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Independent Component Analysis (ICA), a computationally efficient blind source separation technique,

has been an area of interest for researchers for many practical applications in various fields of science and

engineering. This paper attempts to cover the fundamental concepts involved in ICA techniques and review

its applications. A thorough discussion of the applications and ambiguities problems of ICA has been

carried out.Different ICA methods and their applications in various disciplines of science and engineering

have been reviewed. In this paper, we present ICA methods from the basics to their potential applications

to serve as a comprehensive single source for an inquisitive researcher to carry out research in this field.

Povzetek: Podan je pregled tehnike ICA (Independent Component Analysis).

1 Introduction

The problem of source separation is an inductive inference

problem. There is not enough information to deduce the

solution, so one must use any available information to in-

fer the most probable solution. The aim is to process these

observations in such a way that the original source signals

are extracted by the adaptive system. The problem of sep-

arating and estimating the original source waveforms from

the sensor array, without knowing the transmission chan-

nel characteristics and the source can be briefly expressed

as problems related to BSS. In BSS the word blind refers

to the fact that we do not know how the signals were mixed

or how they were generated. As such, the separation is

in principle impossible. Allowing some relatively indirect

and general constrains, we however still hold the term BSS

valid, and separate under these conditions.

There appears to be something magical about blind

source separation; we are estimating the original source

signals without knowing the parameters of mixing and/or

filtering processes. It is difficult to imagine that one can

estimate this at all. In fact, without some a priori knowl-

edge, it is not possible to uniquely estimate the original

source signals. However, one can usually estimate them

up to certain indeterminacies. In mathematical terms, these

indeterminacies and ambiguities can be expressed as arbi-

trary scaling, permutation and delay of estimated source

signals [1]. These indeterminacies preserve, however, the

waveforms of the original sources. Although these inde-

terminacies seem to be rather severe limitations, in a great

number of applications these limitations are not essential,

since the most relevant information about the source signals

is contained in the temporal waveforms or time-frequency

patterns of the source signals and usually not in their ampli-

tudes or the order in which they are arranged in the output

of the system. However, for some applications especially

biomedical signal models such as sEMG signals, there is

no guarantee that the estimated or extracted signals have

exactly the same waveforms as the source signals.

Independent component analysis (ICA) is one of the

most widely used BSS techniques for revealing hidden fac-

tors that underlie sets of random variables, measurements,

or signals. ICA is essentially a method for extracting in-

dividual signals from mixtures. Its power resides in the

physical assumptions that the different physical processes

generate unrelated signals. The simple and generic nature

of this assumption allows ICA to be successfully applied in

diverse range of research fields.

In this paper, we first set the scene of the blind source

separation problem. Then, Independent Component Anal-

ysis is introduced as a widely used technique for solving

the blind source separation problem. A general description

of the approach to achieving separation via ICA and the

underlying assumptions of the ICA framework and impor-

tant ambiguities that are inherent to ICA are discussed in

section 3. A description of specific details of different ICA

methods are given in Sections 4, and the paper concludes

with applications of BSS and ICA methods.

2 Blind source separation (BSS)

Consider a situation in which we have a number of sources

emitting signals which are interfering with one another. Fa-
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miliar situations in which this occurs are a crowded room

with many people speaking at the same time, interfering

electromagnetic waves from mobile phones or crosstalk

from brain waves originating from different areas of the

brain. In each of these situations the mixed signals are of-

ten incomprehensible and it is of interest to separate the

individual signals. This is the goal of Blind Source Separa-

tion. A classic problem in BSS is the cocktail party prob-

lem. The objective is to sample a mixture of spoken voices,

with a given number of microphones - the observations, and

then separate each voice into a separate speaker channel -

the sources. The BSS is unsupervised and thought of as a

black box method. In this we encounter many problems,

e.g. time delay between microphones, echo, amplitude dif-

ference, voice order in speaker and underdetermined mix-

ture signal.

Herault and Jutten [2] proposed that, in a artificial neu-

ral network like architecture the separation could be done

by reducing redundancy between signals. This approach

initially lead to what is known as independent component

analysis today. The fundamental research involved only a

handful of researchers up until 1995. It was not until then,

when Bell and Sejnowski [3] published a relatively sim-

ple approach to the problem named infomax, that many be-

came aware of the potential of ICA. Since then a whole

community has evolved around ICA, centralized around

some large research groups and its own ongoing confer-

ence, International Conference on independent component

analysis and blind signal separation. ICA is used today in

many different applications, e.g. medical signal analysis,

sound separation, image processing, dimension reduction,

coding and text analysis [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In ICA the general idea is to separate the signals, as-

suming that the original underlying source signals are mu-

tually independently distributed. Due to the field’s rela-

tively young age, the distinction between BSS and ICA

is not fully clear. When regarding ICA, the basic frame-

work for most researchers has been to assume that the mix-

ing is instantaneous and linear, as in infomax. ICA is of-

ten described as an extension to PCA, that uncorrelates

the signals for higher order moments and produces a non-

orthogonal basis. More complex models assume for ex-

ample, noisy mixtures, [15, 16], nontrivial source distribu-

tions, [17, 18], convolutive mixtures [19, 20, 21], time de-

pendency, underdetermined sources [22, 23], mixture and

classification of independent component [4, 24]. A general

introduction and overview can be found in [25].

3 Independent component analysis

Independent Component Analysis (ICA) is a statistical

technique, perhaps the most widely used, for solving the

blind source separation problem [25, 26]. In this sec-

tion, we present the basic Independent Component Analy-

sis model and show under which conditions its parameters

can be estimated.

3.1 ICA model

The general model for ICA is that the sources are gener-

ated through a linear basis transformation, where additive

noise can be present. Suppose we have N statistically in-

dependent signals, si(t), i = 1, ...,N. We assume that the

sources themselves cannot be directly observed and that

each signal, si(t), is a realization of some fixed probability

distribution at each time point t. Also, suppose we observe

these signals using N sensors, then we obtain a set of N ob-

servation signals xi(t), i = 1, ...,N that are mixtures of the

sources. A fundamental aspect of the mixing process is that

the sensors must be spatially separated (e.g. microphones

that are spatially distributed around a room) so that each

sensor records a different mixture of the sources. With this

spatial separation assumption in mind, we can model the

mixing process with matrix multiplication as follows:

x(t) = As(t) (1)

where A is an unknown matrix called the mixing matrix

and x(t), s(t) are the two vectors representing the observed

signals and source signals respectively. Incidentally, the

justification for the description of this signal processing

technique as blind is that we have no information on the

mixing matrix, or even on the sources themselves.

The objective is to recover the original signals, si(t),
from only the observed vector xi(t). We obtain estimates

for the sources by first obtaining the “unmixing matrix” W,

where, W = A−1.

This enables an estimate, ŝ(t), of the independent

sources to be obtained:

ŝ(t) =Wx(t) (2)

The diagram in Figure 1 illustrates both the mixing

and unmixing process involved in BSS. The independent

sources are mixed by the matrix A (which is unknown in

this case). We seek to obtain a vector y that approximates

s by estimating the unmixing matrix W. If the estimate of

the unmixing matrix is accurate, we obtain a good approx-

imation of the sources.

The above described ICA model is the simple model

since it ignores all noise components and any time delay

in the recordings.

3.2 Independence

A key concept that constitutes the foundation of indepen-

dent component analysis is statistical independence. To

simplify the above discussion consider the case of two dif-

ferent random variables s1 and s2. The random variable s1

is independent of s2, if the information about the value of

s1 does not provide any information about the value of s2,

and vice versa. Here s1 and s2 could be random signals

originating from two different physical process that are not

related to each other.
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Figure 1: Blind source separation (BSS) block diagram. s(t) are the sources. x(t) are the recordings, ŝ(t) are the estimated

sources A is mixing matrix and W is un-mixing matrix

3.2.1 Independence definition

Mathematically, statistical independence is defined in

terms of probability density of the signals. Consider the

joint probability density function (pdf) of s1 and s2 be

p(s1,s2). Let the marginal pdf of s1 and s2 be denoted by

p1(s1) and p2(s2) respectively. s1 and s2 are said to be in-

dependent if and only if the joint pdf can be expressed as;

ps1,s2
(s1,s2) = p1(s1)p2(s2) (3)

Similarly, independence could be defined by replacing

the pdf by the respective cumulative distributive functions

as;

E{p(s1)p(s2)}= E{g1(s1)}E{g2(s2)} (4)

where E{.} is the expectation operator. In the following

section we use the above properties to explain the relation-

ship between uncorrelated and independence.

3.2.2 Uncorrelatedness and Independence

Two random variables s1 and s2 are said to be uncorrelated

if their covariance C(s1,s1) is zero.

C(s1,s2) = E{(s1 −ms1)(s2 −ms2)}

= E{s1s2 − s1ms2 − s2ms1 +ms1ms2}

= E{s1s2}−E{s1}E{s2}

= 0

(5)

where ms1 is the mean of the signal. Equation 4 and 5

are identical for independent variables taking g1(s1) = s1.

Hence independent variables are always uncorrelated. How

ever the opposite is not always true. The above discussion

proves that independence is stronger than uncorrelatedness

and hence independence is used as the basic principle for

ICA source estimation process. However uncorrelatedness

is also important for computing the mixing matrix in ICA.

3.2.3 Non-Gaussianity and Independence

According to central limit theorem the distribution of a sum

of independent signals with arbitrary distributions tends to-

ward a Gaussian distribution under certain conditions. The

sum of two independent signals usually has a distribution

that is closer to Gaussian than distribution of the two orig-

inal signals. Thus a gaussian signal can be considered as a

liner combination of many independent signals. This fur-

thermore elucidate that separation of independent signals

from their mixtures can be accomplished by making the

linear signal transformation as non-Gaussian as possible.

Non-Gaussianity is an important and essential principle

in ICA estimation. To use non-Gaussianity in ICA es-

timation, there needs to be quantitative measure of non-

Gaussianity of a signal. Before using any measures of non-

Gaussianity, the signals should be normalised. Some of the

commonly used measures are kurtosis and entropy mea-

sures, which are explained next.

– Kurtosis

Kurtosis is the classical method of measuring Non-

Gaussianity. When data is preprocessed to have unit vari-

ance, kurtosis is equal to the fourth moment of the data.

The Kurtosis of signal (s), denoted by kurt (s), is defined

by

kurt(s) = E{s4}−3(E{s4})2 (6)

This is a basic definition of kurtosis using higher or-

der (fourth order) cumulant, this simplification is based on

the assumption that the signal has zero mean. To simplify

things, we can further assume that (s) has been normalised

so that its variance is equal to one: E{s2}= 1.

Hence equation 6 can be further simplified to

kurt(s) = E{s4}−3 (7)

Equation 7 illustrates that kurtosis is a nomralised form

of the fourth moment E{s4} = 1. For Gaussian signal,
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E{s4} = 3(E{s4})2 and hence its kurtosis is zero. For

most non-Gaussian signals, the kurtosis is nonzero. Kur-

tosis can be both positive or negative. Random variables

that have positive kurtosis are called as super Gaussian or

platykurtotic, and those with negative kurtosis are called

as sub Gaussian or leptokurtotic. Non-Gaussianity is mea-

sured using the absolute value of kurtosis or the square of

kurtosis.

Kurtosis has been widely used as measure of Non-

Gaussianity in ICA and related fields because of its com-

putational and theoretical and simplicity. Theoretically, it

has a linearity property such that

kurt(s1 ± s2) = kurt(s1)± kurt(s2) (8)

and

kurt(αs1) = α4kurt(s1) (9)

where α is a constant. Computationally kurtosis can be

calculated using the fourth moment of the sample data, by

keeping the variance of the signal constant.

In an intuitive sense, kurtosis measured how "spikiness"

of a distribution or the size of the tails. Kurtosis is ex-

tremely simple to calculate, however, it is very sensitive to

outliers in the data set. It values may be based on only a

few values in the tails which means that its statistical sig-

nificance is poor. Kurtosis is not robust enough for ICA.

Hence a better measure of non-Gaussianity than kurtosis is

required.

– Entropy

Entropy is a measure of the uniformity of the distribution

of a bounded set of values, such that a complete unifor-

mity corresponds to maximum entropy. From the informa-

tion theory concept, entropy is considered as the measure

of randomness of a signal. Entropy H of discrete-valued

signal S is defined as

H(S) =−∑P(S = ai)logP(S = ai) (10)

This definition of entropy can be generalised for a

continuous-valued signal (s), called differential entropy,

and is defined as

H(S) =−
∫

p(s)logp(s)ds (11)

One fundamental result of information theory is that

Gaussian signal has the largest entropy among the other

signal distributions of unit variance. entropy will be small

for signals that have distribution concerned on certain val-

ues or have pdf that is very "spiky". Hence, entropy can be

used as a measure of non-Gaussianity.

In ICA estimation, it is often desired to have a measure

of non-Gaussianity which is zero for Gaussian signal and

nonzero for non-Gaussian signal for computational sim-

plicity. Entropy is closely related to the code length of the

random vector. A normalised version of entropy is given

by a new measure called Negentropy J which is defined as

J(S) = H(sgauss)−H(s) (12)

where sgauss is the Gaussian signal of the same covari-

ance matrix as (s). Equation 12 shows that Negentropy is

always positive and is zero only if the signal is a pure gaus-

sian signal. It is stable but difficult to calculate. Hence

approximation must be used to estimate entropy values.

3.3 Mathematical Independence

Mathematical properties of matrices were investigated to

check the linear dependency and independency of global

matrices (Permutation matrix P)

3.3.1 Rank of the matrix

Rank of the matrix will be less than the matrix size for lin-

ear dependency and rank will be size of matrix for linear

independency, but this couldn’t be assured yet due to noise

in the signal. Hence determinant is the key factor for esti-

mating number of sources.

3.3.2 Determinant of the matrix

In real time applications Determinant value should be zero

for linear independency and should be more than zero

(close to 1) for linear independency [27].

3.4 ICA Assumptions and Ambiguities

ICA is distinguished from other approaches to source sep-

aration in that it requires relatively few assumptions on the

sources and on the mixing process. The assumptions and

of the signal properties and other conditions and the issues

related to ambiguities are discussed below:

3.4.1 ICA Assumptions

– The sources being considered are statistically inde-

pendent

The first assumption is fundamental to ICA. As dis-

cussed in Section 3.2, statistical independence is the key

feature that enables estimation of the independent compo-

nents ŝ(t) from the observations xi(t).

– The independent components have non-Gaussian dis-

tribution

The second assumption is necessary because of the close

link between Gaussianity and independence. It is impossi-

ble to separate Gaussian sources using the ICA framework

described in Section 3.2 because the sum of two or more

Gaussian random variables is itself Gaussian. That is, the

sum of Gaussian sources is indistinguishable from a single

Gaussian source in the ICA framework, and for this reason

Gaussian sources are forbidden. This is not an overly re-

strictive assumption as in practice most sources of interest

are non-Gaussian.
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– The mixing matrix is invertible

The third assumption is straightforward. If the mixing ma-

trix is not invertible then clearly the unmixing matrix we

seek to estimate does not even exist.

If these three assumptions are satisfied, then it is possi-

ble to estimate the independent components modulo some

trivial ambiguities (discussed in Section 3.4). It is clear

that these assumptions are not particularly restrictive and

as a result we need only very little information about the

mixing process and about the sources themselves.

3.4.2 ICA Ambiguity

There are two inherent ambiguities in the ICA framework.

These are (i) magnitude and scaling ambiguity and (ii) per-

mutation ambiguity.

– Magnitude and scaling ambiguity

The true variance of the independent components cannot

be determined. To explain, we can rewrite the mixing in

equation 1 in the form

x = As

=
N

∑
j=1

a js j

(13)

where a j denotes the jth column of the mixing matrix A.

Since both the coefficients a j of the mixing matrix and the

independent components s j are unknown, we can transform

Equation 13.

x =
N

∑
j=1

(1/α ja j)(α js j) (14)

Fortunately, in most of the applications this ambiguity

is insignificant. The natural solution for this is to use as-

sumption that each source has unit variance: E{s j2} = 1.

Furthermore, the signs of the of the sources cannot be de-

termined too. This is generally not a serious problem be-

cause the sources can be multiplied by -1 without affecting

the model and the estimation

– Permutation ambiguity

The order of the estimated independent components is

unspecified. Formally, introducing a permutation matrix P

and its inverse into the mixing process in Equation 1.

x = AP−1Ps

= A
′
s
′ (15)

Here the elements of P s are the original sources, ex-

cept in a different order, and A′ = AP−1 is another un-

known mixing matrix. Equation 15 is indistinguishable

from Equation 1 within the ICA framework, demonstrating

that the permutation ambiguity is inherent to Blind Source

Separation. This ambiguity is to be expected Ű in separat-

ing the sources we do not seek to impose any restrictions

on the order of the separated signals. Thus all permutations

of the sources are equally valid.

3.5 Preprocessing

Before examining specific ICA algorithms, it is instructive

to discuss preprocessing steps that are generally carried out

before ICA.

3.5.1 Centering

A simple preprocessing step that is commonly performed

is to “center” the observation vector x by subtracting its

mean vector m = E{x}. That is then we obtain the centered

observation vector, xc, as follows:

xc = x−m (16)

This step simplifies ICA algorithms by allowing us to

assume a zero mean. Once the unmixing matrix has been

estimated using the centered data, we can obtain the actual

estimates of the independent components as follows:

ŝ(t) = A−1(xc +m) (17)

From this point on, all observation vectors will be as-

sumed centered. The mixing matrix, on the other hand,

remains the same after this preprocessing, so we can al-

ways do this without affecting the estimation of the mixing

matrix.

3.5.2 Whitening

Another step which is very useful in practice is to pre-

whiten the observation vector x. Whitening involves lin-

early transforming the observation vector such that its com-

ponents are uncorrelated and have unit variance [27]. Let

xw denote the whitened vector, then it satisfies the follow-

ing equation:

E{xwxT
w}= I (18)

where E{xwxT
w} is the covariance matrix of xw. Also,

since the ICA framework is insensitive to the variances

of the independent components, we can assume without

loss of generality that the source vector, s, is white, i.e.

E{ssT}= I

A simple method to perform the whitening transforma-

tion is to use the eigenvalue decomposition (EVD) [27] of

x. That is, we decompose the covariance matrix of x as

follows:

E{xxT}=V DV T (19)

where V is the matrix of eigenvectors of E{xxT},

and D is the diagonal matrix of eigenvalues, i.e. D =
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diag{λ1,λ2, ...,λn}. The observation vector can be

whitened by the following transformation:

xw =V D−1/2V T x (20)

where the matrix D−1/2 is obtained by a

simple component wise operation as D−1/2 =

diag{λ
−1/2

1 ,λ
−1/2

2 , ...,λ
−1/2
n }. Whitening transforms

the mixing matrix into a new one, which is orthogonal

xw =V D−1/2V T As = Aws (21)

hence,

E{xwxT
w}= AwE{ssT}AT

w

= AwAT
w

= I

(22)

Whitening thus reduces the number of parameters to be

estimated. Instead of having to estimate the n2 elements of

the original matrix A, we only need to estimate the new or-

thogonal mixing matrix, where An orthogonal matrix has

n(n−1)/2 degrees of freedom. One can say that whitening

solves half of the ICA problem. This is a very useful step

as whitening is a simple and efficient process that signifi-

cantly reduces the computational complexity of ICA. An il-

lustration of the whitening process with simple ICA source

separation process is explained in the later section.

3.6 Simple Illustrations of ICA

To clarify the concepts discussed in the preceding sections

two simple illustrations of ICA are presented here. The

results presented below were obtained using the FastICA

algorithm, but could equally well have been obtained from

any of the numerous ICA algorithms that have been pub-

lished in the literature (including the Bell and Sejnowsiki

algorithm).

3.6.1 Separation of Two Signals

This section explains the simple ICA source separation pro-

cess. In this illustration two independent signals, s1 and s2,
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Figure 2: Independent sources s1 and s2
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Figure 3: Observed signals, x1 and x2, from an unknown

linear mixture of unknown independent components
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Figure 4: Estimates of independent components

are generated. These signals are shown in Figure2. The in-

dependent components are then mixed according to equa-

tion 1 using an arbitrarily chosen mixing matrix A, where

A =

(

0.3816 0.8678

0.8534 −0.5853

)

The resulting signals from this mixing are shown in Fig-

ure 3. Finally, the mixtures x1 and x2 are separated using

ICA to obtain s1 and s2, shown in Figure 4. By comparing

Figure 4 to Figure 2 it is clear that the independent compo-

nents have been estimated accurately and that the indepen-

dent components have been estimated without any knowl-

edge of the components themselves or the mixing process.

This example also provides a clear illustration of the

scaling and permutation ambiguities discussed in Section

3.4. The amplitudes of the corresponding waveforms in

Figures 2 and 4 are different. Thus the estimates of the in-

dependent components are some multiple of the indepen-

dent components of Figure 3, and in the case of s1, the

scaling factor is negative. The permutation ambiguity is

also demonstrated as the order of the independent compo-

nents has been reversed between Figure 2 and Figure 4.

3.6.2 Illustration of Statistical Independence in ICA

The previous example was a simple illustration of how ICA

is used; we start with mixtures of signals and use ICA to
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separate them. However, this gives no insight into the me-

chanics of ICA and the close link with statistical indepen-

dence. We assume that the independent components can

be modeled as realizations of some underlying statistical

distribution at each time instant (e.g. a speech signal can

be accurately modeled as having a Laplacian distribution).

One way of visualizing ICA is that it estimates the optimal

linear transform to maximise the independence of the joint

distribution of the signals Xi.

The statistical basis of ICA is illustrated more clearly

in this example. Consider two random signals which are

mixed using the following mixing process:

(

x1

x2

)

=

(

1 2

1 1

)(

s1

s2

)

Figure 5 shows the scatter-plot for original sources s1

and s2. Figure 6 shows the scatter-plot of the mixtures. The
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Figure 7: Joint density of whitened signals obtained from

whitening the mixed sources

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Estimated s1

E
s
ti

m
a
te

d
 s

2

Figure 8: ICA solution (Estimated sources)

distribution along the axis x1 and x2 are now dependent and

the form of the density is stretched according to the mixing

matrix. From the Figure 6 it is clear that the two signals are

not statistically independent because, for example, if x1 =

-3 or 3 then x2 is totally determined. Whitening is an inter-

mediate step before ICA is applied. The joint distribution

that results from whitening the signals of Figure 6 is shown

in Figure 7. By applying ICA, we seek to transform the

data such that we obtain two independent components.

The joint distribution resulting from applying ICA to

x1 and x2 is shown in Figure 7. This is clearly the joint

distribution of two independent, uniformly distributed ran-

dom variables. Independence can be intuitively confirmed

as each random variable is unconstrained regardless of the

value of the other random variable (this is not the case for

x1 and x2. The uniformly distributed random variables in
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Figure 8 take values between 3 and -3, but due to the scal-

ing ambiguity, we do not know the range of the original

independent components. By comparing the whitened data

of Figure 7 with Figure 8, we can see that, in this case, pre-

whitening reduces ICA to finding an appropriate rotation to

yield independence. This is a simplification as a rotation is

an orthogonal transformation which requires only one pa-

rameter.

The two examples in this section are simple but they il-

lustrate both how ICA is used and the statistical underpin-

nings of the process. The power of ICA is that an identical

approach can be used to address problems of much greater

complexity.

3.7 ICA Algorithms

There are several ICA algorithms available in literature.

How ever the following three algorithms are widely used

in numerous signal processing applications. These includes

FastICA, JADE, and Infomax. Each algorithm used a dif-

ferent approach to solve equation.

3.7.1 FastICA

FastICA is a fixed point ICA algorithm that employs higher

order statistics for the recovery of independent sources.

FastICA can estimate ICs one by one (deflation approach)

or simultaneously (symmetric approach). FastICA uses

simple estimates of Negentropy based on the maximum en-

tropy principle, which requires the use of appropriate non-

linearities for the learning rule of the neural network.

Fixed point algorithm is based on the mutual informa-

tion. Which can be written as:

I(s) =
∫

fs(s)log
fs(s)

∏ fsi
(si)

ds (23)

This measure is kind of distance of independence. Min-

imising mutual information leads to ICA solution. For the

fast ICA algorithm the above equation is re written as

I(s) = J(s)−∑
i

Jsi +
1

2
log

∏Cii

detCss

(24)

where ŝ = Wx, Css is the correlation matrix, and cii is

the ith diagonal element of the correlation matrix. The last

term is zero because si are supposed to be uncorrelated.

The first term is constant for a problem, because of the in-

variance in Negentropy. The problem is now reduced to

separately maximising the Negentropy of each component.

Estimation of Negentropy is a delicate problem. The pa-

pers [28][ [1] and [2] [29]

have addressed this problem. For the general version

of fixed point algorithm, the approximation was based on

a maximum entropy principle. The algorithm works with

whitened data, although aversion of non-whitened data ex-

ists.

– Criteria

The maximisation is preferred over the following index

JG(w) = [E{G(wT v)}−E{G(ν)}2 (25)

to find one independent component, with ν standard gaus-

sian variable, and G, the one unit contrast function.

– Update rule

Update rule for the generic algorithm is

w∗ = E{vg(wT v)}−E{g
′
(wT v)}w

w = w∗/∥w∗∥
(26)

to extract one component. There is symmetric version of

the FP algorithm, whose update rule is

W ∗ = E{g(Wv)vT}−Diag(E{g
′
(Wv)})W

W = (W ∗W ∗T )−1/2W ∗
(27)

where Diag(v) is a diagonal matrix with Diagii(v) = vi.

– Parameters

FastICA uses the following nonlinear parameters for

convergence.

g(y) =

{

y3

tanh(y)
(28)

The choice is free except that the symmetric algorithm

with tanh non linearity does not separate super Gaus-

sian signals. Otherwise the choice can be devoted to the

other criteria, for instance the cubic non linearity is faster,

whereas the tanh linearity is more stable. These questions

are addressed in [25]

In practice, the expectations in FastICA must be replaced

by their estimates. The natural estimates are of course the

corresponding sample means. Ideally, all the data available

should be used, but this is often not a good idea because the

computations may become too demanding. Then the aver-

ages can be estimated using a smaller sample, whose size

may have a considerable effect on the accuracy of the final

estimates. The sample points should be chosen separately

at every iteration. If the convergence is not satisfactory,

one may then increase the sample size. This thesis uses

FastICA algorithm for all applications.

3.7.2 Infomax

The BSS algorithm, proposed by Bell and Sejnowski, [3],

is also a gradient based neural network algorithm, with

a learning rule for information maximization of informa-

tion. Infomax uses higher order statistics for the informa-

tion maximization. In perfect cases, it does provide the

best estimate to ICA components. The strength of this al-

gorithm comes from its direct relationship to information

theory.
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The algorithm is derived through an information max-

imisation principle, applied here between the inputs and the

non linear outputs. Given the form of joint entropy

H(s1,s2) = H(s1)+H(s2)− I(s1,s2) (29)

Here for two variables s= g(Bx), it is clear that maximis-

ing the joint entropy of the outputs amounts to minimising

mutual information I(y1,y2), unless it is more interesting to

maximise the individual entropies than to reduce the mu-

tual information. This is the point, where the nonlinear

function plays an important role.

The basic idea of the information maximisation is to

match the slope of the nonlinear function with the input

probability density function. That is

s = g(x,θ)≃
∫ x

− inf
fx(t)dt (30)

In case of perfect matching fs(s) looks like an uniform

variable, whose entropy is large. If this is not possible be-

cause the shapes are different, the best solution found in

some case is to mix the input distributions so that the re-

sulting mix matches the slope of the transfer function better

than a single input distribution. In this case the algorithm

does not converge, and the separation is not achieved.

– Criteria

The algorithm is a stochastic gradient ascent that max-

imises the joint entropy (Eqn. 12).

– Update rule

In its original form, the update rule is

∆B = λ [[BT ]−1 +(1−2g(Bx+b0))x
T ]

∆b = λ [1−2g(Bx+b0)]
(31)

– Parameters

The nonlinear function used in the original algorithm is

g(s) =
1

1+ e−s
(32)

and in the extended version, it is

g(s) = s± tanh(s) (33)

where the sign is that of the estimated kurtosis of the

signal.

The information maximization algorithm (often referred

as infomax) is widely used to separate super-Gaussian

sources. Infomax is a gradient-based neural network algo-

rithm, with a learning rule for information maximization.

Infomax uses higher order statistics for the information

maximization. The information maximization is attained

by maximizing the joint entropy of a transformed vector.

z = g(Wx), where g is a point wise sigmoidal nonlinear

function.

4 ICA for different conditions

One of the important conditions of ICA is that the num-

ber of sensors should be equal to the number of sources.

Unfortunately, the real source separation problem does not

always satisfy this constraint. This section focusses on

ICA source separation problem under different conditions

where the number of sources are not equal to the number

of recordings.

4.1 Overcomplete ICA

Overcomplete ICA is one of the ICA source separation

problem where the number of sources are greater than the

number of sensors, i.e (n > m). The ideas used for over-

complete ICA originally stem from coding theory, where

the task is to find a representation of some signals in a given

set of generators which often are more numerous than the

signals, hence the term overcomplete basis. Sometimes this

representation is advantageous as it uses as few ‘basis’ ele-

ments as possible, referred to as sparse coding. Olshausen

and Field [30] first put these ideas into an information the-

oretic context by decomposing natural images into an over-

complete basis. Later, Harpur and Prager [31] and, inde-

pendently, Olshausen [32] presented a connection between

sparse coding and ICA in the square case. Lewicki and

Sejnowski [22] then were the first to apply these terms to

overcomplete ICA, which was further studied and applied

by Lee et al. [33]. De Lathauwer et al. [34] provided

an interesting algebraic approach to overcomplete ICA of

three sources and two mixtures by solving a system of lin-

ear equations in the third and fourth-order cumulants, and

Bofill and Zibulevsky [35] treated a special case (‘delta-

like’ source distributions) of source signals after Fourier

transformation. Overcomplete ICA has major applications

in bio signal processing, due to the limited number of elec-

trodes (recordings) compared to the number active muscles

(sources) involved (in certain cases unlimited).

Figure 9: Illustration of “overcomplete ICA"

In overcomplete ICA, the number of sources exceed

number of recordings. To analyse this, consider two

recordings x1(t) and x2(t) from three independent sources

s1(t), s2(t) and s3(t). The xi(t) are then weighted sums
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of the si(t), where the coefficients depend on the distances

between the sources and the sensors (refer Figure 9):

x1(t) = a11s1(t)+a12s2(t)+a13s3(t) (34)

x2(t) = a21s1(t)+a22s2(t)+a23s3(t)

The ai j are constant coefficients that give the mixing

weights. The mixing process of these vectors can be repre-

sented in the matrix form as (refer Equation 1):

(

x1

x2

)

=

(

a11 a12 a13

a21 a22 a23

)





s1

s2

s3





The unmixing process and estimation of sources can be

written as (refer Equation 2):





s1

s2

s3



=





w11 w12

w21 w22

w31 w32





(

x1

x2

)

In this example matrix A of size 2×3 matrix and unmix-

ing matrix W is of size 3×2. Hence in overcomplete ICA

it always results in pseudoinverse. Hence computation of

sources in overcomplete ICA requires some estimation pro-

cesses.

4.1.1 Overcomplete ICA methods

There are two common approaches of solving the overcom-

plete problem.

– Single step approach where the mixing matrix and the

independent sources are estimated at once in a single

algorithm

– Two step algorithm where the mixing matrix and the

independent component values are estimated with dif-

ferent algorithms.

Lewicki and Sejnowski [22] proposed the single step ap-

proach, which is a natural solution to decomposition by

finding the maximum a posteriori representation of the

data. The prior distribution on the basis function coeffi-

cients removes the redundancy in the representation and

leads to representations that are sparse and are nonlinear

functions of the data. The probabilistic approach to de-

composition also leads to a natural method of denoising.

From this model, they derived a simple and robust learning

algorithm by maximizing the data likelihood over the basis

functions. Another approach in single step was proposed

by Shriki et al. [36] using recurrent model, i.e., the es-

timated independent sources are computed taking into ac-

count the influence of other independent sources.

One of the disadvantage of single step approach is that

it is complex and computationally expensive. Hence many

researchers have proposed the two step method, where the

mixing matrix is estimated in the first step and the sources

are recovered in the next step. Zibulevsky et al. [35] pro-

posed a sparse overcomplete ICA with delta distributions.

Fabian Theis [37, 38] proposed geometric overcomplete

ICA. Recently Waheed et. al [39, 40] demonstrated alge-

braic overcomplete ICA. In this thesis Zibulevsky’s sparse

overcomplete ICA is utilised, which is explained in the next

section.

4.1.2 Sparse overcomplete ICA

Sparse representation of signals which is modeled by ma-

trix factorisation has been receiving a great deal of inter-

est in recent years. The research community has investi-

gated many linear transforms that make audio, video and

image data sparse, such as the Discrete Cosine Transform

(DCT), the Fourier transform, the wavelet transform and

their derivatives. [41]. Chen et al. [42] discussed sparse

representations of signals by using large scale linear pro-

gramming under given overcomplete basis (e.g., wavelets).

Olshausen et al. [43] represented sparse coding of im-

ages based on maximum posterior approach but it was

Zibulevsky et al. [35] who noticed that in the case of sparse

sources, their linear mixtures can be easily separated us-

ing very simple “geometric" algorithms. Sparse represen-

tations can be used in blind source separation. When the

sources are sparse, smaller coefficients are more likely and

thus for a given data point t, if one of the sources is sig-

nificantly larger, the remaining ones are likely to be close

to zero. Thus the density of data in the mixture space, be-

sides decreasing with the distance from the origin shows a

clear tendency to cluster along the directions of the basis

vectors. Sparsity is good in ICA for two reasons. First the

statistical accuracy with which the mixing matrix A can be

estimated is a function of how non-Gaussian the source dis-

tributions are. This suggests that the sparser the sources are

the less data is needed to estimate A. Secondly the quality

of the source estimates given A, is also better for sparser

sources. A signal is considered sparse when values of most

of the samples of the signal do not differ significantly from

zero. These are from sources that are minimally active.

Zibulevsky et al. [35] have demonstrated that when the

signals are sparse, and the sources of these are indepen-

dent, these may be separated even when the number of

sources exceeds the number of recordings. [35]. The over-

complete limitation suffered by normal ICA is no longer a

limiting factor for signals that are very sparse. Zibulevsky

also demonstrated that when the signals are sparse, it is

possible to determine the number of independent sources

in a mixture of unknown signal numbers.

– Source estimation

The first step in two step approach is source separation.

Here the source separation process is explained by taking

sparse signal as an example. A signal is considered to be

sparse if its pdf is close to Laplacian or super-Gaussian. In

this case, the basic ICA model in Equation 1 is modified

to have more robust representation which can be expressed

as,
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x = As+ξ (35)

where ξ represents noise in the recordings. It is assumed

that the independent sources s can be sparsely represented

in a proper signal dictionary

si =
K

∑
k=1

Ck
i ϕk (36)

where ϕk are the atoms or elements of the dictionary. Im-

portant examples are wavelet-related dictionaries such as

wavelet and wavelet packets [41]. Equation 36 can be ex-

pressed in matrix notation as

s =CΦ (37)

by substituting Equation 37 into 35 gives

x = ACΦ+ξ (38)

The goal is to estimate the mixing matrix A and the coef-

ficients C at the same time so that C is as sparse as possible.

and X ≈ ACΦ, given only the observed data x and the dic-

tionary Φ
Using maximum a posteriori approach, the above goal can

be expressed as

max
A,C

P(A,C|x) ∝ maxA,CP(x|A,C)P(A)P(C) (39)

Taking into account Equation 35 and Gaussian noise, the

conditional probability P(x|A,C) can be expressed as

P(x|A,C) ∝ ∏
i

exp[−
(xi − (ACΦ)i)

2

2σ2
] (40)

Since C is assumed to be sparse, it can be approximated

with the following pdf

pi(C
k
i ) ∝ exp[−(βih(C

k
i ))] (41)

and hence

p(C) ∝ ∏
i,k

exp[−(βih(C
k
i ))] (42)

Assuming the pdf of P(A) to be uniform, Equation 39 can

now be simplified as

max
A,C

P(A,C|x) ∝ maxA,CP(x|A,C)P(C) (43)

Finally, the optimisation problem can be formed by substi-

tuting 40 and 42 into 43, taking the logarithm and inverting

the sign

max
A,C

P(A,C|x) ∝ minA,C

1

2σ2
|ACΦ− x∥2

F+

∑
i,k

(βih(C
k
i ))

(44)

There are several measures of sparsity. The simplest

measure is the l0 norm. One of the drawback of this mea-

sure is that, it is discontinuous and difficult to optimise, and

also very sensitive to noise. The closest approximation of

l0 is l1 norm. The validity of this measure can be shown

by simplifying equation 44 under zero noise assumption

and under Laplacian prior distributions with h(Ck
i ) = |Ck

i |.
Under these assumptions the optimisation problem can be

decomposed into K smaller problems for each data point ck

at time point

k = 1...K as

min
ck

∑
i

|ck
i | (45)

subject to Ackϕk = xk. If small signal s is sparse in time

domain then ck in equation 45 can be uploaded with sk.

min
sk

∑
i

|sk
i | (46)

subject to Ask = xk. Equation 46 can be formulated as linear

programming in basic form as

min
sk

cT sk| (47)

subject to Ask = xk, sk ≥ 0 where sk ⇔ [uk;vk],A ⇔ [A;−A]
and c ⇔ [1;1].

– Estimating the mixing matrix

The second step in two step approach is estimating the

mixing matrix. There exists various methods to compute

the mixing matrix in sparse overcomplete ICA. The most

widely used techniques are:

(i) C-means clustering

(ii) Algebraic method and

(iii) Potential function based method

All the above mentioned methods are based on the clus-

tering principle. The difference is the way they estimate the

direction of the clusters. The sparsity of the signal plays an

important role for estimating the mixing matrix. A simple

illustration that is useful to understand this concept can be

found in

4.2 Undercomplete ICA

The mixture of unknown sources is referred to as under-

complete when the numbers of recordings m, more than

the number of sources n. In some applications, it is de-

sired to have more recordings than sources to achieve better

separation performance. It is generally believed that with

more recordings than the sources, it is always possible to

get better estimate of the sources. This is not correct un-

less prior to separation using ICA, dimensional reduction

is conducted. This can be achieved by choosing the same
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number of principal recordings as the number of sources

discarding the rest. To analyse this, consider three record-

ings x1(t), x2(t) and x3(t) from two independent sources

s1(t) and s2(t). The xi(t) are then weighted sums of the

si(t), where the coefficients depend on the distances be-

tween the sources and the sensors (refer Figure 10):

Figure 10: Illustration of “undercomplete ICA"

x1(t) = a11s1(t)+a12s2(t)

x2(t) = a21s1(t)+a22s2(t) (48)

x3(t) = a31s1(t)+a32s2(t)

The ai j are constant coefficients that gives the mixing

weights. The mixing process of these vectors can be repre-

sented in the matrix form as:





x1

x2

x3



=





a11 a12

a21 a22

a31 a32





(

s1

s2

)

The unmixing process using the standard ICA requires a di-

mensional reduction approach so that, if one of the record-

ings is reduced then the square mixing matrix is obtained,

which can use any standard ICA for the source estimation.

For instance one of the recordings say x3 is redundant then

the above mixing process can be written as:

(

x1

x2

)

=

(

a11 a12

a21 a22

)(

s1

s2

)

Hence unmixing process can use any standard ICA algo-

rithm using the following:

(

s1

s2

)

=

(

w11 w12

w21 w22

)(

x1

x2

)

The above process illustrates that, prior to source signal

separation using undercomplete ICA, it is important to re-

duce the dimensionality of the mixing matrix and identify

the required and discard the redundant recordings. Princi-

pal Component Analysis (PCA) is one of the powerful di-

mensional reduction method used in signal processing ap-

plications, which is explained next.

4.2.1 Undercomplete ICA using dimensional

reduction method

When the number of recordings n are more than the num-

ber of sources m, there must be information redundancy in

the recordings. Hence the first step is to reduce the dimen-

sionality of the recorded data. If the dimensionality of the

recorded data is equal to that of the sources, then standard

ICA methods can be applied to estimate the independent

sources. An example of this stages methods is illustrated in

[44].

One of the popular method used in dimensional reduc-

tion method is PCA. PCA uses the decorrelated method to

reduce the recorded data x using a matrix V

z =V x (49)

such that EzzT = I. The transformation matrix V is given

by

V = D
1
2 ET (50)

where D and E are the Eigenvalue and Eigenvector decom-

position of covariance matrix Cx

Cx = ED
1
2 ET (51)

Now it can be proven that

E{zzT}=V E{xxT}V T

= D−1/2ET EDET ED−1/2

= I

(52)

The second stage is using any of the standard ICA al-

gorithms discussed in Section 3.2 to estimate the sources.

In fact, whitening process through PCA is standard prepro-

cessing in ICA. It means that applying any standard ICA al-

gorithms that incorporates PCA will automatically reduce

the dimension before running ICA.

4.3 Sub band decomposition ICA

Despite the success of using standard ICA in many appli-

cations, the basic assumptions of ICA may not hold for cer-

tain situations where there may be dependency among the

signal sources. The standard ICA algorithms are not able

to estimate statistically dependent original sources. One

proposed technique [13] is that while there may be a de-

gree of dependency among the wide band source signals,

narrow band filtering of these signals can provide indepen-

dence among these signal sources. This assumption is true

when each unknown source can be modeled or represented

as a linear combination of narrow-band sub-signals. Sub

band decomposition ICA, an extension of ICA, assumes

that each source is represented as the sum of some indepen-

dent subcomponents and dependent subcomponents, which

have different frequency bands.
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Figure 11: Sub band ICA block diagram.

Such wide-band source signals are a linear decomposi-

tion of several narrow-band sub components (refer Figure

11):

s(t) = s1(t)+ s2(t)+ s3(t), . . . ,sn(t) (53)

Such decomposition can be modeled in the time, fre-

quency or time frequency domains using any suitable lin-

ear transform. A set of unmixing or separating matrices:

W1,W2,W3,. . . ,Wn are obtained where W1 is the unmixing

matrix for sensor data x1(t) and Wn is the unmixing matrix

for sensor data xn(t). If the specific sub-components of in-

terest are mutually independent for at least two sub-bands,

or more generally two subsets of multi-band, say for the

sub band “p" and sub band “q" then the global matrix

Gpq =Wp ×W−1
q (54)

will be a sparse generalized permutation matrix P with spe-

cial structure with only one non-zero (or strongly dominat-

ing) element in each row and each column [27]. This fol-

lows from the simple mathematical observation that in such

case both matrices Wp and Wq represent pseudo-inverses (or

true inverse in the case of square matrix) of the same true

mixing matrix A (ignoring non-essential and unavoidable

arbitrary scaling and permutation of the columns) and by

making an assumption that sources for two multi-frequency

sub-bands are independent. This provides the basis for sep-

aration of dependent sources using narrow band pass fil-

tered sub band signals for ICA.

4.4 Multi run ICA

One of the most effective ways of modeling vector data for

unsupervised pattern classification or coding is to assume

that the observations are the result of randomly picking out

of a fixed set of different distributions. ICA is an iterative

BSS technique. At each instance original signals are es-

timated from the mixed data. The quality of estimation of

the original signals depends mainly on the unmixing matrix

W . Due to the randomness associated with the estimation

of the unmixing matrix and the iterative process, there is a

randomness associated with the quality of separation.

Figure 12: Multi run ICA mixing matrix computation flow

chart

Multi run ICA has been proposed to overcome this asso-

ciated randomness. [45]. It is the process where the ICA

algorithm will be computed many times; at each instance

different mixing matrices will be estimated. A1,A2, ...,An.

Since it is an iterative technique with inbuilt quantisation,

repeat analysis yields similarity matrices at some stage.

Hence mixing matrices A1,A2 etc, will repeat after certain

iterations. To estimate the sources from the mixed data ICA

requires just one mixing matrix, the best unmixing matrix

would give clear source separation, hence the selection of

the best matrix is the key criterion in multi run ICA. There

exists several methods to compute the quality of the mixing

matrices, they are

– Signal to Noise Ratio (SNR)

– Signal to Interference Ratio (SIR)

– Signal to Distortion Ratio (SDR) and

– Signal to Artefacts Ratio (SAR)

In bio signal and audio applications, SIR has found to be

a popular tool to measure the quality separation. Once the
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best unmixing matrix is estimated, then any normal ICA

method can be used for source separation. The multi run

ICA computational process flow chart is shown in Figure

12.

5 Applications of ICA

The success of ICA in source separation has resulted in a

number of practical applications. These includes,

– Machine fault detection [46, 47, 48, 49]

– Seismic monitoring [50, 51]

– Reflection canceling [52, 53]

– Finding hidden factors in financial data [54, 55, 56]

– Text document analysis [4, 5, 6]

– Radio communications [57, 58]

– Audio signal processing [20, 13]

– Image processing [13, 14, 59, 60, 61, 62, 63]

– Data mining [64]

– Time series forecasting [65]

– Defect detection in patterned display surfaces [66, ?]

– Bio medical signal processing [7, 67, 8, 9, 10, 11, 12,

68, 69].

Some of the major applications are explained in detail next:

5.1 Biomedical Applications of ICA

Exemplary ICA applications in biomedical problems in-

clude the following:

– Fetal Electrocardiogram extraction, i.e removing/fil-

tering maternal electrocardiogram signals and noise

from fetal electrocardiogram signals [70, 71].

– Enhancement of low level Electrocardiogram compo-

nents [70, 71]

– Separation of transplanted heart signals from residual

original heart signals [72]

– Separation of low level myoelectric muscle activities

to identify various gestures [73, 74, 75, 76]

One successful and promising application domain of

blind signal processing includes those biomedical signals

acquired using multi-electrode devices: Electrocardiogra-

phy (ECG), [77, 70, 72, 71, 78, 79, 69], Electroencephalog-

raphy (EEG)[70, 71, 72, 80, 81, 82], Magnetoencephalog-

raphy (MEG) [83, 84, 85, 86, 80, 87] and sEMG. Surface

EMG is an indicator of muscle activity and related to body

movement and posture. It has major applications in biosig-

nal processing, next section explains sEMG and its appli-

cations.

5.2 Telecommunications

Telecommunication is one of the emerging application with

respect to ICA, it has major application in code Division

Multiple Access (CDMA) mobile communications. This

problem is semi-blind, in the sense that certain additional

prior information is available on the CDMA data model

[88]. But the number of parameters to be estimated is often

so high that suitable BSS, techniques taking into account

the available prior knowledge, provide a clear performance

improvement over more traditional estimation techniques.

5.3 Feature extraction

ICA is successfully applied for face recognition and lip

reading. The goal in the face recognition is to train a sys-

tem that can recognise and classify familiar faces, given

a different image of the trained face. The test images may

show the faces in a different pose or under different lighting

conditions. Traditional methods for face recognition have

employed PCA-like methods. Barlett and Sejnowski com-

pare the face recognition performance of PCA and ICA for

two different tasks:

1. different pose and

2. different lighting conditions

they show that for both the tasks, ICA outperforms PCA.

5.4 Sensor Signal Processing

A sensor network is a very recent, widely applicable and

challenging field of research. As the size and cost of sen-

sors decrease, sensor networks are increasingly becoming

an attractive method to collect information in a given area.

Multi-sensor data often presents complimentary informa-

tion about the region surveyed and data fusion provides an

effective method to enable comparison, interpretation and

analysis of such data. Image and video fusion is a sub area

of the more general topic of data fusion, dealing with image

and video data. Cvejic et al [89] have applied the ICA for

improving the fusion of multimodal surveillance images in

sensor networks. ICA is also used for robust speech recog-

nition using various sensor combinations

5.5 Audio signal processing

One of the most practical uses for BSS is in the audio

world. It has been used for noise removal without the need

of filters or Fourier transforms, which leads to simpler pro-

cessing methods. There are various problems associated

with noise removal in this way, but these can most likely

be attributed to the relative infancy of the BSS field and

such limitations will be reduced as research increases in

this field [90, 25].

Audio source separation is the problem of automated

separation of audio sources present in a room, using a set

of differently placed microphones, capturing the auditory
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scene. The whole problem resembles the task a human

listener can solve in a cocktail party situation, where us-

ing two sensors (ears), the brain can focus on a specific

source of interest, suppressing all other sources present

(also known as cocktail party problem) [20, 25].

5.6 Image Processing

Recently, Independent Component Analysis (ICA) has

been proposed as a generic statistical model for images

[90, 59, 60, 61, 62, 63]. It is aimed at capturing the sta-

tistical structure in images that is beyond second order in-

formation, by exploiting higher-order statistical structure

in data. ICA finds a linear non orthogonal coordinate sys-

tem in multivariate data determined by second- and higher-

order statistics. The goal of ICA is to linearly transform the

data such that the transformed variables are as statistically

independent from each other as possible. ICA generalizes

PCA and, like PCA, has proven a useful tool for finding

structure in data. Bell and Sejnowski proposed a method

to extract features from natural scenes by assuming linear

image synthesis model [90]. In their model, a set of digi-

tized natural images were used. they considered each patch

of an image as a linear combination of several underlying

basic functions. Later Lee et al [91] proposed an image

processing algorithm, which estimates the data density in

each class by using parametric nonlinear functions that fit

to the non-Gaussian structure of the data. They showed

a significant improvement in classification accuracy over

standard Gaussian mixture models. Recently Antoniol et

al [92] demonstrated that the ICA model can be a suitable

tool for learning a vector base for feature extraction to de-

sign a feature based data dependent approach that can be

efficiently adopted for image change detection. In addi-

tion ICA features are localized and oriented and sensitive

to lines and edges of varying thickness of images. Further-

more the sparsity of ICA coefficients should be pointed out.

It is expected that suitable soft-thresholding on the ICA

coefficients leads to efficient reduction of Gaussian noise

[60, 62, 63].

6 Conclusions

This paper has introduced the fundamentals of BSS and

ICA. The mathematical framework of the source mixing

problem that BSS/ICA addresses was examined in some

detail, as was the general approach to solving BSS/ICA.

As part of this discussion, some inherent ambiguities of

the BSS/ICA framework were examined as well as the

two important preprocessing steps of centering and whiten-

ing. Specific details of the approach to solving the mixing

problem were presented and two important ICA algorithms

were discussed in detail. Finally, the application domains

of this novel technique are presented. Some of the futuristic

works on ICA techniques, which need further investigation

are discussed. The material covered in this paper is impor-

tant not only to understand the algorithms used to perform

BSS/ICA, but it also provides the necessary background to

understand extensions to the framework of ICA for future

researchers.
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