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1. Introduction

Today, microprocessor-based systems are widely used in industrial applications because
of their low cost, programmability, and ready availability of supporting peripherals. In
contrast, complete hardware solutions (e.g. ASIC-based) have much higher costs and
design periods, and complete software solutions are often not capable of supporting the
real-time constraints of application.

Computer-aided design of microprocessor-based systems require the design of the hard-
ware configuration along with the design of application-specific software and the device
drivers. Design automation research in the last decade has primarily concentrated on hard-
ware design or software design, but has neglected the key area of cooperative design of
hardware and software. But the increasing demand from the industry for lower design
periods has forced the international research community to explore methedologies for
automating the codesign of mixed (hardware—software) systems (Srivastava & Brodersen
1991; Kalavade & Lee 1993; Kumar ef al 1993; Smailagic & Siewiorek 1993; Chou et al
1994; Hu er al 1994) during the last three years.
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For designing microprocessor-based systems, it is essential to incorporate the capability
of adequate semantic requirement interpretation of problem specification as well as that
of the external environment with which the target system is supposed to interact. Only
semantic interpretation, for example as in boolean synthesis, is not sufficient for this
domain. Hence, a knowledge-based approach is the appropriate paradigm for designing
such systems. This approach also facilitates the encoding of design heuristics in the form of
situation-action rules. Such heuristics have been traditionally used by human experts. An
explicit recourse to all this domain knowledge for solving each and every design problem
turns out to be very costly and impractical. In this perspective, the expert system approach
provides a flexible solution to this problem.

However, it is well known that the power of a knowledge-based system is very much
dependent on the extent of the knowledge encoded in the system. Although the shal-
low knowledge-based systems perform reasonably well when the solution lies within the
boundary of the encoded knowledge, they fail to generate a solution if the association
between the relevant problem subgoal and the desired solution has not been encoded in
the system. In contrast, second generation expert systems (Keravnou & Washbrook 1989)
resort to deep (causal or behavioural) knowledge when shallow knowledge fails to find a
solution. Such an integration of deep knowledge with shallow knowledge is necessary to
make a robust knowledge-based design system.

The usage of second generation expert systems is of special relevance in the domain
of microprocessor-based systems, where the repertoire of devices is growing at a regu-
lar pace. When a human designer fails to achieve an elegant solution with the devices
known to his experience, he/she consults device manuals and application notes to find
new devices which can solve the desired design subgoal. The design expert system should
be able to mimic the human designer’s capability of analysing the behaviour of the de-
sired subgoal and the available devices and to generate the necessary interface to the
device.

The present article is a report on the first Indian effort in this direction. We have developed
a knowledge-based CAD framework for automating the design of microprocessor-based
systems. In this paper we propose a knowledge-based system having a novel two-layer
architecture, the first layer being a shallow layer which synthesizes the target systems
using precompiled heuristic transformation rules and associated procedures. Whenever
such precompiled knowledge turns out to be insufficient to solve a design subgoal, the
second layer — which is the deep layer — is invoked. The deep layer is endowed with the
behavioural knowledge about the microprocessor peripheral devices and the different de-
sign functions. This layer performs behavioural (model-based) reasoning to find a solution
for the “failed” subgoal, and returns the result to the shallow layer, which then continues
with the design tasks. Thus, two-layer architecture provides a resilient environment for
design.

In this paper, our emphasis is on presenting the integrated environment, and on the
communication and cooperation between the two layers. For completeness, we also present,
briefly, the salient features of the individual layers. Details of the shallow layer can be found
in Mitra et al (1993, 1994), and the description of the behavioural mapping algorithms can
be found in Mitra et al (1996).



Knowledge-based CAD framework 721
2. Related works

Automated hardware software codesign has been used in a variety of applications: DSP
(Kalavade & Lee 1993), wearable computers (Smailagic & Siewiorek 1993), automobile
control (Hu er al 1994), robot control (Srivastava & Brodersen 1991) etc. Two key issues
in hardware-software codesign are hardware-software partitioning (Kumar et al 1993)
and hardware-software interface synthesis (Chou ez al 1994). A brief survey of the issues
and approaches in hardware-software codesign is available in Micheli (1994). Hardware—
software codesign is essentially a system-level design problem, and hence draws on past
research efforts in high level synthesis (McFarland ez al 1990) (especially on the issues
of partitioning, allocation, scheduling and hardware synthesis), and on those in automated
synthesis of domain-specific software (Barstow 1985; Jullig 1993).

Al techniques have been effectively used to solve the complex problem of system de-
sign. Chippe (Brewer & Gajski 1990, 1991) is a hybrid expert system for design, that
encodes analysis knowledge in the form of rules and implementation knowledge in the
form of procedures, resulting in fast executions. Other noteworthy CAD systems for the
design of computer configurations and circuits are MICON (Tseng & Siewiorek 1986),
R1 (McDermott 1982) and VEXED (Mitchell e al 1985).

A number of researchers have investigated the issue of integrating the deep level knowl-
edge about the device, in design and diagnosis problems (Keller ez al 1990; Keuneke 1991).
Most of these approaches use a structure function behaviour model of the device as a form
of deep level knowledge. The structural model is based on the physical organization of the
components. The function of the device is its intended purpose. The functional specifica-
tion describes the device’s goals at an abstract level. Functions are achieved by behaviours.
In other words, function is what is expected and behaviour is how this expected result is
achieved (Keuneke 1991). Behaviour is often represented as a causal sequence of transition
of partial states.

3. System overview

As mentioned earlier, we have developed a two-layer architecture for a knowledge-based
design system, in order to allow the design process to have the advantages of shallow
as well as deep reasoning. On the occurrence of a failure in the shallow layer, the deep
layer is invoked to resolve the failure. If that succeeds, the shallow layer continues with
its processing, using the data returned by the deep layer. If, however, the deep layer fails
to generate the required solution, the shallow layer backtracks and tries to find another
problem decomposition — one that does not contain the failed subgoal.

The two-layer architecture of our synthesis system is shown in figure 1. The S-layer is
the expert system (christened MICKEY) that performs the synthesis tasks with the help
of shallow design knowledge compiled by the human expert. This layer uses precompiled
shallow knowledge about implementation of specific design functions in order to translate
the problem specifications into the target system’s hardware and software. This layer is
a hybrid expert system (Brewer & Gajski 1990; Bailey et al 1991; Kambhampati et al
1993), in which several knowledge sources, rule-based as well as procedural, interact and
contribute towards generating the solution.
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Figure 1. Overall system architecture.

However, knowledge is seldom complete. When the S-layer detects that it does not
have any knowledge about implementing some design subgoal, it invokes the D-layer
(called MINNIE) by passing the details of the “failed” subgoal. The D-layer contains the
behavioural models of available devices, organized in the form of a database. This layer
also contains procedures for retrieving relevant device information from the database,
and for mapping the behaviour of the failed subgoal to the behaviours of the retrieved
devices. Thus, the database of the D-layer coupled with the mapping algorithms serve as
a deep knowledge-based system, which can find solutions from first principles. It may be
noted that the purpose of the D-layer is essentially to mimic a human designer who, when
running short of experiential knowledge, consults device handbooks to arrive at a solution.
On successfully finding a device that can implement the failed subgoal, the D-layer passes
the specifications of the device’s interface to the S-layer, which then continues with the
synthesis taks.

The S-layer and the D-layer together form a two-layer knowledge-based architecture
for the synthesis of microprocessor-based systems. The integration of the D-layer with the
S-layer aims at making the design system resilient.

4. The S-layer

The S-layer translates the problem specifications into the target system’s hardware and
software, by using precompiled design knowledge. A schematic overview of the S-layer
is shown in figure 2, which depicts the sequence of design tasks, the different knowledge
sources used, the supporting subtasks, and the blackboard-like shared data structure for
storing partiai design results.
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Figure 2. Architecture of S-layer.

4.1 The design tasks

In order to synthesize the target system, several tasks have to be performed, such as the ac-
quisition of the specifications from the user, functional decomposition, hardware—software
partitioning, interface synthesis, software synthesis, circuit synthesis and simulation.

These tasks use several categories of knowledge to achieve their objectives. The different
representations of knowledge have been discussed in a later section. The different cate-
gories of knowledge used for the purpose are the Application World Knowledge, Design
Refinement Knowledge, and Device Knowledge.

4.1a Specification acquisition: The specification of the target system is represented in
SpeX, which is a visual language based on the statechart language (Harel 1987). State-
charts have constructs for the modular specification of the control flow and concurrency
of complex systems. In addition to these constructs, SpeX also has features for specifying
data flows, data constraints, real-time constraints and implementation preferences for the
functional elements (FEs).

These specifications are acquired from the user with the help of a graphical user interface,
and then converted to an equivalent textual form. The specifications are validated by
checking for syntactic correctness,
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4.1b  Algorithm design: The specification may contain nodes for abstract functional-
ities, which have to be decomposed into a lower level of detail. This decomposition is
performed by the present task, by a top-down refinement process. Every decomposition
step introduces new FEs, control flows, data flows and constraints, and also maps the in-
puts and outputs of the parent function to those of the children. The design refinements
are performed by design refinement rules, which have been encoded in a specialized shell,
APS, designed for this purpose.

The selection of the appropriate refinement to be made to the partial design, consists of
two decision steps.

(1) Selection of the function or subgoal to be refined, and

(2) selection of the refinement to be made on the selected function.
These decisions are made by the following strategy:

e select the function that has the minimum (nonzero) number of applicable refinements.

e for the chosen function, select a refinement that satisfies the maximum number of
constraints.

This strategy has been formulated with an analogy to the Consistent Labelling Problem
(CLP) (Haralick & Shapiro 1979), where a variable is selected that has the minimum
domain set of candidate values and for the chosen variable, a value is selected that satisfies
the maximum number of constraints.

The refinement process goes hand in hand with constraint propagation and conflict
resolution. Constraints are propagated (Steinberg 1987) from one part of the design to
another in order to (i) influence the proper choice of future refinement steps, and (ii) obtain
conflict-free designs. Depending on the nature of the constraints, the conflicts are handled
in different ways:

o Conflicts in interval constraints, that are imposed on parameters, are resolved by the
algorithm proposed by Hyvonen (1992). In this method, such constraints are resolved
by taking the intersection of the conflicting intervals.

e Mismatches in data type constraints are resolved by introducing a patch-up FE to
transform one constraint to the other. For example, an analog-to-digital-converter is
introduced to convert an analog signal (say, current) to its digital equivalent, so that
necessary computations may be performed by the microprocessor.

s When communicating processes execute at different rates, buffers are set up to store
the communication data.

o If astorage location is simultaneously accessed by more than one concurrent processes,
aconflictin the address bus is generated. This type of conflict is resolved by introducing
an arbitration mechanism for the access, such that a slower process has precedence
over a faster process.

e If a conflict on performance constraints is detected, a preliminary hardware—software
partitioning is done. Conflicts on performance constraints are due to (i) processor
requirement conflicts, which arise due to conflicting concurrent processes, or (ii) data
access time conflicts.
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The resultant partial design is a control and data flow graph (CDFG) where each FE
has a known implementation, hardware and/or software. These FEs are called primitive
functions (PFs).

4.1c  Architecture design: A key issue in hardware-software codesign is hardware—
software partitioning. From among the available implementations for each PF of the CDFG,
an appropriate implementation has to be selected such that the real-time constraints of the
problem are satisfied. In order to determine whether such constraints are satisfied, a fea-
sible schedule of the allocated implementations also has to be formed. When considering
single-microprocessor target systems without multi-tasking, the scheduling should ensure
a single-thread software. Thus, hardware—software partitioning consists of allocation of
specific implementations for each PF, and scheduling these implementations. This is per-
formed by the present task.

The allocation and scheduling steps are formulated as an integrated CLP, where a PF
is analogous to a variable and an available implementation is analogous to a value. The
solution to this CLP, subjected to two sets of constraints (the timing constraints to be
satisfied and the area cost constraints to be optimized), would lead to two sets of partitions,
one consisting of the hardware implementations and the other consisting of the software
implementations. But for this application, a few extensions to the conventional CLP is
required. They are:

o The set of variables is dynamic, since extra PFs may be added to the partial design to
resolve conflicts between implementations of interacting PFs.

o The cost of the target system does not increase with every labelling, since reuse of
already allocated implementations does not add to the cost of the design.

e Two levels of backtracking have to be considered, for the allocation and scheduling
steps respectively.

A forward checking algorithm is used to find a solution to the CLP, and the user is
allowed to specify a time bound for the search. The branch-and-bound search technique
results in a monotonic decrease in the solution cost. Search heuristics are used to quickly
converge to the optimal cost.

4.1d  Interface design: After the hardware-software partition is formed, the synthesis
of the interface between the software partition and the hardware partition is the next key
issue that has to be addressed in a hardware—software codesign framework. The present
task synthesizes the interface by (i) allocating nonconflicting addresses to the devices to be
placed on the system bus, (ii) converting event-based transitions of the CDFG into interrupt
service routines (ISRs), and (iii) synthesizing the device drivers.

The addresses are allocated by a heuristic algorithm that attempts to reduce the address
decoding logic. The ISRs are created by a top-down refinement process which replaces the
event-based transitions by the respective interrupt service actions, thus fragmenting the
CDFG. In the modified CDFG, the events are captured by the respective interrupt lines,
and the relevant ISRs handle the transitions.
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The device drivers are created, again by a refinement process, by synthesizing the inter-
face that allows a device to exhibit the behaviour of the function that has to be implemented
by it. This interface, consisting of software as well as hardware modules, programs the
programmable devices and performs data transfers (along with the requisite data trans-
formations) to and from the device. A rule for synthesizing device drivers is described in
§4.2.

4.1e Software design: At this stage of the design, the CDFG of the partial design
has several characteristics: (i) it does not contain any partial orders of FEs, (ii) there
are no event-based transitions, (ii1) explicit partitions have been formed for software and
hardware implementations, and (iv) the implementations of all interfaces between software
and hardware implementable modules have been determined, and these have also been
partitioned as software or hardware implementations. From the software partition of the
CDFG, the target system’s software is generated by macro-substitution of C-program
templates for each FE, and subsequent compilation to machine code.

4.1f  Circuit design: This task synthesizes the address decoding circuitry and estab-
lishes the pin connectivity of the devices allocated during hardware—software partitioning.

4.1g Simulation: Inorder to verify that the synthesized target system behaves correctly,
the software and the hardware are cosimulated. For this, the software is treated as initial-
ization data for the system ROM, and the circuit is simulated. Event-driven simulation is
performed, and the behaviours of the devices are represented in SpeX. Faults, if any, are
traced manually to their cause, and after correcting the error, the design tasks are executed
again.

4.2  Design knowledge representation

The processing and knowledge requirements of each task of the S-layer are summarized
below. Along with each knowledge item, the type of representation used for that item is
mentioned. These representation schemes will be explained subsequently.

(1) Specification acquisition task:

(a) Acquisition algorithm [Procedure]
(b) The characteristics of design functions {Database]

(2) Algorithm design task:

(a) Refinement steps [Rules]

(b) Constraint propagation algorithm [Rules]

(c) World constraints [Rules]

(d) Function constraints [Rules]

(e) Conflict detection and resolution strategies [Rules]
(f) PF-Flags {Facts]
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(3) Architecture design task:

(a) Hardware—software partitioning algorithm [Procedure)}
(b) Knowledge about candidate implementations [Database]

(4) Interface design task:

(a) Address constraints of devices [Database]
(b) Address allocation algorithm {Procedure]
(c) Refinement steps {Rules]

(5) Software design task:

(a) Program templates [Database]
(b) Macro-substitution and refinements [Procedure]

(6) Circuit design task:

(a) Refinement steps [Rules]

(b) Constraint propagation algorithm [Rules]

(c) Device constraints [Rules}

(d) Function constraints [Rules and Facts]

(e) Conflict detection and resolution strategies [Rules]

(7} Simulation:

(a) Simulation algorithm [Procedure]
(b) Code for function behaviour [Database]

(8) Task management:

(a) Task hierarchy and sequence [Rules]
(b) Failure handling [Rules]

Mainly two types of representation schemes have been used to encode the above re-
quirements: rule-based and procedure-based. The input for the rules is encoded as facts
(i.e. the working memory elements of the expert system shell that are not modified by any
rule), and the input to the procedures are data items, sorted and indexed on key values. The
latter can be conceptualized as a relational database; hence the use of the term Database
in the above enumerations. These two representation schemes are described below.

4.2a Rule-based representation: Rules are mainly used for: i) partial design refinement,
ii) constraint propagation and analysis, and iii) task sequencing and failure handling. These
rules have been implemented in a production system language APS (Mitra 1995).

The rules for partial design refinement perform functional decomposition of the FEs of
the partial designs. Hence, the inputs and outputs of these rules are the different features of
the partial design — the FEs, data flows, control flows, concurrency definitions etc. Besides
deleting the FE that is being refined (referred to as the parent) and creating the new FEs
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(referred to as the children), these rules also map the data and control flows of the parent
to those of its children.

A rule for synthesizing the device driver for an Intel 8253 timer is shown in figure 3a.
This rule refines the partial design to implement an up-counter by this device. Given the
address allocation of the device and the maximum value of the counter, this rule computes
the programming commands for the device and the transformation of the output data. Line
11 of the rule refers to a device constraint — in this case, the address offset for the selected
timer. The device constraints are represented as facts in the working memory.

Rules are also used for constraint propagation, conflict detection and conflict resolution.
Rather than representing the constraints of the application world (e.g. the characteristics
of ECG signals) and the devices (e.g. 1/O constraints) as semantic nets and traversing
these nets in order to collect and propagate these constraints, these constraints are clubbed
together with the specific rules that propagate them. The rule for propagating constraints
of the ECG domain into the partial design is shown in figure 3b. It defines the minimum
sampling rate of an ECG-signal as 200 Hz and the frequency of the periodic ECG-signal
as 1.2 Hz.

The propagation of constraints may result in design conflicts. The detection of a conflict,
and the strategy for resolving it, are combined into a single rule.

Task sequencing, as well as inter-layer communication, is also performed by rules. The
strategy followed here is the same as that used by R1 (McDermott 1982), by using the
principle of maximum specificity to initiate and terminate tasks.

4.2b  Procedural representation: This kind of processing has been used for (i) spec-
ification acquisition, (ii) hardware—software partitioning, (iii) software generation, and
(iv) simulation. The procedures have been encoded as C programs, and their input know!-
edge is accessed from their relevant input files.

5. The D-layer

The architecture of the D-layer is shown in figure 4. Input to D-layer is in the form of a
failure report from S-layer. This report contains information about the design function for
which S-layer did not have implementation knowledge. The output of D-layer is the list
of devices and their interfaces which can implement the desired function.

The behaviours of design functions and available devices are stored in two databases,
the Function Database (FDB) and the Device Database (DDB). Based on the contents
of the failure report, D-layer retrieves the behaviour of the function and the behaviours
of candidate devices that may implement the function. Subsequently, the behaviour of
the function is compared with the behaviours of each of these candidate devices, and the
functional specifications of the necessary interface is generated by the behaviour-mapping
algorithms. Subsequently, an implementation of the interface is synthesized by using the
knowledge about the signal constraints and programming modes of the selected device.

The primary task of D-layer is to compare two behaviours, that of a design function
and an available device, in order to determine whether the former can be implemented by
the latter. Achieving this objective, requires that the device behaviours and the function
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(prog-dev-8253-upcounter-init
;5 initialize counter-by-8253

(context

(task * 0 :fn int-devdrv)

?s = (fe :fn start :attrs ?s0)

(fe * 7s0 :fn up-counter :attr ?al)

(impl :fn ?7s0 :id ?id :dev 8253 :part ?7prt)

)

7mc = (getval 7al :maxcnt)

(gt ?mc 255)

(devinfo :dev 8253 :part ?prt :addr 7ct)

(addr-space :id ?7id :mapping 7m :from ?base)

==>

7basec = (plus 7base 7ct) ;; counter address

7ctwd = (plus (mult ?ct 64) 48)

?cnt~h =(trunc (fldiv ?mc 256))

?cnt-1l =(minus 7mc (mult ?cnt-h 256))

?s1 = (make fe :type state :fn write :attrs (setof
(item :addr (plus ?base 3))
(item :data ?ctwd) (item :map 7m)))

?s2 = (make fe :type state :fn write :attrs (setof
(item :addr ?basec)
(item :data Zcnt-1) (item :map ?m)))

?s3 = (make fe :type state :fn write :attrs (setof
(item :addr ?basec)
(item :data 7cnt-~h) (item :map 7m)))

(make tr :source 7s1 :destn ?7s2)

(make tr :source 7s2 :destn 7s3)

(make mapc :type exit :oldst ?s :newst ?7s3)

(make mapc :type entry :oldst 7s :newst ?7si)

(del 7s)

)

(constr-prop-6 ;; transfer ECG constraints

(context

(task * 0 :fn algo-constr-prop)

7df = (datafl :constr 7c)

(eq (getval ?c :type) ECG_signal)

(undef (getval ?c :min_sample_rate))

)

(mod 7df :constr (join ?c (setof (item :min_sample_rate 200)

(item :freq 1.2)))) ;; 1.2 == 72/60
)

Figure 3. (a) Rule for synthesizing device driver for Intel 8253 to be operated as
an up-counter. (b) Rule for propagating constraints of ECG-signals.
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Figure 4. Architecture of D-layer.

behaviours be represented in a proper form, which facilitates the mapping between the
two. The formalism of Finite State Machines (FSMs) is commonly used for representing
behaviours of a large class of devices and circuits. However, this formalism is not suitable
for the purpose of behavioural mapping because of the following reason.

Most devices (e.g. microprocessor peripherals) use memory. Representation of the be-
haviour of such a device as a single FSM, requires an exponential number of states. This
is because the combination of the states of the memory elements is explicitly encoded as
states of the machine itself. For example, an FSM representation of an n-bit up-counter
requires 2" states. In such an encoding scheme, transitions between memory states are
based on the relevant data input events.

In the present system, we have adopted a new representation formalism which has been
used to represent the deep knowledge about the behaviour of the devices and functions.
Next, we have developed a mapping approach, which is essentially a search algorithm to
see whether a device can implement a given function. It also derives the specification of
the interface required to achieve such a match.

5.1  Representing behavioural knowledge

One approach for reducing the number of states, is the EFSM modelling scheme (Devadas
et al 1991). This scheme makes the internal registers explicit, and register update opera-
tions are encoded as actions of the transition arcs of the state transition graphs. However,
behavioural mapping of two EFSMs requires the performance of reachability analyses of
the two behaviours, and this can be very expensive for large problems. The statechart lan-
guage (Harel 1987) provides another formalism for reducing such an explosion of states, by
using compositions of communicating FSMs. In our modelling scheme, termed Composite
Finite State Machines (CFSMs), we use a similar composition technique for reducing the
number of states.

A schematic of the CFSM model is shown in figure 5. A CFSM consists of a number of
constituent machines (which may be FSMs or combinational units), operating concurrently
and communicating with each other. One of these constituent machines is termed the
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Figure 5. CFSM as a set of communicating machines.

primary machine (PM), which is essentially an FSM and represents the abstract functional
behaviour of the overall CFSM. The other constituent machines are called subsidiary
machines (SMs), and handle the data and memory operations only.

The functioning of an SM is controlled by the PM, or by another SM, via internal
data and control sigrals. These internal communications may (i) initiate, stop, suspend or
resume the functioning of an SM, (ii) access the results of computations performed by the
SM, or (iii) be control signals generated by an SM. All external outputs are performed by
the PM. As for the external inputs, the control inputs are accepted by the PM, and the data
inputs are handled by the relevant SMs. The operational semantics of every constituent
machine of a CFSM is similar to that of statecharts.(Harel 1987).

Every state transition arc in the PM is labelled by a triplet e[c]/a, where: (i) e is an event
that activates the transition, (ii) ¢ is a set of guard conditions that enable the actual firing
of the transition, and (iii) « is a set of actions that are executed by the PM before entering
the next state.

The PM of an up-counter is shown in figure 6. In a conventional FSM representation, it
would have required MAXCNTH1 states. In the PM, f; is the start state, f is a nonterminal
state, and f> and f3 are terminal states corresponding to whether an overflow has occurred
or not before the counter has been stopped.

This PM, F, interacts with two SMs, S; and 5. S; embodies the function no- of (CLK+-),
i.e. it keeps track of the number of occurrences of the rising edges of the CLK input. S
represents a function for monitoring the output of S;. This function generates a control
signal when the output of S; exceeds a given bound. F collects data from S; when required,
and the output of S; is used to trigger the overflow transition in F.

The reduction in the number of states in this PM is due to the presence of the abstract
nonterminal state fj, which denotes the process of counting. When the PM is in this state,
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Control Inputs: START, STOP

Data Inputs: CLK(0:1)

Control Outputs: OVFL(0:1)

Data Outputs: DATA(0:MAXCNT-1)

SMs: S1: no-of(CLK+); §2: S1 > MAXCNT

Edge Labelings:

arcl: START/init(S1),init(S2)
arc2: STOP/DATA=S51,0VFL=0
arc3: S2/OVFL=1

Figure 6. PM of an up-counter.

the SM §; continues with its task of counting, and the SM S continuously monitors the
output of S;.

5.2 Behavioural mapping

The objective of behavioural mapping is to determine the implementability of a function
F, by a given device D. A device D implements a function F, if and only if there exists
an interface 7 such that any input sequence, I, that is accepted by F is also accepted by
D.T (which is the device with the interface attached to it), and the output sequence of F
for that input is the same as the output of D.Z.

The device’s interface may transform the inputs of F before sending them to D. Simi-
larly, the outputs of D may also have to be transformed in order to make them equivalent
to those of F. These transformations are determined by the behaviour-mapping process. A
library of available transformation operators is maintained, to achieve the required trans-
formation functions.

It is assumed that the behaviours of F and D are represented in the CFSM formalism,
as described in the previous section. Although the PM of a CFSM does not use the data
events directly, the functions that are to be performed on the data are encoded implicitly,
by name, within the PM. Moreover, all outputs are generated by the PM alone. Thus,
the PM captures the overall functional behaviour of the CFSM. Hence, for the purpose
of behavioural mapping, it is sufficient to consider the behaviours as described by the
respective PMs alone.

Let the symbol F be used to denote the PM of the desired function F, and the symbol
D be used to represent the PM of the available device D. Then, F is implementable by D
if and only if there exist signal transformation functions, t; and ,, such that for every path
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in F from the start state to a final state which accepts the input sequence /, thus generating
the corresponding output sequence O, there exists a path in D from a start state to a
terminal state, which accepts the input sequence ¢; (1), and produces the output sequence
O’ where t,(0’) = O. Hence, a process of search is required to map F (which is a graph)
onto D. Along with the mapping of the states of F, the signals of F also get mapped to
the signals of D, with the requisite transformations. These mappings are generated by a
variation of the FSM equivalence algorithm of Hopcroft & Ullman (1979). The mapping
is not necessarily surjective because, in general, a device may be capable of exhibiting a
wide range of functionalities, only a subset of which is sufficient to meet the requirements
of F. However, the mapping should be injective.

Based on the results of the mapping, the implementation of the required interface is
then determined by using the signal and timing constraints of the device. In addition, if
the device is programmable, the programming modes are considered as well.

6. Task management

The D-layer and the different tasks of the S-layer, mentioned in the preceding sections,
have to communicate with each other in order to form a coordinated problem-solving
system. The details of such inter-task communication are described in this section.

6.1 Communication of design information

The inter-task communication has been implemented with the help of a shared blackboard-
like data structure. Each design task outputs a partial design on which the relevant con-
straints are defined. This information can be conceptualized as having four fragments, all
of which are stored in the blackboard.

(1) The control and data flow graph (CDFG), that depicts the control and data flow among
the functional elements (FEs) of the design, along with the description of the concur-
rency among the FEs, the constraints imposed on the data flows, and the implementa-
tions that have been allocated to each FE.

(2) The constraint networks consisting of the timing constraints and the relations among
the various parameters of the design.

(3) The geometrical layout of the elements of the CDFG, in order to facilitate viewing of
the partial design and its interactive editing.

(4) The design history, i.e. the search tree that has been explored so far.

These fragments are connected to each other very closely. For example, the leaves of the
design history tree are the nodes of the CDFG; timing constraints are defined on sections
of the CDFG; the parameters of the nodes of the CDFG are related by constraints, and the
layout information is associated with each node and arc of the CDFG.

Each task takes its input data from this shared blackboard, and on completion of the pro-
cessing stores its outputs in the same place. This partial design information is represented
as working memory elements of APS. Some of the tasks of the S-layer are implemented
as procedures, and require a different encoding of the data. These procedures convert the
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If

task = Startup

Then

Create subgoal for initiating Simulation

Create subgoal for initiating Circuit-design
Create subgoal for initiating Software-design
Create subgoal for initiating Interface-design
Create subgoal for initiating Architecture-design
Create subgoal for initiating Algorithm-design
Delete task

Figure 7. Rule for starting the processing of S-layer.

data available in the blackboard into the required format, and on completion of the task
store the results in the blackboard after performing the reverse conversion.

6.2 Inter-task control flow

The S-layer is a hybrid expert system, in which rule-based and procedural tasks interact
with each other. The sequence among these tasks is managed by a set of task management
rules. For example, the first rule to be fired by the system, shown in figure 7, creates the
subgoals corresponding to the different tasks of the topmost hierarchy of the task structure.
These subgoals are created in the reverse order, so that in the goal stack the last goal created
becomes the first goal to be initiated.

Corresponding to each of these task-goals, there exists a rule for creating subgoals for
the respective subtasks, or for initiating the relevant procedure. For example, the rule for
initiating the search procedure for hardware-software partitioning, shown in figure 8, calls
the appropriate procedure, and after its successful termination, deletes the subtask-goal
from the goal-stack.

S-layer backtracks to recover from a failure. Failure occurs when a procedure returns a
failure, or when there does not exist any rule to solve a subgoal. Unlike OPSS5 (Brownston
et al 1986), the feature of backtracking is inbuilt into the shell (APS) that is used for infer-
encing. The backtracking mechanism of the shell is used to handle the different situations
of failure.

(1) Failure to solve a task, in which case the S-layer backtracks to the previous task.
(2) Failure to solve a subtask, in which case the S-layer backtracks to the previous subtask.

If

task = Architecture-design

subtask = Hardware-software-partitioning
Then

Call hardware-soft ware-partitioning-algorithm
Delete subtask

Figure 8. Rule for ivitiating hardware—software partitioning.
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(3) Failure of D-layer to find candidate implementations for a design function, in which
case the S-layer backtracks to find an alternative problem decomposition.

In all these cases of backtracking, the user determines the source of the failure. Sub-
sequently, the S-layer backtracks to that point in the design history, and continues its
processing from that point onwards, after revising the relevant design decision.

6.3 Inter-layer communication

As mentioned earlier, a failure report is created by the S-layer before it invokes the D-layer.
The constituents of the failure report are:

(1) Subgoal name, which is the name of the function that could not be solved by S-layer.

(2) Constraint list, which is a list of constraints on the failed function, that have to be
satisfied by any device that will solve the subgoal.

This report is generated by collecting together all control flows and data flows related
to the failed subgoal. These control and data flows, along with the function’s attributes,
constitute the constraints imposed on the function. In addition to the above mentioned
control and data flows, the global constraints of the design are also included in the report.

The D-layer is invoked from S-layer by the task management rules, after generating the
failure report. Using the name of the failed subgoal as a key, the device database (DDB) is
searched for candidate devices that may implement the subgoal. The output of the database
search is either a single candidate device, or a list of candidate devices, depending on a
parameter supplied by the user. Behavioural matching is then performed on the candidates
extracted from the DDB.

The output of the D-layer is a list of devices and their interfaces, each of which will
implement the failed subgoal. In addition, the D-layer also returns a value, which indicates.
whether it has succeeded or failed in its task. If the list of devices is empty (i.e. if no device
is found that can implement the failed subgoal) then the D-layer returns NIL; else it returns
TRUE. If the returned value is NIL, the S-layer backtracks to find an alternate problem
decomposition; else it continues with the present design. On the success of the D-layer, a
flag is created in the S-layer’s working memory to indicate that the failed subgoal is a PF.

The D-layer is invoked by the S-layer either from the Algorithm Design Task or from the
Architecture Design Task. The PF information, created on the D-layer’s success, is used by
the algorithm design task to continue with its processing. For the purpose of the architecture
design task, the information passed is that for device allocation. In addition to these two
tasks, the interface design task also requires information about the new implementation,
in order to integrate it into the design. In cases where the implementation is classified as a
hardware implementation, the information for the interface design task specifies the address
constraints, the device initialization process, the device stopping process, and the mapping
between the dataflows of the function and of the device. In cases where the implementation
is classified as a software implementation, the information for the interface design task
specifies the address constraints, the device driving process, and the mapping between the
dataflows of the function and of the device.
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Figure 9. Results for a speed controller problem. (a): partial decomposition tree;
(b): state and signal bindings generated by mapping algorithm; (c) target system’s
circuit.
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7. Results

The proposed CAD framework has been implemented on an HP-350 workstation, and
applied to design a variety of microprocessor-based systems: (i) speed controller of a DC
motor, (ii) different versions of over-current protectors (by polling, by interrupt, multiple-
protectors), and (iii) ECG monitoring system. The D-layer has been used to find imple-
mentations for the following subgoals of the S-layer: (i) an up-counter by Intel 8253 timer,
(i1) square wave generator by Intel 8253 timer, (iii) handshake data input protocol by Intel
8255 port, (iv) multiple interrupt handling by Intel 8259 interrupt controller.

For the speed controller problem, the user specifies the characteristics of the motor,
the way it has to be operated (by the phase control method), and the desired speed. The
partial functional decomposition tree for this problem is shown in figure 9a. One of the
subgoals of the problem is a Square Wave Generator (used for operating the motor), for
which no implementation is known to the S-layer. The D-layer is invoked for this subgoal,
and the state and signal bindings produced by the mapping algorithm, for implementing
the function by an Intel 8253 timer operating in mode 3, are shown in figure 9b. The
specifications of the device’s interface are passed to the S-layer, which continues with the
other design tasks. Finally, the target system’s circuit (shown schematically in figure 9c)
and the software are generated and cosimulated.

In this way, hardware—software codesign of microprocessor-based systems is performed
by the S-layer, and the D-layer imparts resilience to the S-layer.

8. Conclusion

In this paper, we have described a new two-layer architecture for computer-aided de-
sign. The incorporation of the behaviour modelling feature in the deep-layer provides
resilience to the overall system, by allowing the shallow-layer to fall back on such deep
reasoning whenever the shallow knowledge is found to be incomplete. The necessity of
deep reasoning has been emphasized by expert system researchers for quite some time.
This paper convincingly demonstrates the applicability of such reasoning in CAD sys-
tems, and successfully employs the proposed CAD framework to solve real-life industrial
problems.
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