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Abstract—Massivemultiple-input multiple-output (MIMO) wire-
less communications refers to the idea equipping cellular base

stations (BSs) with a very large number of antennas, and has been

shown to potentially allow for orders of magnitude improvement
in spectral and energy efficiency using relatively simple (linear)

processing. In this paper, we present a comprehensive overview of

state-of-the-art research on the topic, which has recently attracted
considerable attention. We begin with an information theoretic

analysis to illustrate the conjectured advantages of massive

MIMO, and then we address implementation issues related to
channel estimation, detection and precoding schemes. We partic-

ularly focus on the potential impact of pilot contamination caused

by the use of non-orthogonal pilot sequences by users in adjacent
cells. We also analyze the energy efficiency achieved by massive

MIMO systems, and demonstrate how the degrees of freedom

provided by massive MIMO systems enable efficient single-carrier
transmission. Finally, the challenges and opportunities associated

with implementing massive MIMO in future wireless communica-

tions systems are discussed.

Index Terms—Channel estimation, energy efficiency, mas-
sive MIMO systems, orthogonal frequency division multiplexing

(OFDM), pilot contamination, precoding and detection, single-car-

rier transmission, spectral efficiency, time-division duplexing
(TDD).

I. INTRODUCTION

M ULTIPLE-INPUTmultiple-output (MIMO) technology

has been widely studied during the last two decades and

applied to many wireless standards since it can significantly im-

prove the capacity and reliability of wireless systems. While

initial work on the problem focused on point-to-point MIMO

links where two devices with multiple antennas communicate

with each other, focus has shifted in recent years to more prac-

ticalmulti-user MIMO (MU-MIMO) systems, where typically a
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Fig. 1. Illustration of Massive MU-MIMO systems.

base station (BS) with multiple antennas simultaneously serves

a set of single-antenna users and the multiplexing gain can be

shared by all users. In this way, expensive equipment is only

needed on the BS end of the link, and the user terminals can

be relatively cheap single-antenna devices. Furthermore, due

to multi-user diversity, the performance of MU-MIMO systems

is generally less sensitive to the propagation environment than

in the point-to-point MIMO case. As a result, MU-MIMO has

become an integral part of communications standards, such as

802.11 (WiFi), 802.16 (WiMAX), LTE, and is progressively

being deployed throughout the world. For most MIMO imple-

mentations, the BS typically employs only a few (i.e., fewer than

10) antennas, and the corresponding improvement in spectral ef-

ficiency, while important, is still relatively modest.

In a recent effort to achieve more dramatic gains as well as

to simplify the required signal processing, massive MIMO sys-

tems or large-scale antenna systems (LSAS) have been pro-

posed in [1], [2], where each BS is equipped with orders of mag-

nitude more antennas, e.g., 100 or more. A massive MU-MIMO

network is depicted in Fig. 1. Asymptotic arguments based on

random matrix theory [2] demonstrate that the effects of uncor-

related noise and small-scale fading are eliminated, the number

of users per cell are independent of the size of the cell, and

the required transmitted energy per bit vanishes as the number

of antennas in a MIMO cell grows to infinity. Furthermore,

simple linear signal processing approaches, such as matched-

filter (MF) precoding/detection, can be used in massive MIMO

systems to achieve these advantages.

It is shown in [2] that under realistic propagation assump-

tions,MF-based non-cooperativemassiveMIMO systems could

in principle achieve a data rate of 17 Mb/s for each of 40 users

in a 20MHz channel in both the uplink (reverse link) and down-

link (forward link) directions, with an average throughput of 730

Mb/s per cell and an overall spectral efficiency of 26.5 bps/Hz.

Since the number of antennas at the BS is typically assumed to
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be significantly larger than the number of users, a large number

of degrees of freedom are available and can be used to shape

the transmitted signals in a hardware-friendly way or to null

interference [3]. To make such a system practical, algorithms

for massive MIMO systems are required to keep the complexity

low.

Another advantage of massive MIMO lies in its potential

energy efficiency compared to a corresponding single-antenna

system. It is shown in [4] that each single-antenna user in a mas-

sive MIMO system can scale down its transmit power propor-

tional to the number of antennas at the BS with perfect channel

state information (CSI) or to the square root of the number of

BS antennas with imperfect CSI, to get the same performance as

a corresponding single-input single-output (SISO) system. This

leads to higher energy efficiency and is very important for fu-

ture wireless networks where excessive energy consumption is a

growing concern [5], [6]. On the other hand, if adequate transmit

power is available, then a massive MIMO system could signif-

icantly extend the range of operation compared with a single

antenna system. Even though the conclusions in [4] ignore the

power consumption of the radio front-end, massive MIMO is

still a promising candidate for improving energy-efficiency of

future networks.

The observations described above have recently sparked a

flurry of research activities aimed at understanding the signal

processing and information theoretic ramifications of massive

MIMO system designs. In [7], massive MIMO systems are

reviewed from various perspectives, including fundamental

information theoretical gains, antenna and propagation aspects,

and transceiver design. A follow-up tutorial [8] briefly discusses

recent work. In this paper, we provide a more comprehensive

and detailed overview of state-of-the-art research on this topic.

In Section II, the opportunities of massive MIMO systems

are viewed from an information theoretic perspective. Issues

on channel estimation and signal detection are then discussed

in Section III, and transmit precoding schemes are presented

in Section IV. Besides the MF precoder/detector, other linear

schemes such as minimum mean-squared error (MMSE) and

zero-forcing (ZF) precoders/detectors are discussed based on ei-

ther single-cell processing or multi-cell coordinated processing.

In Section V, the so-called pilot contamination effect, caused

by employing non-orthogonal pilot sequences at different users

in different cells, is discussed in detail. The energy efficiency of

massive MIMO systems is then analyzed in Section VI. Instead

of using orthogonal frequency division multiplexing (OFDM)

as in most MU-MIMO implementations today, the possibility

of single-carrier modulation for massive MIMO systems is

discussed in Section VII. Finally, the challenges and potentials

related to applications of massive MIMO in future wireless

communications are identified in Section VIII and conclusions

are provided in Section IX.

Notation

Boldface lower and upper case symbols represent vectors and

matrices, respectively. The transpose, conjugate, and Hermitian

transpose operators are denoted by , , and , respec-

tively. The Moore-Penrose pseudoinverse operator is denoted

by . The determinant and trace operators are denoted by

and , respectively. The norm of a vector is denoted

by , and means is much greater than .

II. FROM REGULAR TO MASSIVE MIMO

In this section, the advantages of massive MIMO systems

are reviewed from an information theoretic point of view. We

start with point-to-point MIMO systems to reveal the poten-

tial opportunities that arise by equipping the terminals with a

large number of antennas, and then we discuss the performance

of MU-MIMO systems, where multiple single-antenna users

are communicating with a BS equipped with a large number

of antennas. Most results in this section are based on [7], [9],

and [10].

A. Point-to-Point MIMO

We consider a point-to-point MIMO transmission first, where

the transmitter and the receiver are equipped with and

antennas, respectively. We focus on the narrow-band time-in-

variant channel with a deterministic and constant channel ma-

trix . OFDM-based schemes are normally used to

convert a frequency-selective wide-band channel into multiple

parallel flat-fading narrow-band channels [11].

The received signal vector, , can be expressed as

(1)

where is the transmit signal vector and

represents noise and interference. We focus on the case that

the total power of the transmit signal is normalized, i.e.,

, and the noise is zero-mean circularly symmetric

complex Gaussian with an identity covariance matrix . With

these assumptions, the scalar is the transmit power.

If we assume independent and identically distributed (i.i.d.)

Gaussian transmit signals and that perfect CSI is available at the

receiver, the instantaneous achievable rate can be expressed as

(2)

When the propagation coefficients in the channel matrix are

normalized as , upper and lower bounds

on the capacity are derived in [7] with the help of Jensen’s in-

equality:

(3)

The actual achievable rate depends on the distribution of the

singular values of . Among all channels with the same

normalization, those whose singular values are all equal achieve

the highest rate, i.e., the upper bound in (3), while those with

only one non-zero singular value have the lowest rate, i.e., the

lower bound in (3). The best case can be approached in the limit

by a scenario where all of the propagation coefficients in the

channel matrix are i.i.d., while the worst case corresponds for

example to a scenario with line-of-sight (LOS) propagation.

Next we discuss two extreme cases, where either the number

of transmit or the number of receive antennas goes to infinity.
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1) and : When the number of transmit

antennas goes to infinity while the number of receive antennas

is constant, i.e., , the row vectors of are

asymptotically orthogonal, and hence we have

(4)

In this case, the achievable rate in (2) can be approximated as

(5)

which achieves the upper bound in (3).

2) and : Using similar derivations as in

Case 1), we have

(6)

which achieves the upper bound in (3) as well.

The results in (5) and (6) show the advantages of equipping

the arrays in aMIMO link with a large number of antennas. Note

that the above discussion depends on the assumption that the

row or the column vectors of are asymptotically orthogonal,

which is an optimistic assumption regarding the propagation co-

efficients. The multiplexing gain disappears in LOS propagation

environments, as shown in [7].

B. Multi-User MIMO

MU-MIMO systems can obtain the promising multiplexing

gain of massive point-to-point MIMO systems while elimi-

nating problems due to unfavorable propagation environments.

Consider a MU-MIMO system with cells, where each cell

has served single-antenna users and one BS with antennas.

Denote the channel coefficient from the -th user in the -th cell

to the -th antenna of the -th BS as , which is equal to

a complex small-scale fading factor times an amplitude factor

that accounts for geometric attenuation and large-scale fading:

(7)

where and represent complex small-scale

fading and large-scale fading coefficients, respectively. The

small-scale fading coefficients are assumed to be different

for different users or for different antennas at each BS while

the large-scale fading coefficients are the same for different

antennas at the same BS, but are user-dependent. Then, the

channel matrix from all users in the -th cell to the -th BS

can be expressed as

...
. . .

... (8)

where

...
. . .

... (9)

. . . (10)

Consider a single-cell ( ) MU-MIMO system with

single-antenna users and a BS with antennas. For simplicity,

the cell and the BS indices are dropped when single-cell systems

are considered.

1) Uplink: For uplink signal transmission, the received

signal vector at a single BS, which we denote by ,

has the same expression as in (1):

(11)

where is the signal vector from all users,

is the uplink channel matrix defined in (8) by dropping

the cell and the BS indices, is a zero-mean noise

vector with complex Gaussian distribution and identity covari-

ance matrix, and is the uplink transmit power. The trans-

mitted symbol from the -th user, , is the -th element of

with .

Based on the assumption that the small-scale fading coeffi-

cients for different users are independent, the column channel

vectors from different users are asymptotically orthogonal as the

number of antennas at the BS, , grows to infinity [2]. Then,

we have

(12)

A detailed discussion of this result can be found in [9]. Based on

the result in (12), the overall achievable rate of all users becomes

(13)

In the following, we show that simple MF processing at the

BS can achieve the capacity in (13). When MF processing is

used, the BS processes the signal vector by multiplying the con-

jugate-transpose of the channel, as

(14)

where (12) is used. Note that the channel vectors are asymptot-

ically orthogonal when the number of antennas at the BS grows

to infinity. Therefore, does not color the noise. Since is

a diagonal matrix, the MF processing separates the signals from

different users into different streams and there is asymptotically

no inter-user interference. The signal transmissions from each

user can thus be treated as if originating from a SISO channel.

From (14), the signal-to-noise ratio (SNR) for the -th user is

. Consequently, the rate achievable by using MF is the

same as the limit in (13), which implies that simple MF pro-

cessing at the BS is optimal when the number of antennas at the

BS, , grows to infinity.
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2) Downlink: Denote as the received signal

vector at all users. For most prior work in massive MIMO,

time-division duplexing (TDD) mode is assumed as discussed

in Section III-A, where the downlink channel is the transpose

of the uplink channel matrix. Then, the received signal vector

can be expressed as

(15)

where is the signal vector transmitted by the BS,

is additive noise defined as before, and is the

transmit power of the downlink. To normalize the transmit

power, we assume .

As we see in Section III, the BS usually has CSI corre-

sponding to all users based on uplink pilot transmission.

Therefore, it is possible for the BS to perform power allocation

to maximize the sum transmission rate. With power allocation,

the sum capacity for the system is [10]

(16)

where (12) is used and is a positive diagonal matrix with

the power allocations as its diagonal elements and

.

If the MF precoder is used, the transmitted signal vector is

(17)

where is the source information vector. Then, the

received signal vector at all users is

(18)

where the second line of (18) is for the case when the number of

antennas at the BS, , grows to infinity, and (12) is used. Since

and are both diagonal matrices, the signal transmission

from the BS to each user can be treated as if originating from a

SISO transmission, and again, inter-user interference has been

suppressed. The overall achievable data rate in (18) can be max-

imized by appropriate choice of the power allocation as in (16),

which demonstrates that the capacity can be achieved using the

simple MF precoder.

Above, we have shown that based on the favorable propaga-

tion assumption of (12), the simple MF precoder/detector can

achieve the capacity of a massive MU-MIMO system when the

number of antennas at the BS, , ismuch larger than the number

of users, , and grows to infinity, i.e., and .

The results for another scenario that both the number of an-

tennas at the BS and the number of users grow large while their

ratio is bounded, i.e., as , where is a

constant, are different. The detailed results for both scenarios

are discussed in the following sections.

III. CHANNEL ESTIMATION AND SIGNAL DETECTION

In this section, channel estimation and signal detection at the

BS are discussed. We first discuss channel estimation methods

for massive MIMO and explain why TDD mode is usually

Fig. 2. Multi-User MIMO TDD protocol.

assumed. Then, both linear and non-linear signal detection

methods are presented.

A. Channel Estimation

For regular MIMO systems, multi-user precoding in the

downlink and detection in the uplink require CSI at the BS. The

resource, time or frequency, required for channel estimation in

a MIMO system is proportional to the number of the transmit

antennas and is independent of the number of the receive

antennas.

If FDD is used, that is, uplink and downlink use different

frequency bands, the CSI corresponding to the uplink and

downlink is different. Channel estimation for the uplink is done

at the BS by letting all users send different pilot sequences. The

time required for uplink pilot transmission is independent of

the number of antennas at the BS. However, to get CSI for the

downlink channel in FDD systems, a two-stage procedure is

required. The BS first transmits pilot symbols to all users, and

then all users feed back estimated CSI (partial or complete) for

the downlink channels to the BS. The time required to transmit

the downlink pilot symbols is proportional to the number of

antennas at the BS. As the number of BS antennas grows

large, the traditional downlink channel estimation strategy for

FDD systems becomes infeasible. For example, consider a

1 ms 100 kHz channel coherence interval, which can support

transmission of 100 complex symbols. When there are 100

antennas at the BS, the whole coherence interval will be used

for downlink training if orthogonal pilot waveforms are used

for channels to each antenna, while there is no symbol left for

data transmission.

Fortunately, the channel estimation strategy in TDD systems

can be utilized to solve the problem. Based on the assumption

of channel reciprocity, only CSI for the uplink needs to be esti-

mated. In [12], a TDD protocol, shown in Fig. 2, was proposed.

According to this protocol, all the users in all the cells first syn-

chronously send uplink data signals. Next, the users send pilot

sequences. BSs use these pilot sequences to estimate CSI to the

users located in their cells. Then, BSs use the estimated CSI

to detect the uplink data and to generate beamforming vectors

for downlink data transmission. However, due to the limited

channel coherence time, the pilot sequences employed by users

in neighboring cells may no longer be orthogonal to those within

the cell, leading to a pilot contamination problem [2], which will

be discussed in detail in Section V.

Linear MMSE based channel estimation is commonly

used, which can provide near-optimal performance with

low complexity. Besides MMSE estimation, a compressive

sensing-based channel estimation approach is proposed in [13],

which exploits the fact that the degrees of freedom of the phys-

ical channel matrix are much smaller than the number of free

parameters. To improve the spectral efficiency of the system, a

time-frequency training sequence design is developed in [14].



746 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 5, OCTOBER 2014

The proposed structure achieves the benefits of both time- and

frequency-domain estimation while avoiding their individual

drawbacks.

B. Signal Detection

Linear signal detectors with low complexity, such as the MF,

ZF, and MMSE detectors, are practical candidates for massive

MIMO systems. They can asymptotically achieve capacity as

the number of antennas at the BS is large enough compared to

the number of users and the channel vectors from different users

are independent [2], [7]. The performance of massive MIMO

systems based on various linear receivers has been studied from

various perspectives [15]–[18]. A performance comparison be-

tween the MMSE and the MF receivers in realistic system set-

tings is provided in [15]. It shows that the MMSE receiver can

achieve the same performance as the MF receiver with fewer

antennas, especially when there exists inter-cell interference.

The scenario with a bounded ratio of the number of antennas to

the number of users has been investigated in [16] and [17] for

the MMSE and ZF receivers, respectively. In [16], an expres-

sion for the asymptotic signal-to-interference-plus-noise-ratio

(SINR) of the MMSE receiver for a single-cell system with a

bounded ratio of the number of antennas to the number of users

is obtained. Two types of MMSE receivers are considered: the

optimal MMSE receiver taking different transmit power levels

from different users into account and a suboptimal MMSE re-

ceiver assuming equal transmit power. In [17], the exact data

rate, symbol-error rate, and outage performance of the ZF re-

ceivers are derived. Besides centralized MIMO systems, the

sum rate of the ZF receivers in distributed MIMO systems is

also analyzed and lower and upper bounds on the sum rate are

derived in [18]. A rough calculation of the complexity order for

the ZF and MMSE receivers is [7].

In addition to linear detection methods, non-linear detection

can also be used to achieve better performance at the cost

of higher computational complexity. Complexity reduction

for non-linear detectors in massive MIMO systems is the

key issue, and some work has been done on this topic. In

[19], a block-iterative generalized decision feedback equalizer

(BI-GDFE) is proposed, and its asymptotic SINR performance

is evaluated. The complexity order of the proposed BI-GDFE is

, where is the number of it-

erations. For random MIMO channels, the proposed BI-GDFE

can approach the single-user MF bound within only a few

iterations even if the number of antennas is large. Complexity

reduction schemes for the existing local neighborhood search,

including likelihood ascent search (LAS) [20], [21] and tabu

search (TS) [22], are presented. LAS-based detection in [21]

can achieve a better bit-error rate with the same order of

complexity as traditional LAS. The layered TS method in [22]

performs detection in a layered manner and works well in large

MIMO systems with low complexity, which has the complexity

order as ,

where and are the maximum number of entries

and the number of neighboring vectors used by the algorithm.

Low-complexity graph-based schemes are proposed in [23] and

[24]. In [23], a low-complexity receiver based on cooperative

particle swarm optimization and factor-graph data detection

is investigated. To obtain good features from both the local

neighborhood search algorithm and the factor-graph based

belief propagation (BP) algorithm, a hybrid reactive TS-BP

approach is developed in [24]. It can achieve near-optimal

performance with low complexity for signals with high-order

modulation. Moreover, the element-based lattice-reduction

(LR) algorithms in [25] can provide better performance than

other LR approaches with lower complexity. Some other de-

tection related work can be found in [26]–[28].

IV. PRECODING

In this section, precoding at the BS is discussed. We first dis-

cuss basic precoding methods and then extend the discussion

to multi-cell precoding. Finally, some practical issues related to

precoding are discussed.

For regular MIMO systems, both non-linear and linear pre-

coding techniques can be used. Compared with linear precoding

methods, non-linear methods, such as dirty-paper-coding

(DPC) [29], vector perturbation (VP) [30] and lattice-aided

methods [31], have better performance albeit with higher

implementation complexity. However, with an increase in the

number of antennas at the BS, linear precoders, such as MF

and ZF, are shown to be near-optimal [2], [7]. Thus, it is more

practical to use low-complexity linear precoding techniques in

massive MIMO systems. Therefore, we mainly focus on linear

precoding techniques in this section.

A. Basic Precoding

Basic precoding methods include MF and ZF. When MF is

used, the transmit signal from the BS can be expressed as

(19)

where is a power normalization factor. The impact of nor-

malization techniques is discussed in [32], which shows that

vector normalization is better for ZF while matrix normaliza-

tion is better for MF.

When ZF is used, the transmit signal from the BS can be

expressed as

(20)

For regularized ZF (RZF), a diagonal loading factor is added

prior to the inversion of the matrix , and the transmit

signal at the BS is expressed as

(21)

where is the regularization factor, and can be optimized

based on the design requirements. The RZF precoder becomes

the ZF precoder as , and becomes the MF precoder as

.

The performance of (R)ZF precoding for a single-cell mas-

sive MIMO system is analyzed in [33] when the number of an-

tennas at the BS, , is much larger than the number of users, ,

and grows to infinity, i.e., and . The analysis

is based on estimated CSI, where the estimated channel matrix,
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, is used instead of the accurate channel matrix , in (20)

and (21). A lower bound on the sum rate for the ZF precoder

is derived. The ZF precoder outperforms MF in the high spec-

tral efficiency region while MF is better in the low spectral effi-

ciency region. The computational complexity of these precoders

is discussed in [33] as well. To reach maximum spectral effi-

ciency, the ZF precoder requires less computation than the MF

precoder, a surprising result based on the fact that fewer users

are served for the ZF precoder at peak spectral efficiency. Note

that the user selection problem may become more complex as

the number of users grows.

Besides the scenario where the number of antennas at the BS

is much larger than the number of users, another scenario is in-

vestigated in [34]–[36] where both the number of antennas at

the BS and the number of users grow large while their ratio is

bounded, i.e., as , where is a constant.

In this setup, ZF precoding achieves an SNR that tends to the op-

timal SNR for an interference-free system with transmit

antennas when [7]. With perfect CSI, the asymp-

totic SINR performance of RZF precoding is derived in [34],

which depends on the user-to-antenna ratio, , the regular-

ization parameter, , and the SNR. In [35], the analysis is ex-

tended to take the transmit correlation into account. With an es-

timated channel matrix, , the equivalent deterministic SINRs

for ZF and RZF precoding are derived in [36], where a tight ap-

proximation is derived even for systems with a finite number of

BS antennas.

B. Multi-Cell Precoding

Linear precoders can also be used in multi-cell massive

MIMO systems, where cooperating BSs are designed to jointly

serve users in different cells [37]. Depending on the overhead

of the information exchange among the BSs, there are three

scenarios: single-cell processing, coordinated beamforming,

and network MIMO multi-cell processing. Single-cell pro-

cessing is based on the assumption that BSs only have channel

information for users in their own cells and no information

about users in other cells. Coordinated beamforming exploits

channel information from a BS to users of all cells. The network

MIMO multi-cell processing concept is based on full coopera-

tion among BSs, where not only channel information but also

data are globally shared. Among the above three scenarios,

single-cell processing can avoid the information exchange

overhead, but it cannot mitigate inter-cell interference. Based

on the single-cell processing assumption, the RZF precoder can

achieve performance similar to MF with fewer antennas [15].

Processing based on network MIMO provides the best per-

formance but has the highest information exchange overhead

[38]–[40]. The network-MIMO-based scheme proposed in [40]

can achieve the performance limit with one order of magnitude

fewer BS antennas than single-cell processing [2]. As discussed

below, coordinated beamforming can obtain a tradeoff between

performance and the overhead of information exchange [41].

Compared with regular MIMO systems, the use of coordi-

nated beamforming with massive MIMO is considerably more

difficult; with a large number of BS antennas, it becomes more

andmore impractical to share instantaneous CSI among the BSs.

Therefore, different schemes based on sharing statistical CSI are

investigated. Scenarios where the number of antennas at the BS

is much larger than the number of users, , where their

ratio is bounded, as , are both studied. For

the first scenario, a beamformer is designed to minimize total

transmit power across all BS’s in [42]. Random matrix theory is

utilized to obtain an asymptotically optimal distributed beam-

former. A two-layer precoding approach is proposed in [43] to

relax the requirement that one BS should get full CSI for its own

cell, where the BS only needs to estimate the channels within the

subspace determined by the outer precoder. Thus, the proposed

scheme also reduces the number of pilot symbols required for

channel estimation in addition to the overhead due to informa-

tion exchange. For the second scenario, a min-max-fair coor-

dination beamformer is proposed in [44], [45], which exploits a

nested ZF structure to recursively solve a series of min-max fair-

ness problems of decreasing dimension. To further reduce the

information exchange overhead for power allocation updating,

the scheme proposed in [46] maximizes the minimum weighted

SINR of the users.

Distributed MIMO based on limited CSI exchange is investi-

gated in [47], where the proposed linear Hermitian precoding in

each cell uses only CSI for its own cell and the large-scale fading

coefficients of users in other cells. The performance loss due to

the use of limited CSI is negligible compared to the case with

full CSI exchange. Thus, the design can be used to reduce the

information exchange overhead, especially for massive MIMO

systems.

Note that for the coordinated schemes in [42]–[47], how to

obtain the required CSI is not taken into account. The analysis

is based on the assumption that the required CSI, either instan-

taneous or statistical, is already known at the BSs. In [48], [49],

and [50], the problem of multi-cell precoding has been consid-

ered in more general and realistic settings. In particular, channel

estimation error and pilot contamination are explicitly taken into

account. These results will be discussed in Section V.

C. Practical Considerations

The precoding designs in [51]–[53] take practical antenna

array structures into account. To build a large array in prac-

tice, the use of non-linear but power-efficient radio-frequency

(RF) front-end amplifiers is preferred. To avoid signal distor-

tion, the transmit signals are required to have a low peak-to-av-

erage-power-ratio (PAPR). A precoding method based on per-

antenna constant envelope constraints is developed to reduce

the PAPR of the transmit signal in [51], [52]. Compared to the

average-only transmit power constraint, extra transmit power is

required to achieve a desired rate with per-antenna power con-

straints [54], [55]. However, precoding with such constraints

facilitates the use of power-efficient amplifiers, leading to im-

provement in the power efficiency of the entire system. Instead

of considering precoding only, a framework based on joint pre-

coding, modulation, and PAPR reduction is proposed in [56].

The approach described in [56] has low PAPR and enables the

use of low-cost RF amplifiers. Moreover, a comprehensive per-

formance analysis regarding the use of large and dense antenna

arrays is provided in [53].
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Since the computational complexity of the precoder increases

with the number of antennas at the BS, low-complexity pre-

coding methods are necessary. A low-complexity norm descent

search precoder is proposed in [57] for systems with a large

number of antennas, whose bit-error rate curves drop exponen-

tially with SNR. A low-complexity method based on matrix in-

version is proposed in [58] to decrease the computational com-

plexity of the ZF and the MMSE precoders. In general, the de-

sign of low-complexity precoders is critical for massive MIMO

systems.

V. PILOT CONTAMINATION

As we have discussed in Section III-A, only TDD is likely to

be employed with massive MIMO systems due to the high over-

head and complexity associated with channel estimation and

channel sharing under FDD. As shown in Fig. 2, for TDD-based

massiveMIMO transmission systems, pilot sequences are trans-

mitted from users in the uplink to estimate channels. Let

be the pilot sequence of user in cell , where

denotes the length of the pilot sequence. Though it is not nec-

essary, it is convenient to assume that and we use

this assumption in what follows. Ideally, the pilot sequences em-

ployed by users within the same cell and in the neighboring cells

should be orthogonal, that is

(22)

where is defined as

otherwise
(23)

In this case, a BS can obtain uncontaminated estimation of the

channel vectors in the sense that they are not correlated to the

channel vectors of other users.

However, the number of orthogonal pilot sequences with a

given period and bandwidth is limited, which in turn limits the

number of users that can be served [2]. In order to handle more

users, nonorthogonal pilot sequences are used in neighboring

cells. Thus for some different , and , we may have

(24)

As a result, the estimate of the channel vector to a user becomes

correlated with the channel vectors of the users with non-orthog-

onal pilot sequences. Below, we consider the pilot contamina-

tion issue in more details and discuss possible methods for its

mitigation.

A. Pilot Contamination Effect

There are many schemes for assigning pilot sequences to

users in different cells. One simple scheme is to reuse the same

set of orthogonal pilot sequences, say , in all cells.

This means that the -th user in any cell will be assigned the

pilot sequence . Identical pilot sequences assigned to users

in neighboring cells will interfere with each other causing pilot

contamination. This situation is shown in Fig. 3. Only users with

Fig. 3. Illustration of pilot contamination concept. (a) Uplink Transmission.

(b) Downlink Transmission.

the same pilot sequence are shown. During downlink trans-

mission, this results in the BS beamforming signals not only

to its own users, but also to users in the neighboring cells, and

therefore creates a strong source of directional interference. This

interference, unlike the intra-cell interference, will not disap-

pear as the number of BS antennas increases. A similar effect

occurs during the uplink transmission.

Consider a system with cells. Each cell is assumed to have

single-antenna users and a BS with antennas, where

. For purposes of illustration, we assume that all cells use

the same set of pilot sequences, represented by the

orthogonal matrix satisfying .

Assume further that the pilot transmission from different cells

is synchronized, as in Fig. 3(a). The received signal matrix at

the -th BS, , can be expressed as

(25)

where , defined in (8), is the channel matrix from

all users in the -th cell to the -th BS. The -th column of

, denoted by , is the channel vector from the -th user

in the -th cell to the -th BS. is the noise matrix

at the -th BS during the pilot transmission phase, whose entries

are i.i.d. circular complex Gaussian random variables with zero-

mean and unit variance, and is the pilot transmit power.

To estimate the channel, the -th BS projects its received

signal on to get sufficient statistics for estimating [59].

From (25), the resulting estimated channel matrix is

(26)

where we have used . The -th column, , of

is the estimate of the channel vector, . From (26), we have
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that the estimate, , is a linear combination of the channel

vectors, , of the users in different cells with

the same pilot sequence. In [2], this phenomenon is referred to

as pilot contamination.

In a MIMO system with no pilot contamination, the channel

estimation and precoding can be completely decoupled from

each other. In the case of pilot contamination this is not the

right approach. Because of the pilot contamination, the esti-

mated channel vector in any cell is a linear combination of

channel vectors of users in other cells that use the same pilot

sequence. In [60], an MMSE-based precoding is proposed that

takes this particular form of the estimated channel vector into

account and attempts to minimize i) the sum of squares of er-

rors for users located in cell ; and ii) the sum of squares of

interferences for users located in other cells. MMSE-based pre-

coding provides significant improvement compared with tradi-

tional precoding methods like ZF, single-cell MMSE precoding

from [61], and others.

Consider now the uplink data transmission stage after channel

estimation. The received signal at the -th BS is

(27)

where is the symbol from the -th user in the -th cell and

is the additive noise vector during uplink transmission. When

the MF detector is used, the BS processes the signal vector by

multiplying with the conjugate-transpose of the channel esti-

mate. Thus the detected symbol from the -th user of the -th

cell, , is

(28)

where is the -th column of in (26).

From (28) and (12), as the number of BS antennas grows

large, i.e., , the SINR of the -th user in the -th cell

tends to the following limit [2]

(29)

where is the large-scale channel fading coefficient in (7).

From (29), the SINR depends only on the large-scale fading

factors of the channels while the small-scale fading factors and

noise are averaged out. Moreover, from (26), when non-orthog-

onal pilot sequences are used in different cells, the BS cannot

distinguish among the channel vectors from its own cell to chan-

nels from other cells. Furthermore, the SINR limit due to pilot

contamination will not disappear as the number of antennas in-

creases. Similar results hold for the ZF or the MMSE detectors.

The pilot contamination affects the downlink transmission

as well, as shown in Fig. 3(b). For the downlink, the power

varies from one coherent interval to another if (26) is used di-

rectly as beamforming vectors. Thus, a normalized version for

the beamforming vectors is commonly proposed in [62]. Let the

MF beamforming vector from the -th BS to the -th user in the

-th cell be

(30)

where the scalar is a normalization factor.

Then the -th BS transmits a -dimensional vector

(31)

where is the source symbol for the -th user in the -th cell.

The received signal at the -th user of the -th cell is

(32)

where is the additive noise. Based on a derivation similar

to that for the uplink, the downlink SINR of the -th user in the

-th cell, as , tends to [62]

(33)

where

(34)

The expression in (33) is slightly different from that in [2], [7]

due to the normalization for the MF precoder.

Besides the normalization factor, the statistical properties of

the interference terms in (29) and (33) are different. In the up-

link, interference comes from the users with the same pilot se-

quence as the -th user in the -th cell. The denominator in (29)

depends on the distances from these interfering users to the -th

BS. In the downlink, interference comes from the neighboring

BSs that transmit using contaminated channel estimates. The

denominator in (33) depends on the distances from the neigh-

boring BSs to the -th user in the -th cell. Moreover, the coef-

ficients in the denominator of (29) can be treated as independent

parameters while the coefficients in the denominator of (33) are

all correlated. To see this, it is enough to note that distances from

the -th user in the -th cell to the neighboring cells, say the -th,

the -th and the -th cells, almost precisely determine the coor-

dinates of the user, and therefore also determine the distances to

other cells. Even though the statistical properties are different

for the uplink and downlink, the dissimilarities have little im-

pact on performance [2], [62].

Since it is an important issue that limits the performance

of multi-cell massive MIMO systems, the pilot contamina-

tion effect under different scenarios is investigated in several

papers [15], [63]–[65]. To demonstrate how the SINR changes

with the number of antennas at the BS, the SINR convergence

rate is derived in [63]. From (29) and (33), a massive MIMO

system with strong pilot contamination obviously has a lower
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performance limit than one with weak pilot contamination.

However, it reaches the (lower) performance limit with fewer

antennas at the BS. In [64], the sum rate lower bound is de-

rived when pilot contamination is present. The impact of more

practical channel models on pilot contamination is analyzed

in [65]. The model takes the correlation of channels corre-

sponding to different users into account and is also suitable for

environments without rich scattering. Using general channel

models and practical precoders/detectors and taking the pilot

contamination effect into account, it is demonstrated in [15]

that the RZF/MMSE precoder/detector can perform as well as

the MF precoder/detector with almost one order of magnitude

fewer antennas when the number of antennas at the BS is not

extremely large compared to the number of users in each cell.

The impact of pilot contamination when the number of an-

tennas at the BS and the number of users grow to infinity while

maintaining a fixed ratio is studied in [66], [67]. In particular,

performance limits based on MF and MMSE filters are derived

in [66], [67], and the asymptotic SINR in both cases depends on

both pilot contamination and interference averaging. The dif-

ference is that the MMSE filter can obtain an interference sup-

pression gain, leading to higher asymptotic SINR performance.

When the ratio of the number of users and the number of an-

tennas at the BS tends to zero, similar SINR results as in (29)

and (33) can be obtained where only the pilot contamination ef-

fect appears in the asymptotic SINR expression.

B. Mitigating Pilot Contamination

Several methods have been developed to mitigate the pilot

contamination effect. We introduce some of them here.

1) Protocol-Based Methods: One way to reduce the effect is

through frequency reuse or reducing the number of served users

that use non-orthogonal pilot sequences [2], [68]. For some spe-

cific cases, the performance can be improved [68], but in gen-

eral, frequency reuse may make little difference since fewer

users are served simultaneously even though the SINRs for spe-

cific users increase [2].

In the transmission protocol proposed in [2], all users transmit

pilot sequences synchronously, as shown in Fig. 2. In order to

mitigate the pilot contamination, a scheme based on a time-

shifted (asynchronous) protocol is proposed in [69], [70] and

[62]. The basic idea is to partition cells into several groups

and to use a time-shifted protocol in each group.

An example of this approach with is shown in Fig. 4.

While the users from group transmit pilots, the BSs from

transmit downlink data signals. This avoids pilot contami-

nation among users from and . At the same time the BSs

from have to estimate their channel vectors in the presence of

downlink signals transmitted by the BSs from and . Since

downlink transmit power, , is usually significantly higher than

that of pilot sequences, , it is not a priori clear that this ap-

proach provides any gain. From [70] and [62], as , the

uplink and downlink SINRs tend to the following limits,

(35)

Fig. 4. Time-shifted pilot scheme with .

and,

(36)

From these expressions, only users from the same group create

interference to each other. This leads to better performance com-

pared to (29) and (33). This scheme yields the same SINRs as

the scheme with frequency reuse while still allowing use of

the entire band in all cells. Instead of using the same uplink

and downlink transmit powers, and , optimized individual

powers, and , can be used for each user. It is shown in

[62] that power allocation can substantially improve the SINR

compared with (29) and (33).

2) Precoding Methods: A distributed single-cell precoding

method is proposed in [60]. According to this method, the pre-

coding matrix at one BS is designed to minimize the sum of the

squared error of its own users and interference to the users in

all other cells. The distributed single-cell precoding method is

shown to provide better performance than traditional single-cell

ZF precoding.

The precoding methods based on multi-cell cooperation in

[38] and [39] can mitigate the pilot contamination effect. How-

ever, the information exchange overhead required among the

BSs increases with the number of antennas. Therefore, these

methods are only feasible for MIMO systems with a limited

number of antennas.

To obtain the benefit of cooperation while limiting the in-

formation exchange overhead, a pilot contamination precoding

(PCP) method is proposed in [48]. PCP is based on two assump-

tions that the source signals for all users in all cells are acces-

sible at each BS and that large-scale fading coefficients, ,

are accessible to all BS’s or a network hub. Due to pilot con-

tamination, the channel estimate, , is a linear combination

of the channel vectors from (26). Instead of

mitigating interference caused by this contaminated estimate,

each BS uses the pilot contamination for transmitting informa-

tion to all users in the network as described below.

In order to transmit information to the -th users of all cells,

the -th BS transmits signal

(37)

instead of the source symbol . The coefficients are

called PCP coefficients. They are computed as a function of the

large-scale fading coefficients . The choice
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corresponds to the case of no PCP. Note that -dimensional

MF beamforming vectors, , are computed exactly as in (30),

that is completely locally without any cooperation between BSs.

Uplink PCP is formulated similarly.

If the PCP coefficients are computed using the ZF crite-

rion proposed in [48], it is referred as ZF-PCP. ZF-PCP allows

one to simultaneously remove the additive noise and inter-cell

interference. Thus, ZF-PCP theoretically yields infinite SINRs,

, as .

It is interesting to note, however, that ZF PCP does not give

good results for finite values of . From [48] that for finite ,

we have

(38)

where

(39)

and

(40)

When the coefficients are numerically optimized to di-

rectly maximize in (38), the approach is referred as

optimal PCP.

The expression in (38) allows one to conduct Monte-Carlo

simulation of massive MIMO systems in a very simple fashion,

by simply generating random large-scale fading coefficients

. Fig. 5 shows the cumulative distribution function (CDFs)

of user rates for different PCPs. The user downlink rates are

computed as . The network consists of

wrapped around cells. The number of BS antennas is

and the number of users in each cell is . One can see

that ZF-PCP has significantly worse performance than no PCP

scenario. Computations show that only at exceeding ,

ZF-PCP starts giving some gain over no-PCP. However, PCP

with numerically optimized coefficients provides a very large

improvement over no-PCP scenario. In particular, at the outage

probability 5%, optimal PCP provides 7500-fold gain in terms

of downlink user rates.

3) AOA-Based Methods: As shown in [71]–[73], under real-

istic channel models, some users with identical or non-orthog-

onal pilot sequences may have no interference with each other.

According to the multipath channel model for linear antenna ar-

rays, the channel vectors from the -th user in the -th cell to the

-th BS have the form [74]

(41)

where is the number of paths, is in-

dependent of the path index , is the user’s average path

Fig. 5. CDF of downlink user rates for different PCP algorithms.

loss, and is the steering vector. For a uniform linear array,

the steering vector can be expressed as

...
(42)

where is the antenna spacing, is the wavelength of the car-

rier, and is a random angle-of-arrival (AOA) with probability

density function (PDF), . In [71]–[73], it is shown that users

with mutually non-overlapping AOA PDFs hardly contaminate

each other even if they use the same pilot sequence. A coor-

dinated scheme for assigning identical pilot sequences only to

users of this type is developed in [73]. This scheme achieves

a significant reduction in inter-cell interference and a corre-

sponding increase in uplink and downlink SINRs.

4) BlindMethods: The blindmethods based on subspace par-

titioning in [75]–[77] can also mitigate pilot contamination. In

[75], an eigenvalue-decomposition-based (EVD) channel esti-

mation and iterative least-square with projection (ILSP) estima-

tion of channel vectors is proposed. The EVD-based estimation

is based on the assumption that the channel vectors from dif-

ferent users are orthogonal. This assumption allows one to es-

timate channel vectors using the statistics of the received data.

The multiplicative scalar ambiguity inherent to this type of esti-

mation can be resolved by using mutually orthogonal cell pilot

sequences assigned to the network cells.

This approach can be summarized as follows. During the up-

link transmission, the users first transmit data signals and then

cell pilot sequences. The estimation consists of the following

steps:

Step 1: The covariance matrix of the received signal is esti-

mated by

(43)

where is the received signal by the -th BS at

time defined in (27).
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Step 2: A matrix is found, whose -th column is

the eigenvector of corresponding to the eigen-

value that is closest to the quantity, . Fur-

thermore, with the help of the pilot sequences, an

estimate , of the multiplicative matrix, is ob-

tained [75].

Step 3: The estimate is calculated.

The ILSP estimation is based on the idea of joint iterative esti-

mation of the channel vectors and transmitted data. Let be

the matrix composed of the consecutively transmitted

signals of the users from the -th cell, be the set of all pos-

sible , and be corresponding matrix of received symbols.

Let be an initial estimate of , obtained for example

with help from the EVD-based estimation. Then ILSP consists

of a multiple repetitions of the following steps:

Step 1:

Step 2: .

In [76], [77], a blind pilot decontamination scheme is pro-

posed for systems with a power-controlled handoff strategy, and

this scheme can separate the interference subspace from the de-

sired signal subspace, resulting in no pilot contamination. Other

precoding and detection schemes that require less CSI, such as

the Hermitian precoding method in [47], can help reduce pilot

contamination as well.

VI. ENERGY EFFICIENCY

Besides spectral efficiency, massive MIMO technology can

improve power efficiency as well [78]. In this section, we first

present the power scaling law for massive MIMO systems and

then discuss the spectral and energy efficiency tradeoff.

The power scaling law for massive MU-MIMO systems has

been derived in [4]. As before, consider uplink transmission in

a single-cell system with single-antenna users, a BS with

antennas where . The channel vectors from different

users are uncorrelated. In this scenario, linear detectors [2], [7],

such as MF, ZF and MMSE, are good enough. Based on [4] and

(14), for the MF detector with perfect CSI at the BS, the ergodic

achievable uplink data rate for the -th user when the number

of BS antennas, , goes to infinity is

(44)

For comparison, the data rate for a user with transmit power

through a SISO link with large-scale fading coefficient only

is

(45)

From (44) and (45), when is large, the performance of a user

with transmit power in the MU-MIMO system with

antennas at the BS is the same as a SISO system with transmit

power without small-scale fading. Consequently, the power

can be scaled down by times for one user when perfect CSI is

available at the BS. Moreover, the spectral efficiency increases

by a factor of in serving users simultaneously.

The results based on imperfect CSI at the BS are somewhat

different. Based on [4], when an MMSE channel estimate is ob-

tained during the pilot transmission phase and is used for up-

link data detection, the ergodic achievable rate for the -th user

based on the MF detector is

(46)

as , where is the length of the pilot sequence and the

pilot power satisfies . From (45) and (46), the rate of

a user with transmit power in the MU-MIMO system

with BS antennas is asymptotically the same as the perfor-

mance under SISO transmission with transmit power

without small-scale fading. Thus, the transmit power of one user

can be scaled down by to get the same performance. Sim-

ilar results for ZF and MMSE receivers for both perfect and im-

perfect CSI are also obtained in [4].

In addition to the single-cell scenario, the power scaling law

is still valid for multi-cell systems; that is, one user can scale

down the transmit power proportional to or based

on perfect and imperfect CSI, respectively, to get the same per-

formance as in the SISO case [4]. Note that this result still holds

even with pilot contamination [4].

Energy efficiency is defined as the ratio of the spectral effi-

ciency and the transmit power. The tradeoff for the uplink is

studied in [4]. With perfect CSI, the energy efficiency decreases

as the spectral efficiency increases. However, a different result

is obtained if imperfect CSI is available. In the low transmit

power region, energy efficiency increases with the spectral ef-

ficiency, while with high transmit power, energy efficiency de-

creases as the spectral efficiency increases. The tradeoff for the

downlink is discussed in [33]. Compared to the MF precoder,

ZF can provide better performance in scenarios with high spec-

tral efficiency and low energy efficiency, while the converse

holds for scenarios with high energy efficiency and low spec-

tral efficiency.

Circuit power consumption is not considered in [4], [33].

When the circuit power is considered, the question of how to

perform antenna selection to improve energy efficiency is inves-

tigated in [79] and [80]. In [79], RF chain selection for configu-

rations both with and without CSI is studied to maximize spec-

tral efficiency for a given total power consumption constraint. It

is shown that for a MISO case without CSI, the optimal number

of RF chains is about half the maximum number of RF chains

that can be supported by the power budget. In [80], mutual infor-

mation based on antenna selection is derived, and the variance

of the mutual information is found to decrease as the number of

antennas increases. This work also shows that in order to max-

imize the energy efficiency, all antennas should be used if the

circuit power can be ignored compared to the transmit power

while only a subset of the antennas should be chosen if the cir-

cuit power is comparable to the transmit power.

VII. SINGLE-CARRIER TRANSMISSION

Existing results for massive MIMO systems mainly focus

on flat fading channels, which would imply that OFDM is

assumed for wide-band frequency-selective channels. OFDM

decomposes the wideband channel into a set of narrow-band flat

fading subchannels so that techniques for flat fading channels

can be used. However, a significant drawback of OFDM signals

is their high PAPR, which can result in low power amplifier
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efficiency. Moreover, to deal with intersymbol interference

(ISI), a cyclic-prefix (CP) is inserted in the time-domain, which

decreases the spectral and power efficiency. The computational

burden for calculating the discrete Fourier transform (DFT)

for OFDM modulation and demodulation increases with the

number of antennas as well. As an alternative, single-carrier

transmission has been studied for massive MIMO systems [81],

which can reduce complexity incurred by the DFT. Further-

more, single-carrier transmission has a lower PAPR than

OFDM. Note that, regardless of whether single-carrier or

OFDM modulation is used, the methods in [51], [52] for

frequency flat channels and in [82] for frequency selective

channels can be used to shape the samples transmitted by each

antenna to have constant envelope.

For a frequency-selective single-cell MU-MISO downlink

channel, the channel between the -th transmit antenna to

the -th user can be modeled as a finite impulse response

filter with taps, where the channel coefficient for tap ,

, has the same form as in (7), where the small-scale

and large-scale fading components are denoted as and

, respectively. It is assumed that the small-scale fading

coefficients remain the same for each block of symbols and

the large-scale fading coefficients are fixed during the entire

transmission. Denote as the transmit signal

vector from the BS at time . Then, the received signal vector

at time combined together for all users can be expressed as

(47)

where is additive white

Gaussian noise at all users and is an

channel matrix for channel tap .

To suppress multi-user interference and ISI, the following

precoder has been proposed in [81]:

(48)

where is the information symbol vector at time , each of

whose elements represents an information symbol for a given

user, and the scalar is for power normalization. The

proposed precoder in (48) takes the time-inverse and complex-

conjugated image of the channel impulse response and has a

form similar to MF. It is shown in [81] that multi-user inter-

ference and ISI can be efficiently suppressed with low total

transmit-power-to-receiver-noise ratio, leading to near-optimal

sum rate performance independent of the channel power delay

profile. The proposed precoder can also achieve an array power

gain proportional to the number of BS antennas.

For the uplink transmission, the operation can be treated as a

dual process of the downlink transmission. MF and MMSE de-

tectors can be used for signal detection. The symbol-error-rate

(SER) performance with quadrature-phase-shift-keying

(QPSK) modulation for the exponential channel model and TU

Fig. 6. SER performance of the uplink single carrier transmission.

channel model with 20 taps is shown in Fig. 6, where SNR is

5 dB. A LOS path is considered for the first arrival path and

the strength of the LOS component is determined by the Rician

factor, . In general, the SER performance for exponential

channel models is a little better than that for the TU channel

model and the MMSE receiver performs better than the MF

receiver.

Besides the work in [81], there are some discussions about

single-carrier transmission in massive MIMO systems in [56]

and [83]. To validate the potentials of single-carrier transmis-

sion in massive MIMO systems, further investigation is needed

in more general and complicated scenarios.

VIII. CHALLENGES AND POTENTIALS

To make massive MIMO systems a reality, there are still

many issues that need to be studied and addressed. Some of

these challenges are discussed below.

A. Basic Issues

1) Propagation Models: Most existing work on massive

MIMO is based on the premise that as the number of an-

tennas grows, the individual user channels are still spatially

uncorrelated and their channel vectors asymptotically become

pairwise orthogonal under favorable propagation conditions.

Theoretical studies of massive MIMO typically assume i.i.d.

complex Gaussian (Rayleigh fading) conditions [2], [4], which

is hard to justify in some situations. A number of experimental

studies with multiple antenna arrays have been performed at

2.6 GHz [84]–[86] by employing antennas in small cylindrical

or large linear arrays with 128 or 112 elements, respectively,

and have led to several interesting observations. From [86],

the real antenna correlation coefficients are significantly larger

than would be expected under i.i.d. channel assumptions.

Furthermore, very highly correlated channel vectors cannot be

rendered orthogonal by increasing the number of antennas. This

suggests that user scheduling should be a critical component

of massive MIMO systems and is much more important than

in regular MIMO implementation where more complicated

signal processing can be used to separate spatially correlated

users. From [85], there is significant performance degradation

in the case of closely spaced users with a LOS path to the BS
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for different system settings; instead of achieving 80–90% of

the optimum dirty paper coding bound, performance drops to

about 55%. Nevertheless, both sets of studies have concluded

that despite significant differences between the ideal i.i.d.

assumption and the measured channels, a large fraction of the

theoretical performance gains of large antenna arrays can in

practice still be achieved.

2) TDD and FDDModes: As discussed earlier in Section III,

research on massive MIMO systems is normally based on the

TDD transmission mode due to channel estimation and feed-

back issues. There are several possible ways to enable FDD

mode in massive MIMO systems. One way is to design effi-

cient precoding methods based on partial CSI [87] or even no

CSI. Another way is to use the idea of compressed sensing to re-

duce the feedback overhead [13], [88]. At the BS, the antennas

are usually correlated when placing so many antennas in a fi-

nite area. The correlation among channel responses from dif-

ferent antennas indicates that we do not need CSI for each in-

dividual antenna. Instead, the CSI can be compressed first and

then only the necessary information is fed back. The BS can

reconstruct the CSI according to the received information. In

this way, the overhead for CSI feedback can be greatly reduced.

Moreover, even though the uplink and downlink are allocated

with different frequencies, they are not always independent of

each other. Several strategies use channel reciprocity in FDD

systems [89]. Frequency correction algorithms are needed to

achieve channel reciprocity in FDD systems. Several frequency

correction algorithms, such as frequency correction based on di-

rection of arrival, covariance matrix, and spatio-temporal corre-

lation, have been discussed and compared in [89]. To utilize it

in massive MIMO systems, more investigation is needed.

3) Modulation: To construct a BS with a large number of

antennas, low-cost power-efficient RF amplifiers are necessary,

and problemswith high PAPR can impede good performance for

OFDM [56]. As discussed in Section VII, single-carrier trans-

mission is able to achieve near-optimal sum-rate performance

at low-transmit-power-to-receiver-noise-power ratios, without

requiring equalization at the receiver and multi-user resource

allocation. Whether this is possible for more general and com-

plicated scenarios needs further investigation.

4) Pilot Contamination: In a typical multi-cell massive

MIMO system, users from neighboring cells may use non-or-

thogonal pilots. The reason for this is very simple— the number

of orthogonal pilots is smaller than the number of users. The

use of non-orthogonal pilots results in the pilot contamination

problem. Pilot contamination causes directed inter-cell inter-

ference, which, unlike other sources of interferences, grows

together with the number of BS antennas and significantly

damages the system performance. Various channel estimation,

precoding, and cooperation methods have been proposed to

resolve this issue. However, more efficient methods with good

performance, low complexity, and limited or zero cooperation

between BSs are worth more intensive study.

5) Hardware Impairments: Only limited work has been done

on the impact of hardware impairments on massive MIMO sys-

tems. Initial studies in [90], [91] have shown that hardware ef-

fects can lead to channel estimation error and a capacity ceiling

even though a high array gain can still be achieved with an in-

crease in the number of antennas at the BS. The user side im-

pairment is more severe compared to the BS side. Fortunately,

the pilot contamination issue in the non-ideal case is actually

easier to mitigate compared to the ideal case [91]. Some other

initial work has studied the impact of phase noise [92], [93],

per-antenna power constraints [51], [52], mutual coupling [94]

and hybrid analog/digital beamforming architectures [53], [95],

but they are only limited to signal processing models rather than

actual transceiver implementations. For massive MIMO to be-

come a reality, more studies on the topic are desired.

6) Antenna Arrays: There are several practical issues re-

garding antenna arrays that are relevant to massive MIMO

systems. One concerns the configuration and deployment of

the arrays. In [96], a massive MIMO system is proposed where

antennas are placed in a 2D grid. Moreover, 3D and distributed

array structures are candidates as well. The second issue is the

mutual coupling effect among antenna elements. The mutual

coupling effect can be ignored only when the antennas are

well separated from each other. For massive MIMO systems,

antennas may be compactly arranged, and, the coupling issue

cannot be ignored [97]. Finally, the increased hardware and

computational costs due to the use of very large antenna arrays

should be considered. To reduce cost while maintaining per-

formance, an electromagnetic lens antenna (ELA) is proposed

in [98], [99], integrated to a large antenna array. The proposed

ELA can provide spatial multipath separation and energy

focusing functions, which can be exploited to improve the per-

formance of massive MIMO and/or reduce its implementation

cost and complexity. In general, issues related to array design

and implementation are critical for massive MIMO systems.

B. Application Issues

The use of massive MIMO in wireless networks has the po-

tential to achieve dramatic improvements in capacity and en-

ergy efficiency. It also fits very well with applications involving

heterogeneous networks and millimeter wave communications,

among many others.

1) Heterogeneous Networks: In heterogeneous net-

works (HetNets), low-cost small cells referred to as pico-

or femto-cells are flexibly deployed in order to provide dense

coverage and ubiquitous high throughput. The use of massive

MIMO in coordination with HetNets in order to provide im-

proved interference management and energy efficiency is an

important future research direction.

Interference management among coexisting massive MIMO

systems and small cells is a critical issue. It is important that

a macro-cell BS with a large number of antennas be able to

communicate with its own macro-cell users without interfering

with users in small cells. A precoding method based on re-

versed TDD is proposed in [100] to address this issue. In this

approach, the macro-cell BS estimates the null space to the

small cells during their downlink transmission and then projects

its downlink data transmission into the null space of the small

cells, generating interference-free transmission. A similar idea

has also been proposed before in [101] for cognitive radio net-

works. However, by employing a large number of antennas at

the macro-cell BS, higher degrees of freedom can be used to

improve system performance.
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Energy efficiency issues in massiveMIMO systems with Het-

Nets are addressed in [102], [103]. The energy efficiency of

massive MIMO systems and HetNets are compared in [102]

under the assumption that a given area is covered either by a

massive MIMO system or a certain number of small cells. From

[102], when the number of cells is large, HetNets are more en-

ergy efficient than a corresponding massive MIMO system, but

otherwise a massive MIMO system is better. In other settings,

users may be simultaneously served by both a massive MIMO

BS and small cell BS’s. A beamforming method to minimize

consumed power under given rate requirements in such a sce-

nario is proposed in [103] when perfect CSI is available and

interference coordination is used. Based on the results in [103],

it is usually optimal to assign one BS per user even though users

could be served by several BS’s.

To deploy small cells, a high-capacity and easily accessible

backhaul network is required. The use of massive MIMO BSs

for wireless backhaul is proposed in [104]. Additional work is

necessary to make such an approach more practical.

2) Millimeter Waves: Another technology for achieving

dramatic improvement in capacity and spectral efficiency is

communications over millimeter wave (MMW) bands around

or above 30 GHz, where the spectrum is less crowded and

available bandwidths are broader. MMW technology fits well

with massive MIMO and HetNet technology. An encouraging

factor is the apparent symbiosis among these three concepts:

smaller cell sizes are attractive for operation at MMW fre-

quencies where RF path loss is significantly higher, the shorter

wavelength associated with higher frequencies is appealing for

massive MIMO designs since the size of the antenna array and

associated electronics is reduced, and the large beamforming

gain achievable with a very large number of antennas can

extend coverage to help overcome the high MMW path loss.

A very thorough MMW measurement campaign has been

completed in New York City at 28 GHz and in Austin, Texas,

at 38 GHz [105]. Using directional horn antennas for the data

collection, the experiments established operational ranges in

both outdoor and indoor environments, and provided measure-

ments of path loss exponent, penetration loss through different

types of windows and walls, delay spread, number of resolv-

able multipaths, and reflection coefficients. The results in [105]

are promising for MMW MIMO systems, but many important

questions remain. For example, propagation at MMW frequen-

cies does not obey a Rayleigh-fading model, it tends to be LOS

or near-LOS. This obviously has important implications for the

achievable spatial multiplexing gain. Furthermore, the use of

MMW frequencies means higher Doppler shifts for a given ve-

locity, and hence potentially shorter coherence times. However,

there are two mitigating factors that compensate for this. First,

as mentioned above, millimeter-wave systems will primarily

be used for relatively short-range applications (e.g., femto- and

pico-cells) due to the increased path loss relative to current sys-

tems that operate near 2–3 GHz. Consequently, the mobility of

users in such systems will be relatively low, and we can expect

that the order-of-magnitude increase in carrier frequency will

likely be accompanied by a corresponding order-of-magnitude

decrease in user velocity. Second, the ability of massive MIMO

implementations to achieve very narrow spatial selectivity (e.g.,

“pencil” beams) coupled with (near-)LOS propagation will re-

sult in a significant reduction in delay spread, and hence a corre-

sponding increase in coherence bandwidth. Together, these fac-

tors should lead to systems that do not require a significant in-

crease in channel update rates, but additional work is needed to

confirm this conjecture.

IX. CONCLUSIONS

In this article, we have comprehensively described massive

MIMO systems from several different perspectives. By equip-

ping a BS with a large number of antennas, spectral and energy

efficiency can be dramatically improved. However, to make the

benefits of massive MIMO a reality, significant additional re-

search is needed on a number of issues, including channel cor-

relation, hardware implementations and impairments, interfer-

ence management, and modulation.
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