate-gradient method

Over the last decade, the most popular local optimization algo-
rithm for solving FWI problems was based on the conjugate-gradi-
ent method �Mora, 1987; Tarantola, 1987; Crase et al., 1990�. Here,
the model is updated at the iteration n in the direction of p�n�, which is
a linear combination of the gradient at iteration n, �C�n�, and the di-
rection p�n�1�:

p�n�
� �Cn

�� �n�p�n�1�. �15�

The scalar � �n� is designed to guarantee that p�n� and p�n�1� are con-
jugate.Among the different variants of the conjugate-gradient meth-
od to derive the expression of � �n�, the Polak-Ribière formula �Polak
and Ribière, 1969� is generally used for FWI:

� �n�
�

��C�n�
��C�n�1�
�C�n��

��C�n��2 . �16�

In FWI, the preconditioned gradient Wm
�1�C�n� is used for p�n�, where

Wm is a weighting operator that is introduced in the next section
�Mora, 1987�. Only three vectors of dimension M, i.e., �C�n�,
�C�n�1�, and p�n�1�, are required to implement the conjugate-gradi-
ent method.

Numerical algorithms: Quasi-Newton algorithms

Finite approximations of the Hessian and its inverse can be com-
puted using quasi-Newton methods such as the BFGS algorithm
�named after its discoverers Broyden, Fletcher, Goldfarb, and Sh-
anno; see Nocedal �1980� for a review�. The main idea is to update
the approximation of the Hessian or its inverse H�n� at each iteration
of the inversion, taking into account the additional knowledge pro-
vided by �C�n� at iteration n. In these approaches, the approximation
of the Hessian or its inverse is explicitly formed.

For large-scale problems such as FWI in which the cost of storing
and working with the approximation of the Hessian matrix is prohib-
itive, a limited-memory variant of the quasi-Newton BFGS method
known as the L-BFGS algorithm allows computing in a recursive
manner H�n��C�n� without explicitly forming H�n�. Only a few gradi-
ents of the previous nonlinear iterations �typically, 3–20 iterations�
need to be stored in L-BFGS, which represents a negligible storage
and computational cost compared to the conjugate-gradient algo-
rithm �see Nocedal, 1980; p. 177–180�. The L-BFGS algorithm re-
quires an initial guess H�0�, which can be provided by the inverse of
the diagonal Hessian �Brossier et al., 2009a�. For multiparameter
FWI, the L-BFGS algorithm provides a suitable scaling of the gradi-
ents computed for each parameter class and hence provides a com-
putationally efficient alternative to the subspace method of Sam-
bridge et al. �1991�. A comparison between the conjugate-gradient
method and the L-BFGS method for a realistic onshore application
of multiparameter elastic FWI is shown in Brossier et al. �2009a�.

Newton and Gauss-Newton algorithms

The more accurate, although more computationally intensive,
Gauss-Newton and Newton algorithms are described in Akcelik
�2002�, Askan et al. �2007�, Askan and Bielak �2008�, and Epano-
meritakis et al. �2008�, with an application to a 2D synthetic model
of the San Fernando Valley using the SH-wave equation. At each
nonlinear FWI iteration, a matrix-free conjugate-gradient method is
used to solve the reduced Karush-Kuhn-Tucker �KKT� optimal sys-
tem, which turns out to be similar to the normal equation system

�equation 11�. Neither the full Hessian nor the sensitivity matrix is
formed explicitly; only the application of the Hessian to a vector
needs to be performed at each iteration of the conjugate-gradient al-
gorithm.

Application of the Hessian to a vector requires performing two
forward problems per shot for the incident and the adjoint wavefields
�Akcelik, 2002�. Because these two simulations are performed at
each iteration of the conjugate-gradient algorithm, an efficient pre-
conditioner must be used to mitigate the number of iterations of the
conjugate-gradient algorithm. Epanomeritakis et al. �2008� use a
variant of the L-BFGS method for the preconditioner of the conju-
gate gradient, in which the curvature of the objective function is up-
dated at each iteration of the conjugate gradient using the Hessian-
vector products collected over the iterations.

Regularization and preconditioning of inversion

As widely stressed, FWI is an ill-posed problem, meaning that an
infinite number of models matches the data. Some regularizations
are conventionally applied to the inversion to make it better posed
�Menke, 1984; Tarantola, 1987; Scales et al., 1990�. The misfit func-
tion can be augmented as follows:

C�m��
1

2
�d†Wd�d�

1

2
��m�mprior�

†Wm�m�mprior�,

�17�

where Wd�Sd
t Sd and Wm�Sm

t Sm. Weighting operators are Wd and
Wm, the inverse of the data and model covariance operators in the
frame of the Bayesian formulation of FWI �Tarantola, 1987�. The
operator Sd can be implemented as a diagonal weighting operator
that controls the respective weight of each element of the data-misfit
vector. For example, Operto et al. �2006� use Sd as a power of the
source-receiver offset to strengthen the contribution of large-offset
data for crustal-scale imaging. In geophysical applications where the
smoothest model that fits the data is often sought, the aim of the
least-squares regularization term in the augmented misfit function
�equation 17� is to penalize the roughness of the model m, hence de-
fining the so-called Tikhonov regularization �see Hansen �1998� for
a review on regularization methods�. The operator Sm is generally a
roughness operator, such as the first- or second-difference matrices
�Press et al., 1986, 1007�.

For linear problems �assuming the second term of the Hessian is
neglected�, the minimization of the weighted misfit function gives
the perturbation model:

�m���R�J0
†WdJ0���Wm��1

R�J0
†Wd�d0	, �18�

where we use mprior�m0. Of note, equation 18 is equivalent to
Tarantola �1987, p. 70� and Menke �1984, p. 55�:

�m��Wm
�1�R�J0Wm

�1J0
†���Wd

�1��1
R�J0

†
�d0	 .

�19�

Equation 19 can be more tractable from a computational viewpoint
when N � M. Because Wm is a roughness operator, Wm

�1 is a
smoothing operator. It can be implemented, for example, with a mul-
tidimensional adaptive Gaussian smoother �Ravaut et al., 2004; Op-
erto et al., 2006� or with a low-pass filter in the wavenumber domain
�Sirgue, 2003�.

For the steepest-descent algorithm, the regularized solution for
the perturbation model is given by
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�m���Wm
�1

R�J0
†Wd�d0	, �20�

where the scaling performed by the diagonal terms of the approxi-
mate Hessian can be embedded in the operator Wm

�1 in addition to the
smoothing operator.

A more complete and rigorous mathematical derivation of these
equations is presented in Tarantola �1987�.

Alternative regularizations based on minimizing the total varia-
tion of the model have been developed mainly by the image-process-
ing and electromagnetic communities. The aim of the total variation
or edge-preserving regularization is to preserve both the blocky and
the smooth characteristics of the model �Vogel and Oman, 1996; Vo-
gel, 2002�. Total variation �TV� regularization is conventionally im-
plemented by minimizing the L1-norm of the model-misfit function
RTV� ��mWm�m�1/2. Alternatively, van den Berg and Abubakar
�2001� implement TV regularization as a multiplicative constraint in
the original misfit function. In this framework, the original misfit
function can be seen as the weighting factor of the regularization
term, which is automatically updated by the optimization process
without the need for heuristic tuning. TV regularization is applied to
FWI in Askan and Bielak �2008�. The weighted L2-norm regulariza-
tion applied to frequency-domain FWI is shown in Hu et al. �2009�

and Abubakar et al. �2009�.

The gradient and Hessian in FWI: Interpretation and
computation

Aclear interpretation of the gradient and Hessian is given by Pratt
et al. �1998� using the compact matrix formalism of frequency-do-
main FWI.Areview is given here. Let us consider the forward-prob-
lem equation given by equation 2 for one source and one frequency.
In the following, we assume that the model is discretized in a finite-
difference sense using a uniform grid of nodes.

Differentiation of equation 2 with respect to the model parameter
ml gives the expression of the partial derivative wavefield �u /�m�

by solving the following system:

B
�u

�m�

� f���, �21�

where

f���
��

�B

�m�

u . �22�

An analogy between the forward-problem equation 2 and equa-
tion 21 shows that the partial-derivative wavefield can be computed
by solving one forward problem, the source of which is given by f���.
This so-called virtual secondary source is formed by the product of
�B /�m� and the incident wavefield u. The matrix �B /�m� is built by
differentiating each coefficient of the forward-problem operator B

with respect to m�. Because the discretized differential operators in B

generally have local support, the matrix �B /�m� is extremely
sparse.

The spatial support of the virtual secondary source is centered on
the position of m�, whereas the temporal support of f��� is centered
around the arrival time of the incident wavefield at the position of m�.
Therefore, the partial-derivative wavefield with respect to the model
parameter m� can be interpreted as the wavefield emitted by the seis-
mic source s and scattered by a point diffractor located at m�. The ra-
diation pattern of the virtual secondary source is controlled by the
operator �B /�m�. Analysis of this radiation pattern for different pa-

rameter classes allows us to assess to what extent parameters of dif-
ferent natures are uncoupled in the tomographic reconstruction as a
function of the diffraction angle and to what extent they can be reli-
ably reconstructed during FWI. Radiation patterns for the isotropic
acoustic, elastic, and viscoelastic wave equations are shown in Wu
and Aki �1985�, Tarantola �1986�, Ribodetti and Virieux �1996�, and
Forgues and Lambaré �1997�.

Because the gradient is formed by the zero-lag correlation be-
tween the partial-derivative wavefield and the data residual, these
have the same meaning: They represent perturbation wavefields
scattered by the missing heterogeneities in the starting model m0

�Tarantola, 1984; Pratt et al., 1998�. This interpretation draws some
connections between FWI and diffraction tomography; the perturba-
tion model can be represented by a series of closely spaced diffrac-
tors. By virtue of Huygens’principle, the image of the model pertur-
bations is built by the superposition of the elementary image of each
diffractor, and the seismic wavefield perturbation is built by super-
position of the wavefields scattered by each point diffractor �Mc-
Mechan and Fuis, 1987�.

The approximate Hessian is formed by the zero-lag correlation
between the partial-derivative wavefields, e.g., equation 10. The di-
agonal terms of the approximate Hessian contain the zero-lag auto-
correlation and therefore represent the square of the amplitude of the
partial-derivative wavefield. Scaling the gradient by these diagonal
terms removes from the gradient the geometric amplitude of the par-
tial-derivative wavefields and the residuals. In the framework of sur-
face seismic experiments, the effects of the scaling performed by the
diagonal Hessian provide a good balance between shallow and deep
perturbations. A diagonal Hessian is shown in Ravaut et al. �2004,
their Figure 12�. The off-diagonal terms of the Hessian are computed
by correlation between partial-derivative wavefields associated with
different model parameters. For 1D media, the approximate Hessian
is a band-diagonal matrix, and the numerical bandwidth decreases as
the frequency increases. The off-diagonal elements of the approxi-
mate Hessian account for the limited-bandwidth effects that result
from the experimental setup.Applying its inverse to the gradient can
be interpreted as a deconvolution of the gradient from these limited-
bandwidth effects.

An illustration of the scaling and deconvolution effects performed
by the diagonal Hessian on one hand and the approximate Hessian
on the other hand is provided in Figure 1. A single inclusion in a ho-
mogeneous background model �Figure 1a� is reconstructed by one
iteration of FWI using a gradient method preconditioned by the diag-
onal terms of the approximate Hessian �Figure 1b� and by a Gauss-
Newton method �Figure 1c�. The image of the inclusion is sharper
when the Gauss-Newton algorithm is used. The corresponding ap-
proximate Hessian and its diagonal elements are shown in Figure 2.
An interpretation of the second term of the Hessian �equation 10� is
given in Pratt et al. �1998�. This term accounts for multiscattering
events such as multiples in the reconstruction procedure. Through it-
erations, we might correct effects caused by this missing term as
long as convergence is achieved.

Although equation 21 gives some clear insight into the physical
sense of the gradient of the misfit function, it is impractical from a
computer-implementation point of view; with the computer explicit-
ly forming the sensitivity matrix with equation 21, it would require
performing as many forward problems as the number of model pa-
rameters m����1,M� for each source of the survey. To mitigate this
computational burden, the spatial reciprocity of Green’s functions
can be exploited as shown below.
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Inserting the expression of the partial derivative of the wavefield
�equation 21� in the expression of the gradient of equation 9 gives the
following expression of the gradient:

�C��R�ut� �B

�m�

�t

B�1t

�P�d�*�, �23�

where P denotes an operator that augments the residual data vector
with zeroes in the full computational domain so that the dimension
of the augmented vector matches the dimension of the matrix B�1t

�Pratt et al., 1998�. The column of B�1 corresponds to the Green’s
functions for unit impulse sources located at each node of the model.
By virtue of the spatial reciprocity of the Green’s functions, B�1 is

symmetric. Therefore, B�1t

can be substituted by B�1 in equation 23,
which gives

�C��R�ut� �B

�m�

�t

B�1�P�d*���R�ut� �B

�m�

�t

rb� .

�24�

The wavefield rb corresponds to the back-propagated residual wave-
field. All of the residuals associated with one seismic source are as-
sembled to form one residual source. The back propagation in time is
indicated by the conjugate operator in the frequency domain. The
number of forward seismic problems for computing the gradient is
reduced to two: one to compute the incident wavefield u and one to
back propagate the corresponding residuals. The underlying imag-
ing principle is reverse-time migration, which relies on the corre-
spondence of the arrival times of the incident wavefield and the
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Figure 1. Reconstruction of an inclusion by frequency-domain FWI.
�a� True model and FWI models built �b� by a preconditioned gradi-
ent method and �c� by a Gauss-Newton method. Four frequencies �4,
5, 7, and 10 Hz� were inverted. One iteration per frequency was com-
puted. Fourteen shots were deployed along the top and left edges of
the model. Shots along the top edge were recorded by 14 receivers
along the bottom edge; shots along the left edges were recorded by
14 receivers along the right edge. The P-wave velocities in the back-
ground and in the inclusion are 4.0 and 4.2 km/s, respectively. Verti-
cal velocity profiles are extracted from the true model �gray line� and
the FWI models �black line� for �d� the gradient and �e� the Gauss-
Newton inversions.
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Figure 2. Hessian operator. �a� Approximate Hessian corresponding
to the 31 � 31 model of Figure 1 for a frequency of 4 Hz. A close-up
of the area delineated by the yellow square highlights the band-diag-
onal structure of the Hessian. �b� Corresponding diagonal terms of
the Hessian plotted in the distance-depth domain. The high-ampli-
tude coefficients indicate source and receiver positions. Scaling the
gradient by this map removes the geometric amplitude effects from
the wavefields.
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back-propagated wavefield at the position of heterogeneity �Claer-
bout, 1971; Lailly, 1983; Tarantola, 1984�.

The approach that consists of computing the gradient of the misfit
function without explicitly building the sensitivity matrix is often re-
ferred to as the adjoint-wavefield approach by the geophysical com-
munity. The underlying mathematical theory is the adjoint-state
method of the optimization theory �Lions, 1972; Chavent, 1974�. In-
teresting links exist between optimization techniques used in FWI
and assimilation methods, widely used in fluid mechanics �Tala-
grand and Courtier, 1987�. A detailed review of the adjoint-state
method with illustrations from several seismic problems is given in
Tromp et al. �2005�, Askan �2006�, Plessix �2006�, and Epanomer-
itakis et al. �2008�. The expression of the gradient of the frequency-
domain FWI misfit function �equation 24� is derived from the ad-
joint-state method and the method of the Lagrange multiplier in Ap-
pendix A.

For multiple sources and multiple frequencies, the gradient is
formed by the summation over these sources and frequencies:

�C�� �
i�1

N�

�
s�1

Ns

R��Bi
�1ss	

t� �Bi

�m�

�t

�Bi
�1�P�d

i,s
* �	� .

�25�

We also need to note that matrices Bi
�1�i�1,N�� do not depend on

shots; therefore, any speedup toward resolving systems that involve
these matrices with multiple sources should be considered �Marfurt,
1984; Jo et al., 1996; Stekl and Pratt, 1998�.

By comparing the expressions of the gradient in equations 9 and
24, we can conclude that one element of the sensitivity matrix is giv-
en by

Jk�s,r�,��us
t� �Bt

�m�

�B�1� r, �26�

where k�s,r� denotes a source-receiver couple of the acquisition ge-
ometry, with s and r denoting a shot and a receiver position, respec-
tively. An impulse source � r is located at receiver position r. If the
sensitivity matrix must be built, one forward problem for the inci-
dent wavefield and one forward problem per receiver position must
be computed. Therefore, the number of simulations to build the sen-
sitivity matrix can be higher than that required by gradient estima-
tion if the number of nonredundant receiver positions significantly
exceeds the number of nonredundant shots, or vice versa. Comput-
ing each term of the sensitivity matrix is also required to compute the
diagonal terms of the approximate Hessian Ha �Shin et al., 2001b�.
To mitigate the resulting computational burden for coarse OBS sur-
veys, Operto et al. �2006� suggest computing the diagonal terms of
Ha for a decimated shot acquisition. Alternatively, Shin et al.
�2001a� propose using an approximation of the diagonal Hessian,
which can be computed at the same cost as the gradient.

Although the matrix-free adjoint approach is widely used in ex-
ploration seismology, the earthquake-seismology community tends
to favor the scattering-integral method, which is based on the explic-
it building of the sensitivity matrix �Chen et al., 2007�. The linear
system relating the model perturbation to the data perturbation is
formed and solved with a conjugate-gradient algorithm such as
LSQR �Paige and Saunders, 1982a�. A comparative complexity
analysis of the adjoint approach and the scattering-integral approach
is presented in Chen et al. �2007�, who conclude that the scattering-
integral approach outperforms the adjoint approach for a regional to-

mographic problem. Indeed, the superiority of one approach over the
other is highly dependent on the acquisition geometry �the relative
number of sources and receivers� and the number of model parame-
ters.

The formalism in equation 25 has been kept as general as possible
and can relate to the acoustic or the elastic wave equation. In the
acoustic case, the wavefield is the pressure scalar wavefield; in the
elastic case, the wavefield ideally is formed by the components of the
particle velocity and the pressure if the sensors have four compo-
nents. Equation 25 can be translated in the time domain using Parse-
val’s relation. The expression of the gradient in equation 25 can be
developed equivalently using a functional analysis �Tarantola,
1984�. The partial derivatives of the wavefield with respect to the
model parameters are provided by the kernel of the Born integral that
relates the model perturbations to the wavefield perturbations. Mul-
tiplying the transpose of the resulting operator by the conjugate of
the data residuals provides the expression of the gradient. The two
formalisms �matrix and functional� give the same expression, pro-
vided the discretization of the partial differential operators are per-
formed consistently in the two approaches. The derivation in the fre-
quency domain of the gradient of the misfit function using the two
formalisms is explicitly illustrated by Gelis et al. �2007�.

Source estimation

Source excitation is generally unknown and must be considered
as an unknown of the problem �Pratt, 1999�. The source wavelet can
be estimated by solving a linear inverse problem because the rela-
tionship between the seismic wavefield and the source is linear
�equation 2�. The solution for the source is given by the expression

s�
�gcal�m0�
dobs�

�gcal�m0�
gcal�m0��
, �27�

where gcal�m0� denotes the Green’s functions computed in the start-
ing model m0. The source function can be estimated directly in the
FWI algorithm once the incident wavefields have been modeled.
The source and the medium are updated alternatively over iterations
of the FWI. Note that it is possible to take advantage of source esti-
mation to design alternative misfit functions based on the differential
semblance optimization �Pratt and Symes, 2002� or to define more
heuristic criteria to stop the iteration of the inversion �Jaiswal et al.,
2009�.

Alternatively, new misfit functions have been designed so the in-
version becomes independent of the source function �Lee and Kim,
2003; Zhou and Greenhalgh, 2003�. The governing idea of the meth-
od is to normalize each seismogram of a shot gather by the sum of all
of the seismograms. This removes the dependency of the normalized
data with respect to the source and modifies the misfit function. The
drawback is that this approach requires an explicit estimate of the
sensitivity matrix; the normalized residuals cannot be back propa-
gated because they do not satisfy the wave equation.

SOME KEY FEATURES OF FWI

Resolution power of FWI and relationship to the
experimental setup

The interpretation of the partial-derivative wavefield as the wave-
field scattered by the missing heterogeneities provides some connec-
tions between FWI and generalized diffraction tomography �Dev-
aney and Zhang, 1991; Gelius et al., 1991�. Diffraction tomography
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recasts the imaging as an inverse Fourier transform �Devaney, 1982;
Wu and Toksoz, 1987; Sirgue and Pratt, 2004; Lecomte et al., 2005�.
Let us consider a homogeneous background model of velocity c0, an
incident monochromatic plane wave propagating in the direction ŝ

and a scattered monochromatic plane wave in the far-field approxi-
mation propagating in the direction r̂ �Figure 3�. If amplitude effects
are not taken into account, the incident and scattered Green’s func-
tions can be written compactly as

G0�x,s��exp�ik0ŝ .x�,

G0�x,r��exp�ik0r̂ .x�, �28�

with the relation k0�� /c0. Inserting the expression of the incident
and scattered plane waves into the gradient of the misfit function of
equation 24 gives the expression �Sirgue and Pratt, 2004�

�C�m����2�
�

�
s

�
r

R�exp�� ik0�ŝ� r̂� .x��d� .

�29�

Equation 29 has the form of a truncated Fourier series where the
integration variable is the scattering wavenumber vector given by k

�k0� ŝ� r̂�. The coefficients of the series are the data residuals. The
summation is performed over sources, receivers, and frequencies
that control the truncation and sampling of the Fourier series.

We can express the scattering wavenumber vector k0� ŝ� r̂� as a
function of frequency, diffraction angle, or aperture to highlight the
relationship between the experimental setup and the spatial resolu-
tion of the reconstruction �Figure 4�:

k�
2f

c0
cos�	

2
�n, �30�

where n is a unit vector in the direction of the slowness vector � ŝ

� r̂�. Equation 30 was also derived in the framework of the ray 


Born migration/inversion, recast as the inverse of a generalized Ra-
don transform �Miller et al., 1987� or as a least-squares inverse prob-
lem �Lambaré et al., 2003�.

Several key conclusions can be derived from equation 30. First,
one frequency and one aperture in the data space map one wavenum-
ber in the model space. Therefore, frequency and aperture have re-
dundant control of the wavenumber coverage. This redundancy in-
creases with aperture bandwidth. Pratt and Worthington �1990�, Sir-
gue and Pratt �2004�, and Brenders and Pratt �2007a� propose deci-
mating this wavenumber-coverage redundancy in frequency-do-
main FWI by limiting the inversion to a few discrete frequencies.
This data reduction leads to computationally efficient frequency-do-

main FWI and allows managing a compact volume of data, two clear
advantages with respect to time-domain FWI. The guideline for se-
lecting the frequencies to be used in the FWI is that the maximum
wavenumber imaged by a frequency matches the minimum vertical
wavenumber imaged by the next frequency �Sirgue and Pratt, 2004,
their Figure 3�. According to this guideline, the frequency interval
increases with the frequency.

Second, the low frequencies of the data and the wide apertures
help resolve the intermediate and large wavelengths of the medium.
At the other end of the spectrum, the maximum wavenumber, con-
strained by 	 � 0 and the highest frequency, leads to a maximum res-
olution of half a wavelength if normal-incidence reflections are re-
corded. Third, for surface acquisitions, long offsets are helpful for
sampling the small horizontal wavenumbers of dipping structures
such as flanks of salt domes.

A frequency-domain sensitivity kernel for point sources, referred
to as the wavepath by Woodward �1992�, is shown in Figure 5. The
interference picture shows zones of equiphase over which the resid-
uals are back projected during FWI. The central zone of elliptical
shape is the first Fresnel zone of width ��osr, where osr is the source-
receiver offset. Residuals that match the first arrival with an error
lower than half a period will be back projected constructively over
the first Fresnel zone, updating the large wavelengths of the struc-
ture. The outer fringes are isochrones on which residuals associated
with later-arriving reflection phases will be back projected, provid-
ing an update of the shorter wavelengths of the medium, just like
PSDM �Lecomte, 2008�. The width of the isochrones, which gives
some insight into the vertical resolution in Figure 4, is given by the
modulus of the wavenumber of equation 30.

To illustrate the relationship between FWI resolution and the ex-
perimental setup, we show the FWI reconstruction of an inclusion in
a homogeneous background for three acquisition geometries �Figure
6�. In the crosshole experiment �Figure 6a�, FWI has reconstructed a
low-pass-filtered �smoothed� version of the vertical section of the in-
clusion and a band-pass-filtered version of the horizontal section of
the inclusion. This anisotropy of the imaging results from the trans-
mission-like reconstruction of the vertical wavenumbers and the re-
flection-like reconstruction of the horizontal wavenumbers of the in-
clusion. In the case of the double crosshole experiment �Figure 6b�,
the vertical and horizontal wavenumber spectra of the inclusion have
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been partly filled because of the combined use of transmission and
reflection wavepaths. Of note, the vertical section shows a lack of
low wavenumbers, whereas the horizontal section exhibits a deficit
of low wavenumbers because the maximum horizontal source-re-
ceiver offset is two times higher than the vertical one �Figure 6b�.
Therefore, the aperture illuminations of the horizontal and vertical
wavenumbers differ. For the surface acquisition �Figure 6c�, the ver-
tical section exhibits a strong deficit of low wavenumbers because of
the lack of large-aperture illumination. Of note, the pick-to-pick am-
plitude of the perturbation is fully recovered in Figure 6c. The hori-
zontal section of the inclusion is poorly recovered because of the
poor illumination of the horizontal wavenumbers from the surface.

The ability of the wide apertures to resolve the large wavelengths
of the medium has prompted some studies to consider long-offset ac-
quisitions as a promising approach to design well-posed FWI prob-
lems �Pratt et al., 1996; Ravaut et al., 2004�. For example, equation
30 can suggest that the long wavelengths of the medium can be re-
solved whatever the source bandwidth, provided that wide-aperture
data are recorded by the acquisition geometry. However, all of the
conclusions derived so far rely on the Born approximation. The Born
approximation requires that the starting model allows matching the
observed traveltimes with an error less than half the period �Bey-
doun and Tarantola, 1988�. If not, the so-called cycle-skipping arti-
facts will lead to convergence toward a local minimum �Figure 7�.

Pratt et al. �2008� translates this condition in terms of relative time
error �t /TL as a function of the number of propagated wavelengths
N�, expressed as

�t

TL

�
1

N�

, �31�

where TL denotes the duration of the simulation. Condition 31 shows
that the traveltime error must be less than 1% for an offset involving
50 propagated wavelengths, a condition unlikely to be satisfied if
FWI is applied without data preconditioning. Therefore, some stud-
ies consider that recording low frequencies ��1 Hz� is the best strat-
egy to design well-posed FWI �Sirgue, 2006�. Unfortunately, such

low frequencies cannot be recorded during controlled-source exper-
iments. As an alternative to low frequencies, multiscale layer-strip-
ping approaches where longer offsets, shorter apertures, and longer
recording times are progressively introduced in the inversion, have
been designed to mitigate the nonlinearity of the inversion.

Multiscale FWI: Time domain versus frequency domain

FWI can be implemented in the time domain or in the frequency
domain. FWI was originally developed in the time domain �Taran-
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velocity in the background is 4 km/s. Six frequencies �4, 7, 9, 11, 12,
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tola, 1984; Gauthier et al., 1986; Mora, 1987; Crase et al., 1990�

whereas the frequency-domain approach was proposed mainly in
the 1990s by Pratt and collaborators �Pratt, 1990; Pratt and Wor-
thington, 1990; Pratt and Goulty, 1991�, first with application to
crosshole data and later with application to wide-aperture surface
seismic data �Pratt et al., 1996�.

The nonlinearity of FWI has prompted many studies to develop
some hierarchical multiscale strategies to mitigate this nonlinearity.
Apart from computational efficiency, the flexibility offered by the
time domain or the frequency domain to implement efficient multi-
scale strategies is one of the main criteria that favors one domain
rather than the other. The multiscale strategy successively processes
data subsets of increasing resolution power to incorporate smaller
wavenumbers in the tomographic models. In the time domain,
Bunks et al. �1995� propose successive inversion of subdata sets of
increasing high-frequency content because low frequencies are less
sensitive to cycle-skipping artifacts. The frequency domain provides
a more natural framework for this multiscale approach by perform-
ing successive inversions of increasing frequencies. In the frequency
domain, single or multiple frequencies �i.e., frequency group� can be
inverted at a time.

Although a few discrete frequencies theoretically are sufficient to
fill the wavenumber spectrum for wide-aperture acquisitions, simul-
taneous inversion of multiple frequencies improves the signal-to-
noise ratio and the robustness of FWI when complex wave phenom-
ena are observed �i.e., guide waves, surface waves, dispersive
waves�. Therefore, a trade-off between computational efficiency and
quality of imaging must be found. When simultaneous multifre-
quency inversion is performed, the bandwidth of the frequency
group ideally must be as large as possible to mitigate the nonlinearity
of FWI in terms of the nonunicity of the solution, whereas the maxi-
mum frequency of the group must be sufficiently low to prevent cy-
cle-skipping artifacts. An illustration of this tuning of FWI is given
in Brossier et al. �2009a� in the framework of elastic seismic imaging
of complex onshore models from the joint inversion of surface
waves and body waves.

The regularization effects introduced by hierarchical inversion of
increasing frequencies might not be sufficient to provide reliable
FWI results for realistic frequencies and realistic starting models in
the case of complex structures. This has prompted some studies to
design additional regularization levels in FWI. One of these is to se-
lect a subset of arrivals as a function of time.An aim of this time win-
dowing is to remove arrivals that are not predicted by the physics of
the wave equation implemented in FWI �for example, PS-converted
waves in the frame of acoustic FWI�. A second aim is to perform a
heuristic selection of aperture angles in the data. Considering a nar-
row time window centered on the first arrival leads to so-called ear-
ly-arrival waveform tomography �Sheng et al., 2006�. Time win-
dowing the data around the first arrivals is equivalent to selecting the
large-aperture components of the data to image the large and inter-
mediate wavelengths of the medium.Alternatively, time windowing
can be applied to isolate later-arriving reflections or PS-converted
phases to focus on imaging a specific reflector or a specific parame-
ter class, such as the S-wave velocity �Shipp and Singh, 2002; Sears
et al., 2008; Brossier et al., 2009a�.

The frequency domain is the most appropriate to select one or a
few frequencies for FWI, but the time domain is the most appropriate
to select one type of arrival for FWI. Indeed, time windowing cannot
be applied in frequency-domain modeling, in which only one or few
frequencies are modeled at a time.Alast resort is the use of complex-
valued frequencies, which is equivalent to the exponential damping
of a signal p�t� in time from an arbitrary traveltime t0 �Sirgue, 2003;
Brenders and Pratt, 2007b�:

P�� �
i

�
�et0/�

��
�


�


p�t�e��t�t0�/�ei�tdt, �32�

where P��� denotes the Fourier transform of p�t� and � is the damp-
ing factor.

A last regularization level can be implemented by layer stripping,
in which the imaging proceeds hierarchically from the shallow part
to the deep part. Layer stripping in FWI can be applied by combined
offset and temporal windowing �Shipp and Singh, 2002; Wang and
Rao, 2009�.

These three levels of regularization — frequency dependent, time
dependent, and offset dependent — can be combined in one integrat-
ed multiloop FWI workflow. An example is provided in Shin and Ha
�2009� and Brossier et al. �2009a�, in which the frequency- and time-
dependent regularizations are implemented into two nested loops
over frequency groups and time-damping factors. In this approach,
the frequencies increase in the outer loop and the damping factors
decrease in the inner loop. In Figure 8, the VP and VS models of the
overthrust model are inferred from the successive inversion of two
groups of five frequencies �Brossier et al., 2009a�. The frequencies
of the first group range from 1.7 to 3.5 Hz, whereas those of the sec-
ond group range from 3.5 to 7.2 Hz. Five damping factors of � be-
tween 0.67 and 30.0 s were applied hierarchically for data precondi-
tioning during the inversion of each frequency group. Without these
two regularization levels associated with frequency and aperture se-
lections, FWI fails to converge toward acceptable models.

In summary, the implementation of FWI in the frequency domain
allows the easy implementation of multiscale FWI based on the hier-
archical inversion of groups of frequencies of arbitrary bandwidth
and sampling intervals. Time-domain modeling provides the most
flexible framework to apply time windowing of arbitrary geometry.

n n + 1n – 1

n

Time (s)

n + 1nn – 1

T/2 T/2

n + 1n – 1

Figure 7. Schematic of cycle-skipping artifacts in FWI. The solid
black line represents a monochromatic seismogram of period T as a
function of time. The upper dashed line represents the modeled
monochromatic seismograms with a time delay greater than T /2. In
this case, FWI will update the model such that the n�1th cycle of
the modeled seismograms will match the nth cycle of the observed
seismogram, leading to an erroneous model. In the bottom example,
FWI will update the model such that the modeled and recorded nth
cycle are in-phase because the time delay is less than T /2.
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This makes frequency-domain FWI based on time-domain model-
ing an attractive strategy to design robust FWI algorithms. This is es-
pecially true for 3D problems, for which time-domain modeling has
several advantages with respect to frequency-domain modeling �Sir-
gue et al., 2008�.

On the parallel implementation of FWI

FWI algorithms must be implemented in parallel to address large-
scale 3D problems. Depending on the numerical technique for solv-
ing the forward problem, different parallel strategies can be consid-
ered for FWI. If the forward problem is based on numerical methods
such as time-domain modeling or iterative solvers, which are not de-
manding in terms of memory, a coarse-grained parallelism that con-
sists of distributing sources over processors is generally used and the
forward problem is performed sequentially on each processor for
each source �Plessix, 2009�. If the number of processors significant-
ly exceeds the number of shots, which can be the case if source en-
coding techniques are used �Krebs et al., 2009�, a second level of
parallelism can be viewed by domain decomposition of the physical
computational domain. A comprehensive review of different algo-
rithms to efficiently compute the forward and the adjoint wavefields
in time-domain FWI is presented by Akcelik �2002�.

In contract, if the forward problem is based on a method that em-
beds a memory-expensive preprocessing step, such as LU factoriza-
tion in the frequency-domain direct-solver approach, parallelism
must be based on a domain decomposition of the computational do-
main. Each processor computes a subdomain of the wavefields for
all sources. Examples of such algorithms are described in Ben Hadj
Ali et al. �2008a�, Brossier et al. �2009a�, and Sourbier et al. �2009a,
2009b�. A contrast source inversion �CSI� method is described by
Abubakar et al. �2009�, which allows a decrease in the number of LU
factorization in frequency-domain FWI at the expense of the number
of iterations.

Variants of classic least-squares and
Born-approximation FWI

Although the most popular approach of FWI is based on minimiz-
ing the least-squares norm of the data misfit on the one hand and on
the Born approximation for estimating partial-derivative wavefields
on the other, several variants of FWI have been proposed over the
last decade. These variants relate to the definition of the minimiza-
tion criteria, the representation of the data �amplitude, phase, loga-
rithm of the complex-valued data, envelope� in the misfit, or the lin-
earization procedure of the inverse problem.

The choice of the minimization criterion

The least-squares norm approach assumes a Gaussian distribution
of the misfit �Tarantola, 1987�. Poor results can be obtained when
this assumption is violated, for example, when large-amplitude out-
liers affect the data. Therefore, careful quality control of the data
must be carried out before least-squares inversion. Crase et al.
�1990� investigate several norms such as the least-squares norm L2,
the least-absolute-values norm L1, the Cauchy criterion norm, and
the hyperbolic secant �sech� criterion in FWI �Figure 9�. The
L1-norm specifically ignores the amplitude of the residuals during
back propagation of the residuals when gradient building, making
this criterion less sensitive to large errors in the data. The Cauchy and
sech criteria can be considered a combination of the L1- and the

L2-norms with different transitions between the norms. Crase et al.
�1990� conclude that the most reliable FWI results have been ob-
tained with the Cauchy and the sech criteria.

The L2 and Cauchy criteria are also compared by Amundsen
�1991� in the framework of frequency-wavenumber-domain FWI
for stratified media described by velocity, density, and layer thick-
nesses �Amundsen and Ursin, 1991�. They consider random noise
and weather noise and conclude in both cases that the Cauchy criteri-
on leads to the more robust results.

The Huber norm also combines the L1- and the L2-norms; it is
combined with quasi-Newton L-BFGS by Guitton and Symes
�2003� and Bube and Nemeth �2007�. The Huber norm is also used in
the framework of frequency-domain FWI by Ha et al. �2009� and
shows an overall more robust behavior than the L2-norm.

The choice of the linearization method

The sensitivity matrix is generally computed with the Born ap-
proximation, which assumes a linear tangent relationship between
the model and wavefield perturbations �Woodward, 1992�. This lin-
ear relationship between the perturbations can be inferred from the
assumption that the wavefield computed in the updated model is the
wavefield computed in the starting model plus the perturbation
wavefield.
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Figure 8. Multiscale strategy for elastic FWI with application to the
overthrust model. �a� FWI velocity models VP �top� and VS �bottom�.
�b� Comparison between the logs from the true model �black�, the
starting model �dashed gray�, and the final FWI model �solid gray�.
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Brossier�.
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The Rytov approach considers the generalized phase as the wave-
field �Woodward, 1992�. The Rytov approximation provides a linear
relationship between the complex-phase perturbation and the model
perturbation by assuming that the wavefield computed in the updat-
ed model is related to the wavefield computed in the starting model
through u�x,���u0�x,��exp����x,���, where ∆��x,�� denotes
the complex-phase perturbation. The sensitivity of the Rytov kernel
is zero on the Fermat raypath because the traveltime is stationary
along this path. A linear relationship between the model perturba-
tions and the logarithm of the amplitude ratio Ln�A��� /A0���	 is
also provided by the Rytov approximation by taking the real part of
the sensitivity kernel of the Rytov integral instead of the imaginary
part that provides the phase perturbation.

The Born approximation is valid in the case of weak and small
perturbations, but the Rytov approximation is supposed to be valid
for large-aperture angles and a small amount of scattering per wave-
length, i.e., smooth perturbations or smooth variation in the phase-
perturbation gradient �Beydoun and Tarantola, 1988�.Although sev-
eral analyses of the Rytov approximation have been carried out, it re-
mains unclear to what extent its domain of validity differs signifi-
cantly from that of the Born approximation. A comparison between
the Born approximation and the Rytov approximation in the frame-
work of elastic frequency-domain FWI is presented in Gelis et al.
�2007�. The main advantage of the Rytov approximation might be to
provide a natural separation between phase and amplitude �e.g.,
Woodward, 1992�. This separation allows the implementation of
phase and amplitude inversions �Bednar et al., 2007; Pyun et al.,

2007� from a frequency-domain FWI code using a logarithmic norm
�Shin and Min, 2006; Shin et al., 2007�, the use of which leads to the
Rytov approximation in the framework of local optimization
problems.

Another approach in the time-frequency domain is developed by
Fichtner et al. �2008� for continental- and global-scale FWI, in
which the misfit of the phase and the misfit of the envelopes are min-
imized in a least-squares sense. The expected benefit from this ap-
proach is to mitigate the nonlinearity of FWI by separating the phase
and amplitude in the inversion and by inverting the envelope instead
of the amplitudes, the former being more linearly related to the data.

Building starting models for FWI

The ultimate goal in seismic imaging is to be able to apply FWI re-
liably from scratch, i.e., without the need for sophisticated a priori
information. Unfortunately, because multidimensional FWI at
present can only be attacked through local optimization approaches,
building an accurate starting model for FWI remains one of the most
topical issues because very low frequencies ��1 Hz� still cannot be
recorded in the framework of controlled-source experiments.

A starting model for FWI can be built by reflection tomography
and migration-based velocity analysis such as those used in oil and
gas exploration. A review of the tomographic workflow is given in
Woodward et al. �2008�. Other possible approaches for building ac-
curate starting models, which should tend toward a more automatic
procedure and might be more closely related to FWI, are first-arrival
traveltime tomography �FATT�, stereotomography, and Laplace-do-
main inversion.

FATT performs nonlinear inversions of first-arrival traveltimes to
produce smooth models of the subsurface �e.g., Nolet, 1987; Hole,
1992; Zelt and Barton, 1998�. Traveltime residuals are back project-
ed along the raypaths to compute the sensitivity matrix. The tomog-
raphic system, augmented with smoothing regularization, generally
is solved with a conjugate-gradient algorithm such as LSQR �Paige
and Saunders, 1982b�.Alternatively, the adjoint-state method can be
applied to FATT, which avoids the explicit building of the sensitivity
matrix, just as in FWI �Taillandier et al., 2009�. The spatial resolu-
tion of FATT is estimated to be the width of the first Fresnel zone
�Williamson, 1991; Figure 5�.

Examples of applications of FWI to real data using a starting mod-
el built by FATT are shown, for example, in Ravaut et al. �2004�, Op-
erto et al. �2006�, Jaiswal et al. �2008, 2009�, and Malinowsky and
Operto �2008� for surface acquisitions; in Dessa and Pascal �2003� in
the framework of ultrasonic experimental data; in Pratt and Goulty
�1991� for crosshole data; and in Gao et al. �2006b� for VSP data.

Several blind tests that correspond to surface acquisitions have
been tackled by joint FATT and FWI. Results at the oil-exploration
scale and at the lithospheric scale are presented in Brenders and Pratt
�2007a, 2007b, 2007c� and suggest that very low frequencies and
very large offsets are required to obtain reliable FWI results when
the starting model is built by FATT. For example, only the upper part
of the BP benchmark model was imaged successfully by Brenders
and Pratt �2007c� using a starting frequency as small as 0.5 Hz and a
maximum offset of 16 km. Another drawback of FATT is that the
method is not suitable when low-velocity zones exist because these
low-velocity zones create shadow zones.

Reliable picking of first-arrival times is also a difficult issue when
low-velocity zones exist. Fitting first-arrival traveltimes does not
guarantee that computed traveltimes of later-arriving phases, such as
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Figure 9. Different functionals for FWI. �a� Value of four functionals
as a function of real-valued data residual. The L1, L2, Huber, and
mixed L1–L2 functionals are plotted as indicated. �b� Amplitude of
the residual source used to compute the back-propagated adjoint
wavefield for the different functionals shown in �a�. Note that the
back-propagated source in the L1-norm is not sensitive to the residu-
al amplitude and therefore is less sensitive to large-amplitude residu-
als than the L2-norm �image courtesy R. Brossier�.
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reflections, will match the true reflection traveltimes with an error
that does not exceed half a period, especially if anisotropy affects the
wavefield. We should stress that FATT can be recast as a phase inver-
sion of the first arrival using a frequency-domain waveform-inver-
sion algorithm within which complex-valued frequencies are imple-
mented �Min and Shin, 2006; Ellefsen, 2009�. Compared to FATT
based on the high-frequency approximation, this approach helps ac-
count for the finite-frequency effect of the data in the sensitivity ker-
nel of the tomography. Judicious selection of the real and imaginary
parts of the frequency allows extraction of the phase of the first arriv-
al. The principles and some applications of the method are presented
in Min and Shin �2006� and Ellefsen �2009� for near-surface applica-
tions. This is strongly related to finite-frequency tomography �Mon-
telli et al., 2004�.

Traveltime tomography methods that can manage refraction and
reflection traveltimes should provide more consistent starting mod-
els for FWI. Among these methods, stereotomography is probably
one of the most promising approaches because it exploits the slope
of locally coherent events and a reliable semiautomatic picking pro-
cedure has been developed �Lambaré, 2008�. Applications of ste-
reotomography to synthetic and real data sets are presented in Bil-
lette and Lambaré �1998�, Alerini et al. �2002�, Billette et al. �2003�,
Lambaré andAlérini �2005�, and Dummong et al. �2008�.

To illustrate the sensitivity of FWI to the accuracy of different
starting models, Figure 10 shows FWI reconstructions of the syn-
thetic Valhall model when the starting model is built by FATT and re-
flection stereotomography �Prieux et al., 2009�. In the case of ste-
reotomography, the maximum offset is 9 km and only the reflection
traveltimes are used �Lambaré andAlérini, 2005�, whereas the maxi-
mum offset is 32 km for FATT �Prieux et al., 2009�. Stereotomogra-
phy successfully reconstructs the large wavelength within the gas
cloud down to a maximum depth of 2.5 km; FATT fails to reconstruct
the large wavelengths of the low-velocity zone associated with the
gas cloud. However, the FWI model inferred from the FATT starting
model shows an accurate reconstruction of the shallow part of the
model. These results suggest that joint inversion of refraction and re-
flection traveltimes by stereotomography can provide a promising
framework to build starting models for FWI.

A third approach to building a starting model for FWI can be pro-
vided by Laplace-domain and Laplace-Fourier-domain inversions
�Shin and Cha, 2008, 2009; Shin and Ha, 2008�. The Laplace-do-
main inversion can be viewed as a frequency-domain waveform in-
version using complex-valued frequencies �see equation 32�, the
real part of which is zero and the imaginary part of which controls the
time damping of the seismic wavefield. In other words, the principle
is the inversion of the DC component of damped seismograms where
the Laplace variable s corresponds to 1 /� in equation 32. The DC of
the undamped data is zero, but the DC of the damped data is not and
is exploited in Laplace-domain waveform inversion. The informa-
tion contained in the data can be similar to the amplitude of the wave-
field �Shin and Cha, 2009�. Laplace-domain waveform inversion
provides a smooth reconstruction of the velocity model, which can
be used as a starting model for Laplace-Fourier and classical fre-
quency-domain waveform inversions.

The Laplace-Fourier domain is equivalent to performing an inver-
sion of seismograms damped in time. The results shown in Shin and
Cha �2009� suggest that this method can be applied to frequencies
smaller than the minimum frequency of the source bandwidth. The
ability of the method to use frequencies smaller than the frequencies
effectively propagated by the seismic source is called a mirage resur-

rection of the low frequencies by Shin and Cha �2009�. An applica-
tion to real data from the Gulf of Mexico is shown in Shin and Cha
�2009�. For the real-data application, frequencies between 0 and 2
Hz in combination with nine Laplace damping constants are used for
the Laplace-Fourier-domain inversion, the final model of which is
used as the starting model for standard frequency-domain FWI.

Joint application of Laplace-domain, Laplace-Fourier-domain
and Fourier-domain FWI to the BPbenchmark model is illustrated in
Figure 11 �Shin and Cha, 2009�. The starting model is a simple ve-
locity-gradient model �Figure 11b�. A first velocity model of the
large wavelengths is obtained by Laplace-domain inversion �Figure
11c�, which is subsequently used as a starting model for inversion in
the Laplace-Fourier-domain inversion, the final model of which is
shown in Figure 11d. During this stage, the starting frequency used
in the inversion of the damped data is as low as 0.01 Hz. The final
model obtained after frequency-domain FWI is shown in Figure 11e.
All of the structures were successfully imaged, beginning with a
very crude starting model.

4

3

2

1

0

4 5 6 7 8 9 10 11

4

3

2

1

0

4 5 6 7 8 9 10 11

D
e

p
th

(k
m

)

Distance (km) Distance (km)

4

3

2

1

0

4 5 6 7 8 9 10 11

4

3

2

1

0

4 5 6 7 8 9 10 11

D
e

p
th

(k
m

)

1.6 2.0 2.4 2.8 3.2
km/s

1.2 2.2 3.2
0

1

2

3

4

D
e

p
th

(k
m

)

VP (km/s)
1.2 2.2 3.2

0

1

2

3

4

D
e

p
th

(k
m

)

VP (km/s)
1.2 2.2 3.2

0

1

2

3

4

D
e

p
th

(k
m

)
VP (km/s)

a)

b)

c)

d)

e) f) g)

Figure 10. �a� Close-up of the synthetic Valhall velocity model cen-
tered on the gas layer. �b� FWI model built from a starting model ob-
tained by smoothing the true model with a Gaussian filter with hori-
zontal and vertical correlation lengths of 500 m. �c� FWI model from
a starting model built by FATT �Prieux et al., 2009�. �d� FWI model
from a starting model built by stereotomography �Lambaré and
Alérini, 2005�. �e� Velocity profiles at a distance of 7.5 km extracted
from the true model �black line�, from the starting model built by
smoothing the true model �blue line�, and from the FWI model of �b�
�red line�. �f� Same as �e� for the starting model built by FATT and �c�
the corresponding FWI model. �g� Same as �e� for the starting model
built by stereotomography and �d� the corresponding FWI model.
The frequencies used in the inversion are between 4 and 15 Hz.
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CASE STUDIES

Applications of FWI have been applied essentially to synthetic
examples for which high-resolution images have been constructed.
Because FWI is an attractive approach, the number of real-data ap-
plications has increased quite rapidly, from monoparameter recon-
structions of the VP parameter to multiparameter ones.

Monoparameter acoustic FWI

Most of the recent real-data case studies of FWI at different scales
and for different acquisition geometries have been performed in the

acoustic isotropic approximation, considering only VP as the model
parameter �Dessa and Pascal, 2003; Ravaut et al., 2004; Chironi et
al., 2006; Gao et al., 2006a, 2006b; Operto et al., 2006; Bleibinhaus
et al., 2007; Ernst et al., 2007; Jaiswal et al., 2008, 2009; Shin and
Cha, 2009�. Although the acoustic approximation can be questioned
in the framework of FWI because of unreliable amplitudes, one ad-
vantage of acoustic FWI is dealing with less computationally expen-
sive forward modeling than in the elastic case. Moreover, acoustic
FWI is better posed than elastic FWI because only the dominant pa-
rameter VP can be involved in the inversion.

Specific waveform-inversion data processing generally is de-
signed to account for the amplitude errors introduced by acoustic
modeling �Pratt, 1999; Ravaut et al., 2004; Brenders and Pratt,
2007b�. The amplitude discrepancies in the P-wavefield result from
incorrectly modeling the amplitude-variation-with-offset �AVO� ef-
fects and incorrectly modeling the directivity of the source and re-
ceiver �Brenders and Pratt, 2007b�. Acoustic-wave modeling gener-
ally is based on resolving the acoustic-wave equation in pressure;
therefore, the particle-velocity synthetic wavefields might not be
computed �Hustedt et al., 2004�. If the receivers are geophones, the
physical measurements collected in the field �particle velocities� are
not the same as those computed by the seismic modeling engine
�pressure�.Amatch between the vertical geophone data and the pres-
sure synthetics can, however, be performed by exploiting the reci-
procity of the Green’s functions if the sources are explosions �Operto
et al., 2006�.

In contrast, if the sources and receivers are directional, the pres-
sure wavefield cannot account for the directivity of the sources and
receivers, and heuristic amplitude corrections must be applied be-
fore inversion. Brenders and Pratt �2007b� propose optimizing an
empirical correction law for the decay of the rms amplitudes with
offset. Applying this correction law to the modeled data matches the
main AVO trend of the observed data before FWI. Using this data
preprocessing, Brenders and Pratt �2007b� successfully image the
onshore lithospheric model of the CCSS blind test �Zelt et al., 2005�

by acoustic FWI of synthetic elastic data. This strategy is also used
successfully by Jaiswal et al. �2008, 2009� in the framework of
acoustic FWI of real onshore data in the Naga thrust and fold belt in
India.

Successful application of acoustic FWI to synthetic elastic data
computed in the marine Valhall model from an OBC acquisition is
presented by Brossier et al. �2009b�. An application of acoustic FWI
to real onshore long-offset data recorded in the southern Apennines
thrust belt is illustrated in Figure 12 �Ravaut et al., 2004�. The veloc-
ity model is validated locally by comparison with a VSP log. Appli-
cation of PSDM using the final FWI model as a starting model con-
tributes to the validation of the relevance of the velocity structure re-
constructed by FWI �Operto et al., 2004�. Some guidelines based on
numerical examples of the domain of validity of acoustic FWI ap-
plied to elastic data are also provided in Barnes and Charara �2008�.

Multiparameter FWI

Because FWI accounts for the full wavefield, the seismic model-
ing embedded in the FWI algorithm theoretically should honor as far
as possible all of the physics of wave propagation. This is especially
required by FWI of wide-aperture data, in which significant AVO
and azimuthal anisotropic effects should be observed in the data. The
requirement of realistic seismic modeling has prompted some stud-
ies to extend monoparameter acoustic FWI to account for parameter
classes other than the P-wave velocity, such as density, attenuation,
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Figure 11. Laplace-Fourier-domain waveform inversion. �a� BP
benchmark model. �b� Starting model. �c� Velocity model after
Laplace-domain inversion. �d� Velocity model after Laplace-Fouri-
er-domain inversion. �e� Velocity model after frequency-domain
FWI �image courtesy C. Shin and Y. H. Cha�.
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shear-wave velocity or related parameters, and anisotropy. The fact
that additional parameter classes are taken into account in FWI in-
creases in the ill-posedness of the inverse problem because more de-
grees of freedom are considered in the parameterization and because
the sensitivity of the inversion can change significantly from one pa-
rameter class to the next.

Different parameter classes can be more or less coupled as a func-
tion of the aperture angle. This coupling can be assessed by plotting
the radiation pattern of each parameter class using some asymptotic
analyses. Diffraction patterns of the different combination of param-
eters for the acoustic, elastic, and viscoelastic wave equation are
shown in Wu and Aki �1985�, Tarantola �1986�, Ribodetti and
Virieux �1996�, and Forgues and Lambaré �1997�. An alternative is
to plot the sensitivity kernel, i.e., that obtained by summing all of the
rows of the sensitivity matrix for the full acquisition and for different
combinations of parameters and to qualitatively assess which com-
bination provides the best image �Luo et al., 2009�. Hierarchical
strategies that successively operate on different parameter classes
should be designed to mitigate the ill-posedness of FWI �Tarantola,
1986; Kamei and Pratt, 2008; Sears et al., 2008; Brossier et al.,
2009b�.

Density

Density is difficult to reconstruct �Forgues and Lambaré, 1997�.
As an illustration, acoustic radiation patterns are shown in Figure 13
for different combinations of parameters �IP,��, �IP,VP�, and �VP,��,
where IP denotes P-wave impedance. The radiation pattern of VP is
isotropic because the operator �B /�ml reduces to a scalar for VP and
therefore represents an explosion. On the other hand, the density has

the same radiation pattern as VP at short apertures but does not scatter
energy at wide apertures because the secondary source f� corre-
sponds to a vertical force for the density. Because VP and � have the
same radiation pattern at short apertures, these two parameters are
difficult to reconstruct from short-offset data. For such data, the
P-wave impedance can be considered a reliable parameter for FWI.
If wide-aperture data are available, VP and IP might provide the most
judicious parameterization because they scatter energy for different
aperture bands �wide and short apertures, respectively; Figure 13b�.

Asuccessful reconstruction of the density parameter in the case of
the Marmousi case study is presented by Choi et al. �2008�. Howev-
er, the use of an unrealistically low frequency �0.125 Hz� brings into
question the practical implication of these results.

Attenuation

The attenuation reconstruction can be implemented in frequency-
domain seismic-wave modeling using complex velocities �Toksöz
and Johnston, 1981�. The most commonly applied attenuation/dis-
persion model is referred to as the Kolsky-Futterman model �Kol-
sky, 1956; Futterman, 1962�. This model has linear frequency de-
pendence of the attenuation coefficient, whereas the deviation from
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Figure 12. Two-dimensional seismic imaging of a thrust belt in the
southern Apennines, Italy, from long-offset data by frequency-do-
main FWI. Thirteen frequencies from 6 to 20 Hz were inverted suc-
cessively. �a� Starting model for FWI developed by FATT �Improta
et al., 2002�. �b–d� FWI model after inversion of �b� the starting
6-Hz, �c� 10-Hz, and �d� 20-Hz frequencies �Ravaut et al., 2004�.
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constant-phase velocity is accounted for through a term that varies as
the logarithm of the frequency. This model is obtained by imposing
causality on the wave pulse and assuming the absorption coefficient
is strictly proportional to the frequency over a restricted range of fre-
quencies.

Using the Kolsky-Futterman model, the complex velocity c̄ is giv-
en by

c̄�c��1�
1

�Q

log�� /�r�
�� i

sgn���

2Q
��1

, �33�

where Q is the attenuation factor and �r is a reference frequency.
In frequency-domain FWI, the real and imaginary parts of the ve-

locity can be processed as two independent real-model parameters
without any particular implementation difficulty. However, the re-
construction of attenuation is an ill-posed problem. Ribodetti et al.
�2000� show that in the framework of the ray 
 Born inversion,
P-wave velocity and Q are uncoupled �i.e., the Hessian is nonsingu-
lar� only if a reflector is illuminated from both sides �with circular
acquisition as in medical imaging; see Figure 5b of Ribodetti et al.,
2000�. In contrast, the Hessian becomes singular for a surface acqui-
sition. Mulder and Hak �2009� also conclude that VP and Q cannot be
imaged simultaneously from short-aperture data because the Hilbert
transform with respect to depth of the complex-valued perturbation
model for VP and Q produces the same wavefield perturbation in the
framework of the Born approximation as the original perturbation
model. Despite this theoretical limitation, preconditioning of the
Hessian is investigated by Hak and Mulder �2008� to improve the
convergence of the joint inversion for VP and Q.

Assessment and application of viscoacoustic frequency-domain
FWI is presented at various scales by Liao and McMechan �1995,
1996�, Song et al. �1995�, Hicks and Pratt �2001�, Pratt et al. �2005�,
Malinowsky et al. �2007�, and Smithyman et al. �2008�. Kamei and
Pratt �2008� recommend inversion for VP only in a first step and then
joint inversion for VP and Q in a second step because the reliability of
the attenuation reconstruction strongly depends on the accuracy of
the starting VP model. Indeed, accurate VP models are required be-
fore reconstructing Q so that the inversion can discriminate the in-
trinsic attenuation from the extrinsic attenuation.

Elastic parameters

A limited number of applications of elastic FWI have been pro-
posed. Because VP is the dominant parameter in elastic FWI, Taran-
tola �1986� recommends inversion first for VP and IP, second for VS

and IS, and finally for density. This strategy might be suitable if the
footprint of the S-wave velocity structure on the seismic wavefield is
sufficiently small. This hierarchical strategy over parameter classes
is illustrated by Sears et al. �2008�, who assess time-domain FWI of
multicomponent OBC data with synthetic examples. They highlight
how the behavior of FWI becomes ill-posed for S-wave velocity re-
construction when the S-wave velocity contrast at the sea bottom is
small. In this case, the S-wave velocity structure has a minor foot-
print on the seismic wavefield because the amount of PS conversion
is small at the sea bottom. In this configuration, they recommend in-
version first for VP, using only the vertical component; second for VP

and VS from the vertical component; and finally for VS, using both
components. The aim of the second stage is to reconstruct the inter-
mediate wavelengths of the S-wave velocity structure by exploiting
theAVO behavior of the P-waves.

In contrast, Brossier et al. �2009a� conclude that joint inversion

for VP and VS with judicious hierarchical data preconditioning by
time damping is necessary for inversion of land data involving both
body waves and surface waves. The strong sensitivity of the high-
amplitude surface waves to the near-surface S-wave velocity struc-
ture requires inversion for VS during the early stages of the inversion.
This makes the elastic inversion of onshore data highly nonlinear
when the surface waves are preserved in the data.

A recent application of elastic FWI to a gas field in China is pre-
sented by Shi et al. �2007�. They invert for the Lamé parameters and
unambiguously image Poisson’s ratio anomalies associated with the
presence of gas. They accelerate the convergence of the inversion by
computing an efficient step length using an adaptive controller based
on the theory of model-reference nonlinear control. Several logs
available along the profile confirm the reliability of this gas-layer
reconstruction.

Anisotropy

Reconstruction of anisotropic parameters by FWI is probably one
of the most undeveloped and challenging fields of investigation. Ver-
tically transverse isotropy �VTI� or tilted transversely isotropic
�TTI� media are generally considered a realistic representation of
geologic media in oil and gas exploration, although fractured media
require an orthorhombic description �Tsvankin, 2001�. The normal-
moveout �NMO� P-wave velocity in VTI media depends on only two
parameters: the NMO velocity for a horizontal reflector VNMO�0�
�VP0

�1�2� and the � � ���� � / �1�2� � parameter �Alkhali-
fah and Tsvankin, 1995�, which is a combination of Thomsen’s pa-
rameters � and � �Thomsen, 1986�. The dependency of NMO veloc-
ity in VTI media on a limited subset of anisotropic parameters sug-
gests that defining the parameter classes to be involved in FWI will
be a key task. Another issue will be to assess to what extent FWI can
be performed in the acoustic approximation knowing that acoustic
media are by definition isotropic �Grechka et al., 2004�. The kine-
matic and dynamic accuracy of an acoustic TTI wave equation for
FWI is discussed in Operto et al. �2009�.

Afeasibility study of FWI in VTI media for crosswell acquisitions
is presented in Barnes et al. �2008�. They invert for five parameter
classes — VP, VS, density, � , and � — and show reliable reconstruc-
tion of the classes, even with noisy data. Pratt et al. �2001, 2008� ap-
ply anisotropic FWI to crosshole real data. The results of Pratt et al.
�2001� highlight the difficulty in discriminating layer-induced an-
isotropy from intrinsic anisotropy in FWI.

Further investigations of anisotropic FWI in the case of surface
seismic data are required. In particular, the benefit of wide apertures
in resolving as many anisotropic parameters as possible needs to be
investigated �Jones et al., 1999�.

Three-dimensional FWI

Because of the continuous increase in computational power and
the evolution of acquisition systems toward wide-aperture and wide-
azimuth acquisition, 3D acoustic FWI is feasible today. In three di-
mensions, the computational burden of multisource seismic model-
ing is one of the main issues. The pros and cons of time-domain ver-
sus frequency-domain seismic modeling for FWI have been dis-
cussed.Another issue is assessing the impact of azimuth coverage on
FWI. Sirgue et al. �2007� show the footprint of the azimuth coverage
in 3D surveys on the velocity model reconstructed by FWI. Their im-
aging confirms the importance of wide-azimuth surveys for FWI of
coarse acquisitions such as node surveys.
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Most 3D FWI applications have been limited to low frequencies
��7 Hz�. At these frequencies, FWI can be seen as a tool for veloci-
ty-model-building rather than a self-contained seismic-imaging tool
that continuously proceeds from the velocity-model-building task to
the migration task through the continuous sampling of wavenum-
bers �Ben HadjAli et al., 2008b�.

Ben Hadj Ali et al. �2008a� apply a frequency-domain FWI algo-
rithm to a series of synthetic data sets. The forward problem is solved
in the frequency domain with a massively parallel direct solver.
Plessix �2009� presents an application to real ocean-bottom-seis-
mometer �OBS� data. Seismic modeling is performed in the frequen-
cy domain with an iterative solver. The inverted frequencies range
between 2 and 5 Hz. The inversion converges to a similar velocity
model down to the top of a salt body using two different starting ve-
locity models, with one a simple velocity-gradient model. An appli-
cation to a real 3D streamer data set is presented by Warner et al.
�2008� for the imaging of a shallow channel. They perform seismic
modeling in the frequency domain using an iterative solver �Warner
et al., 2007�.

Three-dimensional time-domain FWI is developed by Vigh and
Starr �2008a�, in which the input data in FWI are plane-wave gathers
rather than shot gathers. The main motivation behind the use of
plane-wave shot gathers is to mitigate the computational burden by
decimating the volume of data. The computational cost is reduced by
one order of magnitude for 2D applications and by a factor 3 for 3D
applications when the plane-wave-based approach is used instead of
the shot-based approach.

Sirgue et al. �2009� apply 3D frequency-domain FWI to the hy-
drophone component of OBC data from the shallow-water Valhall
field. Frequencies between 3.5 and 7 Hz are inverted successively,
using a starting model built by ray-based reflection tomography.
They successfully image a complex network of shallow channels at
150 m depth and a gas cloud between 1000 and 2500 m depth. Al-
though the spacing between the cables is as high as 300 m, a limited
footprint of the acquisition is visible in the reconstructed models.
Comparisons of depth-migrated sections computed from the reflec-
tion tomography model and the FWI velocity model show the im-
provements provided by FWI, both in the shallow structure and at
the reservoir level below the gas cloud. The step-change improve-
ment in the quality of the depth-migrated image results from the
high-resolution nature of the velocity model from FWI and the ac-
counting of the intrabed multiples by the two-way wave-equation
modeling engine. Comparisons between depth slices across the
channels and the gas cloud extracted from the reflection tomography
and the FWI models highlight the significant resolution improve-
ment provided by FWI �Figure 14�.

Solving large-scale 3D elastic problems is probably beyond our
current tools because of the computational burden of 3D elastic
modeling for many sources. This has prompted several studies to de-
velop strategies to mitigate the number of forward simulations re-
quired during migration or FWI of large data sets. One of these ap-
proaches stacks the seismic sources before modeling �Capdeville et
al., 2005�. Because the relationship between the seismic wavefield
and the source is linear, stacking sources is equivalent to emitting
each source simultaneously instead of independently. This assem-
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Figure 14. Imaging of the Valhall field by 3D FWI. Depth slices extracted from the velocity models. �a,c� Built by ray-based reflection tomogra-
phy. �b,d� Built by 3D FWI. �c,d� The shallow slice at 150 m depth shows a complex network of channels in the FWI model, although the deeper
slice at 1050 m depth shows a much higher resolution of the top of the gas cloud in the FWI model �image courtesy L. Sirgue and O. I. Barkved,
BP�.
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blage generates artifacts in the imaging that arise from the undesired
correlation between each independent source wavefield with the
back-propagated residual wavefields associated with the other
sources of the stack.Applying some random-phase encoding to each
source before assemblage mitigates these artifacts. The method orig-
inally was applied to migration algorithms �Romero et al., 2000�.
Promising applications to time- and frequency-domain FWI are pre-
sented in Krebs et al. �2009� and Ben Hadj Ali et al. �2009a, 2009b�.
Alternatively, Herrmann et al. �2009� propose to recover the source-
separated wavefields from the simultaneous simulation before FWI.

An illustration of the source-encoding technique is provided in
Figure 15, in which a dip section of the overthrust model is built
three ways: by conventional frequency-domain FWI �i.e., without
source assemblage; Figure 15b�, by FWI with source assemblage but
without phase encoding �Figure 15c�, and by FWI with source as-
semblage and phase encoding �Figure 15d�. The models were ob-
tained by successive inversions of four groups of two frequencies
ranging between 3.5 and 20 Hz. The number of shots was 200, and
no noise was added to the data. The number of iterations per frequen-
cy group to obtain the final FWI models without and with the source
assemblage was 15 and 200, respectively. The time to compute the
model of Figure 15d was seven times less than the time to build the
model of Figure 15b. More details can be found in Ben HadjAli et al.
�2009�. If the phase-encoding technique is seen as sufficiently ro-
bust, especially in the presence of noise, it is likely that 3D elastic
FWI can be viewed in the near future using sophisticated modeling
engines.

DISCUSSION

Most of the FWI methods presented and assessed in the literature
are based on the local least-squares optimization formulation, in
which the misfit between the observed seismograms and the mod-
eled ones are minimized in the time domain or in the frequency do-
main. Without very low frequencies ��1 Hz�, it remains very diffi-
cult to obtain reliable results from these approaches when consider-
ing real data, especially at high frequencies. Clearly, new formula-
tions of FWI are needed to proceed further.

Recent improvements relate to Hessian estimation, which has
been shown to be quite important for better convergence toward the
solution. A systematic strategy since the beginning of FWI investi-
gations has been the progressive introduction of the entire content of
seismograms through multiscale approaches to partially prevent the
convergence toward secondary minima. Transforming the data at the

Table 1. Nomenclature, listed as introduced in the text.

Symbol Description

x Spatial coordinates �m�

t, f , � �2� / f Time �s�, frequency �Hz�, circular frequency
�rad/s�

k, k�c / f Wavenumber vector, wavenumber �1/m�,
where c is wavespeed

��1 /k Wavelength �m�

M, A, B Mass, stiffness, impedance matrices in
the wave equation

u�x,t /��, s�x,t /�� Wavefield solution of the wave equation and
seismic source

VP, VS, � P-wave and S-wave velocities �m/s�, density
�kg /m3�

Q Attenuation factor for P-waves

� , � Anisotropic Thomsen’s parameters

m, m0, ∆m Updated and starting FWI models,
perturbation model

dobs, dcal�m� Recorded and modeled data

�d�dobs�dcal�m� Data-misfit vector

C�m�, �Cm Misfit function, gradient of the misfit
function

J � �∂d/∂m� Sensitivity or Fréchet derivative matrix

� Step length in gradient methods

n Iteration number in FWI

Ha�J†J Approximate Hessian

p�n�, � �n� Descent direction and Polak and Ribière
coefficient in conjugate
gradients

Wd�Sd
t Sd Weighting operators in the data space

Wm�Sm
t Sm Weighting operators in the model space

� Damping in damped least-squares FWI

f��� Virtual source in FWI for diffractor m�

s, r Source and receiver indices

	 Diffraction or aperture angle

� Damping coefficient for time damping of
seismograms
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Figure 15. Application of source encoding in FWI; 200 sources and
receivers were on the surface. �a� Dip section of the overthrust
model. �b� FWI model obtained without source assemblage and
phase encoding; 15 iterations per frequency were computed. �c� FWI
model after assemblage of all the sources in one super shot. No phase
encoding was applied. �d� FWI model obtained with source assem-
blage and phase encoding; 200 iterations per frequency were com-
puted �image courtesy of H. Ben HadjAli�.
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different stages of the local inversion procedure �particle displace-
ment, particle velocity, logarithms of these quantities, divergence�

can also provide benefits for global convergence of the optimization
procedure.

Do we need to mitigate the nonlinearity of the inverse problem
through more sophisticated search strategies such as semiglobal ap-
proaches or even global sampling of the model space? Because this
search is quite computationally intensive, should we reduce the di-
mensionality of the parameter models? To perform such global
searches, should we speed up the forward model at the expense of its
precision? If so, can we consider these procedures as intermediate
strategies for approaching the global minimum?

A pragmatic workflow, from low to high spatial-frequency con-
tent, should be expected to move hierarchically from imaging the
large medium wavelengths to the short medium wavelengths.Astep-
by-step procedure for extracting the information, starting from trav-
eltimes and proceeding to true amplitudes, might include many in-
termediate steps for interpreting new observables �polarization, ap-
parent velocity, envelope�.

Another aspect is the quality control of a reconstruction. An ob-
jective analysis for uncertainty estimation is important and might
rely on semiglobal investigations once the global minimum has been
found. Various strategies can be considered that would be manage-
able as statistical procedures �bootstrapping or jackknifing tech-
niques� or as local nondifferential approaches �simplex, simulation
annealing, genetic algorithms�.

Finally, solving large-scale 3D elastic problems remains beyond
our present tools, although one must be aware that these aids are
right around the corner. Because massive data acquisition for 3D re-
construction has been achieved, we indeed expect an improvement
in our data-crunching for high-resolution imaging.

An appealing reconstruction is 4D imaging, which is based on
time-lapse evolution of targets inside the earth. Differential data are
available, providing us with new information for tracking the evolu-
tion of the subsurface parameters. Thus, fluid tracking and variations
in solid-rock matrices are possible challenges for FWI in the near fu-
ture.

CONCLUSION

FWI is the last-course procedure for extracting information from
seismograms. We have shown the conceptual efforts that have been
carried out over the last 30 years to provide FWI as a possible tool for
high-resolution imaging. These efforts have been focused on devel-
opment of large-scale numerical optimization techniques, efficient
resolution of the two-way wave equation, judicious model parame-
terization for multiparameter reconstruction, multiscale strategies to
mitigate the ill-posedness of FWI, and specific waveform-inversion
data preprocessing.

FWI is mature enough today for prototype application to 3D real
data sets. Although applications to 3D real data have shown promis-
ing results at low frequencies ��7 Hz�, it is still unclear to what ex-
tent FWI can be applied efficiently at higher frequencies. To answer
this question, a more quantitative understanding of FWI sensitivity
to the accuracy of the starting model, to the noise, and to the ampli-
tude accuracies is probably required.

If FWI remains limited to low frequencies, it will remain a tool to
build background models for migration. In the opposite case, FWI
will tend toward a self-contained processing workflow that can re-
unify macromodel building and migration tasks.

The present is exciting because realistic applications are becom-
ing possible right now. However, new strategies must be found to
make this technique as attractive as the scientific issues require.
Fields of investigation should address the need to speed up the for-
ward problem by means of providing new hardware �GPUs� and
software �compressive sensing�, defining new minimization criteria
in the model and data spaces, and incorporating more sophisticated
wave phenomena �attenuation, elasticity, anisotropy� in modeling
and inversion.
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APPENDIX A

APPLICATION OF THE ADJOINT-STATE

METHOD TO FWI

In this appendix, we provide some guidelines for the derivation
of the gradient of the misfit function �equation 24� with the adjoint-
state method and Lagrange multipliers. The reader is referred to No-
cedal and Wright �1999� for a review of constrained optimization
and to Plessix �2006� for a review of the adjoint-state method and its
application to FWI.

First, we introduce the Lagrangian function L corresponding to
the misfit function C augmented with equality constraints:

L�ū,m,���
1

2
�P�dobs�Rū�
P�dobs�Rū��

� ��
B�m�ū�s� �A-1�

The equality constraints correspond to the forward-problem equa-
tion, namely, the state equation, which must be satisfied by the seis-
mic wavefield. A realization u of the state equation is the so-called
state variable. In equation A-1, we introduce the variable ū to distin-
guish any element of the state variable space from a realization of the
state equation �Plessix, 2006�.

The vector �, the dimension of which is that of the wavefield u, is
the Lagrange multiplier; it corresponds to the adjoint-state variables.
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In the framework of the theory of constrained optimization, the first-
order necessary optimality conditions known as the Karush-Kuhn-
Tucker �KKT� conditions state that the solution of the optimization
problem is obtained at the stationary points of L.

The first condition, ��L /��	ū�cste,m�cste�0, leads to the for-
ward-problem equation: B�m�u � s. Resolving the state equation for
m�m0 provides the incident wavefield for FWI.

The second condition, ��L /� ū	��cste,m�cste�0, leads to the so-
called adjoint-state equation, expressed as

�L�ū,m,��

� ū
�P�dobs�Rū��B†�m���0 . �A-2�

For the derivation of equation A-2, we use the fact that ��,B�m�ū�
� �B†�m��,ū� and that the source does not depend on ū. Choosing
m�m0 and ū�u�m0� in equation A-2 leads to

B†�m0���P��d0�, �A-3�

which can be rewritten equivalently as

�*�B�1�m0�P��d0
*�, �A-4�

where we exploit the fact that B�1 is symmetric by virtue of the spa-
tial reciprocity of Green’s functions. The adjoint-state variables are
computed by solving a forward problem for a composite source
formed by the conjugate of the residuals, which is equivalent to back
propagation of the residuals in the model.

The third condition, ��L /�m	ū�cste,��cste�0, defines the mini-
mum of L in a comparable way as for the unconstrained minimiza-
tion of the misfit function C. We have

�L�ū,m,��

�m
���


�B�m�

�m
ū� . �A-5�

For any realization of the forward problem u, L�u,m,���C�m�.
Therefore, equation A-5 gives the expression of the desired gradient
of C as a function of the state variable and adjoint-state variable
when ū�u:

�C

�m
���


�B�m�

�m
u� . �A-6�

Inserting the expression of � �equation A-4� into equation A-3 and
choosing m�m0 gives the expression of the gradient of C at the
point m0 in the opposite direction of which a minimum of C is sought
for in FWI:

�C�m0�

�m
�ut�m0�

�Bt�m0�

�m
B�1�m0�P��d0

*� . �A-7�

Equation A-7 is equivalent to equation 24 in the main text.
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