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Abstract Leaf area index (LAI) is a critical vegetation structural variable and is essential in the feedback

of vegetation to the climate system. The advancement of the global Earth Observation has enabled the

development of global LAI products and boosted global Earth system modeling studies. This overview

provides a comprehensive analysis of LAI field measurements and remote sensing estimation methods, the

product validationmethods and product uncertainties, and the application of LAI in global studies. First, the

paper clarifies some definitions related to LAI and introduces methods to determine LAI from field

measurements and remote sensing observations. After introducing some major global LAI products,

progresses made in temporal compositing and prospects for future LAI estimation are analyzed.

Subsequently, the overview discusses various LAI product validation schemes, uncertainties in global

moderate resolution LAI products, and high resolution reference data. Finally, applications of LAI in global

vegetation change, land surface modeling, and agricultural studies are presented. It is recommended that

(1) continued efforts are taken to advance LAI estimation algorithms and provide high temporal and spatial

resolution products from current and forthcoming missions; (2) further validation studies be conducted to

address the inadequacy of current validation studies, especially for underrepresented regions and

seasons; and (3) new research frontiers, such as machine learning algorithms, light detection and ranging

technology, and unmanned aerial vehicles be pursued to broaden the production and application of LAI.
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1. Introduction

Leaf area index (LAI) quantifies the amount of leaf area in an ecosystem and is a critical variable in

processes such as photosynthesis, respiration, and precipitation interception (Alton, 2016; Asner,

Braswell, et al., 1998; S. Boussetta et al., 2013; Jarlan et al., 2008). As a fundamental attribute of global

vegetation, LAI has been listed as an essential climate variable by the global climate change research

community (GCOS, 2011).

Table 1 shows the definition of LAI and several closely related terms. LAI is generally defined as one half of

the total green leaf area per unit horizontal ground surface area (J. M. Chen & Black, 1992; GCOS, 2011). In

published studies, green LAI (GLAI) has been used to restrict the LAI definition to the green area active in

photosynthesis and transpiration (N.H. Broge & Leblanc, 2001; Haboudane et al., 2004; Viña et al., 2011).

LAI and GLAI are generally used equivalently in canopy reflectance models. In some studies, a green area

index (GAI) is defined to account for the area of green organs, which include leaves, stems, branches, and

fruits (Baret et al., 2010; N. H. Broge &Mortensen, 2002; Duveiller et al., 2011). GAI has been applied in agr-

onomy to study photosynthesis, canopy light interception, and light use efficiency (Baret et al., 2010;

Duveiller et al., 2011; Raymaekers et al., 2014). However, GAI is not equivalent to the photosynthetic area

because nongreen leaves may also contribute to photosynthesis, and photosynthesis may terminate for green

tissues under extreme conditions (Kolari et al., 2007; Sheue et al., 2012).

The plant area index (PAI) makes no distinction between green and nongreen elements, neither between

leaves and other elements (Jonckheere et al., 2004; Weiss et al., 2004). To convert PAI to LAI, one simple

approach is to subtract the woody area index (WAI), obtained in the leafless period, from the PAI obtained

in the leafy period using optical sensors (i.e., LAI = PAI − WAI; J.M. Chen, 1996; Leblanc & Fournier,

2014). WAI is generally calculated as one half the total woody surface area, including branches and stems,

per unit ground surface area (Gower et al., 1999; Law et al., 2001; Olivas et al., 2013; Weiskittel &

Maguire, 2006).

In some land surface models (LSMs), the stem area index (SAI) represents the sum of all nonphotosynthetic

vegetation, including stems, branches, and dead leaves (Gordon B. Bonan & Levis, 2006; Lawrence & Chase,

2007; X. Zeng et al., 2002). SAI can be calculated from either the developed surface area (Baret et al., 2010;

Lang et al., 1991; Stenberg, 2006) or the projected area, as in some earlier studies (J. M. Chen & Black, 1992;

Deblonde et al., 1994; Lang, 1987). The presence of SAI significantly affects the snow surface albedo because

of the absorption of nonphotosynthetic vegetation, the decrease of gaps in illumination, and the increase in

shadows (Tian, Dickinson, Zhou, Zeng, et al., 2004).

Optical methods to estimate LAI usually assume that leaves have infinitesimal size and are randomly distrib-

uted in the canopy volume (see section 2.3). However, actual canopy leaves have a finite dimension and are

nonrandomly distributed in space (the clumping effect). Therefore, the “effective” LAI is quantified when

derived from the directional gap fraction method, assuming the leaves are randomly distributed (Miller,

1967; Ryu, Nilson, et al., 2010). The effective LAI (LAIeff) is defined as the LAI value that would

produce the same indirect ground measurement as that observed, assuming a simple random foliage distri-

bution (J. M. Chen et al., 2005). The relationship between LAIeff and true LAI is defined as

LAIeff θð Þ ¼ Ω θð Þ×LAI; or

PAIeff θð Þ ¼ Ω θð Þ×PAI;
(1)

where Ω(θ) is the canopy clumping index, which describes the nonrandomness of the leaf foliage distribu-

tion, and θ is the solar zenith angle.
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For forest canopies, the understory and overstory LAIs need to be considered separately to estimate the dif-

ferent characteristics of vegetation. The overstory LAI indicates the ability of the canopy layer to intercept

radiation and precipitation (Law & Waring, 1994). The understory LAI is generally composed of shrubs

and herbaceous elements and is important for estimating the surface runoff and nutrient availability of

the underlying soil (Arora, 2002; Sumnall, Fox, et al., 2016). The entire vertical LAI profile can be derived

from the canopy transmittance at different heights (Kumagai et al., 2006; Olthof et al., 2003). The understory

LAI can then be calculated by subtracting the overstory LAI from the total canopy LAI.

At the canopy level, LAI can be separated into the sunlit and shaded portions (J. M. Chen et al., 2003; J M.

Chen et al., 2012). Sunlit leaves receive both diffuse and direct radiation, while shaded leaves receive diffuse

light only, such that their photosynthetic rates will be significantly different. This property has been adopted

in LSMs to distinguish the energy dependence of photosynthesis (Carrer et al., 2013; J M. Chen et al., 2012;

Hilker et al., 2011). The partitioning of the total canopy LAI into sunlit and shaded portions is a function ofΩ

and θ (Bonan, 2002; B. Chen et al., 2007):

LAIsunθ ¼
1−Pθ⋅ cosθ

Gθ
LAIshade ¼ LAI−LAIsun;

(2)

where P(θ) is the canopy gap fraction, G(θ) is the projection function, and LAIsun and LAIshade are the sunlit

and shaded LAIs, respectively. By the same rationale, the projected LAI is defined as the projected area of

green leaves or needles per unit horizontal ground surface area (Barclay & Goodman, 2000; Davi et al.,

2008). These different definitions reflect the different purposes for which LAI is determined and used.

The objective of this study is to provide an overview of LAI field measurement and remote sensing estima-

tion methods, global LAI product validation studies, and LAI applications. First, LAI field measurement and

Table 1

Definitions of LAI, GLAI, GAI, PAI, LAIeff, and PAIeff.

Green
leaves
only

Green + Non‐
green leaves

Leaves
only

Stems,
branches, and
nongreen leaves

Woody
elements
only

All
elements

Clumping
correction References

LAI Leaf area
index

√ √ √ J. M. Chen and Black (1992),
GCOS (2011), and
Watson (1947)

GLAI Green LAI √ √ √ Broge and Leblanc (2001),
Haboudane et al. (2004),
and Viña et al. (2011)

GAI Green area
index

√ √ √ Baret et al. (2010), Broge
and Mortensen (2002), and
Duveiller et al. (2011)

SAI Stem area
index

√ √ Lang et al. (1991),
Stenberg (2006), and
Baret et al. (2010)

WAI Woody area
index

√ √ Gower et al. (1999),
Law et al. (2001),
Olivas et al. (2013),
and Weiskittel and
Maguire (2006)

PAI Plant area
index

√ √ √ Bréda (2003),
Jonckheere et al. (2004),
and Weiss et al. (2004)

LAIeff Effective LAI √ √ Demarez et al. (2008),
Fang et al. (2014),
and Ryu, Nilson, et al. (2010)

PAIeff Effective PAI √ √ J. M. Chen et al. (1991),
J. J. Richardson et al. (2009),
and F. Zhao et al. (2011)

Note. GCOS = Globe Climate Observing System.

10.1029/2018RG000608Reviews of Geophysics

FANG ET AL. 741



remote sensing estimation methods (sections 2 and 3) are provided, and then, various LAI validation

schemes are discussed, focusing on the uncertainties in the global LAI products and the high resolution

reference data (section 4). Subsequently, the paper provides a synthesis of LAI applications in vegetation

monitoring, land surface modeling, and agricultural studies (section 5). Finally, recommendations are

provided on how to improve the global LAI products and their validation and application (section 6).

2. LAI Field Measurement

LAI field measurement methods, uncertainties, and remedies have been reviewed by many authors

(Table 2). Field LAI is traditionally estimated by either direct or indirect methods (Bréda, 2003;

Jonckheere et al., 2004; Weiss et al., 2004). The direct methods measure the leaf area and estimate LAI from

harvested leaves or leaf litters. The indirect methods are based on (1) an allometric relationship with other

canopy biophysical variables, for example, diameter at breast height (DBH) for tree canopies, or (2) a

logarithmic relationship with the canopy transmittance or gap fraction measurements.

2.1. Direct Measurement

LAI can be directly obtained by harvesting vegetation leaves through destructive sampling or collection of

leaf litters and measuring their area (F. Baret et al., 2010; Nasahara et al., 2008). Leaf litters are collected

using litter traps on the forest floor during the leaf‐fall season and are sorted by species or by stem basal area

(Nasahara et al., 2008). The leaf surface area can be measured using a leaf area meter or a scanner. The

Li‐3000 leaf area meter (LI‐COR Inc., Lincoln, Nebraska, USA) is one of the most common instruments

for this measurement. Alternatively, leaf area can be calculated through the specific leaf area (SLA, the leaf

area per unit of dry leaf mass) in the laboratory. The SLA and total dry mass of each foliage age class are

multiplied to calculate the LAI for the canopy (Baret et al., 2010).

LAI ¼ SLA×leaf mass (3)

SLA can only be obtained through destructive measurements, and dry leaf weights are generally used since

fresh weights are subject to changes in leaf water content. When SLA is used to estimate the crop leaf area,

the SLA is usually assumed to be constant or vary with plant age or season (Ali et al., 2017; R. Xu et al., 2010).

The destructive sampling method is more appropriate for short‐stature ecosystems, for example, agriculture

crops, grasslands, and tundra, while litter traps are more appropriate for deciduous forests. Direct measure-

mentmethods obtain the true LAI values and are often used as references for the indirect measurement tech-

niques. Nevertheless, direct measurement methods are usually labor intensive when applied to a large area.

2.2. Estimation From Allometric Relationships

The allometric method estimates LAI based on an empirical regression with other easily measurable vegeta-

tion variables, for example, the DBH (Gower et al., 1999; le Maire et al., 2011; Majasalmi et al., 2013).

Table 2

Major Field LAI Measurement Methods

Methods Principle Notes References

Destructive Destructive sampling and measurement
of leaf area

Obtain true LAI. Usually labor intensive
and limited by the number and
distribution of samples. Allometric
relationships are usually site specific.

Asner et al. (2003), Baret et al. (2010);
Fang, Wei, and Liang (2012), and Majasalmi
et al. (2013)Litter traps Collection and measurement of leaf

litter area
Allometric Relationship between leaf area and

other structural variables
LAI‐2200 The Miller formula (equation (7)) Efficient methods to obtain PAIeff or

LAIeff. PAI and LAI can be derived with
a clumping correction (equation (1))

Bréda (2003), Fournier and Hall (2017),
Jonckheere et al. (2004), Weiss et al. (2004),
and Woodgate et al. (2015)

TRAC The Beer‐Lambert equation (equation (5))
DCP & DHP Classification and gap fraction estimation

(equations (5) and (7))

Note. DCP = digital cover photography; DHP = digital hemispherical photography; TRAC = Tracing Radiation and Architecture of Canopies; LAI = leaf area
index; PAI = plant area index; PAIeff = effective PAI; LAIeff = effective LAI.
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log LAIð Þ ¼ a log DBHð Þ þ b; (4)

where a and b are regression coefficients derived from field measured LAI and DBH for different

species, height, and management practices. In many studies, LAI is estimated as a product of the leaf

length and width for different plant types and ages (Baret et al., 2010; Colaizzi et al., 2017; Homem

Antunes et al., 2001).

The allometric relationship can be improved when additional biophysical parameters, such as canopy cover

and canopy height, are included in the model (Döbert et al., 2015; Jensen et al., 2008; le Maire et al., 2011;

Majasalmi et al., 2013; Olsoy et al., 2016). As an alternative, Turner et al. (2000) suggested estimating LAI

from the sapwood cross‐sectional area, because of their strong physiological relationship. Climatic

variables, such as growing degree days and air temperature, have also been added to improve the model

performance (Colaizzi et al., 2017; Yoshida et al., 2007). Although the approach is more commonly used

for forests (Law et al., 2001; Vyas, et al., 2010), it has also been explored for crops (Colaizzi et al., 2017;

Yoshida et al., 2007). Different allometric models may produce significantly different LAI estimates

(Majasalmi et al., 2013).

2.3. Estimation From Indirect Optical Methods

2.3.1. General Principles

Indirect optical methods estimate LAI from the canopy gap fraction following the Beer‐Lambert law

(Nilson, 1971):

LAI ¼
− lnP θð Þ⋅ cos θð Þ

G θð Þ⋅Ω θð Þ
; (5)

where P(θ) is the canopy gap fraction at zenith angle θ andG(θ) is the projection function that corresponds to

the fraction of foliage projected on the plane normal to the solar direction. Miller (1967) simplified the

inversion of equation (5) by showing that

∫
π=2

0 G θð Þ sinθdθ ¼ 0:5; (6)

for any leaf inclination distribution function. Assuming the foliage elements are randomly distributed in

space (Ω = 1), LAI can be estimated from the gap fraction at different view angles (Miller, 1967).

LAIeff ¼ 2∫
π=2

0 − lnP θð Þ cosθ sinθdθ: (7)

Alternatively, G(θ) can be explicitly modeled from the leaf inclination distribution function f (θL).

Assuming the leaf azimuth distribution is uniform, the computation of G(θ) is expressed by (Warren

Wilson, 1960)

G θð Þ ¼ ∫
π=2

0 A θ; θLð Þf θLð ÞdθL

A θ; θLð Þ ¼ cosθ cosθL þ sinθ sinθL cos θ−θLð Þ:
(8)

Among existing leaf inclination distribution function models, the ellipsoidal distribution has been widely

used (Mailly et al., 2013; W. M. Wang et al., 2007; Weiss et al., 2004). In this case, f (θL) is described as a func-

tion of the ratio of the horizontal to vertical axes of the ellipse (Campbell, 1986, 1990).

The canopy clumping index (Ω) in equation (5) can be estimated through the nonrandom distribution of gap

fractions or gap sizes. The gap fraction‐based Ω is calculated using the logarithmic gap fraction averaging

method (the LX method; Lang & Xiang, 1986):

ΩLX θð Þ ¼
lnP θð Þ

lnP θð Þ
: (9)

Similarly, the gap size‐based Ω is calculated using the logarithmic gap size averaging method (the CC

method; J. M. Chen & Cihlar, 1995; Leblanc, 2002).
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Ωcc θð Þ ¼
ln Fm 0; θð Þ½ �

ln Fmr 0:θð Þ½ �

1−Fmr 0; θð Þ½ �

1−Fm 0; θð Þ½ �
; (10)

where Fm(0, θ) is the measured accumulated gap fraction larger than zero, that is, the canopy gap fraction,

and Fmr(0, θ) is the gap fraction for the canopy when nonrandom large gaps have been removed. The LX and

CC methods can be integrated (hence the CLX method), to combine the advantages of both methods

(Leblanc et al., 2005).

2.3.2. Major Devices

Several extensive review papers have covered the devices for LAI field measurements (e.g., Bréda, 2003;

Jonckheere et al., 2004; Weiss et al., 2004). A number of instruments, such as digital cover photography

(DCP), digital hemispherical photography (DHP), the LAI‐2200 (or the predecessor LAI‐2000; LI‐COR

Inc., Lincoln, Nebraska, USA) plant canopy analyzer, AccuPAR LP‐80 ceptometer (Decagon Devices Inc.,

Pullman, Washington, USA), and the tracing radiation and architecture of canopies (TRAC; Third Wave

Engineering, Ontario, Canada), have been used to estimate LAI. The LAI‐2200 has five concentric conical

rings (7°, 23°, 38°, 53°, and 68°) recording the incident light. The gap fraction is calculated from concurrent

below and above canopy readings

P θð Þ ¼ e lnPo θð Þð Þ ¼ e
1
N
∑N

j¼1 ln
Bj
Aj

� �

; (11)

where Bj and Aj are the jth (j = 1 … N) below and above canopy readings, respectively. Consequently, LAI is

estimated from equation (7). The LAIeff estimated by LAI‐2200 can be converted to LAI usingΩ estimated by

other methods.

Digital photography, including both DCP and DHP, provides a permanent recording of field condition and

offers the ability to analyze images at different exposures (Chianucci & Cutini, 2012; Fournier & Hall, 2017).

Both downward and upward pictures can be taken for short and high canopies. A thresholding process is

necessary to separate the foliage from the soil background (downward view) or the sky (upward view).

Several public programs, for example, CAN‐EYE (Weiss & Baret, 2014), CIMES (Gonsamo et al., 2011),

GLA (Frazer et al., 1999), and SOLARCALC (Mailly et al., 2013), and commercial ones, for example,

HemiView (Delta‐T Devices Ltd, Cambridge, UK) and WinScanopy (Regent Instruments, Quebec City,

Canada), are available to process photographs. They provide manual interactive or automatic methods to

determine the canopy gap fraction and estimate LAIeff (equations (5) and (7); Frazer et al., 1999;

Gonsamo et al., 2011; Mailly et al., 2013; Weiss & Baret, 2014). The true LAI can be derived after the canopy

clumping effect is corrected (equation (1)).

The TRAC sensor records the transmitted direct light at high frequency and is often used for forest LAI mea-

surement. TRAC accounts for not only canopy gap fraction but also the canopy gap size distribution. In

essence, TRAC estimates LAIeff based on the Miller formula (equation (7)). The standard TRAC algorithm

estimates Ω with the CC method (equation (10)), which can be used to convert LAIeff to LAI (J. M. Chen

& Cihlar, 1995; Leblanc, 2002).

For needleleaf forest, LAI is calculated as (J.M. Chen, 1996)

LAI ¼ ð1−αÞ⋅PAIeff ⋅γE=ΩE: (12)

ΩE is the element clumping index, which quantifies the effect of foliage clumping at scales larger than

shoots, γE is the needle‐to‐shoot area ratio, which quantifies the effect of foliage clumping within shoots,

and α is the woody‐to‐total‐plant‐area ratio, used to represent the contribution of woody material to the total

area, including nongreen leaves, branches, and tree trunks. For broadleaf forests, γE equals unity. When no

distinction is made between green leaves and other nonphotosynthetic elements, the actual quantity mea-

sured by optical methods is PAI.

The indirect optical method generally assumes that (1) foliage is black and does not transmit light and (2)

individual leaf size is small compared with the canopy and the sensor field of view. LAI‐2200 and DHP prefer

diffuse measurement conditions, for example, in twilight or overcast days. In contrast, a clear blue sky with

unobstructed sun is optimal for TRAC, as it requires distinct sun flecks and shadows. DHP is easy to operate
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and can simultaneously obtain canopy transmittance, leaf angle distribu-

tion, canopy coverage, and the clumping index (Chianucci & Cutini, 2012;

Demarez et al., 2008; Macfarlane et al., 2007). New ways of field methods

are currently under development, such as the use of wireless sensor net-

works (Qu, Han, et al., 2014; Qu, Zhu, et al., 2014) and smartphone appli-

cations (Confalonieri et al., 2013; Qu et al., 2016).

2.3.3. Sampling Strategy

The field sampling process is critical for field data quality. A variety of

sampling designs, including random sampling (Majasalmi et al., 2012;

Weiss et al., 2004), systematic sampling (Burrows et al., 2002; Law et al.,

2001; Nackaerts et al., 2000), stratified sampling (López‐Serrano et al.,

2000; Yin, Li, Zeng, et al., 2016; Y. Zeng et al., 2014), and their combina-

tions, has been explored in LAI field measurements. For close and homo-

geneous canopies, the discrepancies between different sampling schemes

are small. The impact of random sampling errors may be reduced by

averaging across multiple plots or measurement points. The stratified

sampling method was found to be more appropriate for heterogeneous

areas (López‐Serrano et al., 2000; Y. Zeng et al., 2014). Recently, Jiapaer

et al. (2017) found that the regular grid sampling is best for LAI‐2000

sampling in the scattered forest. As a combination, the stratified random

sampling method provides flexibility to local sample size variation and

adaptability to the global accuracy requirement (Clark et al., 2008;

Mayaux et al., 2006; Stehman et al., 2012).

The number of samples is determined by the size of the study area and the accuracy requirement. Various

statistical analysis approaches can be used to select the site‐specific sampling number needed in random

and systematic sampling (Jiapaer et al., 2017; Majasalmi et al., 2012). Majasalmi et al. (2012) found that 12

LAI‐2000measurements are sufficient to obtain an accuracy of 0.15 and 0.06 for a boreal forest using random

and systematic sampling methods, respectively. For crops, about 5 to 15 individual measurements are gen-

erally required for each elementary sampling unit (ESU), whereas about one to three ESUs are usually taken

per crop type (Garrigues, Shabanov, et al., 2008;Weiss et al., 2004). Moreover, a few studies have dedicated to

LAI temporal sampling (Fang et al., 2014; Fang et al., 2018; Raymaekers et al., 2014; Ryu et al., 2012).

However, there is still no consensus on the measurement methods and sampling scales and frequencies.

2.4. Uncertainties in Field Measurements

Uncertainties in LAI field measurements usually stem from the measurement methods, the clumping effect

process, and the inclusion/exclusion of woody and understory vegetation. Earlier studies have found severe

underestimation in LAI‐2000 (up to 50%), especially for forest, compared to the direct harvest method

(Broadhead et al., 2003; Kalácska et al., 2005; Olivas et al., 2013), mainly due to the clumping effect and

the outer ring errors (Pearse et al., 2016). The potential systematic errors between LAI‐2200 and DHP can

range from 10–15% for crops (Fang et al., 2014; Verger, Martinez, et al., 2009) to 10–20% for forests (A. D.

Richardson et al., 2011; Woodgate et al., 2015). The range of errors is slightly higher than the empirical

10% assigned to field LAI by a few modelers (Fox et al., 2009; Williams et al., 2005).

Several field LAI databases have been constructed by compiling individual plot‐ and site‐based LAI

measurements over the past few decades (Asner et al., 2003; Baret, Morissette, et al., 2006; Fang, Wei, &

Liang, 2012; Iio et al., 2014). Most field LAI data are obtained by indirect optical methods (supporting infor-

mation Table S3). Field optical measurements generally estimate the total PAI, which includes contributions

from the woody component. WAI values can be separately measured in leaf‐off seasons (Fang et al., 2003;

Kalácska et al., 2005; Leblanc & Chen, 2001) or with a near‐infrared (NIR) camera (Chapman, 2007; Zou

et al., 2009). Figure 1 shows the range of typical woody‐to‐total‐plant‐area ratio (α in equation (12)), with

lower values for the tropical forest and higher values for savanna. This wide range of α values suggests the

range of errors that could be introduced in the LAI indirect estimates without a proper woody correction.

The assumption about clumping parameters remains a large source of uncertainty (R. A. Fernandes et al.,

2003; Garrigues, Lacaze, et al., 2008; A. D. Richardson et al., 2011). To be comparable with satellite LAI

Figure 1. The range of typical values of woody‐to‐total‐plant‐area ratio
(α, equation (12)) for different vegetation types. (1) Sonnentag et al. (2007);
(2) Asner, Wessman, et al. (1998); (3) Deblonde et al. (1994) and Z. Li et al.
(2018); (4) J. M. Chen (1996) and Weiskittel and Maguire (2006); (5) Gower
et al. (1999), Z. Liu et al. (2015), and Ma et al. (2016); (6) Kalácska et al.
(2005); and (7) Olivas et al. (2013).
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products, PAIeff or LAIeff, estimated by the optical methods, needs to be converted to true LAI

(LAI = LAIeff / Ω). Among the optical instruments, DCP (Ryu et al., 2012), DHP (Fang et al., 2014;

Leblanc et al., 2005; van Gardingen et al., 1999), LAI‐2200 (Fang et al., 2014; Fang et al., 2018), and TRAC

(J. M. Chen & Cihlar, 1995) have been used to take canopy gap measurements and estimate Ω. The choice

of a specific method varies for different biome types and ground conditions (Demarez et al., 2008;

Gonsamo & Pellikka, 2009; Pisek et al., 2011). However, the Ω values estimated by different methods

may differ by 10–15% (Fang et al., 2014; Pisek et al., 2011). For broadleaf forests, a few studies have found

that the PAIeff and LAI values are similar because the clumping effects are compensated by the contribu-

tion of woody structures (Fournier et al., 2003; Schlerf et al., 2005). In general, field LAI measurements

may achieve uncertainties of <1.0 by conforming to instrument measurement standards and

performing a clumping correction (Fang, Wei, & Liang, 2012; R. A. Fernandes et al., 2003; Garrigues,

Lacaze, et al., 2008).

3. Remote Sensing Methods

3.1. General Principles

Estimation of LAI from remote sensing data has been extensively explored during the past few decades

(Baret, 2015; J. M. Chen, 2018; Houborg et al., 2007; Verrelst, Camps‐Valls, et al., 2015; Zheng & Moskal,

2009). LAI is mainly derived from passive optical sensors, the active light detection and ranging (LiDAR)

instrument, and microwave sensors using empirical transfer and model inversion methods.

3.1.1. Empirical Transfer Functions

LAI can simply be estimated through empirical relationships with canopy reflectance or vegetation indices

(VIs; Broge & Leblanc, 2001; Gitelson, 2004; Kimura et al., 2004; Viña et al., 2011; F. Yang et al., 2012). Many

studies have highlighted the effectiveness of the NIR band for LAI estimation for crops (Houborg et al., 2009;

Shibayama, Sakamoto, Takada, Inoue, Morita, Takahashi, et al., 2011; Shibayama, Sakamoto, Takada,

Inoue, Morita, Yamaguchi, et al., 2011) and forests (Kobayashi et al., 2007). The NIR band is particularly use-

ful for LAI estimation in densely vegetated areas where the VIs may saturate (Houborg et al., 2009; Houborg

& Boegh, 2008). Kobayashi et al. (2010, 2007) found that the NIR band can be used to estimate the overstory

LAI in the larch forest in Siberia. On the other hand, some earlier studies reported that the shortwave infra-

red band is better than other bands for forest LAI mapping (Aragão et al., 2005; Cohen, Maiersperger, Yang,

et al., 2003; Eklundh et al., 2001; R. Pu et al., 2005). However, the single‐band method is sensitive to the

atmospheric conditions and background setting for low vegetation densities (Houborg & Boegh, 2008;

Kobayashi et al., 2010; Mannschatz et al., 2014). Therefore, some studies recommend to estimate LAI with

multiple bands (Cohen, Maiersperger, Gower, et al., 2003; Eklundh et al., 2003; Martínez et al., 2009).

The vegetation index (VI) method overcomes the limitations of single bands through the different forms of

band combinations and is currently the most commonly used empirical method to estimate LAI. The advan-

tage of the VI approach is its simplicity and ease of usage. The most commonly used VIs include the ratio VI

(Darvishzadeh et al., 2009; Deng et al., 2006), normalized difference VI (NDVI; Jesús Delegido, et al., 2011;

Kamal et al., 2016; Serbin et al., 2013; Tillack et al., 2014; Tong & He, 2013), the enhanced VI (EVI; Houborg

et al., 2007; A. Huete et al., 2002), and the soil‐adjusted VI (SAVI; Biudes et al., 2014; X. Gao et al., 2000).

Hyperspectral reflectance data and hyperspectral indices have been widely explored in LAI estimation

(K.‐S. Lee et al., 2004; L. Liang et al., 2015; Locherer et al., 2015; Verger, Baret, & Camacho, 2011). The prin-

ciple component analysis is usually applied to explore the relationship between the principle components of

the spectral bands and LAI (S. Chaurasia & Dadhwal, 2004; F. Yang et al., 2012). However, some studies

reported that hyperspectral data are not necessarily better than broadband data in the LAI estimation

(Broge & Leblanc, 2001; Broge & Mortensen, 2002; Weiss et al., 2000).

The statistical relationship is commonly built with a simple linear, polynomial, exponential, or logarithmic

model (J. Qi et al., 1994). The coefficients of themodel can be derived through the ordinal least square regres-

sion (Cohen, Maiersperger, Gower, et al., 2003; Curran & Hay, 1986), the partial least‐squares regression

(X. Li, Zhang, et al., 2014; Serbin et al., 2013), and the canonical correlation analysis (Cohen,

Maiersperger, Gower, et al., 2003). Other more sophisticated regressionmethods have also been investigated,

such as the kernel ridge regression, the look‐up table method (LUT), the neural network (NN) method, the

random forest regression, and the support vector regression (Durbha et al., 2007; Kira et al., 2016; L. Liang
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et al., 2015; E. Pasolli et al., 2012; F. Yang et al., 2012). The Gaussian process regressionmethod, which builds

a nonlinear regression as a linear combination of spectra mapped to high‐dimensional space, has been

demonstrated as a promising alternative to the traditional empirical approach (Campos‐Taberner et al.,

2016; Lazaro‐Gredilla et al., 2014; Verrelst, Muñoz, et al., 2012; Verrelst, Alonso, et al., 2012).

The strength and generality of the empirical LAI‐reflectance and LAI‐VI relationships are limited by many

external factors, including vegetation type, sun‐surface‐sensor geometry, leaf chlorophyll content, back-

ground reflectance, and atmospheric quality (Table 3). A general solution is to include these factors in sta-

tistical models or to develop new VIs that are sensitive to LAI but are robust to these factors (Table 3).

Themajor challenge is that there is no universal LAI‐reflectance or LAI‐VI relationship applicable to diverse

vegetation types, because the empirical coefficients depend primarily on vegetation types. In practice, an

LAI‐VI transfer function can be developed for each vegetation type, for example, coniferous, deciduous,

mixed forests, and nonforest types (Deng et al., 2006). The majority of developed algorithms from statistical

methods generally do not separate for estimation of GAI, GLAI, LAIeff, LAI, PAIeff, or PAI (Table 1);

therefore, novel models need to be developed to estimate each individual variable (Delegido, et al., 2015;

Malenovský et al., 2008). New VIs are needed to overcome the complex background and atmospheric

effects and mitigate leaf pigment effects (L. Liang et al., 2015; Q. Xie et al., 2018). The selection of optimal

bands for VIs may change with the season (Heiskanen, Rautiainen, Stenberg, Eigemeier, et al., 2012), and

separate relationships can be developed before and after the mature stage (Bacour et al., 2002; Q. Wang

et al., 2005).

3.1.2. Model Inversion Method

Canopy reflectance models relate fundamental canopy, for example, LAI, and leaf properties, to the scene

reflectance for a given sun‐surface‐sensor geometry (Goel & Thompson, 2000; S. Liang, 2004). These

models vary in degrees of complexity and may be grouped into four categories: kernel‐based, turbid med-

ium, geometrical, and computer simulation models. The kernel‐based model estimates the directional

reflectance of a land surface on the basis of the sun‐surface‐sensor geometry, bowl/bell shape, and

backward/forward scattering shape of the anisotropic reflectance pattern (X. Huang, Jiao, et al., 2013;

Rahman et al., 1993; Roujean et al., 1992). The turbid medium model simulates the canopy as turbid

parallel layers above a ground surface (Kuusk, 2001). Turbid medium models are best suited for dense

canopies with small vegetation elements, for example, grasses, agricultural crops, and forests. A widely

used model in this category is the PROSAIL model (Berger et al., 2018; Jacquemoud et al., 2009), which

combines the PROSPECT leaf optical properties model (Jacquemoud & Baret, 1990) and the Scattering by

Arbitrarily Inclined Leaves canopy bidirectional reflectance model (Verhoef, 1984). In geometric optical

models, the canopy architecture is described with different geometric objects (e.g., cones, spheroids,

ellipsoids, and cubes), according to a given distribution and optical properties (J. Chen et al., 2000;

J. M. Chen & Leblanc, 1997; X. Li & Strahler, 1985). Computer simulation models rely on an explicit

description of the canopy architecture and trace photon interactions with the canopy and the environment

(Disney et al., 2006; Roupsard et al., 2008). For example, the Discrete Anisotropic Radiative Transfer

(Gastellu‐Etchegorry et al., 2004, 2015) and Radiosity Applicable to Porous Individual Objects (H. Huang,

Qin, et al., 2013; H. Huang et al., 2018) models are two such models that are under continuous development

and maintenance, with features to simulate layered inhomogeneous canopies, urban landscapes, and

airborne measurements.

Because of the complexity of the model, LAI is usually estimated from the canopy reflectance through a

model inversion method (Richter, Atzberger, et al., 2012; Verrelst, Camps‐Valls et al., 2015). Given a set of

reflectance, the inversion process determines the set of canopy biophysical variables, so that the computed

reflectances best fit the remote sensing reflectances. Classical inversion methods include the numerical opti-

mization technique (Houborg & Boegh, 2008; Lewis et al., 2012), the NN approach (Baret et al., 2013; Fang &

Liang, 2003), and the LUT approach (D. Huang et al., 2008; Verrelst et al., 2014). Both NN and LUTmethods

are easy to use once the database is generated from a range of properly configured input variables. For both

methods, the number of simulations are enormous when all the combinations of parameters are considered.

For the LUT method, it has been recommended to choose 100,000 reflectance realizations and use the best

50 cases to achieve a most efficient retrieval (Darvishzadeh, et al., 2008; Richter et al., 2011; Verrelst et al.,

2014; Weiss et al., 2000). Other machine learning algorithms, such as the Bayesian network algorithm

(V.C.E Laurent et al., 2012; Qu, Zhang, et al., 2014; Quan et al., 2015; Yao et al., 2008), the support vector
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Table 3

A Summary of Major Effects in LAI Field Measurement and Remote Sensing Estimation From Statistical and Model Inversion Methods

Effects Description Field and empirical mitigation methods Modeling methods

Atmospheric
effect

Atmospheric conditions limit
the field LAI measurements,
affect LAI estimation from
remote sensing data, and
usually lead to product gaps.

Conduct field measurement under optimal
conditions. Estimate LAI from
atmospherically corrected surface
reflectance data (Turner et al., 1999).
Develop VI that can reduce the
atmospheric impact, for example,
ARVI (Kaufman & Tanré, 1992) and
ISR (R. A. Fernandes et al., 2003). Fill
LAI data gaps for the user community
(section 3.4).

Estimate LAI from surface reflectance
data through the model inversion
method or estimated from the TOA
radiance or reflectance data coupling
the atmospheric RT modeling process
(Fang & Liang, 2003; Houborg
et al., 2009; Laurent et al., 2014;
Shi et al., 2016).

Background
effect

Remote sensing information
contains mixed information
from the background and
vegetation. Proper
characterization of the
background is vital to obtain
realistic LAI estimation.

Use VI that can suppress the background
effect (Diaz & Blackburn, 2003;
Gonsamo & Chen, 2014; Y. Qi et al.,
2014), for example, the SAVI (A. R.
Huete, 1988) or RSR (J. M. Chen et al.,
2002). Include background information
in the VI formulation (Pisek et al., 2010;
D. Zhao, Yang, et al., 2012). Use
different statistical relationships for
different vegetation densities (Houborg
& Boegh, 2008; Villa et al., 2014).

Use typical soil reflectances (S. Jacquemoud
et al., 1992) or simulated soil reflectances
(Price, 1990) in RT models. Use
background reflectance estimated from
RS to retrieve the overstory LAI
(Pisek et al., 2010). More attentions are
necessary for complicated water and
snow backgrounds (Manninen, Korhonen,
Riihelä, et al., 2012; Vaesen et al., 2001).

Chlorophyll
effect

Leaf Cab affects the canopy
optical properties and thus
the LAI estimation.
Conventional VI method
may be compromised for
canopies having different
Cab contents
(Blackburn, 1999).

Develop and use VIs that are more sensitive
to LAI than to Cab, for example, the
enhanced vegetation index 2 (Y. Fu et al.,
2013), or more efficient in estimating both
Cab and LAI, for example, the photochemical
reflectance index (A. A. Gitelson et al.,
2017). Estimate LAI and Cab, separately,
with different VIs (le Maire et al., 2008;
Stagakis et al., 2010; D. Vyas et al., 2013).

Couple leaf optical models that explicitly
includes Cab, for example, PROSPECT
(S. Jacquemoud & Baret, 1990), in the
model simulation. Jointly retrieve Cab
and LAI using a regular model inversion
approach (Gascon et al., 2004; Houborg
et al., 2015; Laurent et al., 2014).

Classification
effect

Errors in land cover classification
affect the canopy RT model
parameterization and LAI
estimation methods that require
the a priori classification
information (Fang, Li, et al.,
2013; Serbin et al., 2013).

Biome‐specific empirical functions (D.P. Turner et al., 1999) and LUT configurations
(Houborg et al., 2009) have been developed for LAI retrieval. Alternatively, the
NN methods have been used in the GEOV1 (F. Baret et al., 2013) and GLASS
(Zhiqiang Xiao et al., 2014) products, which do not rely on the classification information.
Uncertainties in the input classification map, especially confusion between herbaceous
and woody vegetation, can fatally impact LAI retrievals (Y. Tian et al., 2000). However,
the impact can be smaller if similar biomes, for example, grasses and cereal crops,
are confused (Fang, Li, et al., 2013; R. B. Myneni et al., 2002). Essentially, the
accuracy of the land cover maps needs to be improved.

Clumping
effect

The clumping effect, indicated by
the clumping index (CI), affects
the LAI field measurements,
remote sensing modeling and
parameter retrieval. CI is
scale‐dependent and tends to
increase with the increasing
spatial resolution (Chianucci,
Macfarlane, et al., 2015;
Damm et al., 2015).

Estimate CI and perform clumping
correction using optical instruments
(section 2.3). Estimate CI from remote
sensing data using various shape
indicators (J. M. Chen et al., 2005;
Lacaze et al., 2002) and vegetation
indices (Roujean & Lacaze, 2002;
Thomas et al., 2011).

The clumping effect is considered in many
canopy reflectance models (section 3.1).
A few CI products have been derived
from POLDER, MODIS, and MISR
(J. M. Chen et al., 2005; L. He et al., 2016;
Wei & Fang, 2016).

Directional
effect

Land surface reflectance and VI
values are different when
calculated from different
sun‐surface‐sensor geometries.
This affects the modeling and
estimation of LAI from
directional observations.

Simple application of global VI‐LAI
relationship will lead to large errors
(Breunig et al., 2011; Y. Kang
et al., 2016). Use BRDF‐adjusted VIs
and develop new directional based
indices (Deng et al., 2006; Lacaze
et al., 2002; Pocewicz et al., 2007).

It is a common practice to model the
directional reflectance through an RT
process for the coupled soil and canopy
system (Houborg et al., 2009;
S. Jacquemoud et al., 1992; Kuusk, 1998).
LAI is then retrieved from the directional
reflectance through various model
inversion methods (Table 4).

Saturation
effect

Surface reflectance and VI
stagnant even with
the increasing of LAI

Use narrow band reflectance and VI
(D. J. Diner et al., 1999; Gemmel &
McDonald, 2000) or develop new

No effective methods to solve the intrinsic
problem. Some nonparametric machine‐
learning algorithms, for example, the
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Table 3 (continued)

Effects Description Field and empirical mitigation methods Modeling methods

(Y. Fu et al., 2013; Gower
et al., 1999). This happens for
both field measurement and
remote sensing estimation.

VI to reduce the sensitivity to the
saturation effect, for example, the
Wide Dynamic Range Vegetation
Index (Anatoly A. Gitelson, 2004).

Gaussian processes regression, are reported
to partly overcome the effect
(Verrelst, Rivera, et al., 2015).

Scaling
effect

The LAI estimation methods are
only valid for a particular
spatial scale, causing
problems in comparing LAI
values estimated from
different scales, for example,
field measurements and high
and low resolution remote
sensing measurements.

See relevant reviews (J. Chen,
1999; F. Gao et al., 2014;
Garrigues et al., 2006a;
H. Wu & Li, 2009).

Quantify and correct the scaling bias,
based on the nonlinearity of the
transfer functions and the spatial
heterogeneity (J. Chen, 1999;
Garrigues et al., 2006a; Garrigues
et al., 2006b; Z. Hu & Islam, 1997;
X. Zhang et al., 2006). Use linear
transfer functions based on different
VI intervals. Collect sufficient amount
of field data in homogeneous and
large sites in validation studies.

The magnitude of the scaling bias increases
with the model nonlinearity and the surface
heterogeneity. Develop scale‐dependent
models (Yuhong Tian et al., 2003) and use
scale dependency in LAI retrieval (R. B.
Myneni et al., 2002). The theory of canopy
spectral invariants may help improve the
scaling property of the 3‐D RT models and
make the algorithm feasible for different
spatial resolutions (Stenberg et al., 2013).

Shadow
effect

Shadows from soil, leaf and
canopy, terrain, cloud, and
instrument hardware affect the
LAI field measurements and
remote sensing modeling and
retrieval. The shadow effect is
scale‐dependent and tends to
increase with the increasing
spatial resolution
(Damm et al., 2015).

Estimate the fraction of shadow from
LiDAR (Hilker et al., 2011) or from
satellite imagery using spectral
mixture analysis (B. Hu et al., 2004;
Peddle et al., 1999). Use a shadow
correction factor based on
measurement geometry (Wright
et al., 2014) or the needle‐to‐shoot
area ratio for conifer forests
(Heiskanen, Rautiainen, Stenberg,
Mõttus, et al., 2012). Include the
correction factor in empirical models
(Peddle et al., 1999).

The contribution of shadowed and illuminated
components have been explicitly modeled in
component‐based models (Gascon et al.,
2004; W. H. Qin & Xiang, 1994), kernel‐
driven models (Roujean et al., 1992), turbid
medium models (Verhoef, 1984), and
geometric‐optic models (Q. Wang
et al., 2013).

Snow
effect

The presence of snow below or
on the canopy affects field
measurement, remote sensing
modeling and parameter
retrieval, product validation,
and their applications.

Discriminate vegetation from snow cover using
spectral unmixing methods (Verrelst et al.,
2010). Develop new vegetation indices, for
example, the NDPI (Cong Wang et al., 2017)
and PPI (H. X. Jin & Eklundh, 2014), to
suppress the snow impact on canopy LAI
estimation (B. Hu et al., 2004). Ground
snow cover may help forest LAI
measurement (T. Manninen, Korhonen,
Voipio, et al., 2012).

The impact of snow on surface reflectance
has been considered in various models
(Baker et al., 2017; Ni & Woodcock, 2000;
Pulliainen et al., 2015). The dynamics of
snow also needs to be modeled and the
snow status labeled in the product
quality layer.

Temporal
effect

Broadly means (1) the temporal
variation of field measurement
conditions; (2) the variation of
vegetation in RT modeling and
LAI retrieval; (3) temporal
mismatch between field and RS
data in product validation;
and (4) uncertainties in
interpolation/extrapolation of
LAI products.

Develop and use automatic field
measurement methods. Separate
statistical models for different
growing phases (B. Lee et al., 2017;
Potithep et al., 2013). Select
temporally resistant bands
(Heiskanen,Rautiainen, Stenberg,
Eigemeier, et al., 2012) and
include the temporal factor in
statistical models (Guindin‐Garcia
et al., 2012).

Parameterize RT models with temporally
variable values. Temporal filtering
(section 3.3) and multisensor fusion
(Table 6) to increase the product
temporal resolutions and accuracies.

Texture
effect

Soil texture, an important soil
property, influences the soil
reflectance (see the background
effect; Thomasson et al., 2001).

Simple relationship can be built between LAI and NDVI and SR texture measures
(Kraus et al., 2009; Moskal & Franklin, 2004). Combination of spectral features
with texture features improves LAI mapping for meter resolution images, for example,
WorldView‐2 (Ruiliang Pu & Cheng, 2015) and IKONOS (Colombo et al., 2003;
Z. Gu et al., 2012; Johansen & Phinn, 2006) and for radar images (Wong & Fung, 2013).

Topographic
effect

Topography affects the field LAI
measurement, remote sensing
modeling, and LAI retrieval.
Topography is a critical factor
in LiDAR signal processing

Follow the instrument guidelines for field measurements at slopes. Perform
topographic corrections for field measured (Gonsamo & Pellikka, 2008;
María Luisa et al., 2008) and remote sensing data (Gonsamo & Chen, 2014; Hantson &
Chuvieco, 2011; Soenen et al., 2005). Include topographical variables, for example,
elevation and slope, in the statistical models (Aragão et al., 2005). Build LAI statistical
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machine regression algorithm (Durbha et al., 2007; Fortin et al., 2014; Omer et al., 2016), and the Gaussian

process regressionmethod (García‐Haro et al., 2018; Verrelst, Rivera, et al., 2015), have also been explored in

a number of inversion studies. The choice of a particular retrieval method depends on the mathematical

properties of the function to be minimized.

LAI inversion from a canopy reflectance model is usually ill‐posed, meaning that the numerical solution

does not depend continuously on the data and, thus, may result in unstable and inaccurate inversion per-

formance (Jacquemoud, 1993; Kimes et al., 2000). Various regularization strategies have been proposed to

increase the robustness of the estimates, including the use of alternative cost functions, prior parameter

constraints, multiple best solutions, and added noise for measurements and models (Banskota et al.,

2013; Leonenko et al., 2013b; Rivera et al., 2013; Verrelst et al., 2014). There is a high degree of flexibility

in selecting the most robust optimization functions (Leonenko et al., 2013a, 2013b; Rivera et al., 2013).

Leonenko et al. (2013b) made an overview of different forms of cost functions and found that the

minimum contrast estimates performed better than the traditional least squares estimation in the

LAI retrieval.

Three different sources of prior information have been examined: (1) input uncertainties and model varia-

bility, (2) statistics of the canopy spectral and structural properties, and (3) knowledge about the background

characterization (Baret & Buis, 2008; Combal et al., 2002; Ganguly, Nemani, et al., 2014; Xiaowen Li, et al.,

2001). For the NNmethod, it is recommended to construct a training data set based on the distribution of the

variables (Atzberger & Richter, 2012; Bacour et al., 2006; Baret, Pavageau, et al., 2006; Verger, Baret, &

Camacho, 2011). Some studies consider the LAI temporal evolution as a dynamic constraint (Houborg

et al., 2007; Kötz et al., 2005; Xiao, Liang, et al., 2011). The dynamic LAI change has also been used in

LAI retrieval with the data assimilation (DA) methods, for example, in JRC‐TIP (Pinty et al., 2011), GA‐

TIP (Mathias Disney et al., 2016), Earth Observation Land Data Assimilation (Lewis et al., 2012), and

Xiao, Wang, et al. (2011). Other than the pixel‐based methods, the object‐based inversion methods set spatial

constraints for a particular land cover type or pixel patch (Atzberger & Richter, 2012; Houborg & Boegh,

2008). Both spatial and temporal constraints can be integrated in the inversion process (Lauvernet

et al., 2008).

Table 3 (continued)

Effects Description Field and empirical mitigation methods Modeling methods

and parameter estimation
(Drake et al., 2002;
C. Li, Xu, et al., 2016).

model for different slope, aspect, and evaluation classes (White et al., 1997). Select
proper LiDAR metrics for LAI estimation (M. Sumnall, Peduzzi, et al., 2016).
Topography is generally considered in 3‐D RT models, for example, DART
(J. P. Gastellu‐Etchegorry et al., 2004) but has been neglected in many other models.

Woody
effect

The presence of woody and other
nonphotosynthetic vegetation
components will interfere with
LAI field measurement, remote
sensing modeling, and
parameter retrieval.

Similar to LAI, WAI can be estimated
from direct measurement (Olivas et al.,
2013; Weiskittel & Maguire, 2006),
multispectral imager (Chapman, 2007;
Zou et al., 2009), DHP (Kalácska et al.,
2005; Sánchez‐Azofeifa et al., 2009),
LAI‐2000 (Cutini et al., 1998; Fang et al.,
2003; Leblanc & Chen, 2001), and
terrestrial LiDAR (L. Ma et al., 2016).
Empirical WAI estimation with spectral
VIs (Jesús Delegido et al., 2015; X.
Gao et al., 2000). Woody correction
based on field measured WAI or a
typical woody‐to‐total area ratio
(equation (12) and Figure 1).

Stem and branch properties are considered by
several forest RT models (J. M. Chen &
Leblanc, 1997; Kuusk & Nilson, 2000). WAI is
a required input in 3‐D computer simulation
models (J.‐P. Gastellu‐Etchegorry et al., 2016;
N.V. Shabanov et al., 2003). The woody‐to‐
total area ratio estimated from ground
optical instruments, for example, DHP,
can be used to simulate remote sensing
observations with a 3‐D RT model
(Leblanc & Fournier, 2014;
Woodgate et al., 2016).

Note. ARVI = atmospherically resistant vegetation index; BRDF = bidirectional reflectance distribution function; Cab = leaf chlorophyll content; ISR = simple
infrared ratio; RSR = reduced simple ratio; RT = radiative transfer; SAVI = soil adjusted vegetation index; TOA = top of atmosphere; VI = vegetation index;
WAI = woody area index; LAI = leaf area index; LUT = look‐up table; NN = neural network; GEOV1 = Geoland2/BiopPar version 1; DART = Discrete
Anisotropic Radiative Transfer; GLASS = Global Land Surface Satellite; POLDER = POLarization and Directionality of the Earth's Reflectances;
MODIS = Moderate Resolution Imaging Spectroradiometer; MISR = Multi‐angle Imaging Spectro‐Radiometer; LiDAR = Light Detection and Ranging;
NDPI = normalized difference phenology index; PPI = plant phenology index; SR = simple ratio.
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3.1.3. LiDAR and Microwave Estimation

The application of LiDAR for the retrieval of forest inventory parameters and structural characteristics has

been extensively reviewed in many studies (Bergen et al., 2009; Dassot et al., 2011; Hall et al., 2011; van

Leeuwen&Nieuwenhuis, 2010; K. G. Zhao, et al., 2011). LAI is mainly estimated from LiDAR data bymeans

of correlation with the gap fraction (equation (5); Griebel et al., 2015; Moorthy et al., 2008; J. J. Richardson

et al., 2009; F. Zhao, Strahler, et al., 2012; K. Zhao et al., 2015). The gap fraction is not directly measured by

laser scanning but derived from various laser‐based metrics, such as the laser penetration index (S.‐Z. Luo,

Wang, Zhang, et al., 2013; Solberg et al., 2006) and the above and below ratio index (M. Sumnall, Peduzzi,

et al., 2016). LAI is also estimated through an allometric relationship with forest biophysical parameters

derived from LiDAR, such as canopy cover (Jensen et al., 2008; Korhonen et al., 2011; Olsoy et al., 2016),

canopy height (S. Z. Luo et al., 2015; Riaño et al., 2004), and foliage density (Olsoy et al., 2016; K. Zhao &

Popescu, 2009). The spaceborne LiDAR currently available from the Geoscience Laser Altimeter System,

onboard the ICESat satellite, offers an opportunity to derive a global footprint LAI (Garcia et al., 2012;

S. Z. Luo, Wang, Li, et al., 2013; H. Tang et al., 2016).

Several physical radiative transfer models have been developed to simulate the LiDAR waveform under spe-

cific forest stand representation and LiDAR specifications (J.‐P. Gastellu‐Etchegorry et al., 2016; Ni‐Meister

et al., 2001; North et al., 2010; G. Q. Sun & Ranson, 2000). For example, the Discrete Anisotropic Radiative

Transfer model has incorporated a quasi‐Monte Carlo ray tracing approach to simulate LiDAR waveforms,

with one three‐dimensional (3‐D) vegetation canopy for any LiDAR sensor configuration (J.‐P. Gastellu‐

Etchegorry et al., 2016). A simulated 3‐D canopy allows the simulation of the effects of LiDAR penetration

and the relationship between LAI and LiDAR metrics under different conditions (Koetz et al., 2007;

Morsdorf et al., 2009). Subsequently, LAI can be retrieved from LiDAR data using the model inversion

method (Bye et al., 2017; Koetz et al., 2006; H. Ma, Song, et al., 2015; Tang et al., 2012).

LiDAR allows the characterization of the vertical LAI profile at different canopy heights (Detto et al., 2015;

H. Ma, Song, et al., 2015; M. J. Sumnall, Fox, et al., 2016; Takeda et al., 2008; Tang et al., 2016). For example,

Tang et al. (2012) retrieved the vertical profiles of LAI at 0.3‐m height intervals from the Laser Vegetation

Imaging Sensor data and showed moderate agreement between LiDAR and field‐derived LAI (R2 = 0.63,

root mean squared error [RMSE] = 1.36). The canopy woody and foliage parts may be separated based on

different LiDAR scattering properties (F. Zhao, et al., 2011). Automated LiDAR can provide cost‐effective

consecutive PAI and LAI estimates (Culvenor et al., 2014; Griebel et al., 2015). Information from different

LiDAR platform types, that is, ground‐based, airborne, and spaceborne, can be combined to improve the

joint retrieval of forest biophysical parameters (Benjamin Koetz et al., 2007; Tansey et al., 2009; van

Leeuwen & Nieuwenhuis, 2010). Furthermore, both passive optical and LiDAR data can be combined to

yield improved estimations of biophysical parameters (Z. Fu et al., 2011; Hilker et al., 2008; Jensen et al.,

2008; Benjamin Koetz et al., 2007; H. Ma et al., 2014).

Quality assessment of the LiDAR LAI mainly relies on comparison with other indirect optical methods

(Table S1). In general, the LiDAR LAI estimations are in good agreement with those obtained from LAI‐

2200 (Hill et al., 2006; M. J. Sumnall, Fox, et al., 2016; F. Zhao, et al., 2011), DHP (Hopkinson et al., 2013;

Solberg et al., 2006; F. Zhao, Strahler, et al., 2012), and TRAC (Jensen et al., 2008; H. Ma, Song, et al.,

2015). The relative differences between the LiDAR‐based LAI estimations and those obtained from LAI‐

2200 and DHP are generally within 10% (Hancock et al., 2014; Woodgate et al., 2015). Errors reported in

the retrieval of LAI from discrete return terrestrial laser scanner (TLS) range between 0.2 and 0.3 (Table

S1). For example, the TLS‐based LAIeff estimated from Zheng et al. (2013) explained about 90%

(RMSE = 0.01) of the DHP estimated values. Good results have been found near the 60° zenith angles

(Culvenor et al., 2014; Jupp et al., 2009), where the leaf projection function G (θ = 57.5°) can be set to 0.5

in the LAIeff estimation (equation (5)). A critical pitfall is that the LiDAR measurements generally do not

separate LAI, LAIeff, PAI, and PAIeff (Table S1), which poses great uncertainties for the LAI estimation

(Takeda et al., 2008). In some cases, the LiDAR‐derived LAIeff was directly compared with the true LAI

because of the unknown clumping index (Ω) values (Jensen et al., 2008; Moorthy et al., 2008), although

an analogous gap fraction method can be used to estimate Ω (e.g., Alonzo et al., 2015).

The microwave radar data have the potential to fill the acquisition gaps (e.g., cloud cover) in the optical data.

LAI is estimated through the empirical relationship with the radar backscattered signal (σ).
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LAI ¼ a × σ þ b; (13)

where a and b are the correlation coefficients. The relationship has been applied to estimate LAI for crops

(Fieuzal & Baup, 2016; Hosseini et al., 2015; H. Xu & Steven, 1996) and forests (J. Chen et al., 2009;

Manninen et al., 2013). Very good correlations have been reported for rice canopies (R2 > 0.80; J. Chen et al.,

2006; Inoue et al., 2002, 2014; Kumar et al., 2013). However, few studies have explored the LAI retrieval

through the inversion of radar physical models (Tao et al., 2016). LAI estimation from radar data remains

a challenge. Current methods are specific to the data set and are difficult to be generalized, because of the

impact of observational conditions, sensor configuration, canopy structure, and the underlying soil. The

combined use of optical and radar information may allow the improvement of regional LAI retrieval

(Wong & Fung, 2013).

3.2. Major Global LAI Products

Over the past two decades, a number of global moderate resolution (250 m to 7 km) LAI products have been

generated (Table 4). Over the long term, the National Oceanic and Atmospheric Administration (NOAA)

Advanced Very High‐Resolution Radiometer (AVHRR) is the only data source to generate global LAI since

the early 1980s (Table 5). Figure 2 shows an example of the global mean LAI, derived from the Moderate

Resolution Imaging Spectroradiometer (MODIS) and the Geoland2/BiopPar version 1 (GEOV1) from 2003

to 2013 in January and July, respectively. The two products are generally consistent, and the small differ-

ences are mainly attributed to the impact of the input reflectances, retrieval algorithms, the clumping effect

processing, and the usage of a priori information (R. B. Myneni et al., 2002; Pisek et al., 2010; Weiss et al.,

2007). Large discrepancies exist for very dense canopies, for example, the evergreen broadleaf forest

(Aragão et al., 2005; N. V. Shabanov et al., 2005), mainly because of the complexity of the ecosystem and fre-

quent cloud and aerosol contamination (Hilker et al., 2012). Differences have also been found for nongrow-

ing seasons, particularly for the needleleaf forests during the winter period (Fang, Wei, Jiang, et al., 2012;

Garrigues, Lacaze, et al., 2008; Tian, Dickinson, Zhou, & Shaikh, 2004).

Several LAI products provide uncertainty information in the form of quantitative quality indicators (QQIs),

distributed together with the products. The MODIS QQIs are calculated from the standard deviation over all

acceptable LUT solutions (D. Huang et al., 2008). The GEOV1 QQIs are computed using the NN training

data set and reflect the sensitivity of the product to input reflectance uncertainties (Baret et al., 2013). The

JRC‐TIP and GA‐TIP QQIs are derived from prior probability density functions of the LAIeff and model

uncertainties and denote the monthly dispersion of the LAI values (Mathias Disney et al., 2016; Pinty

et al., 2011). Generated as diagnostic summaries, these QQI layers represent the theoretical uncertainties

as a function of the input data, model imperfections, and the inversion process (Baret et al., 2007;

Knyazikhin et al., 1999; Pinty et al., 2011).

The uncertainties are higher in the tropical (20° S–15° N) and boreal regions (~60° N) and in summer, given

the higher LAI values in those areas and seasons (middle of Figure 2). The higher uncertainties in the boreal

regions are partly caused by the low solar zenith angle, snow and cloud contamination, and the understory

effect (Pisek et al., 2010; Weiss et al., 2007). The spatial distribution of relative uncertainties differs from

those of the absolute uncertainties. The highest relative uncertainties are generally located in the ecological

transition zones, such as the sparsely vegetated western areas of the Americas, Sahel, South Africa, central

Asia and Australia, and the savanna areas (right of Figure 2). Themixed land cover types in these zones com-

plicate the LAI modeling and retrieval, suggesting a need for further studies, especially because of the sen-

sitivity of those areas to climate change and various disturbances. The LAI product uncertainties and the

spatial and temporal variability are largely related to the LAI values (Fang, Jiang, et al., 2013). It should

be noted that the uncertainties reported by the products differ from the validation uncertainties required

by the user community (section 4).

Synergistic LAI products have been created by combining an ensemble of existing products (Table 6). The

purposes of data synergy are to (1) improve the data quality, continuity, and consistency (Chai et al.,

2012; D. Wang & Liang, 2011, 2014) and (2) reveal the strengths and weaknesses of each individual LAI.

In addition to those in Table 6, similar data fusion studies have been performed for high‐resolution

Landsat, Satellite Pour l'Observation de la Terre (SPOT) high‐resolution visible, and Sentinel‐2 sensors

(S. Li, Ganguly, et al., 2015; Mousivand et al., 2015; Soudani et al., 2006). Combing LAI with different
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spatial and temporal resolutions is a common requirement from the user

community (Fang, Liang, Townshend, et al., 2008; Verger et al., 2013;

Yuan et al., 2011). F. Gao et al. (2006) proposed a spatial and temporal

adaptive reflectance fusion model to blend both high‐frequency MODIS

and high‐resolution Landsat data. The spatial and temporal adaptive

reflectance fusion model uses changes in the MODIS pixels as a template

to predict changes in the Landsat pixels. Several studies in the fusion of

MODIS and Landsat have already illustrated the capability to generate

high temporal and spatial resolution LAI data (F. Gao et al., 2012;

Houborg et al., 2016; M. Q. Wu et al., 2012; H. K. Zhang et al., 2014).

3.3. Temporal Compositing

The irregular nature of the LAI time series, characterized by a combina-

tion of outlying values and data gaps, is linked to uncertainties in mea-

surements and retrieval processes and has caused considerable

difficulties for process models. Numerous methods have been designed

to remove outliers and fill gaps and to improve the time series

(Kandasamy et al., 2017; Verger et al., 2013).

3.3.1. Statistical Filtering Approach

The statistical filtering approach adjusts outliers and infills data gaps,

using available observations and a priori guesses. Because of its simplicity

and straightforwardness, the statistical filtering approach has been the

dominant method for LAI temporal compositing. In this group, temporal

filters are wildly used to generate continuous LAI products. One simple

method is to remove outliers using predefined thresholds, for example,

in the best index slope extraction algorithm (Doktor et al., 2009; L. Y.

Sun & Schulz, 2017) or through an iterative interpolation process (Julien

& Sobrino, 2010; Moreno et al., 2014). Themost commonmethod is to per-

form temporal smoothing by means of running averages or medians to

suppress short‐frequency variations. Other widely used temporal filtering

methods include the asymmetric Gaussian model (Heumann et al., 2007;

Jönsson & Eklundh, 2002), the double logistic filter (F. Gao et al., 2008;

Z. Xiao et al., 2009), and the Savitzky‐Golay filter (J. Chen et al., 2004;

F. Gao et al., 2008). More sophisticated methods make use of Fourier‐ or

wavelet‐based filtering methods (Cihlar, 1996; Sellers et al., 1994).

The second group of statistical filtering methods is spatial filters, which

uses pixel‐ or patch‐level statistical data to remove noise and enhance

surface features. Most commercial image processing software provides

simple spatial filtering functions, such as nearest neighbor imputations,

inverse distance weighted interpolation, and interpolation on triangulated

irregular networks. For example, Kaptue Tchuente et al. (2010) used a

simple interpolation method to fill the missing LAI values, using a

weighted average of the same cover type within a specified range.

Geostatistical methods, such as cokriging and stochastic simulation, have

been used to extrapolate LAI field data at the landscape level (Burrows

et al., 2002; Garrigues et al., 2001; Militino et al., 2017). To efficiently han-

dle massive data sets, an approximate kriging method was proposed

(Magnussen et al., 2008). Nevertheless, techniques based purely on spatial

filtering are very limited in regions that have poor spatial coverage.

Moreover, simple spatial filtering may fail to represent the spatial struc-

ture of the real landscapes (Berterretche et al., 2005). A significant number

of efforts have been attempted to combine the advantages of both tem-

poral and spatial filtering methods, by first replacing the outliers andT
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data gaps with a temporal filter, and if unsuccessful, a spatial filter will be activated (Borak & Jasinski, 2009;

Fang, Liang, Townshend, et al., 2008; Verger et al., 2013; Yuan et al., 2011).

The quality of the composited LAI time series is evaluated by how accurately it reconstructs the full time ser-

ies across temporal and spatial scales. The most straightforward criterion is to evaluate the filtered data for

their completeness, smoothness, and accuracy by using field measurement data (Kandasamy et al., 2013,

2017; Pisek et al., 2010; Weiss et al., 2007). For example, Kandasamy et al. (2013, 2017) compared the perfor-

mance of different statistical filters for MODIS and AVHRR LAI data, using field data from the Benchmark

Land Multisite Analysis and Intercomparison of Products 2 sites. Quantitative performance metrics, such as

the overall reconstruction error (J. Zhou et al., 2016), RMSE, the Akaike Information Criterion, and the

Bayesian Information Criterion (Atkinson et al., 2012; Geng et al., 2014), were also used by some researchers

in the performance assessment. Other studies have focused on how filtering methods can retain the key

transition points and the robustness to noises in the time series (Geng et al., 2014; Hird & McDermid,

2009; R. G. Liu, Shang, et al., 2017).

All statistical filtering approaches involve a number of challenges. First, filtering approaches are limited to

environments where the LAI time series follows regular vegetation cycles of growth and decline. Direct

application of these approaches may be challenging for abrupt LAI changes (e.g., forest fire) or mixed pixels.

Second, filtering algorithms originally designed for use with daily data may not be as effective with 8‐ or 10‐

day LAI data because the moving window algorithm is sensitive to the length of the sliding period.

Adjustments have to be made to the filtering rules so that the algorithm works effectively with different tem-

poral resolutions. Next, some filtering approaches, for example, the Savitzky‐Golay and Fourier filters, are

developed to make data adapt to the upper envelope. These algorithms would be limited in areas when

the LAI products actually overestimate (Cohen, Maiersperger, Yang, et al., 2003; Fang & Liang, 2005). In

practice, multiple filtering algorithms can be used jointly to improve the LAI data composition (Bradley

et al., 2007; Frantz et al., 2017). Although the full time series can be completed reconstructed, none of the

existing reconstruction models can outperform any other models under all situations (Hird & McDermid,

Figure 2. Global mean LAI (left), uncertainties (middle), and relative uncertainties (right) fromMODIS (MOD15A2H, C6) and GEOV1 from 2003 to 2013 (0.05°) in
January and July, respectively. The MODIS and GEOV1 uncertainties are derived from the standard deviation (LaiStdDev) and error (LAI_ERR) layers, respec-
tively. The relative uncertainties are derived as a ratio of uncertainties to the mean LAI. LAI = leaf area index; MODIS = Moderate Resolution Imaging
Spectroradiometer; GEOV1 = Geoland2/BiopPar version 1.
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Table 6

LAI Products Derived From a Combination of Reflectance, Albedo, or LAI From Multiple Moderate‐Resolution Sensors

Sensor/product Fusion data Fusion method
Validation
scheme Notes

Project/
Reference

MODIS/Terra+Aqua Reflectance Look‐up table (LUT) Data analysis Terra‐Aqua combination increases
the number of high quality retrievals by
10–20% over woody vegetation.

MODIS (W. Yang
et al., 2006)

MODIS/Terra+Aqua,
Fengyun‐3 MERSI

Reflectance Spatial and spectral reflectance
normalization and neural
network LAI retrieval

III The number of retrieved pixels
increased from 78% and 88% for
GEOV1 and MODIS to 98%
for the fused product.

Yin, Li, Liu,
et al. (2016)

MODIS and
CYCLOPES

Reflectance
and LAI

Neural networks and
gap filling and temporal
smoothing

III and II‐Landsat Improved the spatiotemporal continuity,
consistency, and accuracy of the
satellite products. Reduced 90% of the
missing MODIS LAI.

Verger, Baret, &
Weiss, (2011)

MODIS and
CYCLOPES

Reflectance
and LAI

Recurrent nonlinear
autoregressive
neural networks

III and II‐Landsat More continuous and higher
quality compared to the
original MODIS LAI.

Chai et al. (2012)

MODIS and
CYCLOPES

LAI Empirical
orthogonal function

II R
2 increases from
0.75 to 0.81, RMSE decreases
from 1.04 to 0.71, compared to
the original MODIS LAI. Improvement
over CYCLOPES not significant.

D. Wang and
Liang (2011)

MODIS and
CYCLOPES

LAI Optimal interpolation
method

II R
2 increases
from 0.58 to 0.65; RMSE decreases
from 0.93 to 0.79, compared to
the original MODIS LAI. Compared
to the reference data, the integrated
LAI is not as good as CYCLOPES.

D. Wang and
Liang (2014)

MODIS and
CYCLOPES

LAI GRNN between MODIS
reflectance and the fused
LAI (weighted average
of individual LAIs)

I Generated temporally continuous
LAI profiles with improved accuracy
compared with the individual LAI

GLASS
(Zhiqiang Xiao
et al., 2014)

MODIS and MISR LAI MultiResolution
Tree (MRT)

II Compared to MODIS, R2

improved from 0.75 to 0.78; bias
reduced from 0.28 to 0.14
and RMSE decreases from 1.04 to 0.82.

D. Wang and
Liang (2010)

MODIS,
MISR and
SPOT VGT,

LAI Ensemble
Kalman filter

I Improved temporal continuity and
generated more accurate LAI

Liu et al. (2014)

ECOCLIMAP‐II
and GEOV1

LAI Kalman filter II Compared to GEOV1, R2 improved
from 0.69 to 0.72; RMSE
decreases from 0.86 to 0.85, while
bias increases slightly
from 0.02 to ‐0.14.

Munier et al.
(2018)

MERIS, AATSR,
ASAR,
and SPOT HRV

LAI Weighted average of
optical and microwave
LAI estimates

I Produced slightly better
LAI estimates than the optical
and microwave estimates alone.

Manninen et al.
(2005)

MERIS and
SPOT VGT

Combined
albedo

3‐D RT
model inversion

III Output LAI values are
temporally more stable than the
MODIS LAI.

Disney et al.
(2016)

ATSR and
SPOT VGT

Intermediate
LAI

LAI combination
and smoothing

III Relative uncertainties slightly
higher than MODIS and CYCLOPES
(Fang, Wei, Jiang, &
et al., 2012).

GLOBCARBON
Plummer
et al. (2006)

Note. Different validation schemes are from Table 9. LAI = leaf area index; AATSR=Advanced Along‐Track Scanning Radiometer; ASAR=Advanced Synthetic
Aperture Radar; GLASS = Global Land Surface Satellite; GLOBCARBON = The global carbon project; HRV = high‐resolution visible; MERIS = MEdium‐

Resolution Imaging Spectrometer; MERSI = MEdium Resolution Spectrum Imager; MISR = Multiangle Imaging Spectro‐Radiometer.
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2009; J. Zhou et al., 2016). There are no commonly accepted standards or criteria to intercompare different

filters. Current filter intercomparison studies are limited because of the negligence of the impact of filter

coefficients and the inherent differences in the LAI products. Designing the best way to infill the data

gaps in both space and time while minimizing the original LAI product uncertainty is still a key task in

global LAI data analysis, which demands comprehensive study.

3.3.2. Reconstruction Using Ancillary Data

The LAI temporal curve can be reconstructed based on the relationship with other ancillary variables. The

most frequently used ancillary information is meteorological data, such as the growing degree days and

radiation (Barr et al., 2004; R. Xu et al., 2010), air temperature (Koetz et al., 2005; L. Y. Sun & Schulz,

2017), thermal time (Duveiller et al., 2013; Lucas et al., 2015), and precipitation and potential evapotran-

spiration (ET; Tesemma et al., 2014, 2015). Indeed, multiple climatic variables can be jointly used to predict

LAI (Iio et al., 2014; Pfeifer et al., 2012; Savoy & Mackay, 2015; L. Y. Sun & Schulz, 2017). Some researchers

simply model the LAI temporal profile as a function of date (Cooter & Schwede, 2000; Z. Xiao et al., 2009).

The temporal model is largely affected by the choice of the maximum and the seasonal variability of LAI.

Others estimate the LAI time series from temporally continuous ancillary data, such as the fraction of

absorbed photosynthetically active radiation (FPAR) from NOAA AVHRR (Los et al., 2000) and the reflec-

tance data from MODIS (L. B. Guo et al., 2014; le Maire et al., 2011; Z. Xiao et al., 2009), Landsat (Z. Zhu

et al., 2015), and FORMOSAT‐2 (Bsaibes et al., 2009).

3.3.3. Dynamic Modeling Method

The other group of gap‐filling techniques is referred to as the dynamic modeling method, which constrains a

dynamic model with observations and uses the model to simulate the missing values. The dynamic model

may be either a simple statistical model or a more sophisticated process model. The statistical model gener-

ally needs a priori background information. The most frequently used a priori information is the multiyear

average or temporally fitted values (Fang, Liang, et al., 2008; Y. Gu et al., 2006; Verger et al., 2013; Z. Xiao

et al., 2009). The accuracy of the dynamic modeling method is affected by the selection of model parameters

and the dynamic model itself. Remote sensing LAI and processes models are integrated in various forms

(section 5.2), where the continuous LAI happens to be a by‐product since the main objective of the integra-

tion is for application.

3.4. Future Prospects

3.4.1. Improvement of Algorithms

Most of the new products to be derived from new missions, for example, European Space Agency Sentinels,

National Aeronautics and Space Administration Decadal Survey, Joint Polar Satellite System, NOAA

Geostationary Operational Environmental Satellites, and China Gaofen, are based on existing algorithms

that have been demonstrated to be practical (M. Román et al., 2014). However, substantial biases in retrieval

algorithms andmodel parameterization are often observed, and further improvement of algorithms, models,

and parameterizations is necessary. The first issue is to reconcile the differences produced by different algo-

rithms with the same input data (Pinty et al., 2004; Widlowski et al., 2015, 2007). This issue is broadly related

to themodel details, ancillary data dependence, and input data quality. A partnership among radiative trans-

fer model developers has been created to perform a radiation transfer model intercomparison (RAMI) exer-

cise, to identify crucial knowledge gaps that demonstrate the need for further model improvement

(Widlowski et al., 2015). The latest phase of RAMI (RAMI‐IV) shows that almost all simulated reflectances

agree within a standard deviation of 2–6% (Widlowski et al., 2015). Similar experiments that apply a suite of

algorithms over well‐characterized reference sites should continue with open platform and community

involvement for canopy model development and parameter retrieval.

Existing models mostly use typical soil reflectances from the spectral library (S. Jacquemoud et al., 1992) or

derive them from soil reflectance models (Hapke, 1981; Price, 1990; Walthall et al., 1985). Contribution from

more complicated background elements, for example, water and snow and understory vegetation, should be

included in new modeling studies (Beget et al., 2013; G. Zhou et al., 2015). For algorithms that use ancillary

land cover type as a priori information, errors in land cover will propagate to the LAI product and should be

assessed formerly and be minimized where possible (J. Hu et al., 2003; Pocewicz et al., 2007). For algorithms

that do not rely on land cover information, multiple sensors, multiple spectral bands, and observational geo-

metry are likely to improve the retrieval accuracy (Baret et al., 2007; Q. Liu et al., 2014; Richter, Hank, et al.,

2012; G. Yang et al., 2011). All algorithms will need to be adapted for future missions, particularly those
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considering higher spatial and temporal resolutions andmultiple data streams, rather than traditional single

sensor approaches. It is unlikely that a single algorithm will be appropriate globally; instead, separate

models may be considered for different biomes and can be exploited to build a database for global retrieval

(Fang & Liang, 2005).

New retrieval algorithms and processing tools need to be developed to tackle the issues in the inversion pro-

cess (Table 3). Alternative forms of band combinations and transfer models should be explored to find simple

and robust LAI transfer functions. Hyperspectral band reflectances and VIs have demonstrated the capabil-

ity to reduce the saturation effect and can be explored for operational LAI estimation (Canisius & Fernandes,

2012; D. J. Diner et al., 1999; Gemmel & McDonald, 2000; Houborg et al., 2009). Recent developments in

machine learning and artificial intelligence algorithms, such as the deep learning algorithm, have shown

potential and are worthwhile for further exploration (M. Campos‐Taberner et al., 2016; Lazaro‐Gredilla

et al., 2014; L. P. Zhang et al., 2016). High‐performance cloud platforms, such as the Google Earth Engine,

have shown the capability to improve the efficiency of global variable retrieval (Manuel Campos‐Taberner

et al., 2018). Some locally optimized methods such as the Markov Chain Monte Carlo method (Q. Zhang,

Xiao, et al., 2005) and the trust region method (J. Qin et al., 2008) warrant further examination before

large‐scale operational application.

3.4.2. Improvement of Temporal Coverage and Spatial Resolution

The long‐term LAI products derived fromAVHRR sensors since 1982 are gaining in prominence due to their

ability to assess the LAI variation and quantify the future uptake of CO2 by the world's vegetation (e.g.,

Table 12). Long‐term spatiotemporal patterns and the main strengths and weaknesses of each data set need

to be identified and compared with modeling results. The AVHRR orbit change and sensor degradation are

two important sources of inconsistency (Jiang et al., 2017; Mao et al., 2016; Zaichun Zhu, Piao, et al., 2016).

Further efforts should be made to reprocess and reanalyze the historical archives of AVHRR sensors to

ensure compatibility and consistency with current records (GCOS, 2011). Extrapolation of an even longer

LAI data set prior to the satellite era has been attempted (Boisier et al., 2014; Lawrence et al., 2012;

Neilson, 1995), but attempts like this need climatic data for extrapolation purpose and are limited in explain-

ing the climate change impact. Further studies of the long‐term LAI change need to address several crucial

companion questions: (1) Does the leaf spatial dispersion, that is, the clumping index, change with LAI, (2)

how do the overstory and understory LAI values change, and (3) what are the long‐term changes in foliage

density and vegetation height?

Most global moderate resolution LAI products are mainly in kilometric resolutions (Table 4), and some hec-

tometric (100–1,000 m) products have been developed over a few countries (Table 7). During the next few

years, several high revisit frequency hectometric and decametric resolution (10–100 m) sensing systems will

generate similar global LAI products. The hectometric products satisfy the GCOS requirement for a horizon-

tal spatial resolution of 250 m (GCOS, 2016) and can be more easily validated with field measurements and

higher spatial resolution imagery. The combination of these medium temporal resolution missions (e.g.,

Sentinel‐2 and Landsat 8) with hectometric data (e.g., Sentinel‐3) is expected to provide near daily LAI pro-

ducts (F. Gao et al., 2014). For many applications, however, it is vitally important to ensure traceability and

consistency back to the kilometric LAI estimates because long time series are at least as important as higher

spatial resolution.

3.4.3. Estimation From Active Sensors and UAV

Themajor advantage of LiDAR technology is its capability to characterize the vertical vegetation structure at

different heights (M. J. Sumnall, Fox, et al., 2016; Tang et al., 2014). The LiDAR‐based LAI estimates have

been used in the validation of global moderate‐resolution LAI products (Hill et al., 2006; Jensen et al.,

2011; K. Zhao & Popescu, 2009). We expect the use of LiDAR LAI will increase with the growing availability

of high‐quality LAI data derived from LiDAR. The key issues are (1) the conversion of LAIeff to LAI, which

needs concurrent indirect optical measurements (Jensen et al., 2008; Moorthy et al., 2008), (2) the selection

of proper LiDAR metrics for LAI estimation (M. Sumnall, Peduzzi, et al., 2016), and (3) building global LAI

inventory derived from both the TLS and Airborne laser scanner databases. More field measurements and

further development of LiDAR metrics are necessary (Hill et al., 2006; K. Zhao & Popescu, 2009).

Microwave radar data overcome some of the limitations of the remote sensing reflectance and LAI data, such

as gaps during the growing season caused by cloudiness, and will be a tremendous new resource for LAI esti-

mation. Microwave data are particularly powerful when combined with crop growth models in the
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assimilated estimation of the growing season LAI (Bach et al., 2001; Clevers & van leeuwen, 1996; Dente

et al., 2008). However, their applicability at the global scale remains to be assessed.

Unmanned aerial vehicles (UAVs) provide an effective platform for field LAI estimation and act as a validation

link between field and satellite data. Both reflective and LiDAR sensors can be affiliated with UAV (Q. Guo

et al., 2017). In data acquisition, it is important to explore the optimal illumination conditions, flight configura-

tion, and camera settings (Uto et al., 2013; Weiss & Baret, 2017). Motion pictures acquired on UAV allow 3‐D

scene building and LAI estimation (Mathews & Jensen, 2013; Weiss & Baret, 2017). LAI is generally estimated

from UAV based on the same empirical transfer or model inversion methods as for other remote sensing data

(Duan et al., 2014; Lelong et al., 2008; Verger et al., 2014).With the availability ofmore efficient data processing

software, this technique is expected to become increasingly common in field studies.

3.4.4. Distribution of Product Quality Information

Due to the complex, multistage retrieval process from optical remote sensing data, a comprehensive quanti-

tative assessment of the quality of LAI products is still lacking for satellite‐derived LAI products. Given the

importance of the associated uncertainty information, it is crucial for all existing and future global products

to provide fully documented and traceable information on uncertainty. This requires the inclusion of a con-

sistent quantified uncertainty layer in the product that is valuable and appropriate for use by the application

community. Self‐assessment serves as an internal validation process. New releases should represent

improved confidence in LAI retrieval, which needs to be clearly transmitted to potential users.

Considering the importance of the long time series for most applications, improvements in one product

should be applied to the entire time series, which requires reprocessing the original imagery.

4. Product Validation and Evaluation

To meet the needs of global climate modeling studies, the Globe Climate Observing System (GCOS) has pro-

posed a guideline that requires a maximum uncertainty of 15% for the LAI products (GCOS, 2016). Similar

observational accuracy requirements have also been specified by the Global Terrestrial Observing System,

the World Meteorological Organization, and the Global Monitoring for Environment and Security

Table 7

Examples of Hectometric LAI Products Estimated from MODIS (250 m), MERIS (300 m), MERSI (250 m), and PROBA‐V (300 m)

Sensor Algorithms LAI T/E Country Biome type Scheme N Uncertainty Field method Source References

MODIS VI‐LAI
relationship

T Canada ENF and DBF I 15 Bias = −0.3
R
2 = 0.689

RMAE = 30.7%

TRAC Figure 4 Gonsamo and
Chen (2014)

MODIS PROSAIL
inversion

T Brazil EBF I 20 R
2 = 0.8

RMSE = 0.41
Destructive Figure 5 le Maire

et al. (2011)
MODIS LUT‐PROSAIL T Italy Grass I Bias = 007

SD = 1.58
RMSE = 1.68

Destructive,
allometric

Table 3 Pasolli
et al. (2015)

MERIS VI‐LAI
relationship

T Canada All I 44 RMSE = 0.93
RRMSE = 53%

DHP Table 3 Canisius and
Fernandes
(2012)

MERIS NN E Netherlands Grass I 30 R
2 = 0.70

RMSE = 1.02
NRMSE = 16%

LAI‐2000 Figure 4 Si et al.
(2012)

MERIS NN E VALERI sites Crop, shrub,
and mixed
forest

II‐SPOT
HRV

6 RMSE = 0.471 DHP Figure 10 Bacour
et al. (2006)

MERSI VI‐LAI
relationship

T China Grass II‐Landsat R = 0.52
SD = 0.51

LAI‐2000 Figure 5 L. Zhu
et al. (2014)

PROBA‐V NN GAI Globe All II‐Landsat R
2 = 0.76a

RMSE = 1.40
Destructive
AccuPAR

Figure 4 Baret
et al. (2016)

Note. “LAI T/E” refers to true (T)/effective (E) LAI. LUT = look‐up table; VI = vegetation index; SD = standard deviation; RMAE = relative median absolute
error; LAI = leaf area index; DBF = deciduous broadleaf forest; ENF = evergreen needleleaf forest; HRV = high‐resolution visible; MERIS = MEdium‐

Resolution Imaging Spectrometer; MERSI = MEdium Resolution Spectrum Imager; PROBA = Project for On‐Board Autonomy; VALERI = Validation of
Land European Remote sensing Instruments.
aBased on simulated PROBA‐V data (E. Roumenina et al., 2013).
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(Table 8). In general, LAI application communities require a minimum

relative accuracy of about 20% (Table 8). Characterization of the uncer-

tainties associated with LAI products is, therefore, of vital importance

for the downstream application community (Gobron & Verstraete, 2009;

Lafont et al., 2012). A better understanding of the uncertainties embedded

in current LAI products will improve the assimilation of LAI into model-

ing studies.

Validation is defined by the Committee on Earth Observation Satellites

(CEOS) as “the process of assessing, by independent means, the quality

of the data products” derived from the Earth observation systems

(http://www.ceos.org/ourwork/workinggroups/wgcv/). The CEOS Land

Product Validation (LPV) subgroup (http://lpvs.gsfc.nasa.gov/) has been

charged to lead the comparison and evaluation of land surface products

as well as the benchmarking of algorithms used to generate them. The

mission of the LPV subgroup is to “coordinate the quantitative validation

of satellite‐derived products.” The LPV subgroup focuses on “standar-

dized intercomparison and validation across products from different satel-

lite, algorithms, and agency sources” (http://lpvs.gsfc.nasa.gov/). Within

this framework, a large number of LAI validation studies have been

undertaken, from site to global scales.

4.1. Current Schemes

Table 9 summarizes the different schemes that have been used to validate

satellite‐derived LAI products.

4.1.1. Scheme I: Direct Field‐to‐Satellite LAI Comparison

The direct comparison method directly compares field measurements and

satellite products. Field measurements, typically limited to a point or a

very small area, are vital as they form the basis for all validation studies. Prior to National Aeronautics

and Space Administration's Earth Observing System program (https://eospso.gsfc.nasa.gov/), most valida-

tion studies for AVHRR LAI products relied on the direct comparison method because of the scarcity of

high‐quality field LAI measurements and concurrent high‐resolution satellite data (Buermann et al., 2002;

H.‐S. Kang et al., 2007; Nikolov & Zeller, 2006). This method is helpful when, for instance, a sufficient num-

ber of field points are available during a satellite overpass or when the field is spatially representative over

the satellite pixel extent (Fang,Wei, & Liang, 2012). This method is often used when the high‐resolution data

are difficult to obtain from upscaling (see scheme II) or when the methods for estimating the high‐resolution

LAI are determined to be problematic. However, a major problem of the direct comparison method is the

spatial scale mismatch between field measurements and remote sensing estimates. The errors are related

to the spatial heterogeneity within the moderate‐resolution pixels (Fang, Wei, & Liang, 2012).

Furthermore, the areal coverage of the moderate‐resolution LAI products is not constant over an aggrega-

tion period (e.g., 10 days for GEOV1), and pixel geolocation varies. Several methods have been proposed

to mitigate the scaling and geolocation issues, including estimation of the mean or median LAI values of

multiple pixels (e.g., a 3 × 3 array of pixels), employment of large field sampling units at the kilometric scale

(e.g., J. L. Privette et al., 2002), and comparison of statistical distributions of in situ and satellite LAI (Pfeifer

et al., 2014).

4.1.2. Scheme II: Comparison With Upscaled High‐Resolution Reference Data

This scheme scales up the field‐estimated LAI via high‐resolution imagery to larger pixel sizes for compar-

ison with moderate‐resolution products, thus, bridging the scale differences between ground LAI measure-

ment and moderate‐resolution pixels. The upscaling process is mainly based on the establishment of a

transfer function that relates field LAI measurements and high‐resolution VIs or reflectance from satellite

or airborne images (R. Fernandes et al., 2014; Morisette et al., 2006). Landsat and SPOT high‐resolution visi-

ble have been the most common high‐resolution satellite sensors. Selection of the optimal transfer function

is usually biome‐ and site‐specific (Cohen et al., 2006; R. A. Fernandes et al., 2003). Even within one land

cover type, different weights can be assigned for each ESU, for example, in the Validation of Land

Table 8

Observational Uncertainty Requirements for LAI Products From GCOS,

GTOS, WMO, and GMES

Projects Application
Uncertainty
requirementa References

GCOS TOPC 10%‐7%‐5% WMOb

Max (15%) GCOS (2016)
Accuracy: max

(20%, 0.5)
GCOS (2011)

GMES Accuracy: 10% Drusch et al.
(2012)

GTOS 25%‐15% GTOSc

WMO Agricultural meteorology 10%‐7%‐5% WMOb

Global NWP 20%‐10%‐5%
High resolution NWP 20%‐10%‐5%
Hydrology 20%‐8%‐5%

Note. GCOS = Global Climate Observing System; GMES = Global
Monitoring for Environment and Security; GTOS = Global Terrestrial
Observing System; NWP = Numerical Weather Prediction;
TOPC = Terrestrial Observation Panel for Climate; WMO = World
Meteorological Organization; LAI = leaf area index. Accuracy require-
ments are denoted as a percentage of the maximum possible value for
GCOS and as a percentage of the true value for GTOS and WMO. Data
updated from Fang, Jiang, et al. (2013).
aStated in terms of the threshold, the breakthrough, and the goal values.
The GMES row shows the targeted precision for green LAI estimation.
bWMO website—http://www.wmo‐sat.info/oscar/requirements (Accessed
on 16 March 2017). cGTOS web site—http://www.fao.org/gtos/tems/
variable_show.jsp?VARIABLE_ID=80 (Accessed on 1 March 2012,
obsolete).
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European Remote sensing Instruments project (http://w3.avignon.inra.fr/valeri/), to generate the high‐

resolution reference LAI map. Besides the simple linear regression method, other model inversion

methods can be used to derive the high‐resolution reference LAI. The upscaling validation method has

been widely used by the remote sensing community for data collection, analysis, and accuracy reporting.

For global application, this scheme may be affected by several factors: (1) accuracy of the high‐resolution

reference data from different transfer functions, (2) error propagation introduced by scale mismatch and

registration errors between high and moderate resolution LAI surfaces, and (3) labor intensity for

conducting high‐resolution remote sensing data processing and LAI estimation.

4.1.3. Scheme III: Intercomparison of Multiple Products

The purpose of the intercomparison is to determine the relative quality of the land products by quantifying

the magnitude and locations of the differences and similarities between different products sharing similar

spatial and temporal resolutions. The intercomparison approach, which does not require ground

Table 9

Summary of LAI Product Validation and Evaluation Schemes

Schemes Description Advantages Disadvantages Examples

I. Direct field‐satellite
comparison

Makes direct comparison
between field
measurements and
satellite LAI.

Flexible for quick assessment
of the LAI retrieval
algorithm and the product

Affected by the scale difference
between field and pixel. Only
feasible with sufficient number
of ground points and for
homogeneous regions.
Difficult for global validation.

Alton (2016),
Fang, Wei, &
Liang et al. (2012),
L. B. Guo et al. (2014),
H.‐S. Kang et al. (2007),
Ogutu et al. (2011),
and Sea et al. (2011)

II. Comparison with
upscaled
high‐resolution
reference data

Scales up LAI estimated
from a dedicated field
sampling via high
resolution imagery to
larger areas for
comparison with
moderate resolution
products

Minimizes the scale
difference between point
and pixel. Commonly
applied.

Affected by quality of the
reference map, field
measurements, clumping
correction, transfer
function, and upscaling
methods.

Camacho et al. (2013),
Claverie et al. (2013),
Garrigues, Lacaze,
et al. (2008),
H. A. Jin et al. (2017),
Raymaekers et al. (2014),
and Xu, Li, et al. (2018)

III. Intercomparison
of multiple
satellite products

Intercompares different
products with similar
spatial and temporal
resolutions

Efficient to describe the
relative consistency and
hence quality of multiple
products assuming
departure from the
mean indicates lower
quality.

Presents only the quality of one
product relative to another
product. Affected by LAI
definitions, methodological
differences, and
characteristics of different
sensors. Might require
spatial and temporal
resampling.

Fang, Jiang, et al. (2013),
Garrigues, Lacaze,
et al. (2008),
Gessner et al. (2013),
Kobayashi et al. (2010),
Verger et al. (2008),
and Xu, Li, et al. (2018)

IV. Comparison of
the consistency
with other
related variables

Assesses the degree of
consistency with other
spectral, biophysical
and climatic variables,
for example, NDVI,
FPAR, and albedo.

Permits analysis of the
consistency of vegetation
variables.

Difficult to interpret as all
variables are affected by
perturbations to
different degrees.

Buermann et al. (2003),
Biudes et al. (2014),
Croft et al. (2014),
McCallum et al. (2010),
Yan et al. (2016),
and Z. Zhu et al. (2013)

V. Comparison of
satellite LAI with
model simulated
LAI

Compare LAI products with
model simulated LAI.

Efficient to make an
LAI‐model comparison.

Affected by definition
differences between
modeled and satellite.
Structural differences in LAI
calculation between model
and satellite.

Adiku et al. (2006),
Anav, Murray‐Tortarolo,
et al. (2013),
Di Bella et al. (2005),
Murray‐Tortarolo et al.
(2013), Randerson et al.
(2009), and Z. Zhu et al.
(2013)

VI. Performance
evaluation in
process models

Integrate different LAI products
into models, evaluate LAI
products through their
performance in modeled
outputs

Allows comparison of
multiple products in
application models.

Affected by model limitations
and uncertainties.
Accuracy affected
by other model parameters.

Calvet et al. (2014),
Chu et al. (2011).),
Ghilain et al. (2012),
Ghilain et al. (2014),
and Wythers et al. (2003)

Note. LAI = leaf area index.
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measurements, has been used as a proxy in efforts aiming to assess the temporal and spatial consistency and

statistical distribution within and between sensors (Garrigues, Lacaze, et al., 2008; Verger, Camacho, et al.,

2009; Weiss et al., 2007). In this regard, it is an assessment of the differences in input data quality, methodol-

ogy, assumptions, and dependencies in LAI estimation. Intercomparisons have been conducted at various

scales ranging from site (Fang & Liang, 2005), regional and continental (Garrigues, Lacaze, et al., 2008;

Gessner et al., 2013), to global scales (Fang, Jiang, et al., 2013; B. Xu, Park, et al., 2018). This scheme assumes

that different satellite products represent the same physical quantity. The consensus estimated with this

scheme is important but differs from the uncertainty information provided by error propagation analysis

and validation (Fang, Jiang, et al., 2013). It is preferable to calculate the mean of multiple similar pixels

and perform a comparison at the patch (multipixel) scale to account for the potential location mismatch

between corresponding pixels and the uncertainties in the products (R. Myneni et al., 2005; Y. Wang

et al., 2004). The value of this scheme is that it indicates areas and periods with higher discrepancies, in

which future product development and validation studies may be focused.

4.1.4. Scheme IV: Comparison of Consistency With Other Related Variables

This method of evaluating LAI data sets involves assessing the degree of consistency with other spectral, bio-

physical, and climatic variables (W Buermann et al., 2002; Ganguly et al., 2008). The comparative analyses

focus on the consistency of temporal profiles and data gap occurrences for major land cover types. Since

NDVI has been widely used for LAI estimation, both LAI and NDVI products are frequently compared

(Croft et al., 2014; Hadria et al., 2006). Given the known saturation issues with the NDVI‐LAI relationship,

LAI can be evaluated with other spectral data or VI products (e.g., enhanced VI and soil‐adjusted VI; Biudes

et al., 2014; Houborg et al., 2007). Some studies have found that LAI products show similar discrepancies to

the FPAR products (McCallum et al., 2010; Seixas et al., 2009; Weiss et al., 2007). Other studies have

evaluated the consistency between remote sensing LAI and key climatic variables that govern plant growth,

such as land surface temperature, solar radiation, and precipitation (Buermann et al., 2002; Los et al., 2000;

Lotsch et al., 2003; R. B. Myneni et al., 1996). Because remote sensing LAI products are usually generated

without using climatic data, examining the statistical association between LAI and climatic variables can

be considered as an independent means of LAI evaluation (Kai Yan et al., 2016; Z. Zhu et al., 2013).

However, caution is advised in examining the relationship of LAI with these variables, which may be

influenced by other external factors.

4.1.5. Scheme V: Comparison With Model‐Simulated LAI

This scheme compares remote sensing products with climatic, ecological, and vegetation growth model simu-

lations. The modeled LAI may be derived as a simple function of climatic variables or from a more complex

vegetation dynamic model. The geographical and temporal patterns between modeled and satellite LAIs are

generally consistent (Imbach et al., 2010; Szczypta et al., 2014; Z. Zhu et al., 2013), while some studies found

that the maximum modeled LAI trails behind the satellite LAI (Randerson et al., 2009; Z. Zhu et al., 2013).

Global comparison studies have found that current ecosystem models tend to overestimate LAI (Anav,

Friedlingstein, et al., 2013; Anav, Murray‐Tortarolo, et al., 2013; Z. Zhu et al., 2013), partly because of the over-

estimation of carbon fixation and allocation of biomass to leaves (Gibelin et al., 2006; A. D. Richardson et al.,

2012). Similar overestimation phenomena have been reported for regional LSM simulations (Lafont et al., 2012;

Murray‐Tortarolo et al., 2013). Because of the complexity of the models, using such a scheme does not neces-

sarily produce a quantitative estimation of the LAI product uncertainty. Instead, it highlights the inconsistent

areas inwhich further refinement of land surface and remote sensingmodels is needed. Indeed, processmodels

have mostly relied on field and remote sensing LAI for quality assessment andmodel improvement (Bao et al.,

2014; Murray‐Tortarolo et al., 2013; A. D. Richardson et al., 2012). Particular attention should be paid to the

definitions of the variables used in process models, which should match those retrieved by the remote sensing

methods. This is especially true for the mixed‐type classes for which LAI definition and calculation may differ,

in the consideration of 3‐D vegetation structure, background contribution, and grid computation.

4.1.6. Scheme VI: Performance Evaluation in Process Models

This scheme evaluates different LAI data sets based on their performances in modeled outputs (Calvet et al.,

2014; Wythers et al., 2003). For example, Chu et al. (2011).) found that the Global Land Surface Satellite LAI

performed better than the MODIS LAI (C4) in modeling the climate impacts of large‐scale revegetation in

Queensland, Australia. This scheme is similar to scheme V and allows for an easy comparison among multi-

ple products. However, despite its potential use, this scheme should be used with caution because themodels

suffer from the same limitations and uncertainties as those indicated for scheme V.
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Various schemes and state‐of‐the‐art technologies have been explored by product developers, validation

scientists, and science users in satellite data validation (Loew et al., 2017). The schemes are useful not only

for LAI validation but also for other land surface variables and for improving LSMs. Schemes I and II can be

considered direct validation schemes, while the other schemes are not strictly defined as validation schemes

but are important for assessing the quality of LAI products. Poorly designed validation methods can lead to

inconsistent validation results (R. Fernandes et al., 2014). It is important for the validation community to

cross check results from different schemes.

4.2. Product uncertainties

4.2.1. LAI Uncertainties From the Literature

Figure 3 illustrates the uncertainties for major moderate‐resolution LAI products, with data compiled from

the literature (Table S2). The agreement between satellite LAI products and the reference data is generally

good, and the associated median accuracy indicators are about R2 = 0.62 and RMSE = 0.88 for all biome

types (Table 10). The R2 and RMSE values range between 0.08 and 0.92 and between 0.19 and 2.41, respec-

tively. The median absolute errors are <0.10, and the relative errors are <8% (Table 10). The MODIS pro-

ducts, now in their sixth major reprocessing, have been investigated intensively during the past few

decades and are commonly used as a benchmark for other LAI products. A review of the MODIS C5 valida-

tion studies suggests a median R2 around 0.62 and an RMSE of 1.16. Carbon cYcle and Change in Land

Observational Products from an Ensemble of Satellites (CYCLOPES) exhibits a performance similar to

MODIS, scoring overall R2 = 0.61 and RMSE = 0.87 (Table 10). CYCLOPES also shows a negative bias,

which has been improved in the later GEOV1 (Baret et al., 2013).

Biome‐specific uncertainties can be much lower, such as that for grassland or crops (Duveiller et al., 2011; Si

et al., 2012). Good agreement was reported between satellite and reference LAI for grasslands, as confirmed

Figure 3. Statistical R‐squared values (R2) and (a) root‐mean‐squared error (RMSE) and bias and (b) RMSE from direct
validation of moderate resolution leaf area index products. The numbers correspond to the reference number in Table S2.

Table 10

Statistics of Moderate‐Resolution Leaf Area Index Validation Results Reported in the Literature

All biomes Statistics Min Median Max Biome types Statistics Min Median Max

Overall R
2 0.08 0.615 0.92 Mixed biomes R

2 0.416 0.68 0.92
Bias −1.59 0.1 1.65 RMSE 0.38 0.97 1.56
RE (%) −17 7.87 65 Grass R

2 0.165 0.44 0.89
RMSE 0.19 0.88 2.41 RMSE 0.19 0.48 1.68
RRMSE (%) 23 36.6 98 Crops R

2 0.42 0.59 0.87
MODIS R

2 0.165 0.615 0.9 RMSE 0.23 0.74 1.37
Bias −1.18 0.13 1.65 Savanna + shrubs R

2 0.293 0.6 0.684
RMSE 0.21 1.16 2.41 RMSE 0.39 0.55 0.73
RRMSE (%) 23 40.3 65.6 Broadleaf forest R

2 0.08 0.5 0.826
CYCLOPES R

2 0.358 0.608 0.92 RMSE 0.196 0.885 2.41
Bias −0.76 −0.175 0.05 Needleleaf forest R

2 0.17 0.715 0.9
RMSE 0.5 0.87 1.24 RMSE 0.63 1.17 1.49

Note. Data from Table S2. RE = relative error; RMSE = root mean squared error; RRMSE = relative RMSE.
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by the lowest median RMSE (=0.48) among all biome types (Table 10). Satellite LAI products generally agree

well with reference data for crops (median RMSE = 0.74), although larger deviations could occur because of

field measurement and scaling differences (Stern et al., 2014). It has been rare to validate a specific crop type.

Similarly, only a few studies have focused on the shrub type (Fang, Wei, & Liang, 2012; Hill et al., 2006).

Validation of the savanna LAI is difficult because of its complex biome composition (Fang, Li, et al., 2013).

Early MODIS LAI validation showed reasonable agreement in both magnitude and seasonal variation for

woodland savannas in Australia (Hill et al., 2006; Leuning et al., 2005) and Africa (J. L. Privette et al.,

2002; Tian et al., 2002). Table 10 shows that the savanna RMSE uncertainty (0.55) is similar to that of grasses.

This low uncertainty should be interpreted with reference to the small LAI values (~0.99) for savannas

(Fang, Wei, & Liang, 2012). Recent MODIS (C5) validation studies have revealed an RMSE > 1.5 in the

Amazon savanna transition zone (Biudes et al., 2014) and a small correlation with an R2 of ~0.30 for the

African savanna (Mayr & Samimi, 2015). These inconsistencies highlight the difficulties associated with

savanna validation, which include heterogeneity of the landscape, difficulties in the completion and inter-

pretation of ground measurements (Ryu, Sonnentag, et al., 2010), easy misclassification of the underlying

land cover type (Fang, Li, et al., 2013), and scale differences between field measurement and satellite pixel

sizes (Groenendijk et al., 2011).

The median R2 and RMSE are 0.5 and 0.89 for broadleaf forests and 0.72 and 1.17 for needleleaf forests,

respectively (Table 10). The MODIS LAI appears to capture changes in the overstory LAI reasonably well

but fails to capture variations in the understory LAI (Biudes et al., 2014). This highlights the complexities

in the LAI field measurement and product validation in tropical forests. Deciduous broadleaf forest is easy

to measure in the field, using methods such as the litter fall method. For deciduous broadleaf forest, the bias

and RMSE vary between 0.5 and 1.0 (Table S2). A large number of validation studies have been performed

for the evergreen needleleaf forest in the northernmidlatitudes. In contrast, only a limited number of studies

were performed for deciduous needleleaf forest (Akitsu et al., 2015). The RMSE uncertainties vary between

0.5 and 1.5 for evergreen needleleaf forest, whereas for deciduous needleleaf forest, the bias is generally

smaller than 1.0 (Table S2). Very good temporal consistency has been observed between MODIS C5 and

GEOV1 for deciduous forests (R2 > 0.70), with a smoother behavior for GEOV1 (Fang, Jiang, et al., 2013).

However, there is a lack of validation studies for the evergreen broadleaf forest concentrated in the tropical

regions (Clark et al., 2008).

4.2.2. Uncertainty Sources

Previous studies have identified three major contributors to LAI product uncertainties: (1) uncertainties in

the input data, for example, surface reflectance or radiance (Mannschatz et al., 2014; Vermote et al., 2002;

Y. Wang et al., 2001), (2) model uncertainties and problems of ill‐posed retrieval (Deng et al., 2006;

D. Huang et al., 2008; Knyazikhin et al., 1999; R. B. Myneni et al., 2002), and (3) errors in the ancillary infor-

mation, for example, land cover type (DeFries & Los, 1999; Fang, Li, et al., 2013; Gonsamo & Chen, 2011).

Each of these factors is assessed below.

The accuracy of LAI products is unavoidably driven by the input data. LAI products are estimated from sur-

face reflectance, radiance, and albedo. The relative accuracy of the latest MODIS reflectance is generally

within ±5% (Vermote et al., 2015) and <10% in the semiarid grassland (Fan et al., 2014). Over desert areas,

the relative errors between Environment Satellite/medium‐resolution imaging spectrometer,

SPOT/VEGETATION, andMODIS are <3% (Lacherade et al., 2013). Uncertainties in the surface reflectance

products are mainly attributed to aerosol and cloud contamination (Hagolle et al., 2005; Hilker et al., 2012).

The relative uncertainty of the high‐quality (full inversion) MODIS albedo products is generally within 10%

(Pinty et al., 2011; M. O. Román et al., 2013) and <3% for the semiarid grassland (Fan et al., 2014). The over-

all accuracy of the input fractional vegetation cover, which is used to derive the Satellite Application Facility

for Land Surface Analysis LAI, is around 20% (LSA SAF, 2008). Errors from input reflectance and albedo

data, with favorable atmospheric correction conditions, are generally lower than those caused by ancillary

data and model imperfections. Prior analysis of the NN inversion method showed that a reflectance error

of ±10% will cause an error in 0.41 LAI units (Fang & Liang, 2003).

Two of the main difficulties in LAI retrieval are the intrinsic uncertainties in the radiative transfer modeling of

light in canopies and the ill‐posed inversion problem (Combal et al., 2001; Knyazikhin et al., 1999). The uncer-

tainties may be driven mainly by the assumptions in the radiative transfer models, the inversion technique,
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and the prior information used. These issues may be addressed by integrating various sources of prior

information and by using multiple satellite data sets (Ganguly, Nemani, et al., 2014; Q. Liu et al., 2014).

Most LAI estimation algorithms provide dispersion measures as outputs of the theoretical uncertainties

(e.g., MODIS, CYCLOPES, GEOV1, JRC‐TIP, and GA‐TIP; Table 4). The MODIS uncertainty estimation is

quantified as the standard deviation of all acceptable solutions from an LUT retrieval method (D. Huang

et al., 2008; R. B. Myneni et al., 2002). The GEOV1 uncertainty information is derived from the NN training

database and reflects the sensitivity of the product to the input reflectance values (F. Baret et al., 2013). Both

of these uncertainties are fairly stable and are at a low level of <0.30 for the herbaceous vegetation types

(Fang, Li, et al., 2013). In tropical regions, the MODIS uncertainty varies between 0.10 and 0.35, whereas

the GEOV1 uncertainty is slightly higher. It is noted that the uncertainty information represents the model

variation after multiple training and self‐checking and reflects the sensitivity of the product to input

reflectance values.

Land cover is used as an ancillary data constraint to make the inversion process more tractable. Although

this speeds up the processing, land cover misclassification is one of the largest sources of uncertainty for

LAI estimation (Fang, Li, et al., 2013; Gonsamo & Chen, 2011; Pisek et al., 2007). The overall accuracies

are about 75% for the global MODIS C5 land cover data (Friedl et al., 2010) and 67.5% for GlobCover 2009

(Defourny et al., 2010). The land cover errors translate into the LAI uncertainty in two ways: (1) the selection

of the wrong biome input and therefore the wrong algorithm or portion of an LUT and (2) the use of incor-

rect parameters where land cover types are similar, even if the algorithm is appropriate. Selection of the

wrong algorithm can lead to errors of up to 40–50% for MODIS and the global mapping project (Gonsamo

& Chen, 2011; R. B. Myneni et al., 2002), and inadequate parameterization of the radiative transfer scheme

(e.g., vertical and horizontal heterogeneities, leaf single scattering albedo, and background reflectance) can

introduce errors up to 20% for MODIS LAI (Serbin et al., 2013). Misclassification can easily occur among

grasses/cereal crops and broadleaf crops because of their spectral and structural similarities (Pandya et al.,

2006; Tan et al., 2005; P. Yang et al., 2007). However, misclassification between similar biomes generally

induces small LAI errors (<30%; Fang, Li, et al., 2013; R. B. Myneni et al., 2002), whereas confusion between

herbaceous and woody vegetation can significantly affect the LAI retrieval (Tian et al., 2000).

4.2.3. High‐resolution reference LAI

An important issue related to the validation of moderate‐resolution products is the quality of the high‐

resolution LAI reference data, which is generally derived using a transfer function calibrated over a set of

field measurements. Recent studies related to LAI estimation using high‐resolution remote sensing data

were analyzed (Figure 4 and Table S3). The uncertainties of the reference data (median R2 = 0.80,

RMSE = 0.50, Figure 4 and Table 11) are significantly lower than those of the moderate‐resolution products.

In a few cases, the uncertainties of the reference data may be higher than those of the moderate‐resolution

LAI products (Z. Li, Tang, et al., 2014) because of the larger variability revealed by pixels of higher resolution.

On the other hand, the relative errors of the reference data are approximately 13%, much higher than those

for the moderate resolution LAI (~8%).

Figure 4. Uncertainties of high‐resolution reference leaf area index data compared with field measurement data.
(a) R2‐RMSE and (b) Bias‐RMSE. The numbers correspond to the reference number in Table S3.

10.1029/2018RG000608Reviews of Geophysics

FANG ET AL. 765



The overview of literature indicates that in early studies, the typical Landsat LAI reference map was within

±20% relative errors or within an absolute error smaller than 1.0 LAI for most biomes (Table S3). More

recent studies indicate that R2 > 0.90 and RMSE < 0.5 are attainable for crops (González‐Sanpedro et al.,

2008; J. Liu, Pattey, et al., 2012; Nigam et al., 2014; F. Vuolo et al., 2008) and forests (Kraus et al., 2009;

Table S3). The accuracy error is generally <0.1 for crops (F. Gao et al., 2014; A. H. Li et al., 2013) and

<0.2 for forests (Heiskanen et al., 2011; A. H. Li et al., 2013). Similar LAI uncertainty ranges have been

reported in boreal forests (Duveiller et al., 2011; Heiskanen et al., 2011; Kraus et al., 2009). Having been

the twomain sources for generation of the reference LAI, Landsat and SPOT show similar predictive capabil-

ity and can be combined to generate time series LAI (e.g., Heiskanen et al., 2011). Other high‐resolution sen-

sors such as Earth Observing‐1 Advanced Land Imager, PROBA Compact High‐Resolution Imaging

Spectrometer, Advanced Spaceborne Thermal Emission and Reflection, and Huan Jing‐1 (HJ‐1) have shown

the same uncertainty range (Table S3).

The uncertainties in the high‐resolution reference data should ideally be smaller than those in the LAI pro-

ducts (Widlowski, 2015). In general, both field measurement and transfer function uncertainties need to be

considered to improve the reference LAI accuracy (Ding et al., 2014; R. A. Fernandes et al., 2003; Garrigues,

Lacaze, et al., 2008; A. H. Li et al., 2013). Prior to validation, it is important to examine the vegetation distri-

bution within the pixel to check whether the field data are representative of the larger pixel (Fang, Wei, &

Liang, 2012; Nikolov & Zeller, 2006). This can be realized by calculating the VI (e.g., NDVI) or reflectance

variation from each of the high‐resolution pixels within the larger moderate‐resolution pixel (Fensholt

et al., 2004; Iwata et al., 2013; Raymaekers et al., 2014; Y. Zeng et al., 2014). However, this method has been

mostly used in low LAI areas because of the easy saturation of VI and reflectance in high LAI areas. As an

alternative, geostatistical techniques have been effective in identifying spatially representative areas and

mitigating the spatial mismatch between satellite pixels and reference data (Ding et al., 2014; Martinez

et al., 2009, 2010). Using sampling schemes adapted to the spatial variability of the LAI (e.g., Validation of

Land European Remote sensing Instruments) and by sampling sufficient numbers (>100) of ground

measurements, the problem of scale differences in generating the reference data can be partly overcome

(Nackaerts et al., 2000; Richter, Atzberger, et al., 2012).

It is noted that these uncertainties for the reference LAI represent general conditions and, therefore, cannot

be used to describe the uncertainties at the pixel level. The pixel‐level uncertainties can be estimated in a

manner similar to the DAmethods (Lewis et al., 2012; Pinty et al., 2011). In this case, the pixel‐level precision

uncertainties can be calculated as the differences between the LAI estimation and the multiyear mean value.

The relative differences can also be computed to provide the relative errors for each pixel (Fang et al., 2007;

Fang, Liang, Townshend, et al., 2008; Y. Gu et al., 2006; Xiao, Wang, et al., 2011). This topic should be an

area for future development.

4.3. Recommendations

Existing sites already commissioned during previous validation studies need to be continued or reactivated

to meet the validation requirement for the forthcoming sensors. CEOS LPV is compiling a list of core sites

with long‐term consistent observations and reference data staged at the On Line Validation Exercise

Table 11

Statistics of Reference Leaf Area Index Validation Results

All biomes Statistics Min Median Max Biome types Statistics Min Median Max

Overall R
2 0.39 0.8 0.97 Mixed biomes R

2 0.92 0.92 0.92
Bias −0.18 0.014 0.4 RMSE 0.66 0.66 0.66
RE (%) −11.7 12.78 35.3 Grass R

2 0.39 0.81 0.89
RMSE 0.08 0.5 0.95 RMSE 0.08 0.35 0.5
RRMSE (%) 2.1 22 37 Crops R

2 0.49 0.787 0.97
Landsat R

2 0.39 0.82 0.97 RMSE 0.22 0.55 0.83
Bias −0.18 0.029 0.4 Broadleaf forest R

2 0.5 0.777 0.94
RE (%) −11.7 −0.045 17.56 RMSE 0.1 0.502 0.61
RMSE 0.114 0.495 0.95 Needleleaf forest R

2 0.45 0.734 0.93
RRMSE (%) 20.2 24.89 26.82 RMSE 0.37 0.605 0.95

Note. Data from Table S3. RE = relative error; RMSE = root mean squared error; RRMSE = relative RMSE.
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(http://calvalportal.ceos.org/web/olive/; Weiss et al., 2014). To help with the expansion of validation sites,

the core sites should fully exploit current long‐term and operational ecosystem networks, such as the

Chinese Ecosystem Research Network (http://www.cern.ac.cn/), the Integrated Carbon Observation

System (https://www.icos‐ri.eu/), the Terrestrial Ecosystem Research Network (http://www.tern.org.au/),

and the National Ecological Observatory Network (http://www.neoninc.org/). To assist the validation stu-

dies, other individual initiatives with proper metadata about the collection method, clump processing,

woody component and understory consideration, and uncertainty calculation, should also be included

(e.g., M. Ma, Che, et al., 2015; S. Wang et al., 2016). Field measurements need to be standardized in terms

of field conditions, observation assumptions, and tools, to allow a rigorous evaluation and intercomparison

of field data among the community (R. Fernandes et al., 2014). A clear distinction between the various LAI

definitions (Table 1) is desirable in validation studies since most remote sensing products represent the true

LAI (Table 4). Separate consideration of the overstory and understory LAI would enable more efficient

validation of the storied LAI products (e.g., Y. Liu, Liu, et al., 2017) and the LiDAR‐derived LAI vertical pro-

files (e.g., H. Tang et al., 2016). Over these sites, high‐resolution reference data should be generated, using a

standardized approach with traceable results and well‐calibrated quality information.

The availability of field observations should be strongly fostered at the international level for underrepre-

sented regions and seasons, when the potential improvements in LAI product quality are also large. Field

LAI studies in the tropical and Arctic regions are critical for understanding the uncertainties and seasonal var-

iation of LAI products (Doughty & Goulden, 2008; R. Myneni et al., 2007). However, field measurements are

very scarce in these regions (Kalácska et al., 2004; Pfeifer et al., 2014; Verbyla, 2005), and product differences

are large, primarily because of cloud and atmospheric effects (Fang, Jiang, et al., 2013). Sparsely vegetated

areas in the arid and semiarid areas and savannas in ecological transition zones are also underrepresented

(Fang, Jiang, et al., 2013; Gonsamo & Chen, 2014). More than 50% of the land surface has yearly LAI values

<1.0 (F. Baret, Morissette, et al., 2006), with large relative errors and interannual variability (Fang, Jiang,

et al., 2013). The relative RMSE target (15%) proposed by GCOS is influenced by the mean LAI values and

may not reflect the overall uncertainty in low LAI regions. Therefore, further field measurement guidelines

are warranted for these regions where the LAI values are sensitive to small changes in leaf cover over time.

Because of the ease of field work and satellite data availability, current field campaigns and validation stu-

dies are mainly conducted during the peak growing season (Fang, Jiang, et al., 2013; Heiskanen,

Rautiainen, Stenberg, Mõttus, et al., 2012; Z. Wang et al., 2014). Nevertheless, the relative uncertainties

are generally higher during the beginning and end of the growing season, when current validation studies

are constrained (Camacho et al., 2013; Fang, Jiang, et al., 2013; Weiss et al., 2007). Continuous seasonal mea-

surements and time series validation studies should be pursued, for example, by using high‐frequency and

automatic measurement tools (Baret et al., 2010; Qu, Zhu, et al., 2014; Ryu et al., 2012). With instrument

improvement, more detailed measurement protocols need to be considered simultaneously to address the

increasing demands for LAI validation studies.

Product validation is an ongoing process because of incremental improvements in the input data and the

algorithms, new product releases, and product time series expansion. The ultimate goal is to achieve stage

4 validation, which requires systematic generation of real‐time product quality information (Table A1). In

reality, the validation of satellite products has lagged behind satellite product development. Many products

have not been fully validated during their entire lifecycle (e.g., CYCLOPES and the global carbon project),

before the next generation of satellite products become available. Similarly, the products generated from

data synergy or temporal compositing are not fully validated, and their uncertainties are unspecified

(Ganguly, Baret, et al., 2014). Extensive validation studies are warranted to ensure the quality and continuity

for synergistic products and to fully characterize the potential error accumulation (Baret, Morissette, et al.,

2006). Long‐term LAI validation prior to 2000 is also limited by the scarcity of field data (J. Privette et al.,

1998); direct validation has only been possible through comparison with field data extracted from the litera-

ture (Nikolov & Zeller, 2006; Scurlock et al., 2001). A practical solution is to conduct product intercompar-

ison (Piao et al., 2015; Xiao et al., 2017) or make comparisons with climatic variables (Z. Zhu et al., 2013) and

LSM simulations (Mao et al., 2013; Zaichun Zhu, Piao, et al., 2016).

More emphasis should be placed on the validation of LAI in future missions. With the increase in data sets

from hectometric‐resolution sensing systems, hectometric LAI products have been developed from MODIS
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(250 m), medium‐resolution imaging spectrometer (300 m), MEdium

Resolution Spectrum Imager (250 m), and PROBA‐V (300 m; Table 7).

At the hectometric resolution, direct comparison with ground measure-

ments at spatially representative sites (scheme I, section 4.1.1) will

become more realistic because of the similar scales between ESU samples

and individual pixels (Gonsamo & Chen, 2014; Si et al., 2012). This may

become even easier with the availability of frequent decametric resolution

sensors, in which the pixel size is close to the size of the ground measure-

ment. The availability of multiple decametric satellite sensors during the

next decade will enable the generation of daily reference LAI based on

its combination with calibrated transfer functions using continuous

LAI measurements.

As a relatively new product, the spaceborne LiDAR product needs to be

validated before it can be used to compare with the moderate‐resolution

LAI products. The LAI estimated from spaceborne LiDAR can be vali-

dated with field optical, TLS, and airborne LiDAR‐derived LAI (Tang

et al., 2014, 2016). The airborne LiDAR acts as a validation link between

TLS and spaceborne data, and extensive work has been conducted to

estimate LAI for forestry, exploiting the 3‐D information obtained from

airborne systems (Hyde et al., 2005; Ritchie, 1996). Methodologies based

on LiDAR data sets have been developed to assess 3‐D forest structures

and for LAI estimates at the individual tree level with small footprint

LiDAR (Alonzo et al., 2015). A few studies for nonforest vegetation

types, such as wetland (Luo et al., 2015) and maize (Nie et al., 2016),

have been performed, allowing full wall‐to‐wall validation using

LiDAR data.

The traditional upscaling validation (scheme II, section 4.1.2) often treats the high‐resolution LAI data as the

reference truth and ignores the errors associated with the reference (R. Fernandes & Leblanc, 2005; Miralles

et al., 2010). To fully calculate the output uncertainties, both product and reference uncertainties need to be

considered (Miralles et al., 2010; Widlowski, 2015; Yu et al., 2012), with new methods such as the triple col-

location method (Fang, Wei, Jiang, et al., 2012) and the Bayesian maximum entropy method (A. H. Li et al.,

2013). Last but not least, the validation community need to communicate timely with users regarding the

comprehensive quality of LAI products, not only for a range of vegetation types but also their spatial and

temporal distributions.

5. LAI Applications

5.1. Global Vegetation Change

Field measurements show that the global average LAI values range from 1.98 (±1.61) to 2.31 (±1.26;

Figure 5). The global remote sensing LAI products show a yearly average LAI of around 1.50, but the average

LAI reaches around 2.0 during the peak growing season, which is comparable with the field data. Recently

reported field LAI values are nearly half of those (4.5 ± 2.5) reported 16 years ago (Figure 5), mainly because

of the significant number of high LAI values formerly collected in plantations (Asner et al., 2003).

5.1.1. LAI Phenology

A growing number of studies are using seasonal LAI products to investigate vegetation phenology in differ-

ent regions (Che et al., 2014; Valderrama‐Landeros et al., 2016; P. Zhang et al., 2004). For example,

Valderrama‐Landeros et al. (2016) built annual phenology maps from the CYCLOPES time series to assess

deforestation in Mexico. Verger et al. (2016) derived the global baseline phenology from the LAI climatology

estimated from 1‐km SPOT‐VEGETATION time series. The Spinning Enhanced Visible and InfraRed

Imagery daily LAI is particularly useful for derivation of the growing season length, the asymmetric

green‐up and green‐off length/rate, and the distinctive phenological features of cropland and natural vege-

tation (Guan et al., 2014). In general, the LAI becomes positive (LAI > 0) during the onset of greenness, and

the seasonal maximum LAI may represent the time of maximum photosynthesis in the canopy (L. Y. Sun &

Figure 5. Global average LAI calculated from field and remote sensing data.
The vertical bars show the standard deviation of the field data. (1) Table 3,
Yan et al. (2016); (2) Table 1, Fang, Wei, & Liang (2012); (3) Table 2, Baret,
Morissette, et al. (2006); (4) Table 2, Iio et al. (2014); (5) p. 202, Asner et al.
(2003); (6) Table 3, Fang, Jiang, et al. (2013); and (7) Figure 4, for July, 2001,
Yan et al. (2016). LAI = leaf area index; MODIS = Moderate Resolution
Imaging Spectroradiometer; GEOV1 = Geoland2/BiopPar version 1;
GLASS = Global Land Surface Satellite; GLOBMAP = The global mapping
project; CYCLOPES = Carbon cYcle and Change in Land Observational
Products from an Ensemble of Satellites.
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Schulz, 2017). The start and end of the season can be identified using 30% and 40% thresholds, respectively,

of the LAI amplitude values (Verger et al., 2016).

Validation of the LAI phenology can be performed through comparison with ground observations, high‐

resolution reference data, intercomparison with data derived from VIs, and comparison with the variation

in climatic variables (Che et al., 2014; Valderrama‐Landeros et al., 2016; Verger et al., 2016). A number of

studies have reported that LAI is physically more meaningful and the derived phenological metrics are more

accurate than those derived using the VI method (Verger et al., 2016; C. Wang, Li, et al., 2017; P. Zhang et al.,

2004). Moderate‐resolution LAI products are advantageous for global phenology studies because of their

higher revisit cycles. With the availability of multiple high‐resolutions satellite sensors, an increasing num-

ber of phenology studies are starting to use the high‐resolution time series images, especially at local scales

(El Hajj et al., 2009; Melaas et al., 2013; Senf et al., 2017; Zhe Zhu, Fu, et al., 2016). To appropriately use LAI

in phenology studies, the original LAI curves need to be temporally filtered (section 3.3); differences in LAI

data sets also need to be considered.

5.1.2. LAI and Climate Change

Global long‐term satellite LAI products generally show positive values over a large proportion of vegetated

areas since 1982 (Table 12). The global average growing season (April–October) LAI increased at a rate of

about 0.060 ± 0.028 per decade from 2001 to 2017 (Figure 6 and Table 12). The greening trend in Eurasia

is more obvious than that in North America (Kai Yan et al., 2016). The amplitude of greening in China is

about 24% higher than the global value (0.070 per decade vs. 0.053 per decade; Jiang et al., 2017; Piao

et al., 2015). The greening trend is largely explained by the climate change, CO2 fertilization, atmospheric

nitrogen deposition, and longer high‐latitude growing seasons (Piao et al., 2015; Zaichun Zhu, Piao, et al.,

2016). Differences exist among the LAI products in calculating the interannual variability and long‐term

trend, especially at regional scales (Fang, Jiang, et al., 2013; Jiang et al., 2017; Piao et al., 2015).

Differences also exist in the predicted LAI using various process models (Mahowald et al., 2016). Long‐term

trends would be more convincing when remote sensing data agree with and model predictions (Mao et al.,

2013; Piao et al., 2015).

Over a longer term, the global LAI has gradually increased since 1850, which is consistent with the change in

global temperature (L. Chen & Dirmeyer, 2016; Lawrence et al., 2012). Lawrence et al. (2012) reported that

Table 12

Global Long‐Term Remote Sensing LAI Trends During Different Time Periods

Region Period Product LAI change Source Reference

Globe 2001–2017 MODIS C6 0.049 ± 0.023/10aa

0.060 ± 0.028/10ab

0.067 ± 0.034/10af

0.040 ± 0.023/10ag

Figure 6 This study

Globe 2003–2011 GEOV1, MERIS, and MODIS C6 0.056 ± 0.010/10ab Table 2 Jiang et al. (2017)
Globe 2002–2012 MODIS C6 −0.2 ± 0.4%/10a Table 5 Alton (2018)
Globe 1982–2011 LAI3g, GLASS, GLOBMAP, and AVH15C1 0.053 ± 0.038/10ab Table 2 Jiang et al. (2017)
Globe 1982–2009 LAI3g 6.93%b Table 1 Mao et al. (2013)
Globe 1982–2014 LAI3g 0.032/ac Figure S3 Zhu, Piao, et al. (2016)
Globe 1982–2011 LAI3g 0.038 ± 0.009/10aa Figure S1a Z. Zeng et al. (2018)
Globe 1982–2011 LAI3g 0.025 ± 0.0001/10aa Figure 3 Forzieri et al. (2017)
Globe 1982–2011 LAI3g 8%a Figure S1b Z. Zeng et al. (2018)
Globe 1982–2009 LAI3g, GLASS, and GLOBMAP 0.068 ± 0.045/ac Figure 1 Zhu, Piao, et al. (2016)
Globe 1982–2011 LAI3g, GLASS, GLOBMAP, and AVH15C1 (0.036,0.048, –0.008,0.048)/10aa Figure 8 Xiao et al. (2017)
Globe 1999‐2015 GEOV1 0.0275 ± 0.0235/aa Figure 9 Munier et al. (2018)
30–75°N 1982–2011 LAI3g, GEOV1, and their average 0.143, 0.163, and 0.153b Figure 1 Mao et al. (2016)
>30°N 1982–2009 Average of LAI3g, GLASS, and GLOBMAP (0.03e, 0.09f, 0.05g)/10a Figure 1 Z. Zhu et al. (2017)
45–90°N 2002–2012 MODIS C6 2.7 ± 1.0%/10a Table 5 Alton (2018)
China 1982–2009 LAI3g, GLASS, GLOBMAP, and their average (0.035,0.127,0.048, 0.070)/10ab Figure 2 Piao et al. (2015)

Note. See Tables 4 and 5 for products since 2000 and 1982, respectively. LAI = leaf area index; GLASS = Global Land Surface Satellite; GLOBMAP = The global
mapping project; MERIS = MEdium‐Resolution Imaging Spectrometer.
aYearly average LAI. bGrowing season (April–October) average LAI. cGrowing season integrated LAI. dDecember‐January‐February (DJF). eMarch‐
April‐May (MAM). fJune‐July‐August (JJA). gSeptember‐October‐November (SON).
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the global LAI has increased by about 0.11 compared to the preindustrial period (Table 13). The increasing

LAI is partly mediated by anthropogenic land use and land cover change as a result of agricultural expansion

and wood harvest. The negative effect of land use and land cover change is relatively small (–0.04) at the

global scale (Lawrence et al., 2012), but it caused a 10% LAI decrease in Eurasia, north and south

America, and southeast Asia (Boisier et al., 2014; L. Chen & Dirmeyer, 2016). The variations in LAI are more

strongly affected by temperature changes at high latitudes. However, in tropical areas, these variations are

more strongly influenced by moisture levels (Anav, Friedlingstein, et al., 2013; Anav, Murray‐Tortarolo,

et al., 2013; Forkel et al., 2014; Mahowald et al., 2016).

The global mean LAI is projected to increase in the 21st century under future climate change scenarios

(Mahowald et al., 2016). Regional LAI varies under the impact of different environmental drivers (Lin

et al., 2016; Mao et al., 2013; Tesemma et al., 2014). The increases in LAI are largest in midlatitude regions

(~0.35), high‐latitude regions, mountainous regions (e.g., Tibetan plateau), and the tropics (Mahowald et al.,

2016). The increasing CO2 will decrease LAI in some areas, probably as a result of increased droughts

(Duursma et al., 2016; Mao et al., 2013). In Australia, the mean annual LAI is projected to decrease as a result

of decreasing precipitation (Tesemma et al., 2014).

Figure 6. Maps of the linear trend of global leaf area index calculated from Moderate Resolution Imaging Spectroradiometer (MCD15A2H, C6; 2001–2017).
(a) Yearly average, (b) growing season (April–October), (c) December‐January‐February, and (d) June‐July‐August. The histrogram shows the percentage of pixels
for different category of changes. Pixels with p ≥ 0.1 were excluded.

Table 13

Centennial Change of LAI Reconstructed From Different Models

Region Period Modela Climate LAI change Source Reference

Globe (1976–2005)
to (1850–1879)

CCSM 4.0 Historical
(1850–2005)

–0.04 (LULCC),
0.11 (climate + LULCC)

Table 6 Lawrence et al. (2012)

Eurasia, N. America,
S. America, and SE Asia

1870–1992 Six AGCM/LSMs LULCC –10% Figures 2 and 3 Boisier et al. (2014)

Globe (2081–2100)
to (1981–2000)

18 CMIP5 ESMs RCP scenarios 0.16 (tropics),
0.35 (midlatitude), and
0.31 (high latitude)

Table 4 Mahowald et al. (2016)

Australia 2011–2100 CMIP5 GCM RCP scenarios –10% to –38% (crops),
–5% to –24% (pasture),
–2% to –11% (trees)

Table 3 Tesemma et al. (2014)

Note. AGCM=Atmospheric Global CirculationModel; CCSM=Community Climate SystemModel; CMIP5 = CoupledModel Intercomparison Project phase 5;
ESMs = earth system models; GCM = global circulation models; LSMs = land surface models; LULCC = land use and land cover change; RCP = representative
concentration pathways; LAI = leaf area index.
aSee references in the last column for more details about the models.
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LAI also presents an important feedback to climate change. Increasing LAI will decrease surface albedo and

air temperature for snow‐free regions, increase canopy ET, and decrease ground evaporation over tropical

regions (Y. Tian, Dickinson, Zhou, & Shaikh, 2004; van den Hurk et al., 2003). Terrestrial carbon fluxes

are strongly affected by changes in LAI, especially for the plant functional types that have high interannual

variabilities (Kala et al., 2014). Global modeling studies have showed that the increased global LAI leads to

an increase of 11.4 mm/year in the land ET, which accounts for more than 50% of the observed increase in

the land ET over the last 30 years (Z. Z. Zeng et al., 2016).

5.2. Application in LSMs

Integration of remote sensing LAI products with LSMs has significantly improved the simulation of energy

absorption, transpiration and interception, and ecosystem productivity prediction at seasonal and interann-

ual time scales (Boussetta et al., 2015; Buermann et al., 2001; Guillevic et al., 2002; Jarlan et al., 2008). LAI is

integrated with LSM through a simple direct forcing mode or a more sophisticated DA mode.

5.2.1. LAI in the Forcing Mode

In the direct forcing mode, LSM uses remote sensing LAI as initial conditions or input data to force the

model to run in a more realistic way (M. Chen et al., 2015; Ge et al., 2008; Kala et al., 2014; Moore et al.,

2010). In these models, LAI acts as the bridge to upscale the rate of leaf biophysical and biogeochemical pro-

cesses, for example, leaf photosynthesis and stomatal conductance, to the canopy level (Mu et al., 2007; Niu

et al., 2011; H. Yan et al., 2012). The canopy water storage capacity is calculated as a linear function of LAI

(Bastiaanssen et al., 2012; Cui & Jia, 2014; van Dijk & Bruijnzeel, 2001). In a similar fashion, satellite‐derived

LAI data are directly used to calculate the canopy conductance (Cleugh et al., 2007; Mu et al., 2007; H. Yan

et al., 2012). The MODIS LAI monthly climatology has improved simulation studies in land surface model-

ing (Boussetta et al., 2013; Jarlan et al., 2008; Weiss et al., 2012) and regional and global numerical weather

predictions (Boussetta et al., 2013; Ge et al., 2008; Knote et al., 2009).

In the modeling of gross primary productivity (GPP), LAI is generally used to calculate the FPAR and the

mean photosynthetically active radiation (PAR) incident on leaves to drive the canopy‐level photosynthesis

(Running et al., 2004; Y. Zhou et al., 2017):

GPP ¼ FPAR×PAR×LUE;

FPAR ¼ e−k⋅LAI ;
(14)

where LUE is the light use efficiency and k is the light extinction coefficient. This equation is also used to

calculate the incoming solar radiation and the below canopy PAR, which attenuates exponentially with

LAI (Carrer et al., 2013). Alton (2016) found that GPP modeling is more sensitive to the LAI forcing

(10–20% change) than to the land cover classification and the spatial resolution of simulation (<10%). In a

similar study in Australia, Kala et al. (2014) found that changes in LAI more strongly affected the carbon

fluxes than the sensible and latent heat fluxes, especially for croplands.

Some LSMs parameterize vegetation using a simple seasonally invariant LAI (G. B. Bonan, Levis, et al., 2002;

Ford & Quiring, 2013; Sellers et al., 1986). However, the static LAI parameter tends to overestimate LAI and

soil moisture during anomalously dry seasons (Ford & Quiring, 2013; Tesemma et al., 2015). Simulations

with seasonally varying LAI represent a more realistic climatology and are recommended for LSM simula-

tions (S. Boussetta et al., 2013; Ford & Quiring, 2013; A. Loew et al., 2014). It is noted that the LAI climatol-

ogy created for each grid cell is different from the prescribed LAI for each plant functional type (Bonan,

Levis, et al., 2002; Sellers et al., 1986). Moreover, LAI is generally defined for the vegetated fraction in

LSMs, whereas the satellite LAI is defined for the whole pixel, including both vegetated and nonvegetated

fractions (Bonan, Oleson, et al., 2002; Niu et al., 2011; X. Zeng et al., 2002).

5.2.2. LAI in the Assimilation Mode

Many studies have shown that DA of LAI improved the estimation of vegetation dynamics, water, energy,

and chemical simulations (Table S4). The DA process constrains the model simulations with observations

to improve estimation of the state variables. Generally, an optimal constraint is built upon the estimated

measurement and model forecast errors through a sequential or a variational assimilation approach. The

sequential assimilation constrains the model state to observations by a variance minimizing estimator, for

example, an ensemble Kalman filter, and updates the model variable (e.g., LAI) each time a remote
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sensing observation is available. A number of studies have proven the potential of ensemble Kalman filter

assimilating LAI observations to correct the LSM states (Albergel et al., 2010; Pauwels et al., 2007;

Rüdiger et al., 2010; Revill et al., 2013). Vazifedoust et al. (2009) showed that the assimilation of MODIS

LAI results in better ET and crop yield forecasts at a regional level. The variational assimilation approach

seeks an optimal fit between remote sensing and model estimates by adjusting the initial conditions or

model parameters. The cost function is built by a maximum‐likelihood estimator that calculates the

distance of the model state to the observations and background. Boussetta et al. (2015) demonstrated the

potential of assimilating the GEOV1 LAI into a LSM to improve the monitoring of extreme climate.

The underlying hypotheses of the DA studies are that the remote sensing LAI has greater accuracy than the

simulated ones or that the LAI uncertainties can be properly quantified (Jongschaap, 2006). Because of the

continuity of model simulation, intermittent remote sensing observations need to be processed (section 3.3)

to match the model simulation dates (Jarlan et al., 2008; Pauwels et al., 2007; Rüdiger et al., 2010). Some DA

studies have successfully coupled microwave radar and optical remote sensing data (Betbeder et al., 2016;

Clevers & van leeuwen, 1996; Dente et al., 2008). Various ways to combine LAI with other variables, such

as surface soil moisture (Albergel et al., 2010; Y. Xie, Wang, Sun, et al., 2017) and ET (Vazifedoust et al.,

2009), have been proven to be successful in regional applications.

5.2.3. Configuration of LAI Uncertainties

Proper configuration of LAI uncertainties is critical because errors in LAI products could potentially propagate

into the modeling processes (W. Buermann et al., 2001; Chase et al., 1996; van den Hurk et al., 2003). Various

configurations of LAI uncertainties have been applied in LSMs (Table 14). LAI uncertainties are either assigned

as constant values or using different uncertainties for different LAI values. More frequently, the LAI uncertain-

ties are set as an empirical percentage (10–20%) of the LAI values (Fox et al., 2009; Jarlan et al., 2008; Rüdiger

et al., 2010). The empirical quality settings in Table 14 are very similar to the LAI quality ranges reported in the

literature (Table 10). In contrast to the overall uncertainty assignments, pixel‐specific LAI uncertainties are

expected to improve the model performance when the products are assimilated into climate and ecosystem

models (Rüdiger et al., 2010). While LAI validation outputs have been recognized and exploited by the

modeling community, a better representation of LAI uncertainty in LSMs is still desirable from the science user

perspective. There is a clear disconnect between validation outputs and model settings, attributable mainly to

the immature LAI validation stages (currently only stage 2) and insufficient quality information.

5.3. Agricultural Applications

Remote sensing LAI data have been widely applied in agriculture to assist the crop yield estimation (de Wit

et al., 2012; Dente et al., 2008; Doraiswamy et al., 2005). Regression models have been developed to estimate

crop yield from remote sensing LAI (Baez‐Gonzalez et al., 2005; Y.‐P. Wang et al., 2010; P. Zhang, Anderson,

Table 14

Examples of Setting LAI Uncertainties in Dynamic Process Models

Methods LAI uncertainties References

(a) Pixel‐based
0.1–1.2 Boussetta et al. (2015)

(b) Percentage
10% Boussetta et al. (2015), Curnel et al. (2011), and Viskari et al. (2015)
13% Xie, Wang, Bai, et al. (2017)
20% Jarlan et al. (2008), Rüdiger et al. (2010),

Dewaele et al. (2017), and Albergel et al. (2017)
(c) Incremental values

0.2, 0.4, and 0.6 for
LAI < 1, 2, and 3

Barbu et al. (2011) and Pauwels et al. (2007)

0.01–0.40 and Nearing et al. (2012)
0.4 for LAI < 2% and

20% otherwise (modeled LAI)
Albergel et al. (2017)

(d) Constant value
0.3 for GEOV1 Barbu et al. (2013)

1.0 Barbu et al. (2011) and Sabater et al. (2008)

Note. LAI = leaf area index.
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et al., 2005). For example, Zhang, Anderson, et al. (2005) used the growing season MODIS LAI to estimate

crop production at local, regional, and national levelss. Some studies indicate that GAI is more practical than

LAI for crop yield estimation (N. Guindin‐Garcia, 2010; Kouadio et al., 2012; Sakamoto et al., 2013). Under

extreme weather conditions, the relationship between yield and LAI may not be adequate, and other agro-

meteorological data, for example, temperature, reference ET, and radiation, need to be included in the pre-

diction model.

More sophisticated methods integrate LAI with a crop simulation model (CSM) using the DA method to

assist crop yield modeling and irrigation management. X. L. Jin et al. (2018) provided a recent review of crop

models, remote sensing technology, and DAmethods. Different DA methods to use LAI in CSMs, of various

degrees of complexity and integration, have been proposed (Baret et al., 2000; Delécolle et al., 1992; Moulin

et al., 1998). These methods are generally similar to those applied in the LSM (section 5.2) and include using

remote sensing LAI directly in the CSM and updating, reinitializing and recalibrating CSMs based on LAI

observations. A suite of crop growth models, for example, Decision Support System for Agrotechnology

Transfer and WOrld FOod STudies, have been explored to improve simulations of land surface variables

(Table S4). Jégo et al. (2012) reported that the crop model errors can be reduced by up to 20% if a variational

assimilation approach was used.

Coupling satellite data with crop models remains challenging because of the low spatial resolution of satel-

lite data and the traditionally point‐based crop models. A practical DA protocol should be constructed using

state‐of‐the‐art remote sensing data for regional crop monitoring and yield estimation. Such a protocol

would require good quality LAI data with a high temporal and spatial resolution and a wide geographic cov-

erage (Pauwels et al., 2007). More thorough studies are needed to support agricultural decisionmaking using

LAI data.

5.4. General Guidelines

LAI has been increasingly applied in a number of new areas such as global land cover mapping (Xiao, Wang,

et al., 2016), biodiversity tracking (Skidmore et al., 2015), forest management (J. Wang, Wang, et al., 2017),

and urban landscaping (Chianucci, Puletti, et al., 2015). For all applications, it is important for users to

understand the strengths and weaknesses of the product they are using. LAI validation studies (section 4)

supply crucial information for process model evaluation and projection studies. Products with stage 2 to 4

validation can be used by the user community; however, provisional products require further refinement

and validation and should be used with caution (Table A1). While many efforts have been made to evaluate

a product based on its uncertainty, a more pertinent consideration for users would be whether or not the

product is appropriate for its intended purpose. It is critical for the user community to understand the

limitations of the product and provide feedback on the discrepancies between LAIs from the model and

satellite data (Randerson et al., 2009). The most successful mechanism for this would be to involve the user

community in the product development cycle.

6. Summary

LAI is a critical vegetation structural variable that is essential in the feedback of vegetation to the climate

system. This paper provides a comprehensive overview of LAI field measurement and remote sensing esti-

mation methods, product validations and uncertainties, and LAI application cases. In addition to the tradi-

tional direct and indirect methods, new cost‐effective tools need to be investigated for long‐term automatic

field LAI measurements. Current moderate‐ and high‐resolution satellite observation systems need to be

continued with support from CEOS and space agencies. Further development of canopy reflectance models

need to contain efficient modeling framework and accurate parameterization and be made publically

available. Future LAI retrieval needs to capitalize new development in canopy reflectance models and

new computing technologies (e.g., machine learning algorithms) and platforms. A new generation of

analysis‐ready products is expected to provide user‐defined spatial and temporal resolutions with greater

accuracy. The usage of LiDAR is expected to increase with the capability to provide the LAI vertical profile.

A summary of uncertainties of global LAI products show that the products are suitable for global vegetation

change, land surface processes, agricultural production, and climatic studies. Further improvements can be

made by enhancing the input information, canopy models, retrieval algorithms, and ancillary data.

10.1029/2018RG000608Reviews of Geophysics

FANG ET AL. 773



Coordinated efforts of international agencies are required to establish long‐term consistent validation net-

works enabling a comprehensive validation of the global products for current and future missions.

Timely, accurate, and traceable product uncertainty information should be made regularly available to pro-

duct users (stage 4 validation). Data producers and users need to communicate routinely to better under-

stand the products and broaden their applications in various disciplines.

Appendix A: The CEOS WGCV Land Product Validation Hierarchy
The Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation

(WGCV) Land Product Validation (LPV) subgroup has identified four validation levels for land products

(Table A1).

Appendix B
Symbols and acronyms used in the paper.

3‐D Three dimension

α Woody‐to‐total area ratio

Aj The jth above canopy reading

Bj The jth below canopy reading

γE Needle‐to‐shoot area ratio

Cab Leaf chlorophyll content

Fm(0, θ) Measured accumulated gap fraction

Fmr(0, θ) Measured accumulated gap fraction excluding nonrandom large gaps

f (θL) Leaf inclination distribution function

G Leaf projection function

θ Solar zenith angle

θL Leaf inclination angle

k Light extinction coefficient.

P Canopy gap fraction

Po Average light transmittance

σ Radar backscattered signal

Ω Clumping index

ΩE Element clumping index

AccuPAR A PAR sensor

AVHRR Advanced Very High‐Resolution Radiometer

CC The Chen and Cihlar (1995) method CEOS Committee on Earth Observation Satellites

CI Clumping index

CLX The combined CC and LX method

CYCLOPES Carbon cYcle and Change in Land Observational Products from an Ensemble of Satellites

Table A1

The Four Validation Stages Adopted by the Committee on Earth Observation Satellites Working Group on Calibration and Validation Land Product Validation

subgroup (http://lpvs.gsfc.nasa.gov/)

Stage
1

Product accuracy is assessed from a small (typically <30) set of locations and time periods by comparison with in situ or other suitable reference data.

Stage
2

Product accuracy is estimated over a significant set of locations and time periods by comparison with reference in situ or other suitable reference data.
Spatial and temporal consistency of the product and with similar products has been evaluated over globally representative locations and time periods.
Results are published in the peer‐reviewed literature.

Stage
3

Uncertainties in the product and its associated structure are well quantified from comparison with reference in situ or other suitable reference data.
Uncertainties are characterized in a statistically rigorous way over multiple locations and time periods representing global conditions. Spatial and
temporal consistency of the product and with similar products has been evaluated over globally representative locations and periods. Results are
published in the peer‐reviewed literature.

Stage
4

Validation results for stage 3 are systematically updated when new product versions are released and as the time series expands.

Note. The four stages correspond to the increasing spatial and temporal representativeness of samples used to perform direct validation (R. Fernandes et al., 2014).
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DA Data assimilation

DBH Diameter at breast height

DCP Digital cover photography

DHP Digital hemispherical photography

ECOCLIMAP A database of land surface parameter

ESU Elementary sampling unit

ET Evapotranspiration

FPAR Fraction of absorbed photosynthetically active radiation

GA‐TIP Global Albedo Two Stream Inversion

GAI Green area index

GCOS Globe Climate Observing System

GEOV1/2 Geoland2/BiopPar version 1/2

GLAI Green LAI

GPP Gross primary productivity

HJ‐1 China's Huan Jing‐1 satellite

IKONOS A high‐resolution satellite

JRC‐TIP Joint Research Center Two Stream Inversion Package

LAI Leaf area index

LAIeff Effective LAI

LAIshade Shaded LAI

LAIsun Sunlit LAI

LiDAR Light Detection and Ranging

LPV Land Product Validation

LSM Land surface model

LUT Look‐up table

LX The Lang and Xiang (1986) method

MODIS Moderate Resolution Imaging Spectroradiometer

NDVI Normalized difference vegetation index

NIR Near infrared

NN Neural network

NOAA National Oceanic and Atmospheric Administration

PAI Plant area index

PAIeff Effective PAI

PAR Photosynthetically active radiation

PROBA Project for On‐Board Autonomy

PROSAIL A PROSPECT+SAIL model

PROSPECT A leaf optical radiative transfer model

QQI Quantitative quality indicator

RMSE Root mean squared error

SAI Stem area index

SLA Specific leaf area

TLS Terrestrial laser scanner

TRAC Tracing Radiation and Architecture of Canopies

UAV Unmanned aerial vehicle

VEGETATION The medium resolution sensor aboard SPOT

VI Vegetation index

WAI Woody area index
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