
/

1 1

F. Arbab, I. Herman, P. Spilling

An overview of Manifold and its implementation

Computer Science/Department of Interactive Systems Report CS-R9142 September

, nationaal instituut vaor onaerzoeK o~ net ~eoiea van wisKunae en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11 , 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

/

Copyright© Stichting Mathematisch Centrum, Amsterdam

An Overview of Manifold and its Implementation

F. Arbab, I. Herman, P. Spilling

CWI

Department of Interactive Systems

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Tel.: +31-20-592.4058, +31-20-592.4163, +31-20-592.4164

Fax.: +31-20-592.4199

Email: farhad@cwi.nl, ivan@cwi.nl, per@cwi.nl

SUMMARY

Management of the communications among a set of concurrent processes arises in many applications

and is a central concern in parallel computing. In this paper we introduce MANIFOLD: a language whose

sole purpose is to describe and manage complex interconnections among independent, concurrent pro

cesses. In the underlying paradigm of this language the primary concern is not with what functionality

the individual processes in a parallel system provide. Instead, the emphasis is on how these processes

are inter-connected and how their interaction patterns change during the execution life of the system.

This paper also includes an overview of our implementation of MANIFOLD.

As an example of the application of MANIFOLD, we describe a simple window system and show how the

communications between clients running on different windows and a window server can be described

in this language.

1980 Math. Subject Classification: 68N15, 68005, 68U30.

1987 CR Categories: C.1.2, C.1.3, C.2.m, D.1.3, D.3.2, F.1.2, I.1.3.

Keywords and Phrases: Parallel computing, MIMD, Models of computation.

1 Introduction

Specification and management of the communications among a set of concurrent processes is at the core of many

problems of interest to a number of contemporary research trends. Although communications issues come up in

virtually every type of computing, and have influenced the design (or at least, a few constructs) of most programming

languages, not much effort has been spent on conceptual models and languages whose sole prime focus of attention

is on process interaction. Notable exceptions include the theory of neural networks, the theory of Communicating

Sequential Processes and, to some extent, the concept of datafl.ow programming.

MANIFOLD is a language whose sole purpose is to manage complex interconnections among independent,

concurrent processes. The details of the MANIFOLD model and the syntax and semantics of the MANIFOLD language

are, of course, beyond the scope of this paper and are described in a separate document [1]. In this paper, we give

an overview of the MANIFOLD language and its implementation and present the skeleton of a window management

system as an example of its application. We summarize only enough of the description of the MANIFOLD model and

the language here to make the example and the significant implementation issues presented herein understandable.

The rest of this paper is organized as follows. In §2 the main motivations behind the language and its underlying

computing model are discussed. In §3 a more detailed description of the language is presented. In §4 we mention

some of the application areas where MANIFOLD can prove to be a useful tool. In §5, we discuss the major issues in our

implementation of MANIFOLD and sketch our solution approach. Our implementation scheme is based on the notion

of an abstract machine that makes no assumptions about the actual architecture of the underlying parallel system.

However, the material in §5 goes beyond this abstract machine model, and we explain the highlights of our real

Report CS-R9142
ISSN 0169-11 SX
CW1
P.O. Box 4079, 1009 AB Amst®rdam, The N@therlands

implementation (which makes a liberal use of shared memory) as well. In §6, we mention some of the similarities

and major differences between MANIFOLD and certain related systems and models for parallel computing. In §7,

we present a somewhat elaborate example of a window system in MANIFOLD. The purpose of this example is to

illustrate the use of some of the features in the MANIFOLD language and to demonstrate the general applicability of

MANIFOLD concepts. In §8 we mention some of the extensions and enhancements we plan to make to the MANIFOLD

system in the future. Finally, §9 concludes this paper.

2 Motivation

One of the fundamental problems in parallel programming is coordination and control of the communications among

the sequential fragments that comprise a parallel program. Programming of parallel systems is often considerably

more difficult than (what intuitively seems to be) necessary. It is widely acknowledged that a major obstacle to

a more widespread use of massive parallelism is the lack of a coherent model of how parallel systems must be

organized and programmed. To complicate the situation, there is an important pragmatic concern with significant

theoretical consequences on models of computation for parallel systems. Many user communities are unwilling

and/or cannot afford to ignore their previous investment in existing algorithms and "off-the-shelf" software and

migrate to a new and bar'?nvironment. This implies that a suitable model for parallel systems must be open in the

sense that it can accommodate components that have been developed with little or no regards for their inclusion in

an environment where they must interact and cooperate with other modules.

Many approaches to parallel programming are based on the same computation models as sequential pro

gramming, with added on features to deal with communications and control. This is the case for such concurrent

programming languages like Ada [2, 3], Concurrent C [4, 5], Concurrent C++ [6], Occam [7, 8] and many others

(the interested reader may c011sult e.g., the survey of Bal et al. [9] for more details on these languages).

There is an inherent contradiction in such approaches which shows up in the form of complex semantics for

these added on features. The fundamental assumption in sequential programming is that there is only one active

entity, the processor, and the executing program is in control of this entity, and thus in charge of the application

environment. In parallel programming, there are many active entities and a sequential fragment in a parallel

application cannot, in general, make the convenient assumption that it can rely on its incrementally updated model

of its environment.

To reconcile the "disorderly" dynamism of its environment with the orderly progression of a sequential

fragment, "quite a lot of things" need to happen at the explicit points in a sequential fragment when it uses one of

the constructs to interact with its environment. Hiding all that needs to happen at such points in a few communication

constructs within an essentially sequential language, makes their semantics extremely complex. Inter-mixing the

neat consecutive progression of a sequential fragment, focused on a specific function, with updating of its model

of its environment and explicit communications with other such fragments, makes the dynamic behavior of the

components of a parallel application program written in such languages difficult to understand. This may be

tolerable in applications that involve only small scale parallelism, but becomes an extremely difficult problem with

massive parallelism.

Contrary to languages that try to hide as much of the "chaos of parallelism" as possible behind a facade

of sequential programming, MANIFOLD is based on the idea that allowing programmers to see and feel it is

actually beneficial. It is a formidable intellectual experience to realize that if one frees oneself from the confines

of the sequential paradigm and accepts that logical processes are "cheap" (that is, they are fast to activate and to

communicate with), then a number of practical problems and applications can be described and solved incomparably

more easily and more elegantly. In other words, there often is a pay-off in using parallel or distributed programming,

even if higher speeds are not (necessarily) achieved. Just as a practical example, the basic approach of using multi

processing is very clearly one of the reasons for the undeniable technical superiority of the NeWS windowing

system over X Windows [10]; also, almost all the applications listed in §4 fall in this category.

The assumption of having cheap logical processes is not only in line with the direction of future hardware

development, it is also compatible with the current trend in the evolution of contemporary software systems. The

2

increasingly more frequent use of so-called "light-weight" processes within conventional operating systems1 is a

clear indication (see, for example, the Brown University Thread Package [11], the so-called µSystem [12], or even

the way some of the above cited languages, e.g., AJ' &T's Concurrent C, are implemented). More recent operating

system designs offer light-weight processes in their kernels (e.g., OSF/1, based on the Mach system [13, 14) of

Carnegie Mellon, or SunOS [15]).

Separating communication issues from the functionality of the component modules in a parallel system makes

them more independent of their context, and thus more reusable. It also allows delaying decisions about the

interconnection patterns of these modules, which may be changed subject to a different set of concerns. This idea

is one of the main motivations behind the development of the MANIFOLD system.

There are even stronger reasons in distributed programming for delaying the decision about the interconnections

and the communication patterns of modules. Some of the basic problems with the parallelism in parallel computing

become more acute in real distributed computing, due to the distribution of the application modules over loosely

coupled processors, perhaps running under quite different environments in geographically different locations.

The implied communications delays and the heterogeneity of the computational environment encompassing an

application become more significant concerns than in other types of parallel programming. This mandates, among

other things, more flexibil~, reusability, and robustness of modules with fewer hard-wired assumptions about their

environment.

The tangible payoffs reaped from separating the communications aspect of a multi process application from

the functionality of its individual processes include clarity, efficiency, and reusability of modules and the com

munications specifications. This separation makes the communications control of the cooperating processes in an

application more explicit, clear, and understandable at a higher level of abstraction. It also encourages individual

processes to make less severe assumptions about their environment. The same communications control component

can be used with various processes that perform functions similar to each other from a very high level of abstraction.

Likewise, the same processes can be used with quite different communications control components.

3 The Manifold Language

In this section we give a brief and informal overview of the MANIFOLD language. The sole purpose of the MANIFOLD

language is to describe and manage complex communications and interconnections among independent, concurrent

processes. As stated earlier, a detailed description of the syntax and the semantics of the MANIFOLD language and its

underlying model is given elsewhere [1]. Other reports contain more examples of the use of the MANIFOLD language

[16, 17).

The basic components in the MANIFOLD model of computation are processes, events, ports, and streams. A

process is a black box with well defined ports of connection through which it exchanges units of information with

the other processes in its environment. The internal operation of some of these black boxes are indeed written in

the MANIFow language, which makes it possible to open them up, and describe their internal behavior using the

MANIFOLD model. These processes are called manifolds. Other processes may in reality be pieces of hardware,

programs written in other programming languages, or human beings. These processes are called atomic processes

in MANIFOLD. In fact, an atomic process is any processing element whose external behavior is all that one is

interested to observe at a given level of abstraction. In general, a process in MANIFOLD does not, and need not, know

the identity of the processes with which it exchanges information. Figure 1 shows an abstract representation of a

MANIFOLD process.

Ports are regulated openings at the boundaries of processes through which they exchange units of information.

The MANIFOLD language allows assigning special filters to ports for screening and rebundling of the units of

information exchanged through them. These filters are defined in a language of extended regular expressions.

Interconnections between the ports of processes are made with streams. A stream represents a flow of a

sequence of units between two ports. Conceptually, the capacity of a stream is infinite. Streams are constructed

1Some authors prefer the term "pseudo-parallelism" for such or similar forms of parallelism, see again Bal et al [9].

3

Received Events

Output Ports

Incoming Streams
Manifold

Outgoing Streams

/
Raised Events

Figure 1. The model of a process in Manifold

and removed dynamically between ports of the processes that are to exchange some information. The constructor
of a stream (which is a manifold) need not be the sender nor the receiver of the information to be exchanged:
any third party manifold process can define a connection between the ports of a producer process and a consumer
process. Furthermore, stream definitions in MANIFOLD are generally additive. Thus a port can simultaneously be
connected to many different ports through different streams (see for example the network in Figure 3). The flows
of units of information in streams are automatically replicated and merged at outgoing and incoming port junctions,
as necessary. The units of information exchanged through ports and streams, are passive pieces of information that
are produced and consumed at the two ends of a stream with their relative order preserved. The consumption and
production of units via ports by a process is analogous to read and write operations in conventional programming
languages.

Independent of the stream mechanism, there is an event mechanism for information exchange in MANIFOLD.
Contrary to units in streams, events.are atomic pieces of information that are broadcast by their sources in their
environment. In principle, any process in an environment can pick up such a broadcast event. In practice,
usually only a few processes pick up occurrences. of each event, because only they are "tuned in" to their sources.
Occurrences of the same event from the same source can override each other from the point of view of some observer
processes, depending on the difference between the speed of the source and the reaction time of an observer. This
provides an automatic sampling mechanism for observer processes to pick up information from their environment
which is particularly useful in situations where a potentially significant mismatch between the speeds of a producer
and a consumer is possible. Events are the primary control mechanism in MANIFOLD.

Once an event is raised by a source, it generally continues with its processing, while the event occurrence
propagates through the environment independently. Event occurrences are active pieces of information in the sense
that in general, they are observed asynchronously and once picked up, they preemptively cause a change of state in
the observer. Communication of processes through events is thus inherently asynchronous in MANIFOLD.

Each manifold defines a set of events and their sources whose occurrences it is interested to observe; they
are called the observable set of events and sources, respectively. It is only the occurrences of observable events
from observable sources that are picked up by a manifold. Once an event occurrence is picked up by an observer
manifold, it may or may not cause an immediate reaction by the observer. In general, each state in a manifold

4

defines the set of events (and their sources) that are to cause an immediate reaction by the manifold while it is

in that state. This set is called the preemption set of a manifold state and is a subset of the observable events set

of the manifold. Occurrences of all other observable events are saved so that they may be dealt with later, in an

appropriate state.

Each state in a manifold defines a pattern of connections among the ports of some processes. The corresponding

streams implementing these connections are created as soon as a manifold makes a state transition (caused by an

event) to a new state, and are deleted as soon as it makes a transition from this state to another one. This is discussed

in more detail in §3.2.

3.1 Manifold Definition

A manifold definition consists of a header, public declarations, and a body. The header of a manifold definition

contains its name and the list of its formal parameters. The public declarations of a manifold are the statements that

define its links to its environment. It gives the types of its formal parameters and the names of events and ports

through which it communicates with other processes. A manifold body primarily consists of a number of event
handler blocks, representing its different execution-time states. The body of a manifold may also contain additional

declarative statements, d~ning private entities. For an example of a manifold, see Figure 2 which shows the

MANIFOLD source code for a not-particularly-interesting program. 2 Declarative statements may also appear outside

of all manifold definitions, typically at the beginning of a source file. These declarations define global entities

which are accessible to all manifolds in the same file, provided that they do not redefine them in their own scopes.

Conceptually, each activated instance of a manifold definition - a manifold for short - is an independent

process with its own virtual processor. A manifold processor is capable of performing a limited set of actions. This

includes a set of primitive acti~ns, plus the primary action of setting up pipelines.

Each event handler block describes a set of actions in the form of a group construct. The actions specified in

a group are executed in some non-deterministic order. Usually, these actions lead to setting up pipelines between

various ports of different processes. A group is a comma-separated list of members enclosed in a pair of parentheses.

In the degenerate case of a singleton group (which contains only one member) the parentheses may be deleted.

Members of a group are either primitive actions, pipelines, or groups. The setting up of pipelines within a group is

simultaneous and atomic. No units flow through any of the streams inside a group before all of its pipelines are set

up. Once set up, all pipelines in a group operate in parallel with each other.

A primitive action is typically activating or deactivating a process, raising an event, or a do action which

causes a transition to another handler block without an event occurrence from outside. A pipeline is an expression

defining a tandem of streams, represented as a sequence of one or more groups, processes, or ports, separated by

right arrows. It defines a set of simultaneous connections among the ports of the specified groups and processes.

If the initial (final) name in such a sequence is omitted, the initial (final) connection is made to the current input

(output) port. Inside a group, the current input and output ports are the input and output ports of the group.

Elsewhere, the current input and output ports are input and output, i.e., the executing manifold's standard

input and output ports. As an example, Figure 3 shows the connections set up by the manifold process example
in Figure 2, while it is in the handling block for the event e 1 (for the details of event handling see §3.2). Figure 4

shows the connections set up in the handling block for the event e2.

In its degenerate form, a pipeline consists of the name of a single port or process. Defining no useful

connections, this degenerate form is nevertheless sometimes useful in event handler blocks because it has the effect

of defining the named port or process as an observable source of events and a member of the preemption set of its

containing block (see §3.4).

An event handler block may also describe sequential execution of a series of (sets of) actions, by specifying a

list of pipelines and groups, separated by the semicolon (;) operator3. In reaction to a recognized event, a manifold

2In this and other MANIFOLD program listings in this paper, the characters"/ I" denote the beginning of a comment which continues
up to the end of the line. Keywords are typeset in bold

3In fact, the semicolon operator is only an infix manner call (see §3.5) rather than an independent concept in MANIFOLD. However,

5

11 This is the header (there are no arguments):

example()
11 These are the public declarations:
11 Two ports are visible from the outside of the manifold "example";

11 one is an input port and the other is an output one.

11 In fact, these ports are the default ones.

{

port in input.
port out output.

11 The body of tpe manifold begins here.

II
11 private declarations:
11 three process instances are defined:

process A is A_type.
process B is B_type.
process c is c_type.

11 First block (activated when ''example" becomes active)

11 The processes described above are activated on their tum

11 in a "group" construct:
start: (activate A, activate B, activate C);

do begin.

11 A direct transfer to this block has been given from "start".

11 Three pipelines in a group are set up:
begin: (A -+ B,output -+ C,input -+ output).

11 Event handler for the event ''el "; several pipelines are

11 set up (see Figure 3):
el: (B -+ input,C -+ A,A -+ B,

output -+ A, B -+ c, input -+ output) •

11 Event handler for the event "e2"; a single pipeline

11 is set up (see Figure 4):
e2: C -+ B.

}

Figure 2. An example for a manifold process

6

c

A

/
B

example

Figure 3. Connections set up by the manifold example on event el

c

CJ
B

Figure 4. Connections set up by the manifold example on event e2

7

processor finds its appropriate event handler block and executes the list of sequential sets of actions specified
therein. Once the manifold processor is through with the sequence in its current block, it terminates.

3.2 Event Handling

Event handling in MANIFOLD refers to a preernptive change of state in a manifold that observes an event of interest.
This is done by its manifold processor which locates a proper event handler for the observed event occurrence. An
event handler is a labeled block of actions in a manifold. In addition to the event handling blocks explicitly defined
in a manifold, a number of default handlers are also included by the MANIFOLD compiler in all manifolds to deal
with a set of predefined system events. The manifold processor makes a transition to an appropriate block (which is
determined by its current state, the observed event and its source), and starts executing the actions specified in that
block. The block is said to capture the observed event (occurrence). The name of the event that causes a transfer
to a handling block, and the name of its source, are available in each block through the pseudonyms event..name
and event-source, respectively.

The manifold processor finds the appropriate handler block for an observed event e raised by the source s, by
performing a circular se~h in the list of block labels of the manifold. The list of block labels contains the labels
of all blocks in a manifold in the sequential order of their appearance. The circular search starts with the labels of
the current block in the list, scans to the end of the list, continues from the top of the list, and ends with the labels
of the block preceding the current block in the list.

The manifold processor in a given manifold is sensitive to (i.e., interested in) only those events for which the
manifold has a handler. All other events are to be ignored. Thus, events that do not match any label in this search do
not affect the manifold in any way (however, see §3.5 for the case of called manners). Similarly, if the appropriate
block found for an event is the keyword ignore, the observed event is ignored. Normally, events handled by the
current block are also ignored.

The concept of an event in MANIFOLD is different than the concepts with the same name in most other systems,
notably simulation languages, or CSP [18, 19]. Occurrence of an event in MANIFOLD is analogous to a flag that is
raised by its source (process or port), irrespective of any communication links among processes. The source of
an event continues immediately after it raises its flag, independent of any potential observers. This raised flag can
potentially be seen by any process in the environment of its source. Indeed, it can be seen by any process to which
the source of the event is visible. However, there are no guarantees that a raised flag will be observed by anyone,
or that if observed, it will make the observer react immediately.

3.3 Event Handling Blocks

An event handling block consists of a comma-separated list of one or more block labels followed by a colon (:)
and a single body. The body of an event handling block is either a group member (i.e., an action, a pipeline, or a
group), or a single manner call. If the body of a block is a pipeline, and it starts (ends) with a-->, the port name
input (respectively, output) is prepended (appended) to the pipeline.

Event handler block labels are patterns designating the set of events captured by their blocks. Blocks can have
multiple labels and the same label may appear more than once marking different blocks. Block labels are filters for
the events that a manifold will react to. The filtering is done based on the event names and their sources. Event
sources in MANIFOLD are either ports or processes.

The most specific form of a block label is a dotted pair e.s, designating event e from the source (port or process)
s. The wild-card character * can be replaced for either e, ors, or both, in a block label. The form e is a short-hand
for e.* and captures event e coming from any source. The form *.s captures any event from sources. Finally, the
least specific block label is *.*(or*, for short) which captures any event corning from any source.

for our purposes, we can assume it to be the equivalent of the sequential composition operator of a language like Pascal.

8

3.4 Visibility of Event Sm.11rces

Every process instance or port defined or used anywhere in a manner or manifold is an observable source of events

for that manner or manifold. This simply means that occurrences of events raised by such sources (only) will be

picked up by the executing manifold processor, provided that there is a handling block for them. The set of all

events from observable sources that match any of the block labels in a manner or manifold is the set of observable

events for that manner or manifold. The set of observable events of an executing manifold instance may expand

and shrink dynamically due to manner calls and terminations (see §3.5). Depending on the state of a manifold

processor (i.e., its current block), occurrences of observable events cause one of two possible actions: preemption

of the current block, or saving of the event occurrence.

In each block, a manifold processor can react to only those events that are in the preemption set of that block.

The MANIFOLD language defines the preernption set of a block to contain only those observable events whose sources

appear in that block. This means that, while the manifold processor is in a block, except for the manifold itself, no

process or port other than the ones named in that block can be the source of events to which it reacts immediately.

There are other rules for the visibility of parameters and the operands of certain primitive actions. It is also possible

to define certain processe8 as permanent sources of events that are visible in all blocks. A manifold can always

internally raise an event that is visible only to itself via the do primitive action.

Once the manifold processor enters a block, it is immune to any of the events handled by that block, except if

the event is raised by a do action in the block itself. This temporary immunity remains in effect until the manifold

processor leaves the block. Other observable event occurrences that are not in the preemption set of the current

block are saved.

3.5 Manners

The state of a manifold is defined in terms of the events it is sensitive to, its visible event sources, and the way in

which it reacts to an observed event. The possible states of a manifold are defined in its blocks, which collectively

define its behavior. It is often helpful to abstract and parameterize some specific behavior of a manifold in a

subroutine-like module, so that it can be invoked in different places within the same or different manifolds. Such

modules are called manners in MANIFOLD.

A manner is a construct that is syntactically and semantically very similar to a manifold. Syntactically, the

differences between a manner definition and a manifold definition are:

1. The keyword manner appears in the header of a manner definition, before its name.

2. Manner definitions cannot have their own port definitions.

Semantically, there are two major differences between a manner and a manifold. First, manners have no ports

of their own and therefore cannot be connected to streams. Second, a manner invocation never creates a new

processor. A manifold activation always creates a new processor to "execute" the new instance of the manifold.

To invoke a manner, however, the invoking processor itself "enters and executes" the manner.

The distinction between manners and manifolds is similar to the distinction between procedures and tasks

(or processes) in other distributed programming languages. The term manner is indicative of the fact that by its

invocation, a manifold processor changes its own context in such a way as to behave in a different manner in

response to events.

Manner invocations are dynamically nested. References to all non-local names in a manner are left unresolved

until its invocation time. Such references are resolved by following the dynamic chain of manner invocations in a

last-in-first-out order, terminating with the environment of the manifold to which the executing processor belongs.

Upon invocation of a manner, the set of observable events of the executing manifold instance expands to the

union of its previous value and the set of observable events of the invoked manner. The new members thus added

to this set, if any, are deleted from the set upon termination of the invoked manner.

9

A manner invocation can either terminate normally or it can be preempted. Normal termination of a manner

invocation occurs when a return primitive action is executed inside the manner. This returns the control back to the

calling environment right after the manner call (this is analogous to returning from a subroutine call in conventional

programming languages). Preemption occurs when a handling block for a recognized event occurrence cannot be

found inside the actual manner body. This initiates a search through the dynamic chain of activations similar to the

case of resolving references to non-local names, to find a handler for this event. If no such handler is found, the

event occurrence is ignored. If a suitable handler is found, the control returns to its enclosing environment and all

manner invocations in between are abandoned.

4 Applications

The MANIFOLD language has already been used to describe some simple examples, like a parallel bucket sort

algorithm, a simplified version of a (graphics) resource management and the like. The interested reader is referred

to the reports published elsewhere [16, 17]. These examples were primarily meant to test the MANIForn concepts

themselves. In this section we mention some of the possible application areas for MANIFOLD in large-scale and
non-trivial parallel syste)Ils.

MANIFOLD is an effective tool for describing interactions of autonomous active agents that communicate

in an environment through address-less messages and global broadcast of events. For example, elaborate user
interface design means planning the cooperation of different entities (the human operator being one of them)

where the event driven paradigm seems particularly useful. In our view, the central issue in a user interface is
the design and implementation of the communication patterns among a set of modules4 . Some of these modules
are generic (application independent) programs for acquisition and presentation of information expressed in forms

appealing to humans. Others are, ideally, acquisition/presentation-independent modules that implement various
functional components of a specific application. Previous experience with User Interface Management Systems

(see, e.g., [20, 21]) has shown that concurrency, event driven control mechanisms, and general interconnection

networks are all necessary for effective graphical user interface systems. MANIFOLD supports all of that and, in
addition, provides a level of dynamism that goes beyond many other user interface design tools. As an example, it

has recently been used to successfully reformulate the GKS5 input model [22]; this work is regarded as a starting

point in the development of new concepts for highly flexible, reconfigurable graphics systems suitable for parallel

environments.

Separating the specification of the dynamically changing communication patterns among a set of concurrent

modules from the modules themselves, seems to lead to better user interface architectures. A similar approach

can also be useful in applications of real time computing where dynamic change of interconnection patterns (e.g.,

between measurement and monitoring devices and actuators) is crucial. For example, complex process control
systems must orchestrate the cooperation of various programs, digital and/or analogue hardware, electronic sensors,

human operators, etc. Such interactions may be more easily expressed and managed in MANIFOLD.

Coordination of the interactions among a· set of cooperating autonomous intelligent experts is also rele

vant in Distributed Artificial Intelligence applications, open systems such as Computer Integrated Manufacturing

applications, and the complex control components of systems such as Intelligent Computer Aided Design.

Recently, scientific visualization has raised similar issues as well. The problems here typically involve a

combination of massive numerical calculations (sometimes performed on supercomputers) and very advanced

graphics. Such functionality can best be achieved through a distributed approach, using segregated software and

hardware tools. Tool sets like the Utah Raster Toolkit [23] are already a first step in this direction, although
in the case of this toolkit the individual processes can be connected in a pipeline fashion only. More recently,

software systems like the apE system of the Ohio Supercomputer Center [24], the commercially available AVS

Visualization Package of Stardent Computer Ltd. [25], and others, work on the basis of inter-connecting a whole

4In fact, given the previous experiences of the authors, the problems arising in user-interface techniques provided some of the basic
motivation to start this project in the first place.

5Graphical Kernel System is the ISO Standard for Computer Graphics.

10

set of different software/hardware components in a more sophisticated communication network. The successes of

these packages, and mainly the general ideas behind them, point toward a more general development trend which

leads to reconsideration of the software architecture used for graphics packages in general.

For the emerging new technologies and application areas that are expected to result in a tremendous growth in

computer graphics in the nineties, a new software base is necessary to accommodate demands for high performance

special hardware, dedicated application systems, distributed and parallel computing, scientific visualization, object

oriented methods and multi-media, to name just a few. Some of the major technical concerns in the specification

and the development of new graphics systems is extensibility and reconfigurability. To ensure these features it is

feasible to envisage a highly parallel architecture which is based on the concept of cooperating, specialized agents

with well defined but reconfigurable communication patterns. An "orchestrator" like MANIFOLD can prove to be

quite valuable in such applications.

5 Implementation

When we began the implementation of the MANIFOLD system, we actually had two goals in mind. Quite naturally, we

wanted to have a running experimental system which would serve as a basis for further applications, measurement,

and evaluation; it is only thi'ough using such a system that one can really evaluate the usefulness and user-friendliness

of such a language.

Our other, and not less important, goal was to have an existence proof of the feasibility of the computational

model underlying the MANIFOLD language, as well as the language itself. It is of course true that the development

of formal semantics for the MANIFOLD language is necessary (and this work is under way) but pragmatically, this

would not be enough. Had the implementation effort raised serious fundamental issues or other kinds of difficulties,

it would have shown that tnere was something erroneous or at least impractical in the specification of either the

computing model or the language (or both).

This second goal had the practical consequence that we tried to find an implementation scheme that reflects

the computational model directly, as far as possible. For instance, we ruled out any implementation scheme that

involved some central management of the running manifolds and streams in favor of genuinely distributed schemes

where each manifold is mapped directly onto a real process. (Of course, any actual implementation environment

imposes some kind of central administration at the level of parallel hardware and/or the software supporting the

concurrent processes. However, this is true in general and one should forget about it at a higher level of abstraction.)

In what follows, we give an overview of our implementation scheme without going too deeply into its

environment dependent details. The interesting aspect of this description is that it gives general guidelines for how

the MANIFOLD system can be implemented, provided that a support environment for some sort of cheap processes is

available. It is only in §5.2 that we describe how the mapping of these general ideas onto a "real" implementation

is done in our present experimental system.

!U The Manifold Stack Machine

The implementation model of the MANIFOLD system is centered around an abstract machine which we call the

Manifold Stack Machine (MSM for short). This is a stack machine with a low-level instruction set. Although we

do not define the exact low-level instruction set of MSM, we define a macro-assembly level instruction set which

we use in our implementation.

An MSM contains the following components (see also Figure 5).

1. A Manifold Processor (MP)

As its name suggests, this is the active entity within an MSM. Logically speaking, M.P also contains a memory

area which stores the instructions for the processor; this is not shown in the picture, and we do not deal with

this detail in what follows. The only feature we make use of in this paper is that the processor can somehow

be programmed.

11

Local Symbols
Preemption List

State Table

Symbol Table

.
p.~

.
~ .

Stack Frames

Manifold Processor

D D
D Port Tables O

~ Event Table

Public Data

Visibility List

OWn Pr. Reference

Administrative

Data

Private Data

Figure 5. The Manifold Stack Machine (MSM)

2. A Public Data Area (P lD)

This is a protected mep10ry segment which can also be accessed by other processes. By "protected'' we
mean that a defense mechanism is provided to avoid concurrent access. Precisely how this is done is a matter
of the underlying system environment. The PlD can be a shared memory area with some kind of mutual
exclusion mechanism, or it can be yet another logical process to which transactions are sent. In what follows,
we simply assume that a mechanism of abstract operations can be defined through which secured access and
manipulation of the data contained in P lD is possible.

A P lD contains the description of all the ports assigned to a given manifold instance as well as tables for
all events it is sensitive to (these sub-units are depicted by small rectangles in all figures). Ports within
the P lDs are separate structures; there is a separate instance of such a structure for each port defined in its
corresponding manifold. Each such structure contains input and output queues for holding units as well as a
table containing the process and port references for all other MSMs this port is connected to by a stream.

3. APrivateDataArea (PrD)

This is a plain memory segment which can be accessed by the MP only.

4. A Stack holding Stack Frames (SF)

A stack frame holds all the data necessary to define the state of a manifold process. It defines all the events
it is sensitive to, its visible event sources and the way in which it reacts to their occurrences. The top-most
frame on the stack corresponds to the actual current state of a manifold process. Calling a manner results
in pushing a new stack frame onto the stack and leaving a manner (preemptively, or due to normal return)
results in popping its stack frame. This data segment is also private, in the sense that no other MSM can
access its contents.

The main processing performed by an MSM consists of:

1. creation and initialization of all general lists on the stack, the private and the public memory areas;

2. setting up and/or deleting process reference lists for port and event structures;

3. performing unit transmission;

12

4. reacting on events and performing transitions to other blocks, if necessary;

5. performing primitive actions;

6. handling manner calls and terminations.

More details on these actions appear in the following sections. What is essential to note here is that the

macro-assembly-level instructions defined for the MSM cover these and only these tasks. A fairly traditional

compiler can then compile a MANIFOLD program with this macro-assembly as a target language. Although the

precise description of these instructions is beyond the scope of this paper, it is worth mentioning that the major and

the most complicated part of implementing these instructions concerns proper handling of different lists. In this

sense, an MSM is not much more complex than, e.g., an abstract machine for Lisp.

One of the main activities of an MSM is transport of units. The MP of a manifold process must scan all of its

port tables and send the units it has received in each port to every port it is currently connected to. The other main

activity of an MSM is to react on event occurrences it receives. The basic operation scheme of an MSM consists of

a cycle of suspension (as long as there are no units to transport and no event occurrences to react to), followed by

event handling (if an int~sting event occurrence has been received), or transport of the received units.

Once created, an MSM first initializes itself and then suspends itself waiting for an event occurrence, or for

the arrival of a unit on any one of its ports. Once active, it first checks to see if there are any event occurrences to

handle. If so, it selects and handles one of the pending event occurrences at this point in some non-deterministic

order.

Handling an event occurrence results in either (a) ignoring the event occurrence, (b) saving the event occurrence

so it can be considered aftef a transition is made to some other appropriate block, or (c) making a transition to a

new block to handle the event occurrence. The deciding factors are the MSM's preemption list for the current block

and the specification of the target handling blocks for each event occurrence.

Making a transition to a new block involves dismantling all streams that the executing MSM has set up in the

present block, updating its various state lists to correspond to the new block, and performing all actions specified

in the new block (including manner calls and stream constructions). The actions in a block are performed in

some non-deterministic order6 • When all actions in a new block are complete, the executing MSM checks for the

existence of pending event occurrences, including any that may have been saved in previous states.

After zero or more transitions to new blocks, when none of the pending event occurrences (if any) are in the

preemption list of its current block, an MSM performs its transport operation. This involves sending copies of units

it receives on each of its currently active ports to all ports it is connected to 7. By performing this operation, an MSM

is acting on behalf of the streams that connect its source ports to other ports (see §5.1.1). The transport operation

is either preempted by the arrival of an event occurrence (if it is in the current preemption list), or it ends with a

suspension of the MSM when there are no more units to transfer.

5.1.1 Streams

Conceptually, streams are independent active entities in the MANIFOLD model. It is, of course, possible to actually

implement them as such. However, because their functionality is so simple and their numbers so large, on most

contemporary platforms, it is more appropriate to multiplex the functionality of streams into a smaller number of

active entities (e.g., processes).

In our present implementation, streams are subsumed by MSMs: the functionality of streams is performed,

primarily, by the processes that own their producer ports. Consequently, each MSM is responsible for delivering

6Note that the language level ; operator that implies sequential execution is only a manner call. MANIFOLD is an event driven

paradigm and the conventional notion of sequentiality does not exist in this model.

7In fact, ports can have filters defined as regular expressions that may change, combine, and split units that pass through them (see §3).

However, we ignore this detail here.

13

/

I
I
I
\
\

B

-/

/

example

Figure 6. First set of connections set up by the manifold example

copies of units it receives on its ports to their corresponding destination ports. This is a reasonable scheme because
generally, there is little overlap between the active intervals in the life of a stream and the process that owns its
producer port.

The two main aspects of stream handling are creation/deletion of streams, and transport of units. Unit transport
is performed by an MSM on behalf of every stream whose source is one of the ports of that MSM, as described in
§5.1. To perform this function, an MSM needs to know the consumer port(s) connected to every one of its ports.
This information is available in a data structure for each port, called the port table, in the PlD. The port table for
port p contains a list of process and port references, each describing the consumer of one of the streams flowing out
of p. Port tables can be modified through a set of pre-defined operations that can be invoked by any MSM. Creation
and deletion of a stream is performed by its constructor MSM through direct update of the port table of its source,
using these operations. This fact closely corresponds to one of the fundamental concepts in the MANIFOW model:
an individual process is not aware of the connection network it is involved in.

Figure 6 shows the MSMs involved in the network of Figure 3 with their connections. Each port is depicted
by a small rectangle inside the PlD of its manifold processor. The different line styles used in Figure 6 symbolize
the (concurrent) activity of the different processors during unit transport8.

As an example, consider the activity of the example manifold, after a unit has arrived on its standard input.
The statement input --+ output in the source program shown in Figure 2 results in an entry in the port table
of the input port of the MSM example in Figure 6, designating its output port as a destination port.

Assuming no interesting event occurrences are detected by the example MSM to prevent its unit transport,

8Figures 6 and 7 show those connections which are set up by the manifold example. Other connections, not shown in the figures,
may also exist, but they are not under the control of the example manifold

14

------------..... --_ /-- \
/ I

/

/ '! 1--- f ~~~/ I I = I\• I
I I. LJLjDI
\ I I
\ L-------~

'
c

'-

B

r--------'§ Oa g: : : wD· :
I I
L.::~=----~-

example

'§ ___ Da g:
I = I\• I
I. LJLjDI
I I L _______ _,

A

Figure 7; Second set of connections set up by the manifold example

it first transports the unit from its input port to its output port, according to the port table of input. Later on

during its unit transport operation, the same MSM finds the unit in question in its output port. Consulting the port

table for output, the example MSM finds that the input port of the MSM A is a destination. It thus transfers

the unit to the input queue of the input port of the MSM A, using one of the well-defined operations on the PlD

of the MSM A. The MSM of example then notifies A of the presence of a new unit in its input port by another

one of the well-defined operations on its PlD. The responsibility of example is now over, as far as this unit is

concerned: from this point on, this unit is handled by the processor of A. Assuming that example has nothing else

to do (i.e., there are no more units in any of its ports), it simply returns to its idle state.

If a state transition occurs in example, e.g., to state e2 (see, again, the listing in Figure 2), the network

shown in Figure 6 must change to the one in Figure 7 (which corresponds to Figure 4). This network transformation

is done by the processor of example: after all, it is a state transition within this MSM which is the cause of

this change. The necessary network modification is done by the processor of example, performing a series of

repetitive operations on the PlDs of the involved MSMs, to update their port tables.

This implementation scheme is, in fact, fairly simple. The operations on the PlDs must be defined very

precisely. Because these operations can be performed simultaneously by more than one processor on the same

PlD, their implementation involves mutual exclusion issues analogous to the classical readers and writers problem.

Given this set of operations, all that the MP of an MSM has to do for stream handling is to inspect its internal state

lists describing connections and to perform the appropriate operations.

15

5.1.2 Propagation of Events

Event handling and state transitions involve a heavier use of the local memory of an MSM than streams. Most of
the necessary information is kept in local lists, but transmission of event occurrences requires operations on P lDs,
similar to stream handling. The various lists involved in event handling and state transitions are shown in Figure 8.

In the MANIFOLD model, events are broadcast so that all active processes in the system may receive them.
Thus, conceptually, an event source merely raises an event for the general public, and it is the responsibility of each
process to pick up event occurrences that it is interested in from its environment. Consequently, an event source
does not even know the processes, if any, that are interested in its events.

This abstract model gives a clean description of the event mechanism in MANIFOLD. A direct implementation
of this model involves some central resource to play the role of the over-all environment: a central events
registry where raised events are recorded by their sources, and which is queried by all observers. This scheme
involves intensive communication and turns the central events-registry into a bottle-neck, resulting in an inefficient
implementation on existing platforms.

In our implementation model, we decided to distribute and merge the functionality of the events-registry with
all observer processes. This means that each MSM has its own events-registry area where occurrences of all events
it is interested in are recoicl.ed. Given that usually, each process is interested in the events of only a few other
processes, the size of the private registry of an MSM is typically small. Generally, checking for event occurrences
by observers is far more frequent than the incidents of raising them by event sources. This scheme allows the more
frequent checking to be done by each observer with its own events-registry: it increases concurrency, and reduces
communication and contention.

The draw-back of this distribution of the events-registry is that each occurrence of an event raised by a source
must now be recorded in many private registries. Typically, an event is meaningful to only a small subset of the
processes involved in a MANIFOLD application. Although there may be a few events of more general, or even
universal, interest in an application, the substantial majority of event occurrences need to be recorded into only a
small number of private events-registries. Several schemes are possible for recording a raised event in its proper
events-registries. Our implementation model uses one of the simplest ones: it requires an event source to record
its event occurrence in the events-registry of every observer.

Thus, contrary to the conceptual model of MANIFOLD, each MSM knows all other MSMs that are interested in
the events it raises. This information is also recorded in the events-registry of MSMs. The events-registry of an
MSM consists of a receive table and a broadcast table that are located in its PlD area. Each MANIFOLD process that
is interested in an event that can be raised by another MANIFOLD process must sign itself in, in the broadcast table
of the latter's MSM. This is accomplished by the observer process executing the proper operation on the PlD of the
source process.

The set of all processes that a manifold (or manner) can possibly be interested in observing their events, is
known at its activation (or invocation) time. This set constitutes the visibility list of the manifold or manner. The
visibility list of an MSM is maintained in its local .memory and is used by the MSM to sign into (and out ot) the
broadcast tables of other MSMs at its activation time (and just prior to its termination). The visibility list of an
MSM is not part of its stack frames. However, invocation and termination of manners called by the MP of an MSM
dynamically add (set union) and subtract the visibility lists of the called manners to and from the visibility list
of the MSM (see §3.5). This is necessary because, while inside a called manner, the MSM must still receive the
events raised by sources visible to the ancestor(s) of the manner in its chain of manner calls. The corresponding
signing in and out operations to update the broadcast tables of the involved sources are also done at invocation and
termination of manners.

The event broadcast table itself is very similar to the port tables discussed earlier. Raising an event is a
primitive action in MSM. Execution of this action involves consulting the event broadcast table of the MSM, and
performing the proper operation on the PlD of every observer MSM found in there, to record the raised event in its
events-registry. The PlD operation to record an event into the events-registry of an MSM simply ignores the event
if it does not match any of the entries in its event receive table.

16

5.1.3 Event Handling

In the MANIFOLD model of events, it is the observer that is responsible for picking up its events of interest from

its environment. Event sources are oblivious to who, or if anyone at all, is picking up the events they raise.

Furthermore, they cannot assume that their observers pick up and react to the events they raise in the chronological

order that they were raised.

Reacting to an occurrence of an observed event always causes a preemptive transition to a new event handling

block in an observer manifold. However, this does not necessarily happen immediately after the event occurrence

is observed. Each event handling block in a manner or manifold defines a set of events whose occurrences may

preempt that block. This set is called the preemption set (of that block). Preemption sets are subsets of the

observable events of a manifold. Observable event occurrences that are not in the preemption set of the current

state, are saved. Further occurrences of a saved event from the same source are lost. Thus, a mismatch between

the occurrence frequency of an event from a given source and the reaction time of an observer creates an automatic

sampling phenomenon. Occurrences of different events from the same source, or the same event from different

sources, do not override each other.

In our implementation, there is a state table for every manner or manifold that contains an entry for each of

its event handling blocW. Each state table entry contains a pointer to the sequence of instructions for an event

handling block, together with a list of events (and their sources) that are to be handled by that block.

An executing MSM has a logical stack of state tables. The bottom-most state table in this stack is that of the

MSM's owning manifold. Every manner call pushes the state table of the invoked manner on the top of this stack,

making it the current state table of the MSM (see §5.1.4). Termination of a manner pops its state table from this

stack.

Reacting on an event, an MSM searches through its current state table, starting with the entry for the block

following its current block, and continues circularly, until it reaches the entry for the block preceding its current

block. If a matching handling block is found for the event in question, a transition is made to its corresponding

block. Otherwise, the state tables below the current one in the state table stack are searched (see §5.1.4).

Transition from one event handling block to another in MANIFOLD involves dismantling all streams created by

the former, and executing the actions specified in the latter. An MSM, thus, must keep a list of all streams it sets up

in each block, and delete them as it leave that block.

5.1.4 Implementation of Manners

Manners in MANIFOLD are subprograms that are dynamically nested (similar to APL functions), as opposed to

the statically nested subprograms of Algol-type languages (e.g., C or Pascal). This means that the names (of

processes, ports, and events) that are not locally bound to a referent inside a manner definition must be resolved

upon invocation of the manner, by searching backwards through the dynamic chain of manner calls. This search

starts in the environment of the caller of the manner and terminates in the environment of the manifold instance

to which the executing processor belongs. Remaining unresolved names are then bound to appropriate benign

defaults (the void process, its standard input or standard output port, or the special event noevent).

A manner invocation (see §3.5) pushes a new stack frame onto the stack of the executing MSM. This stack

frame is popped to restore the caller's environment as the active environment for the executing MSM, upon exit

from the called manner. Exit from a manner occurs either due to normal termination of the manner or by preemption

(see §3.5).

Dynamic binding of non-local entities to undefined names in manners requires the existence of a run-time

symbol table in each manner and manifold. This symbol table (see Figure 9) contains the name of every (locally

defined or undefined) entity used in a manner or manifold, together with an offset value. This offset value gives

the stack frame location where the actual value of its corresponding symbol is stored at execution time. Thus, all

instances of a manner or manifold share the same symbol table, while each instance has its own value for the names

in this symbol table in its stack frame. One of the entries in each symbol table is for a stack frame slot that points

to the symbol table of its calling environment.

17

Local symbols

--- ---------.., Receive Br dcast

===i----------h
r--- l---l __ -, I 11

I I I 11

I I I 11

I I I 11

I I I 11

I I 11

I I 11
I_, 11

table table

D

I
I
I

- f-- -

- ,__ _
L - I L..

L __ 1-,__---<Visibility list

,T

Preemption Preemption

list list

Blocks

State table

Stack Frame

Figure 8. Lists related to event handling

Dynamic binding of non-local variables in an invoked manner, if any, is done during its initialization stage.
The compiler generates the proper instructions to direct the executing MSM in its search for the value of each
non-local variable down the chain of symbol tables, using the previous symbol table link. The found value (or
a default mentioned above) is then copied into the "empty" slot of the variable in the manner's stack frame. At
the end of this phase, all symbols used in a just-invoked manner have acquired a proper value. All lists (e.g.,
visibility lists, preemption lists, etc.) and operands of the MSM instructions use references to local slots in a stack
frame. Consequently, once the contents of these slots are set correctly, all lists and operands of MSM instructions
automatically become correct.

In MANIFOLD, when an event occurrence is detected inside a called manner, first, the event handling blocks

defined in the manner are checked. If a match is possible, a transition is made to the corresponding block. When
the event occurrence does not match any handling block in the manner, the environment of its caller is searched for
a matching event handling block. The search for a matching handling block continues recursively down the chain
of manner calls until either (1) a matching handling block is found, or (2) the environment of the manifold instance
that owns the processor is reached. In case (2), the event occurrence is ignored and the processor continues in the

environment of the called manner where it was detected. In case (1), all called manners above the environment
of the matching event handling block are preempted, their stack frames are popped, and the processor makes a
transition to this block.

To support the preemption of called manners by transition to non-local event handling blocks, there is an entry
in each symbol table for a pointer to the state table of the calling environment. The event handling mechanism uses
this link and the previous symbol table link to locate the proper non-local handling blocks.

18

/

Symbol Table

Previous symbol table

Previous state table

__ ,, _ __, -E l

I
I
I
I

_J

State table

-E l

I
I

L.._ __ _!::::====--1-1,.... ~---~I
I

Previous symbol table

state table

Previous state table

Figure 9. Dynamic nesting

19

5.2 Manifold Stack Machines in Concurrent C++

Our implementation platform is a Concurrent C++ [6] environment running on a network of Sun SparcStations or
SGI Personal Iris workstations. Our present implementation is based on the MSM model described in the previous
sections. The abstract notion of an MSM had to be mapped onto some real process in order to have a running
environment.

The advantage of the Concurrent C++ environment developed at AT&T is that within a single program, one
may have logical processes running on remote processors (i.e., nodes on a local network) as well as local light
weight processes. Processes are really cheap in this environment (some of them are only light-weight processes
within one UNIX.9 process) and can also be created dynamically. The Concurrent C++ environment includes its own
preemptive scheduler to manage its light-weight processes. Thus, a light-weight process is conceptually almost
identical to a full-fledged UNIX process. All of these points were among our important concerns in selecting our
implementation platform.

Each abstract MSM is mapped onto a Concurrent C++ logical process. The normal stack of the process plays
the role of the MSM stack. Manners are just appropriately defined functions; the normal C++ invocation of functions
automatically takes care of the stack handling for manner calls.

The PlD and the Pp!) of the MSMs are collected in Concurrent C++ capsules. It is beyond the scope of this
paper to give a detailed description of capsules (see, e.g., [26]). Essentially, capsules are protected, shared memory
segments reminiscent of monitors [27, 28]. Syntactically, capsules look very much like C++ classes [29] with the
notable difference that calls to public member functions of capsules are mutually exclusive. Also, processes can
be suspended on member function calls, using programmer-defined logical conditions on the private variables of
a capsule. We use this feature to suspend an MSM as described in §5.1. The attractive feature of capsules is that
they offer a very fast and reliable message passing facility through shared memory. This suits our MSM model very
wel110•

Using Concurrent C++, we defined all the necessary C++ classes and Concurrent C++ capsules to realize the
run-time environment for the MSMs. This ended in a runtime library which includes all the necessary methods, list
handling utilities and the like.

How does a manifold program meet this run-time environment? First, a fairly traditional compiler compiles
the manifold program into the abstract macro-assembly instructions of the MSMs. These instructions include
statements like begin..manifold, end...manifold, declare_variable, define_visibility_list
and the like. The result of the compilation of each manifold program file is an MSM macro-assembly file which
contains the description of possibly several manifold and/or manner specifications.

In the next step, a macro processor [30] turns this macro-assembly file into a real Concurrent C++ source
program file. Each manifold becomes a separate Concurrent C++ process type; the macro-assembly instructions
are either turned into plain Concurrent C++ instructions or into calls to the run-time library functions. Finally,
the Concurrent C++ code is compiled by its own compiler and the usual linker links the output with the run-time
MANIFOLD library.

6 Related Work

The general concerns which led to the design of MANIFOLD are not new. The CODE system [31, 32] provides a
means to define dependency graphs on sequential programs. The programs can be written in a general purpose
programming language like Fortran or Ada. The translator of the CODE system translates dependency graph
specifications into the underlying parallel computation structures. In the case of Ada, for example, these are the
language constructs for rendezvous. In the case of languages like Fortran or C, some suitable language extensions
are necessary. Just as in traditional dataflow models, the dependency graph in the CODE system is static.

9UNIX is a Trademark of Bell Laboratories.

10In fact, special arrangements must be made when communication crosses over network node boundaries. Special Concurrent C++
processes are used to "simulate" capsule member function calls in this case.

20

The MANIFOLD streams that interconnect individual processes into a network of cooperating concurrent active

agents are somewhat similar to links in dataflow networks. However, there are several important differences

between MANIFOLD and dataflow systems. First, dataflow systems are usually fine-grained (see for example Veen

[33] or Herath et. al [34] for an overview of the traditional dataflow models). The MANIFOLD model, on the other

hand, is essentially oblivious to the granularity level of the parallelism, although the MANIFOLD system is mainly

intended for coarser-grained parallelism than in the case of traditional dataflow. Thus, in contrast to most dataflow

systems where each node in the network performs roughly the equivalent of an assembly level instruction, the

computational power of a node in a MANIFOLD network is much higher: it is the equivalent of an arbitrary process.

In this respect, there is a stronger resemblance between MANIFOLD and such higher level dataflow environments like

the so called Task Level Dataflow Language (TDFL) of Subler et al. [35].

Second, the dataflow-like control through the flow of information in the network of streams is not the only

control mechanism in MANIFOLD. Orthogonal to the mechanism of streams, MANIFOLD contains an event driven

paradigm. State transitions caused by a manifold's observing occurrences of events in its environment, dynamically

change the network of a running program. This seems to provide a very useful complement to the dataflow-like

control mechanism inherent in MANIFOLD streams.

Third, dataflow progr)lllls usually have no means of reorganizing their network at run time. Conceptually,

the abstract dataflow machine is fed with a given network only once at initialization time, prior to the program

execution. This network must then represent the connections graph of the program throughout its execution life.

This lack of dynamism together with the fine granularity of the parallelism cause serious problems when dataflow

is used in realistic applications. As an example, one of the authors of this paper participated in one of the very rare

practical projects where dataflow programming was used in a computer graphics application [36]. This experience

shows that the time required :(or the effective programming of the dataflow hardware (almost 1 year in this case)

was not commensurate with the rather simple functionality of the implemented graphics algorithms.

The previously mentioned TDFL model [35] changes the traditional datafiow model by adding the possibility

to use high level sequential programs as computational nodes, and also a means for dynamic modification of

the connections graph of a running program. However, the equivalent of the event driven control mechanism

of MANIFOLD does not exist in TDFL. Furthermore, the programming language available for defining individual

manifolds seems to be incomparably richer than the possibilities offered in TDFL.

Following a very different mental path, the authors of LINDA [37, 38] were also clearly concerned with the

reusability of existing software. LINDA uses a so called generative communication model, based on a tuple space.

The tuple space of LINDA is a centrally managed space which contains all pieces of information that processes want

to communicate. A process in LINDA is a black box. The tuple space exists outside of these black boxes which,

effectively, do the real computing. LINDA processes can be written in any language. The semantics of the tuples

is independent of the underlying programming language used. As such, LINDA supports reusability of existing

software as components in a parallel system, much like MANIFOLD.

Instead of designing a separate language for defining processes, the authors of LINDA have chosen to provide

language extensions for a number of different existing programming languages. This is necessary in LINDA because

seemingly, its model of communication (i.e., its tuple space and the operations defined for it) is not sufficient by

itself to express computation of a general nature. The LINDA language extensions on one hand place certain

communication concerns inside of the "black box" processes. On the other hand, there is no way for a process

in LINDA to influence other processes in its environment directly. Communication is restricted to the information

contained in the tuples, synchronously and voluntarily placed in and picked from the tuple space. We believe a

mechanism for direct influence (but not necessarily direct control), such as the event driven control in MANIFOLD is

desirable in parallel programming.

One of the best known paradigms for organizing a set of sequential processes into a parallel system is the

Communicating Sequential Processes model formalized by Hoare [18, 19] which served also as a basis for the

development of the language Occam [7]. Clearly not a programming language by itself, CSP is a very general

model which has been used as the foundation of many parallel systems. Sequential processes in CSP are abstract

entities that can communicate with each other via pipes and events as well. CSP is a powerful model for describing

the behavior of concurrent systems. However, it lacks some useful properties for constructing real systems. For

21

example, there is no way in CSP to dynamically change the communications patterns of a running parallel system,
unless such changes are hard-coded inside the communicating processes. In contrast, MANIFOLD clearly separates
the functionality of a process from the concerns about its communication with its environment, and places the latter
entirely outside of the process. It then completely takes over the responsibility for establishing and managing the
interactions among processes in a parallel system.

Another significant difference between CSP and MANIFOLD is that all communication in CSP is synchronous,
whereas everything (including events) in MANIFOLD are asynchronous. Furthermore, the data-flow-like means of
communication and its associated control mechanisms are deemed especially important in MANIFOLD, for which it
has first class support through special language constructs.

An important distinction between MANIFOLD and many other systems (e.g., Occam) is that they generally
fix the number of processes, the topology of the communication network, and the potential connectivity of each
individual process at compile time. MANIFOLD processes, on the other hand, do not know who they are connected
to, can be created dynamically, and can be dynamically connected/disconnected to/from other processes while they
are running.

An ISO standard for open systems interconnection is the language LOTOS (Language Of Temporal Ordering
Specification)[39, 40, 4!J-. It is a formal description technique based on the temporal ordering of observable
behavior of concurrent processes. The LOTOS language is based on a model of parallelism very similar to CSP. The
atomic form of interaction in LOTOS is through events which, as in CSP, synchronize their participating processes.
The behavior of a process in LOTOS is described in behavior expressions that are composed of simpler behaviors
using sequential and choice operators. LOTOS includes many other language constructs, e.g., to support abstract
data types. Nevertheless, its view of parallelism is essentially the same as CSP.

The implementation scheme described in §5, and specifically, our use of Concurrent C++ (see §5.2) as a
platform, shows the relationship between the MANIFOLD environment and more traditional distributed programming
languages. As mentioned in §2, these distributed languages can become fairly complicated to use for highly
parallel applications that require dynamically changing communication patterns. The MANIFOLD environment offers
an abstraction of the necessary communication facilities which can then be built on top of a distributed programming
language like Concurrent C++, or Ada.

7 A Window Server Example

The interaction between a window server and its clients is a typical example of client-server type applications. It is
also a good example of a problem which is most naturally solved using parallel programming techniques. First, we
define some terms. A window system can roughly be divided into four layers: a user interface toolkit, a window
manager, a window server, and an imaging/graphics library.

The meaning of the terms "window manager" and "window server" are often confused; a window manager
deals with the user interface to windows on a computer display, i.e., their "look and feel", while a window server
deals with resource allocation and input distribution, and services the output requests of its clients. It is also
important to understand that contrary to most other types of servers in a computer network, the window server runs
on the computer the user is using, while the client applications may be running on other computers.

A window is a piece of real estate on a computer monitor which is used by a human user to give input to an
application, and by a client application to output its results. Input from a user is received by a window system as
low level input units11 in the form of mouse movements, mouse button presses, keyboard input, and other types of
low level input.

A client application in this context is some computer program that needs to communicate with a human user
via a window on a computer display. It can be any program, e.g., a word processor or a CAD system. Client

11 Input units are often called input events in window systems. To not confuse them with the events as defined in the MANIFOLD, we
use the term "input units" instead.

22

Window Server

resource
management,
input & output
transformation,
and
distribution
of input units
between the
clients

/

Client application

user interface
toolkit code

input &
output
trans
formation
and
internal
distribution
of input
units

drawing
"canvas"

menu

control
panel

actual

I- application
code

I
I

Figure 10. Overview of a window server and one of its clients. The figure also shows how the client application

interfaces with the window system via a user interface toolkit.

applications usually interface with a window system via a user interface toolkit. A user interface toolkit contains

abstractions for creating user interface elements such as windows, menus, buttons, etc.

A typical scenario is the following: when a (human) user starts up an application (a client) that needs to have

a window on a screen, the first thing the client does is to make contact with the window server running on the

computer designated by the user and ask the window server to create a window for it. The window server then

allocates the resources for this window and notifies the window manager that a new window has been created. The

window manager then updates its internal tables, resets the color of the screen area covered by the window, and

draws the border around it. The window is now ready to display output from the client and receive input from the

user.

To simplify the problem to be solved in this paper, we forget about the window manager in this example and

concentrate on the interaction between a window server and client applications.

There are several ways to solve this problem in the MANIFOLD language. We must use streams to transport

iuput units: we cannot direct events to any particular client, and if we were to use events, we could loose important

input "events" since MANIFOLD events are not queued.

One way to implement our window server is to use a manifold with one, or a fixed number of, port(s) available

per client, so that one port of the server is connected to only one client. The server can then redirect the input

coming on its in-port to the appropriate out-port depending on which client should receive the input. The problem

with this solution is that the number of ports a manifold can have is static. This means that the window server

would have a fixed maximum number of clients it can serve. This is not necessarily bad in practice, but we prefer

a more elegant solution that does not impose such static limits.

To implement a window server with a theoretically unbounded number of serviceable clients, we can use a

two-step solution: The window server will process the input units it receives from all clients. All input units to the

window server and all replies from the window server to its clients go through the same input and output ports of the

window server, respectively. AH input units and replies contain proper identification tags to show their originator

or target clients.

To spare the clients the burden of generating such address tags and sieving through all replies to recognize their

23

own, we use special filter processes that act as intermediaries between an individual client and the window server.

On the client-to-window-server direction, a filter process simply puts a tag on passing input units that contains

the identification of its corresponding client. On the window-server-to-client direction, a filter process screens all

replies produced by a window server and lets only those units through which have the address of its client.

The scheme described above has the advantage of imposing no communications-related concerns on the

clients: they produce their input units and receive their replies without any knowledge of the addressing protocol.

Without the intermediary filters, the clients would have to, at least, know how they must talk to the window

server. This scheme is especially attractive for massively parallel environments. The use of filter processes to

multiplex/de-multiplex communication between all clients and the window server through the same ports may not

be very efficient without low-overhead processes and cheap inter-process communication. On the other hand, in a

massively parallel system it makes no difference if processors are kept busy or left idle.

In the rest of this section we elaborate on the unbounded server scheme described above. The MANIFOLD

source code for the major components of our program appears in Appendix A. This solution can easily be adapted

to the bounded server model mentioned earlier as well. The three most important processes in this solution are: the

window server, the window filter, and the client application. The window server and the window filter are manifold

processes. We assume th~ the client applications are implemented in some other language and treat them as atomic

processes. In addition, tliere is an atomic process used internally by the window server manifold process to manage

its data structures and computation intensive processing. In the following subsections, we first give a more detailed

specification of the individual processes in the system. Then, we discuss their implementation, and give the actual

MANIFOLD code for the main modules in this example.

7.1 Process Specification'!

We now look into the problem in more detail. Recall that the input- and output units are sent and received via

streams. We must decide how a client should "sign on" and "sign off" with the window server. It may seem

that one possibility is for the client to raise "sign on" and "sign off'' events that are received and reacted to by the

WindowServer. The main problem with this scheme is that in the MANIFOLD language we do not presently have

the ability to direct an event at a specific target process. This is necessary here because a user, of course, wants a

new window to be opened on the computer display were he/she is sitting at. A broadcast "sign on" event can be

picked up by all servers, which is clearly not appropriate in this case. Another smaller problem with this scheme

is that a manifold process responds to pending events in a nondeterministic fashion. Consequently, "sign on" and

"sign off" events from different clients may not be served on a first-come-first-served basis.

Our solution is to have a client set up a temporary stream connection and send a unit containing its sign on

(i.e., "create window") request to the server. To do this the client needs to know the process identification of the

server. This must be supplied by the user, usually via an environment variable, such as the DISPLAY variable used

in the X window system.

fypically, a client must wait for an acknowledgement of the acceptance or completion of its requests (especially,

its initial sign on request). Thus, in general, a client is simultaneously involved in two two-way conversations:

one with the window server and one through the window server with a user. It is, of course, possible to multiplex

these two conversations through the same input and output ports on the client's side. This requires some form of

identification scheme (e.g., a type designator prefix) to separate the units that belong to the tw.o conversations. We

use a simpler scheme instead, that requires the client to carry on each conversation through a different pair of input

and output ports.

With one exception, both conversations a client is engaged in go through its window filter process. The

exception is the client's very first sign on request, which is made directly with the window server. The window

server's reply to this request also goes directly to the client. A change of state in the client then breaks up these

initial streams and the rest of the two conversations will be conducted through the newly created window filter,

which also constructs all necessary streams.

To make our MANIFOLD programs more structured it is helpful to let the ports reflect the functionality of their

manifolds. The following is a specification of the external interfaces of the WindowServer and the Window Filter

24

hardware/
firmware

request

/

reply

Window
Server

dci

io

= long duration connections

Client 1

Client 2

Client n

- - - = transient connections

The following types of units are received/ sent by the ports of the window server:

in-ports: out-ports:

ii - "raw" input units dco - (low level) drawing commands

dci - (high level) drawing commands io - processed input units

request - request for a service reply - reply on an inquiry

Figure 11. The two-step solution. Manifold and atomic processes have thin and thick borders, respectively.

25

manifolds.

The Windoooerver manifold:

The WindowServer provides the following services: creation of windows, deletion of windows, servicing of
client drawing commands, and distribution of input units to its clients. The external interface of the WindowServer
manifold looks like this:

Process name: WmdowServer

Process type: manifold

Parameters: none

Port type Port name Unit description

out dco The drawing commands to be sent to the hardware/firmware
in ii The input units coming from the hardware/firmware
in request Request for a service, for example the creation of a window. The unit

should contain the process reference (pref) of the client, the requested

/ service, and the parameters for the requested service.
out reply A unit containg a reply to a request, such as an acknowledgement that a

window has been created.

in dci Drawing commands received from the clients
out io Processed input units sent out to the clients

The WindowFilter manifold':

An instance of the WindowFilter is created by the WindowServer when a client sends the latter a "create
window" request. The function of a WindowFilter is to set up the connections between a WindowServer and a
client, and to act as a two-way filter between them.

To set up these connections, a Window Filter needs to know the process reference of its client and the process
reference of the WindowServer it wishes to connect to. Since in our scheme, the WindowServer is the activator of
the Window Filter, the process reference of the server need not be passed to it as a parameter: the process reference
of the activator of a manifold (its parent) can be accessed via a builtin facility in the MANIFOLD language. The
process reference of its client, however, must be passed on to a window filter as a parameter.

The Window Filter manifold behaves as follows. When it receives a unit from the WindowServer manifold, it
checks its "adress" to see if the unit is adressed to its client. If so, it strips off the address and lets the unit through.
Otherwise, it throws away the unit. On the opposite direction, when it receives a unit from its client, it "stamps"
a "window reference" on the unit to allow the WindowServer know which window the unit comes from. In our
program, we actually use a reference to the client process as this window reference.

Process name: WindowFilter

Process type: manifold

Parameters: client process reference

Port type Port name Unit description

out requesLout "Stamped" requests from the client to the server
in replyjn Replies from the server to the client
in ii Input units for all clients of the window server

out dco "Stamped" drawing commands to be sent to the window server
in requesUn Requests from the client to the server

out reply_out "Filtered" replies from the server to the client
in dci Drawing commands received from the client

out io "Filtered" input units meant for its own client

26

7.2 The Implementation

The Window Server manifold itself simply creates and deletes Window Filters, while the fairly complex computation

or data structure maintenance is done by an atomic process called IO_Handler. The following is the external

specification of the IO..Handler process:

The IOJfandler atomic process:

The IO..Handler maintains a directed acyclic graph of the windows of all clients (i.e., a screen-map). Its tasks

are to:

w Update its screen-map when a window is created, deleted, pushed, popped, or moved on the screen. This

data structure also contains the process reference of the Window Filter manifold associated with the window.

" Identify the window that should receive an incoming input unit.

e Service client drawing requests.
/

In a real window system, the window manager generates window push, pop, and move requests, in addition

to create and delete requests, as a user manipulates the entities that appear on his/her screen. We do not get into

the details of the window manager in this paper. However, note that such requests from a window manager can

trivially be added to the input of 10..Handler via additional streams. Additivity of streams in MANIFOLD and the fact

that IO_Handler knows nothing about its communication links with other processes are both important in this case.

To find the window that is to receive an incoming unit from the hardware/firmware side, the 10..Handler must

consult its screen map and other state variables and, perhaps, consider the current cursor position as well. Once

it finds the target window, it places the process reference for its corresponding WindowFilter as a tag in the unit.

This tag indicates to each WindowFilter process which input units are meant for its client.

The task of servicing client drawing requests mainly consists of transformation of the coordinates of the client

drawing commands from window coordinates to screen coordinates, and transformation of the high-level drawing

commands from the client to the lower level drawing commands of the underlying hardware/firmware.

Process name: 10..Handler

Process type: atomic

Parameters: none

Port type Port name Unit description

in c_win The client process reference, the window size and position, and the

process reference of its WindowFilter process to be added to the screen-

map

in d_win A "window reference" of the window to be deleted from the screen-map

in ii Input units from the hardware/firmware

out io Composite units containing the process reference of the WindowFilter

process of the target client and the input unit

When a client wants to create a window the following actions take place:

l. The client application accesses an environment variable to get the "address" of the server the user wishes to

use.

2. The client application uses this "address" to set up a temporary pipeline to the "request" port of the Win

dowServer and send over its process reference, a "create window" request, and the window parameters. 12

12To make it easy to use existing applications, it may not be the actual application code that follows this protocol, but some MANIFOLD

wrapper process which, from the viewpoint of the application, transparently encapsulates it.

27

Figure 12. The internal structure of the WindowServer manifold. The ports with a capital letter G assigned to them
are guarded ports. At some of the ports the unit type sent/received is also shown. The internal variable processes
are not shown.

3. When the create-window unit is received by the guarded "request" port of the WindowServer, this port raises
a serve...request internal event.

4. The WindowServer now assigns the three parts of the create-window unit (the client process reference, the
create window request, and the window parameters), to three internal variable-processes.

5. The WindowServer then activates an anonymous instance of the WindowFilter manifold, giving it the client
process reference as a parameter.

6. The WindowServer then sends a composite unit to its internal IO_Handler process so that it can update its
screen-map.

7. Finally, the WindowServer sends a reply io the client telling it that a window has been created, and then
reinstalls the guard on its request port.

When a client wants to delete a window the following actions take place:

1. The client application sends a delete-window unit containing its process reference, a "delete window" request,
and empty an set of parameters to the "request" port of the WindowServer.

2. When the delete-window unit is received by the guarded "request" port of the WindowServer, this port raises
a delete_window internal event.

3. The WindowServer places the client process reference in one of its internal variable processes, and passes it
to the "d_win" port of the IO_Handler process.

4. The IOJiandler process then removes the window from its screen-map and puts a unit containing the process
reference of the corresponding Window Filter process on its Lpref port.

28

5. This WindowFilterprocess reference is used by the WindowServer manifold to deactivate this Window Filter.

6. Finally, the WindowServer sends a reply to the client, notifying it that its window has been deleted, and then

reinstalls the guard on its "request" port.

8 Directions for Further Work

More experience is needed with a fully operational MANIFOLD system to evaluate its potentials and the adequacy

of its constructs in real, practical applications. Nevertheless, it is already clear that certain changes and extentions

to the MANIFOLD language can have a positive impact on its use in large and complex systems. Several such

improvements are currently in our list, of which we mention only a few major ones here.

For instance, the notion of derived manifolds may be a useful extension to the language. This concept leads to

a hierarchy of manifold definitions with inheritance, analogous to the class hierarchies in object oriented languages.

Language support for such syntactic conveniences seem to be quite useful in large software developments.

An issue that we have encountered a few times in our examples is a need for directed events. Strictly speaking,

the concept of event in the ~OLD model is, of course, contrary to the notion of directed events, because MANIFOLD

events are broadcast and can be picked up by any process in the environment. We do not yet know how important

the need for directed events is, because we have been able to do without them so far. Nevertheless, the effect of

directed events can be supported at the language level in MANIFOLD by introducing proper constructs to explicitly

control the observability of event sources and/or the preemption sets of manifolds. Observability and preemption

sets are both defined implicitly in the current MANIFOLD language: they are derived by the compiler from the source

code. Symmetric to the way iii which a third party process can define streams between two other processes in the

current MANIFOLD language, new language constructs can allow processes to define and modify observability and/or

preemption sets.

9 Conclusions

This paper gives an overview of the MANIFOLD system and sketches the highlights of its implementation. More

experience is still necessary to thoroughly evaluate the practical usefulness of MANIFOLD. However, our experience

so far indicates that MANIFOLD is well suited for describing complex systems of cooperating parallel processes.

The unique blend of event driven and data driven styles of programming, together with the dynamic connection

graph of streams seem to provide a promising paradigm for parallel programming. The emphasis of MANIFOLD

is on orchestration of the interactions among a set of autonomous expert agents, each providing a well-defined

segregated piece of functionality, into an integrated parallel system for accomplishing a larger task.

In the MANIFOLD model, each process is responsible to protect itself from its environment, if necessary. This

shift of responsibility from the producer side to the consumer of information seems to be a crucial necessity in

open systems, and contributes to reusability of modules in general. This model imposes only a "loose" connection

between an individual process and its environment: the producer of a piece of information is not concerned with who

its consumer is. In contrast to systems wherein most, if not all, information exchange takes place through targeted

send operations within the producer processes, processes in MANIFOLD are not "hard-wired" to other processes

in their environment. The lack of such strong assumptions about their operating environment makes MANIFOLD

processes more reusable.

The window system example discussed in this paper, implements only the top layer of input/output handling

between the window server and the client. However, MANIFOLD can be used to implement more complex interactions,

e.g., in a user interface toolkit, as well. For example, in a separate paper, [22], we describe an implementation of

the GKS logical input device in MANIFOLD.

The code of the window server can in fact be reused by the window "process" in the user interface toolkit

since, a window does more or less the same tasks for its subwindows. The advantages of using MANIFOLD for

these types of problems are: easy specification of interaction between processes because of the declarative nature

of MANIFOLD, reduction of complexity because of easy decomposition in manageable modules, and high degree of

29

reusablity of the different modules because of their autonomous nature and little assumptions about their execution
environment.

In our view, massive parallel systems and the current trend in computer technology toward computing farms

open new horizons for large applications and present new challenges for software technology. Classical views of
parallelism in programming languages that are based on extensions of the sequential programming paradigm are
ill-suited to meet this challenge. We also believe that it is counter-productive to base programming paradigms for

computing farms and massively parallel systems solely on strictly synchronous communication. Many of the ideas
underlying the MANIFOLD system, if not the present MANIFOLD language itself, seem promising towards this goal.

References

[1] F. Arbab, "Specification of manifold," Tech. Rep. to appear, Centrum voor Wiskunde en Informatica, Ams
terdam, 1991.

[2] N. Gehani, Ada: Concurrent Programming. London - Sydney - Toronto - New Delhi - Tokyo:
Prentice-Hall, 19847

[3] United States Department of Defense, Reference Manual for the Ada Programming Language, November
1980.

[4] N. Gehani and W. Roome, "Concurrent C," Software-Practice and Experience, vol. 16, pp. 821-844, 1986.

[5] N. Gehani and W. Rom;pe, The Concurrent C Programming Language. Summit NJ: Silicon Press, 1989.

[6] N. Gehani and W. Roome, "Concurrent C++: Concurrent programming with class(es)," Software-Practice

and Experience, vol. 18, pp. 1157-1177, 1988.

[7] INMOS Ltd., OCCAM 2, Reference Manual. Series in Computer Science, London - Sydney - Toronto -
New Delhi - Tokyo: Prentice-Hall, 1988.

[8] D. May, "OCCAM," Sigplan Notices, vol. 18, April 1983.

[9] H. Bal, J. Steiner, and A. Tanenbaum, "Programming languages for distributed computing systems," ACM
Computing Surveys, vol. 21, pp. 261-322, 1989.

[10) W. Roberts, M. Slater, K. Drake, A. Simmins, A. Davidson, and P. Williams, "First impression of Ne WS,"
Computer Graphics Forum, vol. 7, pp. 39-58, 1988.

[11] T. Doeppner Jr., "A threads tutorial," Tech. Rep. CS-87-06, Brown University, 1988.

[12] P. Buhr and R. Stroobosscher, "The µSystem: Providing light-weight concurrency on shared-memory multi
processor computers running unix," Software - Practice and Experience, vol. 20, pp. 929-964, 1990.

[13] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, "Mach: A new kernel
foundation for unix development,'' in Proceedings of the Summer Usenix Conference, (Atlanta, GA), July
1986.

[14] D. Black, "Scheduling support for concurrency and parallelism in the Mach operating system,'' IEEE Computer,

vol. 23, pp. 35-43, May 1990.

[15) SUN Microsystems, SunOS Manuals, Lightweight Processes, revision A ed., 1990.

[16] F. Arbab and I. Herman, "Examples in manifold,'' Tech. Rep. CS-R9066, Centrum voor Wiskunde en Infor
matica, Amsterdam, 1990.

[17] F. Arbab and I. Herman, "Manifold: A language for specification of inter-process communication," in
Proceedings of the EurOpenAutumn Conference (A. Finlay, ed.), (Budapest), pp. 127-144, September 1991.

30

[18] C. Hoare, "Communication sequential processes," Communications of the ACM, vol. 21, August 1978.

[19] C. Hoare, Communicating Sequential Processes. New Jersey: Prentice-Hall, 1985.

[20] R. van Liere and P. ten Hagen, "Introduction to dialogue cells," Tech. Rep. CS-R8703, Centrum voor Wiskunde

en Informatica, Amsterdam, 1987.

[21] H. Schouten and P. ten Hagen, "Dialogue cell resource model and basic dialogue cells," Computer Graphics

Forum, vol. 7, no. 3, pp. 311-322, 1988.

[22] D. Soede, F. Arbab, I. Herman, and P. ten Hagen, "The GKS input model in manifold," Computer Graphics

Forum, vol. 10, pp. 209-224, September 1991.

[23] J. Peterson, R. Bogart, and S. Thomas, "The Utah Raster Toolkit," in Proceedings of the Usenix Workshop on

Graphics, (Monterey, California), 1986.

[24] S. Dyer, "A dataftow toolkit for visualization," IEEE Computer Graphics &Applications, vol. 10, July 1990.

[25] C. Upson, "Scientific visualization environments for the computational sciences," in Proceedings of the 34th

IEEE Computer Sociefy International Conference, (San Francisco), March 1989.

[26] N. Gehani, "Capsules: a shared memory access mechanism," tech. rep., AT&T Bell Laboratories, Computer

Technology Research, Murray Hill, New Jersey, 1990.

[27] P. Hansen, Operating System Principles. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[28] C. Hoare, "Monitors: fill operating system structuring concept," Communications of the ACM, vol. 17,

pp. 549-557, October 1974.

[29] B. Stroustrup, The C++ Programming Language. Reading, Massachusetts: Addison-Wesley, 1986.

[30] R. Seindal, GNU M4. Free Software Foundation, Inc., 0.07 ed., November 1990.

[31] J. Browne, M. Azam, and S. Sobek, "CODE: A unified approach to parallel programming," IEEE Software,

pp. 10-18, July 1989.

[32] J. Browne, T. Lee, and J. Werth, "Experimental evaluation of a reusability-oriented parallel programming

environment," IEEE Transaction on Software Engineering, vol. 16, pp. 111-120, 1990.

[33] A. Veen, "Dataftow machine architecture," ACM Computing Surveys, vol. 18, pp. 365-396, 1986.

[34] J. Herath, N. Saiko, and T. Yuba, "Dataflow computing models, languages and machines for intelligence

computations," IEEE Transactions on Software Engineering, vol. 14, pp. 1805-1828, 1988.

[35] P. Suhler, J. Bitwas, K. Korner, and J. Browne, "TDFL: A task-level dataftow language," Journal of Parallel

andDistributedComputing, vol. 9, pp.103-115, 1990.

[36] P. ten Hagen, I. Herman, and J. de Vries," A dataftow graphics workstation," Computers and Graphics, vol. 14,

pp. 83-93, 1990.

[37] N. Carriero and D. Gelenter, "LINDA in context," Communications of the ACM, vol. 32, pp. 444--458, 1989.

[38] W. Leier, "LINDA meets unix," IEEE Computer, vol. 23, pp. 43-54, February 1990.

[39] International Organization for Standardization, Geneva, Information Processing Systems - Open Systems

Interconnections -LOTOS (Formal Description Technique based on the temporal ordering of observational

behaviour) ISO/DIS 8807, March 1988.

[40] T. Bolognesi and E. Brinksma, "Introduction to the iso specification language LOTOS," Computer Networds

and ISDN Systems, vol. 14, pp. 25-59, 1986.

31

[41] E. Brinksma, "A tutorial in LOTOS," in Protocol Specification, Testing, and Verification V (M. Diaz, ed.),
pp. 171-194, Amsterdam: North-Holland, 1986.

/

32

Appendix A Mimi.fo~d smnrce code for the Window §enrer examplle

The names of the process types are spelled with mixed case letters, while the names of process instances are spelled

with lower case letters with underscores as the word dividers.

#define request_type

#define request_params

#define input_unit

#define draw command

#define reply_unit

WinServer ()

port out dco.

create window\ I delete window

*
*

·*
*

port. in ii.

port in request

port out reply.

port in dci.

port out io.

"\<procref\>\<request_type\>\<request_params\>".

/

I I The regular expression on the "request" port will chop the incomming

I I unit in three, one part containing the process reference of the

I I c.lient, the next part containing the type ofrequest, and the last

I I part containing the request parameters.

{
process io handler

process client_pref

process request_type

process request_pararns

process filter_pref

is

is

is

is

is

IO Handler.

variable.

variable.

variable.

variable.

event serve_request, create_window, delete window.

permanent (io handler.dee -> dco,

start:

ii -> io_handler.ii,

dci -> io_handler.dci,

io handler.io -> io).

activate io handler, activate client_pref,

activate request_type, ·activate request_params,

activate filter_pref);

guard(request, serve_request).

serve_request:

client_pref

request_type

request_pararns

getunit(request);

getunit(request);

getunit(request);

I I "case" is a special manner with the usual semantics.

case($request_type,

"create window",

"delete window",

do create_window,

do delete window) ;

33

}

11 This list could be continued with all kinds of
11 requests, but in this exercise we limit the
11 types of requests to creation and deletion of
11 windows.

create window:
11 Activate a new WindowFilter and assign its pref to
11 filter_pref by using the reference operator (ampersand).
11 The dereference operator (dollar) is used to pass the
11 client-pref to the Window Filter manifold.

filter_pref = &WindowFilter($client_pref);

I I Assemble a composite unit consisting of the client pref,
11 the window parameters, and the filter pref, and send it
11 the io-bandler process. The ''pass1 " is a builtin
11 manifold which terminates itself after it has let one
11 unit through.

$client_pref, $request_params, $filter_pref] ->
passl -> io_handler.c_win;

11 Tell the client that a window has been created, and then
11 reinstall the guard on the request port.

"window created" -> reply-> passl -> $client_pref.reply;
guard(request, serve_request).

delete window:
$client_pref -> io handler.d_win;

11 When the io_handler receives the "delete window"
11 request from the client on its d_win port it will update
11 its screen-map, and put the pref of the clients' Window
! I Filter process on its f_pref port. In this way the Window-
! I Server manifold can deactivate the WindowFilter manifold.

filter_pref = io_handler.f_pref;
deactivate $filter_pref;

11 Tell the client that its window has been deleted, and then
11 reinstall the guard on the request port.

"window deleted" -> reply-> passl -> $client_pref.reply;
guard(request, serve_request).

34

WindowFilter(client)

prcu::iass client.

port out request_out.

port in reply_in "\<procref\>\<reply_unit\>",

port out dco "\<procref draw_command\>".

port in 11 "\<procref\>\<input_unit\>".

port in request_in.

port. out reply_out.

port. in dci.

port out. io.

11 The regular expression on the "ii" port "chops" the incomming

11 units in two, while the regular expression on the "dco" port

11 glues two units together.

{
event filter_input, pass_on_input, not__pass_on_input,

filter_reply, pass_on_reply, not__pass_on_reply,

stamp_out:put, stamp_request.

permanent. (request_ out -> parent.request,

start:

parent.reply -> reply_in,

dco -> parent.dci,

parent.io -> ii,

io -> client.ii,

client.request -> request_in,

reply_out -> client.reply

client.dco -> dci) .

guard(ii, filter_input),

guard(dci, stamp_output),

guard(reply_in, filter_reply),

guard(request_in, stamp_request)).

II ***

11 Input-unit event handler blocks

II ***

filter_input:

11 The control-flow is done with the if-then-else manner. It

11 has the following syntax:

11 if (cond, then_part [, else_part]) •

I I The ''self" process reference is used to check if a

11 unit received on the "ii" port should be passed on to

11 the client. Similarly the ''self" process reference is

11 "stamped" on the units being sent out of the "dco"

11 port.

if ($getunit(ii $self, do pass_on_input,

do not_pass_on_input).

}

pass_on_input:
getunit(ii) ->output; guard(ii, filter_input).

not_pass_on_input:
getunit(ii) ->void; guard(ii, filter_input).

II ***
I I Reply-unit event handler blocks
II ***

filter_reply:
if ($getunit(reply_in

do pass_on_reply,

pass_on_reply:

) == $self,
do not_pass_on_reply).

getunit~reply_in) -> reply_out; guard(reply_in, filter_reply) .

not_pass_on_reply:
getunit(reply_in) ->void; guard(reply_in, filter_reply).

II ***
I I Request- and output-unit event handler blocks
II ***

stamp_output:
&self-> dco; getunit(dci) -> dco; guard(dci, stamp_output).

stamp_request:
&self -> request_out; getunit(request_in) -> request_out;

guard(request_in, stamp_request).

36

