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Abstract—Hardware security and trust have become a pressing
issue during the last two decades due to the globalization of the
semi-conductor supply chain and ubiquitous network connection
of computing devices. Computing hardware is now an attrac-
tive attack surface for launching powerful cross-layer security
attacks, allowing attackers to infer secret information, hijack
control flow, compromise system root-of-trust, steal intellectual
property (IP) and fool machine learners. On the other hand,
security practitioners have been making tremendous efforts in
developing protection techniques and design tools to detect hard-
ware vulnerabilities and fortify hardware design against various
known hardware attacks. This paper presents an overview of
hardware security and trust from the perspectives of threats,
countermeasures and design tools. By introducing the most
recent advances in hardware security research and developments,
we aim to motivate hardware designers and electronic design
automation tool developers to consider the new challenges and
opportunities of incorporating an additional dimension of secu-
rity into robust hardware design, testing and verification.

Index Terms—Hardware security, security threat, security
countermeasures, design tools, survey.

I. INTRODUCTION

MODERN computing hardware devices are usually

crafted by vendors with different established levels of

trust and at discrete locations. These hardware components,

while residing in a mixed-trust computing environment, are

often shared among execution contexts of different security

levels in a back-to-back manner. In addition, the rich connec-

tivity features of modern computing systems expose critical

hardware resources to attackers and open up doors for remote
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attacks without requiring physical access to the victim. As

a consequence, our computing hardware is ever closer to the

front-line of a burning battle field and confronted with various

security threats.

Hardware security threats can arise during various stages

of the entire semiconductor life cycle, ranging from specifica-

tion to fabrication and even recycling. They can result from

unintentional design flaws [1]–[3], system side effects [4]–[7]

and intended malicious design modifications [8]–[10]. They

usually target security assets like cryptographic functions,

secure architectures, intellectual property (IP) and machine

learning (ML) models. While classic hardware security threats

such as covert and side channels, hardware Trojans and reverse

engineering (RE) are constantly evolving, recent powerful

attacks exploit remote [6], [11], cross-layer [2], [3], [12],

specification-compatible [8], [13] attack surfaces to compro-

mise strong cryptographic primitives, isolation mechanisms,

memory protection techniques and deep neural networks

(DNNs). Understanding the different hardware security threats

is an important first step to developing effective security

countermeasures and design tools for circumventing them.

Security practitioners have been making tremendous efforts

in developing effective hardware security countermeasures. An

important first task is to create hardware security primitives

that can serve as the building blocks for crafting an archi-

tectural level trusted computing environment enhanced with

strong isolation mechanisms. Effective side channel protection

and Trojan detection techniques are essential for verifying that

the security primitives and trusted computing environment are

free of design flaws, covert and side channels, and backdoors.

Recent advances in ML and artificial intelligence (AI) have

shown promise in developing more accurate detection solu-

tions [14], [15]. IP protection techniques [16]–[19], on the

other hand, protect security primitives, hardware designs and

DNN models from RE, counterfeiting, model extraction and

other adversary attacks.

Despite the numerous protection techniques for thwarting

hardware security threats, security is still at large an af-

terthought in hardware design. Most security holes are exposed

only after their exploitation by the threat actors. Over-reliance

on software patches for hardware flaws also contributed to the

trove of zero-day exploits for the attackers. In many ways, the

database of common vulnerabilities and exposures (CVE) is

just the tip of an iceberg. This is largely due to the lack of

effective hardware security tools that allow automated spec-

ification, verification and evaluation of security constraints.
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Best design practices and tacit knowledge are necessary but

inadequate. We need better design tools to enforce hardware

security properties for trust assurance. Proactive hardware

information flow analyses facilitate vulnerability shielding and

on-site monitoring. For example, unintentional hardware flaws

and potential security vulnerabilities can be detected early

by the recent security-driven hardware design flow [20]–

[22]. As the rally of attacks and countermeasures is a never-

ending recursion, it is important to keep abreast of its latest

development to continuously close the productivity gap of

secure hardware design. If the tool chain does not constantly

update to catch up with the latest design-for-trust and security

verification methodologies, at the present rate of growth in

hardware design complexity, security may terminate Moore’s

law before other physical limits.

At present, the hardware security space has grown to a

point with many different specialized topics and each topic

has been discussed in several focused survey papers. Exam-

ples of recent surveys on a few specialized topics are side

and covert channels [4], [23], [24], reverse engineering [25],

hardware Trojan [26], [27], physical unclonable function [28],

logic locking [29] and security verification tools [30]. This

paper provides a concise overview of hardware security from

three perspectives, namely threats, countermeasures and design

tools, with emphasis on niche, uncharted topics and updated

recent developments for hardware security in a mixed-trust

environment. We also identify potential future research direc-

tions with this overarching vision.

The reminder of this paper is organized as follows. A brief

description about the common hardware security properties is

introduced in Section II. In Section III, an overview of the

classic as well as state-of-the-art hardware security attacks is

provided. Section IV reviews the frequently used hardware

security mechanisms for thwarting these attacks. Section V

summarizes various secure hardware design tools from both

the academia and industry. Some research challenges and op-

portunities in the discussed topics are highlighted in Section VI

and the paper is concluded in Section VII.

II. HARDWARE SECURITY PROPERTIES

Hardware security properties are formal specifications about

invariant security-related behaviors of circuit designs. Secu-

rity threats and attacks usually cause violations of desirable

security properties while security countermeasures implement

mechanisms for enforcing them. Security properties provide

important constraints to security verification tools. In the fol-

lowing, we briefly cover different hardware security properties.

A. Dependability

Reliability, Availability and Safety are three important at-

tributes to assess the trustworthiness of a computing hardware

device to perform the expected function during its service

lifespan. Reliability is the ability to produce the intended

functions under normal operation and even under small fluc-

tuations in the computing environment for a specified time

period. Availability is the percentage of time a system is able

to serve its intended function. Safety is the ability to avoid

catastrophic consequences for the user or the environment.

Catastrophic failures represent only a small subset of all

failures. Hence, safety is a relative and subjective attribute

that cannot be measured directly. Critical path timing failures,

single-event-upsets and aging effects can be resulted from

security exploits, such as fault injection [31] and recent ML

attacks [32], to reduce the reliability, increasing the downtime

or impose safety hazards upon a system.

B. Confidentiality

Confidentiality is a general security property stating that

secret information should never be obtained or inferred by

observing a public output or memory location. While the direct

movements of sensitive information can be easily identified,

the stealthy leakage through system side effects and back-

doors can be more subtle. These include the covert and

side channels [4], [33] in cryptographic cores, system bus

and high-performance elements such as caches and branch

predictors [2], [3] as well as hardware Trojans [34].

C. Integrity

Integrity is the dual property of confidentiality. It requires

that a trusted data object should never be overwritten by an

untrusted entity. Integrity attacks often target critical memory

locations, e.g., the cryptographic key, program counter and

privilege registers. These attacks are usually a first step for

performing further malicious activities, e.g., hijacking the

control flow [35] and fooling machine learners [36].

D. Isolation

Isolation is a two-way property requiring that two hardware

components of different security levels should not directly

communicate with each other. It is a common security property

that needs to be enforced in System-on-Chip (SoC), modern

processors and the cloud, where the interaction between the

secure and normal worlds are strictly controlled. However,

there are still ingenious security exploits that break strong

isolation mechanisms such as ARM Trust-Zone [37] and Intel

Software Guide Extension (SGX) [38].

E. Constant Time

The constant time security property enforces that the hard-

ware design should take invariant amount of time to compute

and produce the result under different input combinations.

In other words, we cannot learn any information about the

inputs by observing the computation time. Violation of the

constant time property creates a timing channel that can

leak sensitive information. Such violation can result from

performance optimizations [2], [3], e.g., cache and branch

predictor as well as fast path in arithmetic units.

F. Quantitative Security Properties

Quantitative security properties allow more accurate mea-

surement of hardware design security, e.g., assessing the

severity of a vulnerability or evaluating the effectiveness of
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a security protection mechanism. Typical examples of such

quantitative properties include randomness of the output of

a cryptographic function [20], leakage of side and covert

channels [39] and strength of a security mitigation [40]. These

security properties are usually measured using statistical and

information theoretic security metrics [41]. The security of

approximate computing and machine learning are more often

measured quantitatively.

III. HARDWARE SECURITY THREATS

A. Architectural and System Threats

1) Secure Boot Attacks: A secure boot starts by loading

code from an immutable boot ROM, correctly initializing

critical peripherals, configuring security and system settings,

authenticating and properly loading boot images and appli-

cation code and properly sanitizing data upon reset. Many

issues arise due to the system being configured incorrectly,

e.g., system memory space not protected. Other issues relate

to data not being properly erased (e.g., keyboard strokes stay in

buffers). These and many other real-world secure boot attacks

are documented by Bulygin et al. [42].

The secure boot process is fairly well-documented making

it amenable to formal property specification [43], [44]. Such

properties relate to isolation and access control between boot

stages (e.g., the next stage can only access a limited subset

of the previous stage information), determining if a boot

stage completes fully before continuing to the next stage and

protecting boot state information properly upon completion

(e.g., it cannot be modified and can only be read from boot

code). Additionally, there should be a sequence that causes the

hardware to fully reset all data, code, configuration and any

other state, and the system should only load from the boot

ROM upon reset.

2) Firmware Attacks: Firmware is the low-level software

that controls the interaction and behavior of a piece of hard-

ware or IP core. Firmware plays a key role in determining the

security of the SoC. Incorrectly setting configuration registers

can lead to catastrophic consequences and open the door to

leaking confidential information, unsafe behaviors and critical

flaws that can be exploited by attackers. An analysis in 2014

showed that at least 140,000 devices had a firmware vulner-

ability [45]. This should not be too surprising as determining

the correctness of the firmware is challenging as each hardware

core has different configurations that interact with the overall

system in a non-obvious manner.

Firmware is particularly important for SoC architectures.

Modern SoC architectures are a patchwork of hundreds,

sometimes thousands, of different IP cores that are cobbled

together from in-house sources, outside vendors and open

source repositories. Ensuring that these are functionally correct

is a massive undertaking; determining that they lack security

flaws is even more challenging. Subramanyan et al. [46]

provide good motivation and the early work in this space.

Device drivers are typically small, but important pieces of

low-level C or assembly code that play an important role

in firmware security. They provide an application program

interface (API) that is used to deliver data to/from a device,

query the status of the device, or set the device mode. More

often than not, device drivers require access to critical parts of

the system and thus it is crucial that they execute efficiently,

handle real-time constraints and be secure. A first step towards

synthesizing correct, efficient and secure device drivers is

to create properties around on-chip communication protocols

like Advanced Extensible Interface (AXI) and Wishbone [47].

Properly handling access control to the hardware resource is

also important for secure computing with devices [48].

3) Dynamic Random Access Memory (DRAM) Threats:

The Coldboot [49] and Rowhammer [50] attacks demonstrate

the importance of protecting sensitive data stored in DRAM.

Coldboot exploits the physical phenomenon that DRAM data

persists for a short amount of time even after powering off

the memory. This time can be extended by cooling down the

memory, which further reduces the leakage of current from the

DRAM capacitors. Researchers used this idea to show how to

remove a DRAM from one computer, place it into another

and grab the data. Other malicious attacks are also possible.

Rowhammer exploits another physical vulnerability of DRAM,

this time using the fact that DRAM data can be altered by

accessing nearby data. The attacker locates some of their data

next to some critical data in DRAM. By changing the values

of their data, the attacker induces circuit noise that causes the

target sensitive data to change.

4) Cache Attacks: Cache attacks [4] exploit information

leakage though cache state and are extremely effective at

extracting protected information. The cache is a shared re-

source and any process that uses it can leave traces about

their computation, in particular, the memory addresses they

accessed.

Cache timing attacks can be categorized as time-driven

and access-driven [23]. A time-driven attack measures the

execution time of the victim process. The attacker manipulates

the contents of a shared cache and observes the timing of

another process (e.g., a cryptographic operation). The timing is

effected by cache hits and misses, which provides information

about the key [51]. An access-driven attack extracts informa-

tion by measuring the time that it takes the attacker to perform

a cache access [52]. If a particular cache line is accessed

by the victim process, the attacker would observe a cache

hit and vice-versa. For instance, an attacker can identify data

access patterns by the victim (e.g., which S-Box entries are

being accessed during AES execution) and use this information

to extract the confidential information (e.g., the secret key).

Cache side channel is a powerful attack that is often used

in combination with other attacks, e.g., Meltdown [3] and

Spectre [2] as we will discuss.

5) Speculative Execution Attacks: Meltdown [3] and Spec-

tre [2] are the first of a series of attacks that leverage spec-

ulative execution, out of order execution, caching and other

architectural performance enhancements to break isolation and

other security policies.

Meltdown enables unauthorized processes to read data from

any address that is mapped to the current process’s memory

space. Meltdown exploits a race condition where the unautho-

rized process attempts to access privileged data. A privilege

check eventually squashes the execution of that code, but not
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before the data is temporarily loaded into cache. The attack

then uses a cache side-channel attack (SCA) to determine

contents of the data.

Spectre is a vulnerability that tricks a victim process to

leak its data. Many processors perform speculative execution

by branch prediction. Spectre uses the fact that this specula-

tive code leaves traces of its execution in the cache whose

information can be extracted using a cache SCA (similar to

Meltdown). Spectre trains a branch predictor to make a wrong

decision and then wraps code that should not be executed in a

condition. The code is speculatively executed since the branch

predictor is wrong. It eventually gets squashed but it leaves

important information in the cache state, which is extracted

via a cache SCA.

6) Code Reuse Attacks: Code reuse attacks carefully use

existing snippets of software to perform computation of the

attackers choosing. Return oriented programming (ROP) [53]

is an example of code reuse attack where existing code

fragments (or gadgets) are carefully sequenced to perform a

malicious act. The attacker’s goal is to divert the control flow

by gaining control of the call stack and invocating the first

gadget, which in term calls subsequent gadgets. This allows

the attacker to perform actions of their choosing.

B. Covert and Side Channels

Covert and side channels have emerged as two types of po-

tent information leakage channels. Micro-architectural features

targeted towards performance improvement, e.g., shared cache,

speculative control, and hyper-threading, create new covert

and side-channel security issues. Covert channels use non-

traditional communication mechanisms to leak critical infor-

mation – often between an insider process (e.g., a Trojan Horse

program) and an outsider spy process. These two processes

do not communicate directly through traditional mechanism,

e.g., shared cache. Instead, a Trojan process may communicate

with a spy process by modulating timing of specific events on

a shared resource or writing/checking if a file is locked. On

the other hand, SCAs utilize physical side-channel parameters

(supply current, event timing, electromagnetic emission, etc.)

to leak on-chip secrets.

While some covert channels require sharing of hardware

resources among exchanging parties (e.g., shared cache), oth-

ers may exist among hardware components that are physically

isolated or not even in proximity. Hardware-oriented covert

channels are typically initiated by introducing manipulation

or exploitation of certain functional (response to a fault) or

parametric (e.g., timing, power and electromagnetic radiation,

etc.) behavior of the hardware that is observed to decode

the secret information being transmitted. Side channels are

unintentional information leakage where an attacker tries to

extract information from a target computing system utilizing

its inherent implementation vulnerabilities. Similar to covert

channels, side channel also requires the observation of certain

functional or parametric behaviors at runtime.

1) Timing Channel: A timing channel is established

through the observation of the execution time of a certain

process. Timing-based covert and side channels may exist

due to the sharing of hardware resources across different

software processes. Moreover, an IC may contain fast and slow

execution paths that reveal information regarding the under-

lying operation being executed (e.g., arithmetic vs. Boolean

operation [54]. While chip designers introduce novel features

to improve execution time, more timing channels are being

discovered. These channels may facilitate information transfer

at a rate of up to few megabits per second [55]. These timing

channels are often practical only under certain assumptions

regarding the attacker and the victim. For instance, to form a

timing channel using some cache-based attack, the victim and

the attack processes must execute on the same processor core

for a specific amount of time. The attacker’s ability to adhere

to these assumptions can significantly impact the capacity or

sensitivity of the channel.

Over the last few years, researchers have demonstrated

the feasibility of a wide range of timing-based covert and

side channels. Szefer [4] presents a comprehensive overview

of timing attacks that are feasible due to vulnerabilities in

processor architecture. Execution time differences for various

instructions, resource sharing, impact of functional unit’s state

on program execution (e.g., branch prediction) and timing

behaviors of memory subsystems (e.g., cache and prefetcher,

etc.) are some characteristics of modern processors that lead

to microarchitectural timing channels.

2) Power Channel: In power SCA [56], [57], an attacker

measures the switching power traces of an electronic compo-

nent during operation and then employ mathematical analysis

on the traces to extract secret information. Basic premise of

such an attack lies in the fact that the transient power traces

of a chip leak its internal switching patterns, thereby leaking

data secrets (e.g., cryptographic key) through the switching

behavior. Shrinking technology nodes and increasing power

density have made it possible for attackers to carry out power

SCAs with increasing degree of success.

Attackers have utilized a wide-variety of techniques to ex-

tract information. A simple visual inspection of the power sig-

nal information known as Simple Power Analysis (SPA) [56]

is utilized when the internal implementation is known to the

attacker. If the attacker has complete access to a device, he/she

resorts to template matching attacks. Template attacks [5]

consist of a profiling step and an attack step. The attacker has

the freedom to collect many samples in the profiling phase

as he/she fully controls the device. In the profiling step, the

parameters of the design are learnt from a device and a profile

of the device is created. This profile is applied as a template

to other copies of the same device in the attack phase.

Differential Power Analysis (DPA) [56] relies on the prin-

ciples of statistical hypothesis testing, where the attacker

measures the power consumption traces of a target device

over several time steps by feeding a large number of input

vectors. The attacker then partitions the resulting power traces

into subsets. The difference in the average values of these

subsets reveal the presence or absence of information leakage

in the design. In the absence of leakage, the difference in

average values tends to be zero as the choice of assigning a

trace to a subset is purely random and is uncorrelated with

the power measurements. On the other hand, a statistically
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significant difference implies that there exists a correlation

between the partitioning and trace measurements. Unlike SPA,

DPA does not require any knowledge about the underlying

implementation and can be carried out in highly noisy environ-

ments. Correlation Power Analysis (CPA) [57] relies on using

statistical models to estimate the correlation between the secret

and the power consumption of the device when the secret is

being used for computation. A CPA typically relies on building

a model of the device’s dynamic power consumption. The

activity factor α is modeled using Hamming distance (HD) or

Hamming weight (HW). The change in the bits of the input

that cause a change in α can be modelled by the HD between

the initial input and the changed input values or the HW of

an input in case of a software implementation (e.g., on smart

card). This HD or HW model serves as a good approximation

to estimate the power consumption of a device. During a CPA

attack, the attacker guesses the value of the secret and obtains

as many traces as possible for each guess of the secret.

ML algorithms have also been applied to both profiling-

based and non-profiling-based SCAs. In profiling-based ap-

proaches, where attackers have access to an exact copy of

the attacked hardware, a supervised ML model can be trained

based on data points in different profiling traces [58]. In non-

profiling based approaches, where attackers do not have access

to a copy of the device, unsupervised ML algorithms such as

clustering are applied to reveal the secret information [59].

The growth of cloud-based service providers like Amazon

and Google has led to an increase in multiple users sharing the

same hardware resource, such as a Field Programmable Gate

Array (FPGA). In such multi-tenant operating environments,

remote power attacks are becoming feasible when an untrusted

party shares resources with a trusted one [6], [11]. The attacker

can infer information regarding the trusted program executing

in the same resource as the attacker by accessing the power

delivery network. Furthermore, in cloud settings, new attacks

are emerging where malicious power/current surge caused by

an untrusted process can create denial of service attack in

another process mapped to the same FPGA device [60].

3) Electronmagnetic and Photonic Channels: Unintentional

Electronmagnetic (EM) radiation from electronic devices is

a well-known concern for semiconductor vendors due to the

possibility of interference with wireless communication chan-

nels and potential health risks to the end-users [24]. However,

EM radiation during a security-critical process could also lead

to vulnerabilities due to its potential to leak information re-

garding the operation. EM emission characteristics are largely

device dependent; hence it is difficult to develop break-one-

break-all scenario for the attackers. The effectiveness of small

magnetic loop antennas in detecting EM emission from ICs has

been evaluated in various studies [61]. The signals captured by

magnetic loop antennas are digitized for the extraction of the

secret. EM signal for information leakage can be observed in

various ways. Visual inspection of the time-domain representa-

tion of EM signals is called simple EM analysis (SEMA) [62].

SEMA can be considered as the EM equivalent of the SPA.

EM signal can be transformed to frequency domain to perform

visual analysis of the spectrogram to reveal information.

SEMA approach has been used to extract secret information

from various cryptographic processes, including RSA, Elliptic

Curve-based Diffie Hellman (ECDH) and Elliptic Curve based

Digital Signature Algorithm (ECDSA) [63]. Algorithms like

ECDH and ECDSA are suitable for mobile devices and Inter-

net of Things (IoT) platforms where a malicious end-user with

complete physical access can compromise the cryptographic

process using SEMA approach.

Simple visual observation of EM signal may not be suf-

ficient for revealing information from many applications. A

more sophisticated attack vector called Differential EM Anal-

ysis (DEMA), a variant of DPA for EM is proposed [64].

However, DEMA requires a large number of EM traces of a

given operation to extract the secret bits that are involved in

the process by observing the variation in EM emission. With

the alteration of signal or register states between logic high and

low, energy dissipation in a CPU varies and consequently the

EM emission is impacted [61]. Moreover, alteration of signal

states in a CPU depends on the instructions and variables.

Hence, observation of EM emission for a large number of op-

erations is useful in retrieving the instructions being executed

and intermediate states of different variables.

4) Fault Injection: Fault attacks form a potent class of

SCAs wherein the attacker can subvert the execution of the

hardware by deliberately injecting a fault. A well-placed fault

attack could cause the system to reveal secret information,

such as the key bits [65]. Fault attacks have also emerged

as major threats for a program executed by a processor. For

example, precisely flipping the status flags can allow an at-

tacker to bypass the authentication process giving unauthorized

control or privilege escalation [7]. These faults can be injected

by causing a glitch in the underlying hardware. The attacker

typically attempts to manipulate one or more of the devices’

power supply or clock or utilizes a highly powerful laser to

control the temperature of the device.

Fault attacks have been demonstrated on several crypto-

functions such as Data Encryption Standard (DES), Advanced

Encryption Standard (AES), International Data Encryption

Algorithm (IDEA), Secure and Fast Encryption Routine

(SAFER) and Blowfish. However, not all faults are exploitable.

Hence, it requires careful profiling of the fault space to identify

the set of exploitable faults. In AES, it has been demonstrated

that a well-placed fault injected in between the seventh and

ninth round operation could cause the device to reveal the

entire key with as few as eight faulty ciphertexts.

More recently, attacks like PlunderVolt [31], VoltJockey [38]

and CLKScrew [7] have demonstrated that fault attacks are

not restricted to crypto-cores but can also impact general

purpose SoCs. Both CLKScrew and Plundervolt are software

generated fault attacks. The attacker leverages the access to

clock or energy management APIs for injecting the fault.

CLKScrew exploits the dynamic voltage frequency scaling

utility to extract secrets from ARM Trust-Zone. PlunderVolt

utilizes the power management utility to compromise the

execution of Intel’s SGX.

Apart from the above discussed side and covert channels,

test and debug infrastructures usually provide privileged access

to critical hardware resources such as machine state and con-

figuration registers. Insecure test and debug ports are potential
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attack surfaces for launching powerful low-level attacks. In

2012, a military grade FPGA was reported to have a backdoor

in the JTAG port, which allows the attacker to retrieve the

AES key for decrypting the protected bitstream [66]. Rajput

et al. [67] summarized the security attacks and protections for

the commonly used JTAG port. Valea et al. [68] performed a

more complete survey of security threats and countermeasures

in different test standards.

C. IP Theft and Counterfeiting Threats

Modern SoC and IC designs usually involve different forms

of IPs, e.g., register transfer level (RTL) design (soft IP),

gate level netlist (firm IP) and physical layout (hard IP).

The owner’s IP is outsourced to trustworthy offshore design

houses/foundries for SoC integration or IC fabrication to

reduce design complexity, time to market pressure and manu-

facturing cost. This can lead to various IP security threats.

In IP counterfeiting, an attacker illegally imitates the orig-

inal design, creates counterfeited versions of the IPs/ICs,

and sells them in the brand name of a genuine supplier. In

cloning attack, an adversary copies the original design and

supplies cloned versions of original IPs/ICs under his/her own

label. These attacks result in integration of fake IPs/ICs in

the electronics systems used in critical applications such as

military, healthcare and banking, etc. The fake designs not only

sabotage the genuine vendor’s reputation and revenue but also

lead to large consequences: (i) affecting the reliability and per-

formance of the critical systems; (ii) containing malicious or

backdoor logic that cause leakage of confidential information

or assist to override the critical systems [69].

In RE attack, an attacker back engineers the design in

order to deduce the design structure or functionality. This

can be done by RE its various design forms such as RTL,

netlist, layout (GDS-II), mask or a manufactured IC [70]. RE

attack allows the adversary to realize his/her intentions of

inserting backdoors or Trojans into the design and also enables

counterfeiting and IC overbuilding, thereby entails reassessing

trust in electronics hardware [70], [71].

D. Hardware Trojan

1) Classical Digital Trojans: Early HTs typically use a

single trigger signal to activate the Trojan under a rare event.

The Trust-HUB benchmarks [72] employ such a simple trigger

mechanism, which is very sensitive to switching probability

analysis. The De-Trust [73] project provides some HT designs

that use multiple discrete trigger signals so that each trigger

signal will be able to switch normally. These HTs, when

activated, will violate explicitly specified design behavior in

the design specification.

A comprehensive list of Trojan taxonomies [74], [75],

benchmark sets [72], [75] and lessons [27] of these classical

HT research have been documented. In what follows, we will

discuss some recent HT designs and attacks.

2) Exploitation of Don’t Care Conditions: Fern et al. [8]

leveraged external don’t care conditions (i.e., unspecified func-

tionality) for HT design. For example, the design output may

be unspecified under certain “illegal” input conditions or when

the output is not yet valid. Such don’t care HTs can be hard

to detect since they are out of the functional specification. A

more recent work hides HT in the unspecified functionality in

obfuscated hardware designs [13]. Based on the fact that the

design functionality under incorrect obfuscation keys cannot

be explicitly specified in order to protect the correct key,

the IP designer has numerous flexibility in implementing the

obfuscation logic, including inserting malicious circuitry.

Nahiyan et al. [76] proposed a HT design by adding

malicious state to the finite state machine (FSM). The idea

is to use unoccupied state encoding to insert a floating Trojan

state. The FSM will never transit to the dangling Trojan state

during normal operation. The Trojan can be activated using

fault attack to force the FSM into the malicious state.

Hu et al. [34] leveraged satisfiability don’t cares for HT

insertion. The Trojan uses a pair of signals that will never

reach a specific input combination (e.g., cannot be logical ‘0’

simultaneously due to path correlation) under normal operation

as triggers. Thus, the Trojan will never be triggered during

normal run although each trigger signal is able to switch.

Similarly, fault injection is used to force the trigger signals

into a desired condition to activate the Trojan. Such Trojan has

recently been demonstrated on a multi-tenant FPGA, where the

attacker can remotely activate the Trojan by deploying power

wasting circuitry to induce considerable fluctuations in the on-

chip signal delays and, consequently, timing faults [77].

3) Analog Trojans: Researchers have also demonstrated

how to create analog HTs through slight modifications of the

design layout [78]. Becker et al. [79] and Kumar et al. [80]

insert analog HTs by changing the dopant polarity or ratio

of input to transistors to cause a short circuit. These dopant-

level HTs can be hard to identify since they do not introduce

additional transistors but only modify circuit parameter. Liu

et al. [10] demonstrate an analog HT that leaks the AES key

by slightly modulating the amplitude or frequency of wireless

transmission without violating the protocol specification. The

HT cannot be detected using routine testing methods since it

does not change the design functionality. The A2 Trojan [9]

is a small and stealthy malicious analog circuitry. It only adds

a single capacitor that siphons charge from nearby wires as

they transit. When the capacitor is fully charged, it drives

a victim flip-flop to a desired value to perform malicious

activities, e.g., elevating privilege. The Trojan will remain

dormant if the capacitor resets through leakage current due

to inactive switching activities in the charging wires. A more

recent work exploits analog/mixed-signal circuits for hardware

Trojans, whose trigger mechanism is deployed in the digital

domain while the payload is transferred to the analog domain

via the on-chip test infrastructure [81].

4) Trojans Induced Aging and Performance Degradation:

In a nanoscale semiconductor device, physical occurrences

such as hot-carrier injection, electromigration, time-driven

dielectric breakdown and negative bias temperature instabil-

ity (NBTI) lead to aging phenomenon [82]. These physical

occurrences are the result of the restrained design margins

and transistor scaling. Even a small change in the transistor

parameter may significantly affect the device performance and

reliability [82], [83]. Device aging may result in failure of
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semiconductor devices during critical operations. Heavy re-

liance of SoCs on third party IPs (3PIPs) raises the possibilities

of aging attacks. A rouge 3PIP vendor may accelerate the de-

vice aging process by covertly making malicious modifications

in the design of 3PIPs, with an aim of causing a premature

failure of an electronic device within the warranty period [84].

One prevalent way of launching an accelerated aging attack

is through NBTI stress. NBTI refers to the increase in thresh-

old voltage of a P-type metal oxide semiconductor (PMOS)

transistor over time due to the charges trapped under the gate

area by the negative bias applied between its source and gate

terminals [82]. As NBTI is heavily dependent on the dynamic

operating condition of the device. Attackers can control the

supply voltage, temperature and input signal probability to

increase a device NBTI stress to accelerate its aging effect.

An attacker may force the device into continuous stress even

in standby mode, by modifying/adding malicious circuitry. To

accelerate the aging process, the attacker can use selected input

vectors to maximize the NBTI stress on the target devices.

This attack is demonstrated by Kachave et al. [84] on

digital signal processor (DSP). In this attack model, an attacker

continuously applies NBTI stress during the standby mode

of the device to accelerate the aging by either hardware

or software modifications. In the hardware-based attack, an

attacker introduces some alterations in the DSP hardware such

that a rare event (hidden Trojan) triggers the application of

input vectors that maximize NBTI stress. In the cross-layer

attack, an attacker builds a program that automatically applies

the test vectors on the DSP circuit to create the greatest stress

during the operational mode.

5) Trojans Insertion Through Malicious EDA Tool: HT

threat arises primarily from untrusted design process and

supply chain. EDA tools, as an important element in this

untrusted environment, can also assist in Trojan attacks.

Krieg et al. [85] demonstrated an automated HT inser-

tion technique through light-weight modification to an open

source synthesis tool. The modified FPGA synthesis front-

end deploys a special look-up table (LUT), whose simulated

design behavior is totally correct. In a second attack phase,

the malicious back-end identifies this LUT and changes its

functionality when translating the design into bitstream, which

acts as a Trojan trigger. The challenge in detecting such

HT lies in the lack of bitstream verification tools. In their

successive work, the differences in how the don’t care ‘X’

appears in logic simulation and implementation are exploited

to create a Trojan trigger. The trigger signal ‘X’ will be logic 0

during simulation and logic ‘1’ in hardware implementation.

Thus, the HT will remain inactive during the design phase

and will be automatically activated upon configured onto the

FPGA. Similarly, light-weight modification to the synthesis

tool will facilitate automated insertion of such HTs.

Besides, several HTs target emerging computing technolo-

gies. In [13], a HT is hidden in the obfuscation logic intended

for IP protection. In [6], a remote HT attack targeting multi-

tenant FPGAs deployed in the cloud was demonstrated.

E. Vulnerabilities and Attacks on Deep Learning Networks

1) Adversarial Examples: AI has been promoting fast in the

recent decade, thanks to various deep neural networks (DNNs),

which learn high-level features from raw data to solve many

challenging object recognition problems end-to-end with very

high accuracy and without requiring human intervention. Sim-

ilar to any other fast-advancing fields, the infiltration of deep

learning models into safety and security critical applications

such as self-driving cars and face recognition payment systems

make them an interesting target of attack.

A well-known vulnerability has been exposed in a surprising

way by the input of adversarial examples. It was initially

demonstrated by Szegedy et al. [86] that small intentionally

designed perturbations added to the original input image

can create an optical illusion for the DNN classifier at the

inference phase. Adversarial example generation algorithms,

such as fast gradient sign method [87], universal perturba-

tions [88] and Carlini and Wagner (C&W) attack [89], have

succeeded in subverting the deep learning model output with

high success rate. Hardware accelerator for the generation of

adversarial examples has also been proposed to improve the

attack efficiency [36]. The imperceptibility of the perturbation

and generalization ability across models further aggravate

the damage of such attacks. Recent research suggests that

adversarial example attacks can also be applied in the physical

world [90] and incorporated with cameras [91]. Adversarial

examples work across different media and are recognized

by Open AI Inc. as a concrete problem in AI safety. They

shatter the confidence of DNN implementation robustness,

and extend the DNN attack surface beyond the software

boundary. Although conventional techniques such as laser

beam interference, memory collision and rowhammer have

been deployed as means to attack DNN hardware, they must

be subtly and significantly devised to exploit the unique

characteristics of DNN. The target asset and threat model of a

DNN attack are in many ways different from those of the

cryptosystem. DNN has the transferability, noise immunity

and graceful degradation properties that are absent in many

other domain-specific computing solutions. Effectiveness and

efficiency of attacks on DNN are often data, model and

application dependent. In general, data plays a more significant

role than the model and the model plays a more significant role

than parameter optimization in the inference.

2) Hardware-oriented Attacks: Artificial Intelligence of

Things (AIoT) is the convergence of AI and IoT infrastructure.

Placement of cognitive computing and AI processing at the IoT

edges can benefit in terms of privacy maintenance, bandwidth

reduction and responsiveness. As a core enabler of innovation,

dedicated hardware accelerators for efficient on-device infer-

ence are increasingly used for edge AI deployment. Commer-

cially available hardware accelerators for local AI inferencing

include Intel Neural Compute Stick 2 (NCS2), Google Coral,

Nvidia Jetson Nano and Xilinx edge AI IP core. This new

wave of edge intelligence in the AIoT age invites new attack

vectors, which are methodologically different from software-

oriented DNN attacks like the previously described input of

adversarial examples. This is because adversarial examples
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that assume any input pixel can be precisely altered to any

arbitrary value may not achieve the same desired outcomes

when they are presented to a DNN hardware accelerator.

Fault injection attacks such as laser injection [92], glitch dis-

turbance [93], memory collision [94] and rowhammering [95]

can impact circuit operations within the DNN and are potential

threats to edge intelligence. Straightforward fault injection

will cause denial of service, but it also alerts attention. For

instance, overheating the DNN hardware will not only affect

classification but also suspend the system. Immediate damage

control may be triggered to limit the benefits that can be

reaped from suck attacks. Existing fault attacks on DNN focus

mainly on model weight manipulations [95], [96]. Falsifying

model parameters such as saturating last layer’s bias [32] to

converge the output to one specific class regardless of inputs or

constraining modification magnitude on the weights of all lay-

ers [96] can be used to create selective input misclassification.

These simulated attacks assume that the data stored in memory

can be precisely manipulated to arbitrary values through fault

injection, which are not realistic for real-world DNN hard-

ware accelerators. Moreover, manipulation and interpolation of

model parameters tend to leave footprints in memory or create

conspicuous output patterns. Such persistent fault induction in

the weights are likely to be directly detected by model read-

back and bypassed by parameter reloading. Although practical

fault injection techniques such as laser beam interference [92]

and Rowhammer [95] are able to perturb the output of DNN

algorithm running on general purpose hardware, the attacks

can be mitigated by low-precision numeral representation, as

suggested in [95], which happens to be a common practice of

existing deep learning accelerator for edge applications.

HTs pose a real threat for outsourced DNN IC design,

fabrication or testing activity or the use of 3PIPs within DNN

hardware. Successfully embedded stealthy trigger and payload

into the activation layer [97] or memory controller [98] can

cause misclassification. Fortunately, hardware attacks on edge

deep learning applications have so far been constrained to

DNN hardware on small scale (10 categories) classifica-

tion [92], [94] or are based on simulated instead of physically

induced faults [96], [98] on larger network such as Ima-

geNet [99] (1000 categories) classification. One exception is

the most recently reported stealthy misclassification attack on

deep learning accelerator for ImageNet applications in [100].

This attack induces temporal fault into intermediate results

of convolutional layer by introducing infrequent instantaneous

glitches into the clock signal. The temporary perturbated

data will propagate to the inference stage but they will be

overwritten by the correct data after each prediction, leaving

no trace for detection.

3) Model Extraction Attacks: Model extraction attack [101]

occurs when attackers attempt to replicate a pre-trained model.

Because of the amount of costly training data collected, a

superior deep learning model trained for a specific task is a

precious IP that an enterprise can monetize as a commodity

through third party offerings or leverage as a technology

barrier to competitors of the market. Unlike cryptosystems,

model confidentiality is assumed as a trained DNN is a pricey

IP. For this reason, there is strong incentive for opponents to

steal the model so as to build similar performance AI products

or solutions at substantially reduced cost. Existing model

extraction attacks can be broadly divided into two categories:

query-based and implementation-based. Query-based model

extraction attack mainly utilizes the input-output relationship

of the target model to build a substitute model that has the sim-

ilar functionality [101]. In the scenario of embedded devices,

the internal model is exposed to the risk of being attacked

by malicious users who have physical access to the device

by observing the I/O dataflow [102]. These users can then

train a new model with similar performance based on the I/O

pairs, i.e., replicating the original model. Unlike crypto engine,

where all computations can be completed fully on chip, edge

implementations of DNN models, except a few tiny models,

require some off-chip communications for each inference.

Implementation-based model extraction attack exploits side

channel leakage during model execution. Fine-grained infor-

mation could be obtained by tracking cache misses, memory

access pattern, power consumption and hardware performance

counters [103], [104]. Algorithms such as DPA and CPA can

be applied to extract the number of parameters in each layer,

the value of each parameter, the total number of layers and

the type of activation function. Optimization techniques on

DNN hardware, such as zero weight pruning, can be utilized

to reduce the complexity of reverse engineering [105]. The

success of model extraction can enable further exploitation

of the security weaknesses of deep learning, such as evading

systems thereby forcing incorrect predictions and revealing

additional information from the training data to leak sensitive

and confidential information.

IV. COUNTERMEASURES

A. Hardware Security Primitives

True random number generator (TRNG) and physical un-

clonable function (PUF) are two important hardware-intrinsic

security primitives that provide built-in instead of bolted-on

defense against various emerging threats and vulnerabilities

arising at different phases of the IC life cycle or device

operation. Compared with TRNG, PUFs have been very well

surveyed by many researchers in recent years. For TRNG, we

exemplify typical CMOS circuit implementations from four

different entropy sources. For PUFs, we focus on the feasibility

of its integration with other non-device signatures. Such a

unique provenance proof is promising in detecting imposer,

tampering, spoofing and fabrication attacks that aim to gain

unauthorized access to system, data or premises.
1) TRNG: A random number generator is a device or

software that generates sequences of unpredictable numbers.

The ancient ways of using dice roll or coin toss to harvest

natural randomness are too slow to meet the demands of mod-

ern computing systems. A pseudorandom number generator

(PRNG) is an algorithm or a mathematical formula that can

be used to produce a sequence of random numbers with a

sufficiently long but finite period from a seed state. PRNGs

that are suitable for the cryptographic applications are called

cryptographically secure pseudorandom number generators

(CSPRNGs). CSPNGs are designed from cryptographic prim-

itives or hard mathematical problems to pass the next-bit test
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such that the (k+1)-th bit of a sequence cannot be successfully

predicted in polynomial time from the knowledge of the

first k bits. CSPRNG should also be resilient to the “state

compromise extensions” attack, which is an attack that makes

use of some known internal states to predict future outputs

or recover previous outputs. On the contrary, a TRNG is a

hardware security primitive that yields unpredictable random

numbers even if the internal design details are all known.

With infinite period, it provides higher security property than

CSPRNG. TRNG designs that originated from solid-state

devices typically harvest their randomness from four sources,

namely noise, jitter, metastability and chaos.

Thermal noise is a good source of randomness because it

is frequency- and technology-independent [106]. The weak

thermal noise needs to be boosted by a wide-bandwidth

amplifier, which can consume significant silicon area and

power. Matsumoto et al. [107] added a silicon nitride (SiN)

layer in a standard CMOS process to amplify the thermal noise

to a measurable level without the amplifier but the extra SiN

mask is itself expensive. Recently, Bae et al. [108] proposed

a high-speed TRNG by harvesting the thermal noise from the

biasing circuit of a common-mode operating comparator and

the sampling uncertainty of a Delay Flip Flop (DFF). The

idea is illustrated in Fig. 1. Common-mode noise is generated

by connecting both inputs of a comparator to the output of

a beta-multiplier voltage reference. The thermal noises of the

comparator and the biasing circuit are added up and amplified

by the differential-to-single ended (D2S) amplifier. The ampli-

fied noise is fed into a slicer to generate a full swing output,

which is then sampled by a 3 GHz clocked DFF. By combining

thermal noise and sampling uncertainty of the asynchronous

input, this TRNG has a very high throughput of 3 Gbps. Its

power consumption is also very high, 5 mW excluding the

power-hungry external high-speed clock generator.

Noise from 

bias circuit

Noise from 

commonmode 

compararator

Thermal noise 

amplification

Sampling

uncertainty

Slicer

Async.pulse

3GHz clock

Random 

sequence

DFF

D2S

Fig. 1. Design concept of noise-based TRNG [108].

Conventional jitter-based TRNGs [109] use a slower jittery

frequency clock to sample a faster clock. Using clock jitters

of free running ring oscillators (ROs) as entropy source,

the extractor design can be simplified, but additional power-

hungry clock generators are required to provide adequate jitter

variations. Yang et al. [110] proposed a process variation tol-

erant TRNG by exploiting the oscillation collapse in a double

edge injected RO. To achieve the robustness against process

variations, 32 stages with 8 selectable inverters per stage are

used to provide the tuning space. Recently, a lightweight

TRNG consisting of only two 9-stage current-starved ROs

(CSROs) with an identical layout, a 3-stage regular RO and

a 2-bit counter was proposed [111]. In order to maximize

jitters and reduce power consumption, the inverters in the

two CSROs are biased in the weak inversion region and the

inverters in the regular RO are operating in the strong inversion

region. Systemic biases in the beat frequency are effectively

cancelled out by XORing the outputs of the two matched

CSROs. The resulting random pulse width is used to clock gate

the regular inverter-based RO to the 2-bit counter. This jitter-

based TRNG, fabricated in a standard 65 nm, 1.2 V CMOS

process, consumes only 260 µW at a bit rate of 52 Mbps and

has a small footprint of 366 µm2.

Metastability is a stable state of a dynamical system besides

the system’s state of least energy. Metastabilities in cross-

coupled inverters, latches, DFFs and SRAMs [112] have been

utilized to produce random bit streams at high bit rate, but

complex post-processing units are usually required to elimi-

nate the systematic bias. The key component of metasability-

based TRNG of [112] is the metastability latch, which is

designed based on a cross-coupled inverter pair with equal rise

and fall time. A random bit is produced by the metastability

latch in each cycle. To assure high entropy, a time-to-digital

converter (TDC) is used to measure the settling time and tune

the metastable latch against bias introduced by the process and

temperature variations. The switching speed of the metastabil-

ity latch cannot be too fast to prevent the settling time from

exceeding the time resolution of the TDC. The latch size and

load must also preserve the dominance of thermal noise over

flicker noise. By combining three entropy sources of similar

cross-coupled inverter pairs that share the same supply and

clock, Intel [106] fabricated a fast TRNG in 14nm FinFET

CMOS process that produces 3 full-entropy bits per clock

cycle. The three bitstreams of at least 0.33 min-entropy/bit

each are combined by a Barak-Impagliazzo-Wigderson (BIW)

extractor [113]. Correlation suppressors and under-sampled

feedback shift registers are used to de-correlate and whitening

the raw data to generate 24 uncorrelated bits in every 64 clock

cycles with an ultra-low energy consumption of 3 pJ/bit.

TRNGs can also be designed from chaotic system described

by deterministic equations. At first sight, this may sound like

God plays dice with complete law and order. Being extremely

sensitive to the initial conditions, the disorder states of a

chaotic system are very hard to be modeled mathematically

even though they are produced by simple systems that obey

precise rules. Chaos is, as described by the legendary Lorenz,

“when the present determines the future, but the approximate

present does not approximately determine the future.” [114].

Chaos-based TRNGs [115] are typically designed by a chaotic

map and a bit generation function. Unfortunately, the map

characteristics are susceptible to process, voltage and temper-

ature (PVT) variations. The optimal bit generation function

for achieving the highest possible entropy rate from a map

function is costly to implement, and consumes great power. An

exceptionally energy-efficient implementation [116] is shown

in Fig. 2. It consists of a 10-bit fine-SAR ADC, a 5-bit coarse-

SAR ADC, a dynamic residue amplifier, and an XOR post-

processing block. The ADC recursively amplifies the initial

state of the system with environmental noise to produce a

discrete time chaotic map. Due to quantization errors of the
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coarse-SAR ADC, the design is highly sensitive to the initial

state. The switching power of fine-SAR ADC is reduced by

using the coarse-SAR ADC to detect and skip switching. The

design consumes only 82 nW of power and 0.3 pJ/bit of

energy. A larger portion of the power savings are due to the

dynamic residue amplifier and adaptive reset comparator.

ADC DAC

XOR Post 

Processing
Fine-SAR ADC

1/Z 

ADCout[9:0]
Random[4:0]

Xn,in

Vin
+

- Q(x)
AMP

D[4:0]

Recursive Path

Coarse-SAR ADC
Residue Amplification

Xn,out

Fig. 2. Block diagram of chaos-based TRNG of [116]

As the need for publicly auditable randomness from appli-

cations like elections and lotteries increases, so is the demand

for randomness beacon. A randomness beacon is a public

server that produces completely unpredictable bit strings at

regular intervals. During the Crypto Week last year, a new

public randomness beacon called “League of Entropy” [117]

was released by the American web-infrastructure and website-

security titan company Cloudflare. Built upon the provably

secure cryptographic architecture of drand [118], this is a net-

work of beacons run by a consortium of global organizations

and individual contributors to provide publicly verifiable, de-

centralized random outputs. Interestingly, Cloudflare actually

sources her entropy from a video of a wall of lava lamps.

These unpredictable visual data of floating blogs are converted

to truly random numbers. Most recently, truly random numbers

were also created from growing crystals [119].

2) PUF as Provenance Proof: PUF utilizes intrinsic man-

ufacturing process variations to generate a unique unforgeable

device fingerprint. A comprehensive review of PUFs can be

found in [28], where different PUF structures, including the

conventional delay-based or memory-based PUFs, and the

emerging non-volatile memory (NVM) based PUFs, FinFET

PUF, quantum secure PUF and sensor PUFs, have been sur-

veyed. In the early stage of development, the reproducibility of

PUF responses at different time and in different environmental

conditions is the main practical issue that limits its industrial

adoption. Majority voting, fuzzy extractor and reverse fuzzy

extractor are three commonly used techniques to improve the

reliability of a PUF. Majority voting votes for the most stable

response by repeated application of the same challenge. It is

a lightweight technique to enhance the reliability of a PUF

at the expense of latency. Fuzzy extractor (FE) [28] increases

the noise tolerance and uniformity of PUF response by error

correction code (ECC) and hash function. As ECC decoding

is too expensive for resource-constrained IoT devices, it is

moved from the regeneration phase at the prover (device)

side to the verifier (server) side by reverse fuzzy extractor

(RFE) [120]. Instead of generating the helper data only once

in the PUF enrolment phase, RFE generates helper data on site

to different noisy versions of the same PUF response. While

this eases the enrollment of strong PUF with a large number of

CRPs, the disclosure of multiple helper data also increases the

risk of side-channel information leakage. This problem can be

mitigated by a well-structured PUF with balanced BER [121]

or appending an Z-channel [122]. Today, PUFs have made

their presence known in industry, e.g., Xilinx [123], NXP

Semiconductor [124] and Qualcomm [125].

As a hardware root of trust, PUF has opened up new

horizons for solving IoT security problems. The rise of IoT

has created a huge influx of sensors and accelerated sen-

sor standardization towards building a fully connected and

cohesive supply chain. With sensors as the data feeder, a

direct consequence is the new gloss on pushed media data

and distinctively new interactions between human, events and

devices. A promising new approach to assure real end point

security against the imminent risk of sensor and data analytic

attacks is to derive provenance proof from the unification of

PUF responses and biometrics or other existing data analytic

based security measures. This approach endows PUF systems

with the capability to not only identifying the device, but also

(i) authenticating the users who have privileged access to the

device and its data, (ii) assuring the integrity of the data it

generated or acquired, and (iii) responding actively to events

occurred in the area of surveillance. Unlike conventional PUF

designs, such interactive PUF systems are usually application-

or sensor-specific, and have dedicated authentication protocols.

(i) Typical user and device authentication methods perform

user and device authentication sequentially with a substantial

message exchange. To protect the sensitive credentials during

transmission, encryption keys are required to be stored in

the end device, which are vulnerable to NVM key retrieval

attacks [25]. In [126], [127], a completely different concept

of unified user-device (UD) PUF was proposed to distinguish

different users and devices by extracting raw biometric infor-

mation like touch screen pressure or voice with the innate

silicon sensor variations. The challenge to the UD-PUF in

[126] is a series of binary coordinates that forms a pattern

on the touchscreen. The response is a digital word obtained

by quantizing the sequence of sensed pressure values read

from an Android APP when the user traces the pattern.

Unfortunately, the intrinsic parametric changes contributed

by device fabrication process variations are not structurally

harnessed, resulting in high identification error rate for the

(same user, same challenge, different device) combination. The

problem is intrigue as amplifying the parametric deviations

to improve device identification will reduce the sensitivity

of the user biometric whereas noise reduction in biometric

information processing will distort device parametric distribu-

tion. Another “UD-PUF” was proposed in [128] for match-

on-device applications. A strong PUF is required to generate

an obfuscated biometric template by feeding the processed

biometric feature into it. As small change in the challenge will

cause a dramatic bit flips in the PUF response, the quantized

biometric feature-based challenge has to be 100% accurate

to ensure reproducibility of template in the authentication

phase. This problem is mitigated by selecting the most robust

biometric feature for each individual user using noise aware-

interval optimized mapping bit allocation (NA-IOMBA). As
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NA-IOMBA requires accurate noise samples/models over time

for different conditions, the scheme can only generate one

determinant template for a (user, device) combination. Once

the template is leaked, the security of using the particular

device will be compromised. This dilemma is resolved by

a “UDhashing” scheme in [129]. UDhashing adopts a “fuse-

on-device” and “match-on-server” strategy. Machine learning

(ML) resilient strong PUF [130] is preferred to prevent the

reuse of authentication credentials, and to achieve cancellable

biometrics and system reconfigurability. To bind a device to

its user, the user live biometric and device PUF response

are unified by random projection into a bio-code at the end-

device. The endpoint and the server are mutually authenticated

by a zero-knowledge proof of the endpoint’s secrets. The

server is authenticated by the endpoint through the hashed

PUF responses while the endpoint is authenticated by the

server through the bio-codes. A correct biometric input of

a user to his registered device and a correct response to a

query from that device are both required to authenticate the

bio-code. Neither the hashed PUF response nor the bio-code

reveals the endpoint’s secrets. The bio-code can be easily

revoked, reissued or refreshed by a different challenge to

prevent permanent compromise of the users’ biometrics.

(ii) Similarly, PUF-assisted data-device authentication sys-

tems fill the gap of existing data and device independent

authentication schemes in digital forensics. Digital images

and videos have been increasingly exposed as important

information or art carriers. Their easy-to-access and low-

cost attributes also escalate image fraudulence. Two related

problems are to be solved: detection of image tampering

and authentication of the imaging device. Image tampering

is typically detected by image watermarking [131], digital

image forensics [132] and perceptual image hashing [133]. Of

which perceptual image hashing is most effective in tamper

detection. It is very sensitive to content-specific modifications

and yet robust against normal content-preserving processing.

Since such methods depend on a shared secret key for au-

thentication, the security of the whole system will collapse

if the secret key is compromised, lost or stolen. Source

camera identification is mainly accomplished with ML based

methods. By analyzing the structure and processing stages of

the digital camera, appropriate features representing the unique

device characteristics can be algorithmically extracted with

the knowledge of lens aberration, sensor imperfection, color

filter array interpolation and salient image features [134]. Ex-

isting works focusing on imaging device brand identification

achieve very high accuracy but fail to distinguish individual

devices from the same model and the same brand. Identifying

individual camera devices have been increasingly studied in

recent years based on photo response non-uniformity (PRNU)

pattern [135], [136]. To achieve high reliability and accuracy,

strict conditions in the acquisition process, number and content

of training images as well as geometrical synchronization

of testing images have to be met. More importantly, the

same approach can also be used by a malicious user to

extract the device features from publicly available images.

To provide dual authentication without the aforementioned

shortcomings, PUF-based data device authentication schemes

have been proposed. PUF based perceptual image hash was

first conceptualized in [137] for simultaneous tamper detection

and source camera identification. This work shares the same

PUF reliability problem as [128] since the data features were

directly applied as the challenge to the underlying PUF. Alter-

natively, a data-device PUF (DD PUF) with relaxed reliability

requirement was proposed in [138]. The method [138] imprints

an indelible birthmark of the camera into its captured images

for forgery detection. The robust data-device hash is produced

by projecting the rotation-/scaling-invariant image features into

the Bernoulli random matrix generated by the PUF responses.

This hash is “keyless” and time-, data- and device-dependent.

Attestation is non-repudiable as the perceptual image hash can

only be generated by the timestamp of the image captured

through the camera’s tamper-resistant image sensor PUF. To

achieve secure and accurate camera identification with re-

duced hardware overhead, the CMOS image sensor PUF [139]

derived from fixed pattern noise of individual active pixel

elements is utilized in both schemes [128], [138].

(iii) Existing PUFs, including the CMOS image sensor

PUF [139], are typically triggered by server-provided chal-

lenges. Since the challenges are independent from the sensing

targets, it is difficult to control the attestation frequency,

resulting in either redundant or inadequate security tagging.

Traditional frame-based imager generates too much redundant

background data, which limits its processing bandwidth in

high-speed and privacy-preserved video surveillance applica-

tions. Dynamic vision sensor (DVS), also known as neuromor-

phic vision sensor, provides a solution to design PUF system

that is capable of responding actively to incidents occurred in

the surveillance scene. DVS responds only to temporal inten-

sity change and records only sparse asynchronous address-

events with precise timing information. It has low latency,

high dynamic range and significantly reduced data size. These

features are exploited to make an event-driven PUF in [140].

It adds only three transistors per DVS pixel to harness the

entropy from the fabrication process variability. The PUF

response can only be triggered by and is uniquely dependent

on the asynchronous addressed event detected in the scene

without being interfered by the simultaneous firing of other

address events. The package of address events acquired by the

DVS camera is tagged by the event-driven PUF response using

a keyed Hash-based Message Authentication Code (HMAC).

This is believed to be the first event-driven PUF system to fill

the forensic gap of simultaneously authenticating the event

data integrity and source camera identity.

B. System and Architectural Protection Techniques

Resource sharing is inevitable as it leads to more efficient

computation. Software processes share memories, datapaths,

accelerators, monitors, sensors and I/O. Hardware IP cores

require shared access to on-chip interconnect and memories.

Yet, it is a challenge for security since any entity must consider

information leakage through shared resource especially when

computing on sensitive data. The cache side channel is a

key example of this that has been exploited countless times

for nefarious purposes. Resource isolation is a key security

mechanism that is often difficult to implement in practice.
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1) Trusted Execution Environment: One common approach

for software isolation is a trusted execution environment

(TEE). TEE uses hardware mechanisms to ensure that isolation

properties are properly enforced. These properties, in general,

enforce rules that provide a fixed set of resources for a

sensitive computation, and assurances that those computations

are hidden from other system users. There are a number of

different TEEs. Intel’s SGX [141] uses enclaves – a protected

environment that contains the code and data of a security-

sensitive computation. SGX performs isolation by setting aside

a memory for trusted computation and isolating the memory

from any other access including kernel, hypervisor and DMA

accesses. ARM Trust-Zone [142] has two worlds. Sensitive

computations are put into the secure world and are isolated

from code running in the normal world.

2) Cache Side Channel Mitigations: Cache side channel

mitigations attempt to minimize or eliminate information

leakage by isolating secure and non-secure accesses to the

cache. Cache partitioning is one class of approaches that

attempts to separate the cache to avoid conflicts. Partitioning

can be performed in various ways, including static locking

(PLCache) [143], dynamic locking [144], page coloring [145],

and selective cache flushing [146]. Randomization is another

class of techniques where of cache access patterns are per-

muted to minimize any information leakage on conflicts,

e.g., RPCache [143]. Other mitigations include DAWG [147],

InvisiSpec [148], non-monopolizable caches [149], Intel Cache

Allocation Technology [150], and CATalyst [151].

It is difficult to develop and implement a cache mitigation

scheme. For example, Ardeshiricham et al. [152] showed that

the well-known PLCache [143] mitigation was flawed, and

developed a fix to the vulnerability that was formally verified

to be secure. This points to the need for any mitigation to come

with proof that they are correct. Property driven hardware

security [20] advocates for such an approach where the threat

model is formally specified as properties, e.g., SystemVerilog

Assertion (SVA) assertions, information flow properties, etc.,

and hardware security verification tools provide assurance that

the designs adhere to the specified properties.

3) Memory Protection: Many of the system and architec-

tural threats revolve around performing proper access control

on memory locations. This includes strict isolation of memory

regions (e.g., non-secure processes should never read/write

secure memory) and dynamic policies (e.g., a cryptographic

key is written during secure boot process and is never accessed

by anyone after that). Standard memory protections rely on a

memory management unit (MMU). Common protections in-

clude access control through segmentation to provide isolation,

data encryption to provide confidentiality [153], and hashing

to provide integrity [154]. Protecting the memory access infor-

mation, along with the confidentiality and integrity of the data,

is also crucial. Oblivious RAM [155] is an example approach

for access pattern protection. 3D integration is a powerful

technique for hardware security and can be used for memory

protection [156], e.g., embedded DRAM can mitigate threats

related to off-chip data accesses. Anti-tamper techniques are

also widely adopted by chip makers such as Altera [157], ON

Semiconductor [158] and Cypress [159] to secure key storage.

The most recent nonvolatile static RAM technology based

anti-tamper memory [159] can provide a single or combined

features of password protection, data destruction, functional

destruction and physical destruction upon tampering.

4) Control Flow Integrity (CFI): Control flow integrity

(CFI) defends against code reuse attacks by monitoring the

program’s flow of execution and attempts to ensure that it

performs the correct sequence of operations. CFI is a general

class of mitigation strategies that monitor and restrict the

control flow decisions that a program makes. While there

are many software CFI techniques, including some done in

practice [160], there are fewer hardware based CFI techniques

as they generally require substantial changes to the underlying

microarchitecture. Hardware CFI defenses depend on a trusted

hardware monitor integrated into the instruction pipeline or

with access to the processor’s debugging resources to analyze

control flow information. de Clercq and Verbauwhede [161]

classify CFI mitigation strategies into the followings: shadow

call stack, labels, tables, finite state machine, branch reg-

ulation, instruction set randomization, signature modeling,

and code pointer integrity. These mitigation strategies aim to

monitor execution using a limited number of resources. Their

differences are reflected in the resources that they monitor,

how they track execution flows, and the type and amount of

stateful information that must be stored.

C. Side Channel Protection Techniques

1) Timing-channel Countermeasures: Existing countermea-

sures against SCA explore both software and hardware-level

approaches. A countermeasure could be detection of the attack

at runtime or analysis of susceptibility during the design

stage. It could also be a design approach (both software and

hardware) for mitigating the covert or side-channel.

Most timing channels in cryptographic implementations

occur due to the difference in execution time for different key

and data inputs. As key and data inputs vary, the memory

access pattern, branches, and various other operations become

different across multiple executions that lead to leakage of

information. Researchers have proposed constant-time tech-

niques to eliminate such leakage. However, they are difficult

to achieve through hardware-level re-implementation and may

cause significant impact on performance [162]. Bitslicing

technique has been explored to implement constant-time AES

core with improved performance [163].

Researchers have developed compiler-based countermea-

sures to thwart timing channels. These techniques focus on

introducing noise or randomization in the software implemen-

tation to eliminate timing leakage. Coppens et al. [164] pro-

posed compiler-based automatic elimination of key-dependent

control flow by removing conditional move instructions.

2) Power Side-channel Countermeasures: Power SCA

countermeasures can be categorized as algorithmic, physical,

or system-level. Algorithmic countermeasures insert additional

operations that mask [165] or split [166] the sensitive com-

putation. They have the advantage of being provably secure.

Physical countermeasures rely on measurements for validating

the security of the device. The problem of measuring the side-

channel leakage of a device has been addressed in [39], [41],
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[167], [168]. Works like [169], [170] use custom gates that

consume power independent of the gate’s switching. System-

level countermeasures, such as [171]–[174], use the device’s

power supply to normalize or randomize the overall power

consumption. While algorithmic and system-level countermea-

sures require additional circuitry, physical countermeasures

use custom logic design methodologies to tackle the leakage.

System-level countermeasures rely on injecting noise in the

power supply, which reduces the signal-to-noise ratio in the

side-channel leakage [171]–[174]. The specialized circuitry

required by these schemes can drastically affect the area,

power and performance of the design. For example, the

popular algorithmic masking scheme [175] results in over 3×

of performance degradation. In the recent years, the need for

incorporating security countermeasures in low-cost embedded

hardware has motivated the emergence of efficient counter-

measures like [176]–[178], where the algorithms available in

the commercial EDA flows are leveraged to reduce area and

delay overheads of these countermeasures.

3) EM Side-channel Countermeasure: Both hardware and

software-level countermeasures have been proposed to thwart

EM side-channel. Execution sequence randomization and ran-

domization of LUTs have been explored as software-based

methods [179], [180]. Certain pairs of instruction sequence

may have distinguishing features in the EM signature that can

be leveraged for the detection of security critical events [181].

Randomization of sequence can also be useful in mitigating

such leakage. Accessing critical data using pointers may raise

the difficulty of extracting access pattern information through

EM analysis [182]. While masking of critical variables by

random values during execution has been explored, they are

found less effective in mitigating the leakage [183], [184].

Minimization of metal artifacts in the chip and use of

Faraday cage packaging have been suggested as hardware-

level countermeasures against EM emission [24]. Since EM

emission is proportional to power consumption, low-power

design methodology could also be useful. Introducing asyn-

chronous design methods using multiple clocks may raise

the difficulty of analyzing EM signature as different parts

of the design will be switching at different frequency [24].

Analysis framework for evaluating hardware designs for EM

side-channel vulnerability would be useful for early detection

and integration of design-time mitigation techniques [185].

4) Fault Attack Countermeasures: Over the years, various

countermeasures have been proposed for protecting digital

designs against fault attacks. These countermeasures can be

broadly classified as infective countermeasures and detection-

based countermeasures. Detection-based countermeasures in-

volve the addition of detection-circuitry such as parity or

additional copies of the design in-order to detect the presence

of a fault. Works such as [186]–[189] rely on parity based

circuits while [190], [191] rely on redundant circuits. Works

like [65], [192] attempt to thwart a fault attack by increasing

the probability of unexploitable faults. They achieve this by

transforming the fault space. Infective countermeasures such

as [193], [194] on the other hand prevent the occurrence of a

fault attack by making it impossible for the attacker to inject

a fault. Works like [193] use diffusion-based technique where

portions of the redundant and original outputs are swapped

thereby making it harder for the attacker to identify exploitable

faults. Another diffusion method is through the use of a fixed

constant matrix to modify the output data [194]. Infection can

also be achieved by adding dummy rounds in addition to the

redundant datapath [195], [196].

However, a significant drawback of the above mentioned

works is that they still require the design engineer to manually

identify the vulnerable fault locations. This poses a significant

challenge in larger designs. Thus, in recent years automatic

identification of vulnerable locations has become an interesting

area of research. With respect to fault attacks, the initial works

were restricted to light-weight ciphers [197] or made strong

assumptions such as restricting to bit-flip faults. Safari [198]

can cater to a large class of block ciphers including add-

rotate-xor (ARX) ciphers. It can comprehensively evaluate

all possible fault scenarios, including those with multiple

fault locations. Expfault [199] uses data mining to determine

vulnerable components of a cipher. Solomon [200] is a formal

verification based tool-flow that can map vulnerable regions

in the specification to their corresponding gate-level or placed

netlist representations. Feds [201] is a similar formal verifica-

tion tool-flow that can map fault-attack vulnerable regions in

the specification of a cipher to the corresponding lines in the

source code for its implementation.

D. IP Protection Techniques

1) Hardware Watermarking: Hardware watermarking can

be performed at electronic system level (ESL), high-level

synthesis (HLS) level or logic synthesis level to protect

an IP against threats such as piracy (or counterfeiting and

cloning) and false claim of IP ownership. ESL or HLS based

hardware watermarking is exemplified by binary encoding of

author’s signature in [202]. This technique embeds watermark

in the pre-synthesis phase of HLS or behavioral synthesis

in the form of additional design and timing constraints. The

extra constraints encode the author’s signature into a binary

bitstream of ASCII characters. The high-level description of a

design is converted into control data flow graph (CDFG). After

scheduling the CDFG into control steps (CS), an interval graph

(IG) is created wherein each node indicates a storage variable,

and an edge between two nodes indicates the overlapping of

the life time between two storage variables. Register allocation

to these variables is performed by graph coloring. Each node

is first assigned a unique number in increasing order of their

lifetime. From the sorted list of nodes, each author signature

bit is embedded as an extra edge in the IG by selecting a

terminal node based on its node number. Bit ‘0’ (or ‘1’) is

embedded by selecting an even (or odd) numbered terminal

node. The extra constraints are thus imposed into the graph

coloring problem for optimal register allocation. The strength

of the authorship proof is assessed by the probabilities of

coincidence (PC) and tampering (PT ). PC denotes the proba-

bility of coincidentally obtaining the same register allocation

to the same storage variables as the signature by using any

other register allocation methods. PT denotes the probability

of successfully corrupting the watermark by eliminating one

or more signature bits by altering the color of a node.
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Triple phase Watermarking [16] is another HLS water-

marking scheme for protecting DSP hardware accelerators.

A complex author-signature is formed by seven variables,

‘γ’, ‘α’, ‘β’, ‘i’, ‘I’, ‘T’ and ‘!’, and embedded into three

different phases of HLS. During the scheduling phase, on each

occurrence of ‘γ’ digit, an operation in the non-critical path

with the highest mobility is moved into the next immediate CS.

During the resource allocation phase, in the odd CS on each

occurrence of ‘α’ digit in the odd CS, hardware resources to

the odd and even operations are reallocated to type 1 and type

2 venders, respectively; In the even CS, on each occurrence

of ‘β’ digits , hardware resources to even and odd operations

are reallocated to type 1 and type 2 vendors, respectively.

During the register allocation phase, on each occurrence of

‘i’, ‘I’, ‘T’ and ‘!’ digits, additional edges are added into the

colored IG (CIG) to reallocate the registers to a set of storage

variables. Specifically, ‘i’ is encoded as an edge between two

prime nodes, ‘I’ an edge between two even nodes, ‘T’ i an

edge between a pair of odd and even nodes, and ‘!’ an edge

between node number 0 and any other integer node.
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Datapath synthesis 
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embedded 
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Fig. 3. Triple phase watermarking based IP protection technique.

Fig. 3 depicts the triple phase watermarking approach.

Owing to the large number of signature variables embedded in

three different phases of HLS, it is highly tamper-tolerant and

has extremely low PC . The complex signature combination in

the three embedding phases has tightly constrained the solution

space, making it highly improbable to find a design of the same

functionality to also fulfill the additional watermark constraints

by coincidence. By embedding the watermark at the highest

level of design abstraction, the IP distributed at all lower

levels of abstraction will also be protected without introducing

integration complexity to the traditional design flow.

Besides HLS, Kirovski et al. [203] proposed the first

logic synthesis watermarking method by implanting user and

tool specific information into a combinational circuit through

technology mapping. Design constraints are generated by

hashing the owner signature using SHA-256 and a pseudo-

random number generator. The watermark constraints are used

to select the internal circuit nodes as pseudo-primary output

to synthesize a new netlist with the minimum number of

cells for a given technology library without changing the

functionality of the original circuit. Instead of full technology

mapping, Cui et al. [204] proposed an incremental technology

mapping technique to adaptively synthesize part of the design

for watermark insertion. Using a globally optimized master

design, the slack sustainability of disjoint closed cones is

assessed to determined their suitability as watermark hosts.

The watermarked solution is generated by remapping only the

selected closed cones according to the watermark constraint

through incremental synthesis. As the closed cones are selected

based on both slack and slack sustainability, the embedding

capacity is maximized, and the watermark bits are stealthier

than hosting them in non-critical paths determined merely by

absolute timing slacks.

2) Hardware Steganography: A limitation of IP water-

marking is that it is arduous, and not always possible, to

optimize the design-dependent signature to increase its ro-

bustness without exceeding acceptable overhead. Hardware

steganography is a promising alternative to watermarking. This

is due to the following reasons: a) hardware steganography

provides a seamless control to resolve ownership conflict and

piracy detection; b) the secret stego-based hardware constraints

are derived from the entropy threshold parameter instead of

the combination and encoding process of signature variables.

Consequently, the design overheads are reduced over IP water-

marking. From design perspective, modeling the relationship

between signature combination and design overhead to select

a robust signature is extremely difficult. Hence, it is desirable

to do away with signature dependency for IP protection.
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Fig. 4. Entropy based hardware steganography approach.

In [17], a vendor signature-free entropy-based hardware

steganography method is proposed to protect DSP cores. This

approach is depicted in Fig. 4. The secret information is

embedded in the register allocation phase of HLS through

the CIG framework. The stego-constraints are derived from

a set of edges between node-pairs of identical colors. To

add an edge between two nodes of the same color, the color

of one node in the pair needs to be swapped with another

node in the CIG. There are a number of possible swapping

pairs corresponding to each potential edge to be embedded.

An entropy value is computed for each swapping pair as

an indicator of the number of color transformations needed

for the swapping. The entropy value for all swapping pairs

of a potential edge is computed to determine its maximum

entropy. Only those edges whose maximum entropy is less

than or equal to a chosen entropy threshold (Eth) are qualified

to be embedded as stego-constraints. The strength of the

ownership proof is also measured by Pc. The difference is that

a steganography technique is capable of embedding effectively

a larger number of constraints than HLS based watermarking

approaches. This is because it assumes no default constraint,
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while some constraints corresponding to the author’s signature

exist by default for watermarking approaches. All the stego-

constraints corresponding to the chosen Eth are essentially

embedded as the author’s secret information. The amount of

implanted stego-information and the strength of steganography

can be increased by increasing Eth with negligible design

overhead. Hence, this technique offers more designer control

on the digital evidence implanted into the design.

To improve the robustness of steganography, two distinct

phases viz. register allocation and functional unit (FU) ven-

dor allocation of HLS are leveraged for stego-constraints

insertion [205]. In addition, the author’s stego-information

generation involves cryptographic modules and stego-keys to

enhance the protection against piracy and false ownership

claim. The reasons are: (i) even if the secret constraints are

compromised by an attacker, the owner has a meaningful and

mathematical way to prove his constraints; (ii) the very large

size stego-key (more than 600 bits and scalable with the size

of the IP) is only known to the owner, and such a large

key cannot be cracked by brute force; (iii) the stego-mark

and ownership proof are strengthened by a stronger digital

evidence by embedding the stego-information in two distinct

phases of HLS.

The secret stego-constraints are generated using secret de-

sign data and stego-keys. The secret design data, obtained

from CIG of target DSP application, are a set of elements

where each element is represented by the indices (i, j) of a

node pair (Vi, Vj) of identical colors in the CIG. A series

of transformations involving row and column diffusions and

cryptographic encryptions using the stego-keys are applied on

the secret design data to obtain the stego-constraints in the

form of a bitstream. Each bit in the stego-constraints is mapped

to the hardware security constraints based on designer specific

mapping rules. Further hardware security constraints are em-

bedded during the register allocation and FU vendor allocation

phases of HLS; thereby, generating a stego-embedded DSP

design. This crypto-based dual phase steganography technique

has also been applied along with structural obfuscation to be

discussed in the next subsection to double the line of defense

for securing JPEG compression-decompression hardware used

in medical imaging systems [206].

3) Logic Obfuscation: Logic obfuscation is another effec-

tive hardware IP protection technique against illegal black-

box reuse and RE. It inserts extra logic associated with

dedicated obfuscation key inputs to functionally lock the

design. Such design modification introduces programmability

into the design such that the circuit functions properly only

upon application of the correct obfuscation key and would

otherwise malfunction.

Commonly used logic obfuscation techniques include

XOR/XNOR and MUX based logic locking which can affect

values of circuit internal nodes or the hardware information

flow [207], [208]. Similarly, logic obfuscation can also be im-

plemented by introducing programmable elements to withhold

part of the logic for later configuration [209]. However, these

obfuscation techniques are vulnerable to powerful functional

oracle-guided SAT attacks that iteratively finds distinguishing

input patterns (DIPs) to prune the wrong keys [210].

A number of anti-SAT logic locking techniques were pro-

posed to increase the number SAT iterations required. For

example, Xie et al. [18] leverage point function logic to

reduce the number of wrong keys pruned by each DIP so that

the number of DIPs required exhibits an exponential relation

with the obfuscation key length. However, since such anti-

SAT logic obfuscation approaches generally rely on AND-tree

based point function structure, they suffer from removal attack

and bypass attack [211], [212]. Several research work [213],

[214] improved the obfuscation techniques to eliminate such

vulnerability by adopting a corrupt-and-correct scheme which

ensures that when the point function logic is removed, the

circuit would not function properly. However, a recently pro-

posed functionality analysis on logic locking (FALL) attack

combines structural and functional analyses of the obfuscation

circuit followed by a SAT-based key confirmation to suc-

cessfully defeat such obfuscation techniques [215]. Another

solution to developing anti-SAT logic locking techniques is

to increase the time for each SAT iteration by using pro-

grammable logic and routing block networks to obfuscate the

routing of selected wires as well as the logic of the gates

preceding and succeeding the selected wires [216].

Another branch of logic encryption is the FSM based

sequential obfuscation techniques. It involves augmenting the

original FSM with additional states such that the FSM will

start from a dummy state and can only reach a functional

state upon receiving the correct key sequence [217]. Sequential

obfuscation techniques can be breached if the FSM can be

enumerated with its transition graph extracted [19].

E. Hardware Trojan Detection and Prevention Techniques

1) Pre-silicon Countermeasures: Pre-silicon HT detection

techniques are designed to identify HTs in the early design

phase. These techniques include switching probability analy-

sis, structural checking and security verification.

Switching Probability Analysis based HT detection ap-

proaches are developed upon the assumption that the Trojan

trigger signal should have extremely low switching probability

in order to prevent the HT from being frequently activated.

These methods try to identify the signals with switching ac-

tivities significantly lower than the average through structural

analysis or behavioral code analysis [218]–[220]. These re-

search works have revealed the close connection between low

controllability or observability signals and Trojan circuitry.

Structural Checking based HT detection methods attempt

to extract structural features (e.g., gate type, gate count and

manners of interconnections) specific to HT designs and

perform detection leveraging techniques such as pattern match-

ing [221]. They usually use a scoring algorithm to match such

features against the circuit structures under test to identify

Trojan circuitry. However, these methods may indicate false

positives and suffer from scalability issues.

Security Verification can be used to detect certain types of

HTs. It works by deriving formal security models for hardware

designs and prove security properties such as confidentiality

and integrity through formal approaches, e.g., SAT solving,

model checking and type checking [222]–[224]. A security
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property violation indicates the existence of unintentional de-

sign flaw or intended malicious design modification. However,

formal verification typically has the scalability problem and

usually only works for detecting HTs at IP level.

2) Post-silicon Countermeasure: Pre-silicon HT detection

methods check for malicious design modifications after chip

fabrication. Destructive RE, which involves de-packaging and

delayering the ICs and extracting the circuit structure from

layout images, is a common approach for post-silicon HT

detection. However, this costly and time-consuming process

may fail when HT is only inserted into a small number of

chips. On the contrary, non-destructive methods, including

functional testing and SCA, are generally considered more

viable in practice.

Functional testing aims to activate the rarely triggered Tro-

jan circuitry and propagate the effect to an observable point.

A major research vector is how to generate test vectors which

can excite each rarely switching node in a circuit. Statistical

approaches have provided one possible solution [225] while

another attempt is guided tests against HTs in critical portions

of the design [226].

SCA based methods detect HTs by analyzing physical IC

parameters such as power consumption [227], path delay [228]

and chip emissions [229], [230]. The major challenges with

these methods lie in the lack of golden chip and the effect of

process variation on side-channel measurements. To improve

HT detection sensitivity, researchers exploit multiple side-

channel parameters [231] or combine logic testing and SCA

for directed pattern generation [232]. There are also efforts in

developing “golden-free” solutions by estimating the golden

signature through simulation [233] or comparing the signatures

collected at different time windows [234].

3) Design-for-Trust (DFS) Techniques: DFS techniques in-

sert dedicated logic to facilitate HT detection. Some techniques

add dummy flip-flops and testing points to improve the con-

trollability and observability of internal nodes to accelerate

the Trojan activation process [235]. Another type of DFS tech-

niques insert circuit infrastructure such as ring oscillators [236]

and current sensors [237] to facilitate production screening and

on-site monitoring of HT-infected chips or favor SCA-based

HT detection. DFS techniques can also be applied to make HT

insertion more difficult while detection easier as demonstrated

in [238].

4) Runtime Monitoring Techniques: Due to the NP-

completeness of several testing problems (e.g., controllability,

observability and ATPG), it is impossible to guarantee that

HTs can be completely eliminated before device deployment.

Thus, it is desirable to employ runtime monitoring techniques

to detect and prevent HT attacks in security critical systems.

This can be done by monitoring critical signals [239], dy-

namic power [240] or EM radiation [241] and even through

hardware-assisted formal approach [223].

5) 3PIP Trojan Detection: The majority of HT detection

methods use Trojan benchmarks for evaluating their effective-

ness. The task of detecting unknown HTs in 3PIP is more

challenging due to the lack of knowledge about the Trojan

implementation. Coverage of functional testing, locality of

switching probability analysis and noise from process vari-

ation add difficulty to this process. Functional [242], [243]

and security verification [224], [244]–[248] techniques are

promising, with detection rate dependent on the quality of

the properties. Unfortunately, specifying the right property for

Trojan detection is a non-trivial task for 3PIP. Techniques for

identifying HTs by matching the design structural [249] or

control data flow [250] features to existing templates is reliable

provided that the features of the Trojans are included in the

feature library. New HTs that have not yet been reported may

evade detection. Techniques that deploy on-chip monitors can

still protect critical security assets from malicious activities

triggered by unknown HTs [251], but full chip protection is

infeasible due to the high design overheads.

6) HT Prevention Techniques: HT prevention techniques

aim to make HT insertion more difficult or ideally impos-

sible. Logic obfuscation, split manufacturing and structural

obfuscation are three common Trojan prevention techniques.

Logic obfuscation techniques, initially proposed for IP pro-

tection, can also be leveraged as a HT prevention approach.

Without the correct key, the functionality of the obfuscated

circuit is locked to the untrusted foundry. This renders HT

insertion a difficult task [252], [253].

Split Manufacturing can also help to prevent malicious

design modification. It separates a design layout into Front

End of Line (FEOL) and Back End of Line (BEOL) portions,

which will be fabricated by trusted and untrusted foundries

respectively. Without information about the BEOL portion, it is

difficult for the untrusted foundry to embed a useful HT [254].

Structural Obfuscation transforms the design structure in

order to hide its functionality and make the structure non-

obvious/non-interpretable by an adversary. This renders RE

harder, which thwarts malicious component/Trojan insertion.

By considering the trade-off between design metrics such

as area, delay and power during high-level transformations

(HLTs), Lao and Parhi [255] obfuscated DSP circuits with

huge structural alterations against RE and HT attacks without

compromising their original functionality.

Hierarchical contiguous folding (HCF) is used to fold X

cascaded stages to one hardware module, and N operations

inside one stage to a hardware FU. All operations of one stage

are performed before the next stage of operations. Different

modes can be implemented by varying the number of stages

in the cascaded structure. Some modes produce functionally

invalid outputs but are otherwise meaningful from signal

processing perspective. Other modes produce non-meaningful

outputs. Manifold meaningful and non-meaningful modes are

regulated through configured data. The functional mode of a

DSP design is activated by applying a valid key to an FSM. If

an invalid key or wrong configured data is applied, different

modes will result in many equivalent circuits to obscure the

DSP design structure.

Compiler based HLTs [256] is an alternative approach that

targets mainly loop based DSP applications to achieve struc-

tural obfuscation. The exploitable HLTs include redundant op-

eration elimination (ROE) by eliminating nodes in CDFG with

matching inputs and operation type, logic transformation by

altering some operation types in CDFG without changing the

functionality, tree height transformation (THT) by paralleliz-
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ing some sequential operations, loop unrolling by unrolling

the loop body to reduce latency, and loop invariant code

motion by moving non-iterative operations out of the loop.

The aforementioned complier-based techniques considerably

transform the CDFG and alter the RTL datapath of the DSP

application post HLS. The latter alteration includes changes

in the size and number of MUXes and DeMUXes, changes

in the interconnectivity of FUs with MUXes and DeMUXes,

change in the number of storage elements (registers), etc. By

integrating particle swarm optimization based design space ex-

ploration (PSO-DSE) framework with the HLS process [256],

the transformed/obfuscated graph can be scheduled with the

optimal resource constraints, which minimizes the cost of the

structurally obfuscated design. THT based [257] and hybrid

transformations based [258] structural obfuscations are also

applied to protect the JPEG codec hardware accelerators and

fault secured DSP designs, respectively.

F. ML-assisted Solutions

Defenses against hardware security threats leveraging ML

are mainly bifold:

1) ML for Detection: IC counterfeiting and HTs are two

emerging threats to the IC manufacturing industry. In both

cases, defective or malicious entities are injected as part of

the system. Traditional inspection methods can be either very

time-consuming or ineffective. As a result, ML models are

used to automate the inspection procedure. Parametric mea-

surements collected from on-chip sensors can be analyzed and

classified using support vector machines (SVMs) to identify

recycled ICs [259]. SVMs can also be utilized for real-time

HT detection [14]. Additionally, various ML models such as

SVM, random forest and multi-layer perceptron (MLP) have

been applied to counter micro-architectural SCAs [15].

2) ML for Robust Architecture Design: Systems with robust

designs stay ahead of security threats. Various designs attempt

to combine ML and system characteristics. Yang et al. [102]

leverage the memristor’s obsolescence effect to design a secure

neuromorphic computing system. Shan et al. [260] propose

a machine learning assisted power compensation circuit that

enhances the SCA-resistant capability with a smaller area and

lower power overhead compared to traditional methods.

G. Countermeasures Against DNN Attacks

Most countermeasures against adversarial attacks on DNN

can be dichotomized into proactive and reactive categories.

The former intends to improve model robustness while the

latter aims to detect adversarial inputs.

1) Proactive Measures: Proactive measures are carried out

offline by three methods. Adversarial training retrains the

model with off-the-shelf adversarial examples added into the

original training dataset. Apart from the cost of crafting

malicious images from known techniques, it is also limited

by the assumption that the attacker is restricted to techniques

that are known to the defender. Gradient Masking hides the

gradient information from the adversaries. One example is

to extract the probability vectors of a pre-trained model as

soft labels to build a distilled model with the same archi-

tecture [261]. Input Transformation inhibits the adversarial

effect by linear dimensionality reduction. In [262], principal

component analysis is used to project the original data to the

training data. Instead of building a fresh model specialized

for the projected inputs, MagNet [263] reconstructs the inputs

using autoencoders before is it trained with sufficient clean

examples to move the tampered images towards the legit-

imate distribution. Hardware-oriented countermeasures have

also been proposed to increase the robustness of DNN model.

Defensive Quantization protects neural networks against ad-

versarial attacks by controlling the Lipschitz constant of the

network during quantization [264]. The hardware efficiency

for small bitwidth data is still preserved.

2) Reactive Measures: Instead of passively regularizing

model parameters in black box setting, reactive methods

detect the adversarial inputs for follow-up actions. These

methods can be divided into three main types: sample statis-

tics, detector training and prediction inconsistency. Sample

Statistics use features, such as density estimates calculated

from the activations of the last hidden layer and Bayesian

uncertainty extracted directly from the dropout layer, to detect

illegitimate points lying far from and nearby the natural data

manifold [265]. Nixon et al. [266] utilizes the sensor pattern

noise (SPN) of the device for adversarial examples detection.

The SPN Dash system, shown in Fig. 5, is introduced before

the classification phase to detect adversarial perturbations

after the image compression and submission stage. In Fig. 5,

Ienc, SPNcur and SPNdev denote an input image after the

image compression stage, the SPN of the current submitted

Ienc and a reference SPN for a specific device, respectively.

The main constraints for the generalization of this method

are the susceptibility of SPN detector and device-dependent

estimation accuracy. Detector Training augments the DNN

subnetworks as adversarial input detector [267]. The additional

module is trained by freezing the parameters of the original

model to perform binary classification between the clean and

adversarial inputs. This defense requires massive adversarial

examples for training, and is prone to over-generalization of

adversarial attacks. Prediction Inconsistency uses the degree

of consensus among multiple models for the prediction of

adversarial attacks. Wang et al. [268] integrates mutation and

statistic hypothesis testing into the detection algorithm. As

adversarial images are more sensitive to the model mutants

than clean images, label change rate (LCR) is defined to assess

the mutation sensitivity of DNN mutants. Statistic hypothesis

testing is then applied to determine the cleanliness of the

input based on its LCR. Cognizant of the greater freedom

to adversarial abuse offered by the unnecessarily large feature

space, Xu et al. [269] determines if an input is benign or

adversarial by comparing the classification results of the initial

and squeezed inputs against a predetermined threshold.

3) Other Hardware-oriented Measures: DNN models are

typically implemented on GPU and application-specific ac-

celerator platforms. The former has greater agility while the

latter is more energy efficient. It is common to have the model

training performed on GPUs with the inference executed in

dedicated DNN accelerators. Thus, it is important to port
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defense algorithms into DNN accelerators to secure embedded

intelligence. Most of the aforementioned countermeasures that

target single precision floating-point arithmetic DNN imple-

mentation on GPU platform may not have considered the

effects of fixed-point arithmetic and quantization on hardware

accelerated DNN. Although truncated models have been used

for the evaluation of the countermeasures proposed in [270]

and [271], they are simulated under the GPU environment

without physically integrated into the accelerator. Rouhani et

al. [272] proposed the first end-to-end hardware accelerated

detection framework that falls under the category of sam-

ple statistics. It exploits the possible adversarial sub-spaces

spanned by the intermediate output feature maps through the

Modular Robust Redundancy that architecturally mirrors the

victim DNN model. An automated customization tool has also

been developed for different resource-constrained platforms

while maximizing the effectiveness of the defense. However,

this defense was only tested on small scale classification.

The complexity of the detection algorithm may increase sub-

stantially with more complex DNN models for large scale

classification. To address this cost and performance trade-off,

DNNGuard [273] is proposed. It is an elastic heterogeneous

DNN accelerator architecture that enables simultaneous execu-

tion of the victim network and the detection network. It is also

scalable to the implementation of various existing detection

algorithms. Unfortunately, DNNGuard was also evaluated by

simulation instead of physical implementation.

V. HARDWARE SECURITY TOOLS

A. Security Verification Tools

Security verification tools for hardware/software systems

have been surveyed in [30]. We summarize a few projects from

the hardware side and also present some recent advances.

1) Academia Tools: One of the earliest hardware security

verification tools was developed by the gate level information

flow tracking (GLIFT) [274] project. It establishes the funda-

mental theories of hardware information flow tracking (IFT)

by providing tracking logic formalization [275], [276] and

complexity theories [277]. GLIFT has been employed to prove

strong isolation in computer architecture [278], identify timing

channel [47] and detect HTs [224]. The GLIFT project has

evolved to higher level IFT methods such as register-transfer

level IFT (RTLIFT) [279] due the verification performance

bottlenecks at the gate level.

Similar to GLIFT, RTLIFT [279], Clepsydra [280] and

VeriSketch [152] are a set of secure hardware design tools that

employ fine-granularity security labels and label propagation

policies to measure the flow of information but target RTL

Verilog designs. RTLIFT has observed ∼5X improvement in

verification performance as compared to GLIFT. Clepsydra

provides a formal model for timing-only information flow

and allows proving constant time properties in order to detect

timing channels in caches and cryptographic cores. VeriSketch

employs the sketch technique to automatically synthesize

hardware designs that satisfy desired security properties such

as confidentiality, integrity and constant time. Like GLIFT, the

information flow security models developed by these projects

are described in standard HDL while the security assertions are

written in standard property specification languages, e.g., SVA.

This allows hardware security verification to be performed

under standard EDA verification environments.

The PCH-IP and VeriCoq projects provide several tools for

verifying IP security and trust [245]–[247]. These tools define

rules for converting RTL Verilog design to Coq1 semantic

circuit models. They use the Coq theorem prover to formally

verify confidentiality properties on the Coq circuit models in

order to detect malicious design modifications. VeriCoq [245]

has recently been extended to the transistor level to verify

the security of analog/mix-signal designs and detect analog

HTs [281]. However, these projects tend to employ conserva-

tive rules to model information flow security behaviors, which

can lead to false alarms in security verification.

SecVerilog [282] is an open source hardware security tool

for proving timing non-interference [283] and eliminating

timing channels in RTL designs. It incorporates a type system

into Verilog and a timing label to verify information flow

security at compile time. Timing non-interference is enforced

by checking type rules. The SecVerilog tool has been extended

to support mutable dependent types to solve the implicit down-

grading problem [284] and the chisel HDL. SecChisel [285]

can be used to create secure architectures, synthesize se-

cure cryptographic accelerators and capture information leaks

caused by hardware security flaws, timing channels and HTs

through type checking.

2) Commercial Tools: EDA and hardware security compa-

nies have also released several secure hardware design tools.

Mentor Graphics SecureCheck is a security path verification

tool running on top of the Questa Formal verification en-

gine [286]. It uses assertion based formal verification to prove

confidentiality and integrity properties in order to identify risky

paths that will lead to security property violations.

JasperGold Security Path Verification [287] is a hardware

security formal verification tool from Cadence. The tool runs

on top of the JasperGold Formal Verification Platform. It

employs sensitivity analysis to model the flow of information

1An iterative theorem prover named after its principal developer, Thierry
Coquand.
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in SoC designs and identify insecure design paths that can

lead to tampering or leakage of critical information [288].

Prospect is a hardware security formal verification tool from

Tortuga Logic. It uses GLIFT [274] to generate logic that

tracks information flow through the circuit. That logic can

then be analyzed by any functional verification tool to prove

security properties [277]. The IFT logic is used solely for

design time verification; no additional logic is added to the

final circuit. Radix-S [289] and Radix-M [290] are another

two hardware security tools from Tortuga Logic. Radix-S

performs IFT based hardware security simulation while Radix-

M performs hardware security emulation. Emulation allows for

the verification of system properties across the entire SoC.

Furthermore, it enables verification of properties that span

across software, firmware, and hardware interactions, i.e., the

“HardFails” [291].

Synopsys focuses more on reliability and functional safety

verification. The CustomSim [292] is a tool set for device-

level and interconnect reliability analysis, including infrared

radiation drop, current density and electromigration, and de-

vice aging. The VC Functional Safety Manager [293] performs

failure modes and effect analysis, unified fault campaigns

management, annotation and calculation of metrics for the

failure modes, effects and diagnostic analysis.

B. Security Driven Hardware Design Tools

There is a recent move towards developing security driven

hardware design tools. DARPA has recently launched the

SSITH and AISS projects. Both aim to develop secure hardware

design tools that allow security to be evaluated along with

traditional design parameters.

Urdahl et al. [294] propose a property-driven design flow.

Abstract properties are specified from the system-level and

refined along the design process in order to provide a formal

relationship between an abstract system model and its concrete

implementation at the RTL. In a property driven solution

to hardware security [20], high-level security specification is

translated to lower level security policy, property, assertion

and constraints in order to allow security to be formally

verified on more concrete design models. This is demonstrated

by a property specific approach to information flow security

verification [295]. Ma et al. [296] present a security-driven

placement tool for EM side channel protection. The idea is to

create an EM leakage model and use this model to guide data-

dependent register reallocation. Takarabt et al. [297] propose

a pre-silicon evaluation methodology and tool that allow

security verification to be run side by side with functional

verification. The tool identifies vulnerabilities and the precise

line of code where the vulnerability lies with additional

characterization such as severity. Recent advances are also

witnessed in security-driven metrics, models and computer-

aided design (CAD) flows that integrate logic encryption, split

manufacturing and camouflaging for secure hardware design

[298], [299].

In [21], it is argued that security should be taken as an

architectural design constraint in addition to time, space and

power. This motivates a security-aware design flow starting

from the choice of security primitives, protocols and architec-

ture. Knechtel et al. [22] provide a comprehensive analysis

about the role of EDA on hardware security. They identify

the challenges yet to be resolved in effective compilation of

security assumptions and constraints across different levels

of abstraction, modeling and evaluation of hardware security

metrics and holistic synthesis of security countermeasures

without causing side-effects.

VI. POTENTIAL RESEARCH DIRECTIONS

A. System and Architecture Security

System designers are constantly trying to balance the del-

icate tradeoff between performance, power, and area. They

must now add security as another optimization criteria! Un-

fortunately, measuring “security” is a challenging but crucial

aspect of hardware design. Security metrics are essential for

any sort of vulnerability analysis, threat mitigation, and secu-

rity verification. An ideal metric provides a precise measure of

the severity of the threat. Security is a multifaceted notion cov-

ering a wide range of threat models. Therefore, it is unlikely

that one metric can cover all threat models. Thus, we need

different metrics to understand the various threats. Metrics that

can combine multiple different threat models and can model

a high dimension space are valuable. Metrics that provide

relative comparisons between different design options are also

extremely useful in making architectural design decisions [41].

IFT is a powerful and one of the most popular metrics for

hardware security verification, but it enforces binary properties

(flow or no flow); Quantitative IFT helps provide some finer

resolution for security threat modeling [300].

Debugging is another important but overlooked aspect of

hardware security. This is particularly challenging at the

system and architectural level due to the complexity of the

design and the interactions with many disparate software and

hardware components. When verification uncovers a security

vulnerability, as it inevitably will do, designers require tech-

niques to help localize the source of this vulnerability and

suggestions on how to redesign the system to mitigate the

vulnerability. This is particularly important for vulnerabilities

that involve both hardware and software.

B. IoT and Cyber-physical (CPS) Security

Security of IoT and CPS are becoming increasingly im-

portant. This is due to: (1) these systems interact with the

physical world, and hence security issues in these systems

may lead to major safety concerns; and (2) these systems

are designed and manufactured under tight cost and time

constraints, which typically do not allow them to go through

rigorous security design and verification process. Generally,

these systems include a hardware layer that consists of sen-

sors and actuators, electronic components for communication,

control and information processing, and a software stack.

The hardware layer serves as the root of trust for the entire

system. Manufacturers of these systems often use commercial

off-the-shelf (COTS) components for the hardware layer and

many open-source software modules in the software stack

due to the cost/time constraints. Moreover, these systems tend
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to incorporate ‘smartness’ through integration of various AI

techniques that enable them to act autonomously as well as

adapt to an operating environment.

Due to their distinctive properties, these systems will re-

quire significant re-thinking in how security solutions – both

design and verification – can be effectively integrated into

them. Specific research directions will include, (1) system-

atic integration of security in IoT/CPS that considers the

varying requirements of the target applications (e.g., power,

performance, cost) with focus on automatic design/verification

tools that enables tradeoff between security and other design

parameters; (2) security of the sensor/actuator subsystem; (3)

security of the COTS components, since they come through

an untrusted supply chain, thus being subject to counterfeiting

and various tampering attacks; and (4) security of the AI and

ML techniques employed in these systems. Additionally, there

will be increasing need for quantifying the security of these

systems through development of appropriate, easy-to-use and

easy-to-understand metrics.

C. ML for Hardware Security and Security of ML

ML models can be used to launch or defend attacks against

hardware entities. Current ML-assisted countermeasures rely

mostly on preliminary models such as SVMs, possibly due

to the scale of the problem and limited training data. As the

attacks are continuously being developed, more complex ML

models such as DNNs may emerge for the prowess in data

processing, which in turn requires a large amount of training

data. Therefore, unsupervised learning can be a potential key

to the problem as labeled data are usually much more valuable

than unlabeled raw data. Furthermore, more effort is needed to

direct ML-assisted methodologies towards robust architecture

design than anomaly detection, since the damage has already

been done in the latter case.

Conversely, AI hardware are themselves vulnerable. Al-

though practical constraints such as limited accessibility and

custom hardware optimization can reduce the success rate of

adversarial attacks, RE and potential exploitation of backdoor

or flaws through deployed hardware accessibility and unre-

liable supply chains of IC design remain the valid threats.

Existing detection-based countermeasures mostly focus on

software-level using off-line analyses, which are often too late

for remedy, especially in real-time safety-critical applications.

More research effort is desired in built-in resilience against

adversarial examples and protection of hardware DNN against

theft of confidential trained model through queries or side

channels without compromising efficiency and accuracy. Mod-

ern primitives for securing hardware, such as PUF, obfuscation

and metering, may be embedded into the deep learning hard-

ware to help monitor or control access to sensitive assets. How-

ever, without considering the intrinsic weaknesses of DNN

implementation, the overhead and performance penalty may

be unacceptable. It boils down to having a hardware-supported

solution that takes unique attributes of DNNs into account

at design time for system-level defense. Another challenge

is the evaluation of the protection measures on large-scale

datasets and complex models. More attention needs to be paid

in the scalability of defense methodologies. Unfortunately, the

opaque nature of deep learning has worsened the defender’s

situation. This calls for a learning paradigm shift from data-

driven to knowledge-driven for explainability enhancement.

Explainability is the ability to provide reasons for a specific

decision derived by the AI. It can be evaluated by interpretabil-

ity and completeness. Interpretability aims at describing inner

operations in a simpler way while completeness measures

the level of preciseness for an explanation. The dilemma is

a highly interpretable system is usually weak in prediction

whereas a precise description is often hardly understandable.

The tremendous computations involved in deep learning pro-

cessing have added resistivity to provide explanations for its

decision. The core of processing explainability enhancement

is therefore to reduce the operational complexity of the target

DNN by for instance, constructing a saliency map to underline

the most influential operations.

D. Security-driven EDA

State-of-the-art EDA flow takes functional correctness and

performance budgets as primary design constraints. Incorpo-

rating security as an additional dimension of the hardware

design space and enabling security properties to be evaluated

along with traditional design parameters is a promising yet

challenging research direction for both the hardware security

and EDA communities. We need to develop more standardized

hardware security models to allow security properties to be

mapped and verified across different levels of abstractions.

In addition, we need to derive effective security metrics to

measure security as a quantifiable design variable.

VII. CONCLUSION

Hardware security involves multiple levels of abstraction

in the computing system stack. In view of the enormously

broad focus and attractivity of this field, it is not possible

to comprehensively survey the voluminous publications, mul-

tidisciplinary and vast diversity of problems and solutions

in one paper. In this paper, we surveyed and discussed the

recent advances in selective sub-fields of hardware security.

Specifically, we presented attacks and countermeasures on

secure architectures, IP components and DNN models, as well

as the design and niche applications of two popular hardware-

intrinsic security primitives. We also outlined recent efforts in

developing security-driven hardware design tools. Hardware

attacks and countermeasures are rapidly evolving. It is not

surprising that a different shortest bar of the wooden barrel can

be identified with each major change in processor architectures

and computing technologies. We believe that the rally between

hardware attack and defense will remain a vibrant presence

for a long time. It is therefore our aim that this review

will alert the hardware designers and tool developers to pay

additional attention to significant security gaps not addressable

by traditional hardware design and verification methodologies.
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brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks,” in USENIX Conference on

Security Symposium. USA: USENIX Association, 2019, pp. 497–
–514.

[96] P. Zhao, S. Wang, C. Gongye, Y. Wang, Y. Fei, and X. Lin, “Fault
sneaking attack: A stealthy framework for misleading deep neural
networks,” in Des. Autom. Conf. (DAC). New York, NY, USA: ACM,
Jun. 2019.

[97] J. Clements and Y. Lao, “Hardware Trojan design on neural networks,”
in IEEE Symp. On Cir. and Syst. (ISCAS), 2019, pp. 1–5.

[98] Y. Zhao, X. Hu, S. Li, J. Ye, L. Deng, Y. Ji, J. Xu, D. Wu, and Y. Xie,
“Memory Trojan attack on neural network accelerators,” in Des. Autom.

Test Europe Conf. Exhib. (DATE), Mar. 2019, pp. 1415–1420.

[99] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[100] W. Liu, C. H. Chang, F. Zhang, and X. Lou, “Imperceptible misclas-
sification attack on deep learning accelerator by glitch injection,” in
Des. Autom. Conf. (DAC), Jul. 2020.
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