
Chapter 5

An overview of Mirjam and
WeaveC

Authors: István Nagy, Remco van Engelen, Durk van der Ploeg

Abstract In this chapter, we elaborate on the design of an industrial-strength aspect-
oriented programming language and weaver for large-scale software development. First,
we present an analysis on the requirements of a general purpose aspect-oriented lan-
guage that can handle crosscutting concerns in ASML software. We also outline a
strategy on working with aspects in large-scale software development processes. In our
design, we both re-use existing aspect-oriented language abstractions and propose new
ones to address the issues that we identified in our analysis. The quality of the code en-
sured by the realized language and weaver has a positive impact both on maintenance
effort and lead-time in the first line software development process. As evidence, we
present a short evaluation of the language and weaver as applied today in the software
development process of ASML.

5.1 Introduction

One of the primary goals of the Ideals project is to develop methods and tools to im-
prove the handling of crosscutting concerns, such as tracing and profiling. As a so-
lution, a proof-of-concept aspect-oriented [38] language for the C language [64] and
weaver (called WeaveC1) have been proposed and developed by Durr et al. [33]. Subse-
quently, a case study has been carried out on a representative component of the ASML
software to asses the usability of WeaveC for four particular crosscutting concerns.
The outcome of the case-study has shown that these four crosscutting concerns are

1Here, the name WeaveC refers both to the AOP language and weaver.

69

70 AN OVERVIEW OF MIRJAM AND WEAVEC

manifested in a significant amount of code (20-40%) besides the code representing the
original concerns of the component. By using the CoCoMo model [5], the case-study
estimated 5-10% effort reduction and 2-3% lead-time reduction for the code developed
with WeaveC, as compared to a non aspect-oriented solution in the C programming
language. Although these numbers may seem to be small, it is important to note that
all software development (approximately 500 software developers) is affected by the
above mentioned and other crosscutting concerns.

Briefly, the case-study demonstrated the industrial maturity of aspect-oriented pro-
gramming by means of a successful proof-of-concept. As a consequent step, a transfer
project was initiated by the industrial partner with the following goals:

• Develop a general purpose aspect-oriented language2 for the C language that is
capable of modularizing crosscutting concerns within ASML software.

• Implement a robust, industrial strength weaver for the proposed aspect-oriented
language.

• Develop a way of working (i.e. micro-process) that describes the necessary
developer roles, activities and artifacts to deal with crosscutting concerns (by
means of the above described programming language and weaver).

The remainder of the chapter is organized as follows: Section 5.2 presents an analysis
to identify the requirements of a general purpose AOP language. We also outline a
strategy on working with aspects in large-scale software development processes. Sec-
tion 5.3 discusses the concepts of the proposed aspect-oriented language, weaver and
micro-process. Section 5.4 presents the results of an evaluation on the proposed lan-
guage and weaver. Finally, Section 5.5 draws conclusions.

5.2 Problem analysis

In this section, we present an analysis to identify the requirements towards a general
purpose aspect-oriented language to handle crosscutting concerns in the ASML con-
text. The term ‘ASML context’ covers two important design considerations: (a) the
existing solution designs (i.e., idioms, see Section 2.2.1) in Chapter 2 of crosscutting
concerns and (b) the way of working of software developers within ASML. In the fol-
lowing subsections, we elaborate further on these considerations.

5.2.1 Boundaries of modularization

An important concern of the analysis is to explore the boundaries of modularization
of the current solution design of crosscutting concerns. The aim of this step is to
determine the set of necessary AOP language abstractions and variation points required

2The proof-of-concept AOP language had only a limited set of language abstractions that were necessary
for the execution of the case-study.

PROBLEM ANALYSIS 71

for the proper modularization. Our objective is not to come up with new language
abstractions; in contrast, our objective is to re-use the existing language concepts of
aspect-oriented languages as much as possible. For this purpose, we iterate over the
essential concepts of a reference model of AOP languages [79, 7]:

1) static ZDSPTI_module_handle ti_handle ; //(2)
2) ...
3) int ZDAPSF_startup (int sim_mode, boolean caching)
4) {
5) int result = 0 ;
6)
7) THXAtrace("KI", (1), "ZDAPSF_startup", "> (" //(1)
8) "sim_mode = %i, caching = %b" //(1)
9) ")" //(1)

10) , mode, caching //(1)
11)); //(1)
12) ...
13) ZDSPTI_timing_handle timing_hdl = NULL ; //(3)
14) if (result == OK) //(2)
15) result = ZDSPTI_register_module("ZDAPSF", &ti_handle); //(2)
16) ...
17) ZDSPTI_timing_in(ZDSPTI_func_timing_hdl, ti_handle, //(3)

"ZDAPSF_startup", &timing_hdl); //(3)
18) ...
19) if (result == 0)
20) {... }
21) }

Listing 5.1. Illustration of three particular concern instances - Tracing, Setup
of Timing and Start of Timing - as they maya appear in a particular C
function in ASML software. Respectively, these concerns are represented by
the lines marked (1), (2) and (3).

aThe concern instances presented here are slightly altered for reasons of confidentiality. How-
ever, this does not affect the essence of the examples.

Base Language Aspect-oriented languages are considered to be extensions of generic
programming languages. The fact that ASML software is a legacy system written in
the C programming language, restricts the base language to C. Note that the choice of
base language will restrict further the design space of other aspect-oriented language
abstractions (e.g,. types of join points).

Join points In AOP, (behavioral) join point corresponds to events in the control flow
of a program. The example of Listing 5.1 shows that the concern instances typically
appear at the beginning of the execution of a function. In other words, the example
concern instances need to be executed before (and also after) the occurrence of the

72 AN OVERVIEW OF MIRJAM AND WEAVEC

event ‘execution of a function’. Considering the current idioms that realize the cross-
cutting concerns, we identified two necessary types of join point:call andexecutionof
a function.

Context of Join points Listing 5.1 shows that various types of context information
are required for the modularization of a crosscutting concern. For instance, the concern
instance of Tracing refers to thenameof the function in Line 7, andformal parameters
of the function in Line 10. The concern instance of Setup of Timing refers to alocal
variableof the function (‘result’) in Line 14. The same concern instance refers to the
name of the moduleof the function (‘ZDASP’) in Line 15. Besides these types of
context information, we identified that the following types of context information are
required: global parametersof a function,types of parameters and local variables,
return type of functionsand the fact whether a parameter or local variable behaves as
an input and/or output parameterin the function (derived information from data-flow
analysis).

Context and join points related to pointcuts AOP languages generally make use of
the above described context information, not only in the parametrization of crosscutting
behavior but also in the designation process of join points (i.e. in pointcut or query
languages of AOP languages). Obviously, we will also use these in the designation
process of join points.

Context Originated from Build Process In our investigation, we recognized that
information derived from the build process is also used in the idioms that realize cross-
cutting concerns in software. For instance, the concern instance Tracing refers to the
component code ("KI") in Line 7; this information is determined from the target of the
build process. In a broader view, when crosscutting concerns are woven into different
products of a product line, product (and platform) specific information also needs to be
addressed in the modularization. Hence, information about product and platform can
serve as variation points; these are typically originated from the configuration of the
build processes.

Advices and Variation Points in Advices Advices are the units of AOP languages
to formulate the crosscutting behavior in terms of the instructions of generic program-
ming languages. All the earlier described types of context information — i.e., the join
point, the properties and relationships of a join point, and the platform and product
specific information from the build process — can serve as variation points in the for-
mulation of an advice. Normally, these variation points can bedirectly used/referred
to through pseudo variables (e.g.thisJoinPoint in [65]) and/or through parameters
that are extracted from pointcuts and passed to advice bodies (e.g. context exposure in
AspectJ).
Besides the direct references and usage, we recognizedindirect usages of the above
listed types of context information. For instance, the string literal ‘mode = %i,

PROBLEM ANALYSIS 73

caching = %b’ in Line 8 contains the name of formal parameters and format specifier
characters based on the type of the formal parameters. That is, the formal parameters
(as join point context) are not explicitly referred to as variations points (unlike in Line
10) but their properties need to be used tocomputea variation point (cf. the string
literal in Line 8) in the notation of the advice-concept.

The fact that we need to deal with a legacy system may have further constraints
on the design space of the advice-concept: the crosscutting behavior should be formu-
lated in terms of instructions that can express calls to existing software libraries. For
instance, the callsTHXAtrace() in Lines 7-10 andZDSPTI_timing_in () in Line 17
are such ‘legacy’ calls to libraries that realize tracing and timing.

A consequence of this constraint is that the concept of variable-length argument
list - denoted by ‘...’ in C - needs to be treated as variation points in the notation of
an advice. For instance, in Listing 5.1, the concern instance of tracing is represented
by the callTHXAtrace("KI" , (1) , "ZDAPSF_startup" , "> (" "sim_mode =
%i, caching = %b" ")", sim_mode, caching) with 7 arguments, in Lines 7-10.
The arguments of this call statement depends the formal parametersmode andcaching
of the functionint ZDAPSF_startup (int sim_mode, boolean caching) This
means that the concern instance of tracing in a different function context will be rep-
resented by a call statement with different format string and different number of ar-
guments. For instance, the functionZDAPSF_shutdown() without any parameter will
have the tracing callTHXAtrace("KI" , (1) , "ZDAPSF_startup" , "> (" ")")
with only 5 arguments. To address this problem, the notation of the advice concept
needs to able to deal with the concept variable-length argument list as a variation point.
This variable-length argument list can always be derived from the actual join point and
its context (cf. the base function to be woven and it formal parameters).

Note that re-implementing the tracing library with a suitable interface is not an op-
tion either, as it would introduce other maintenance problems related to legacy systems.

Aspectual States/Aspect Instances In Listing 5.1, both the concern instances of
Setup of Timing and Start of Timing use the variableti_handle that represents the
module handler of Timing. The concern instance of Timing uses another variable,
calledtiming_hdl in Line 17. The difference between these two variables is apparent
from the example already:ti_handle is declared as a global static variable in Line
1. This means thatti_handle can (and will) be used in every function of the mod-
ule; thus, it can besharedamong different concern instances that appear in different
functions. In contrast, the variabletiming_hdl is declared as a local variable of the
function in Line 13; hence it islocal only to those concern instances that appear only
within the same functions. In terms of aspect-oriented programming, we identified the
need of two types of aspectual states: one which is shared only among those advices
that are woven at the same join point (per join point) and one which is globally shared
among every advice (i.e.,per aspect).

Note that there are many other fundamental concepts, e.g. ordering of advices,
context exposure, et cetera, in the design space of aspect-oriented languages. Naturally,

74 AN OVERVIEW OF MIRJAM AND WEAVEC

we consider these concepts as parts of our design space; however, the discussion on the
motivation for each particular language concept is beyond the scope of this chapter.

5.2.2 Quality aspects of concrete syntax for large-scale develop-
ment

In the previous section, we discussed the boundaries of modularization that determines
the necessary expressiveness of the language - i.e., abstract-syntax of a language, in
terminology of Domain Specific Languages [42]. However, besides necessary expres-
siveness, there are various quality aspects on the concrete syntax that are significant
from the point of view of large-scale software development. In this section, we discuss
these.

Predictability (in design phase) Predictability ensures developers that certain prop-
erties are held during the development of software. This is crucial in large-scale devel-
opment to prevent mistakes and errors already in the design phase as soon as possible.
Besides, when introducing new technology into a large organization, ensuring pre-
dictability in the design phase is well-motivated for the following two reasons: (1) it
can lessen the risk of improper use (and its undesired side effect) of the new technol-
ogy; (2) it can reduce the fear of using a new technology among the developers (e.g.,
by providing well-controlled means for the new technology).

To this aim, we are going to use well-known language mechanisms, such as type-
checking, enforcement of declarative completeness, and an extensive set of syntactic
and semantic rules in the design of the aspect-oriented language3.

Evolvability Evolvability is an important software quality factor that indicates the
ability of developing programs incrementally. In general, evolvability facilitates ex-
tending an application towards new requirements mostly by reusing previously written
modules with minimal or no modification. By ensuring evolvable specification, we
expect to reduce the complexity of the code caused by the frequent appearance of the
phenomenon called ‘deviations from standard functionality’ in a large-scale develop-
ment.

To this aim, we are going to provide language abstractions that (1) can be re-used
in different specifications and (2) can support the re-use of existing specifications.

Extendibility In principle, language constructs that provide means of parametriza-
tion can positively contribute to the extendibility of a language. Providing ease of
extendibility for a language is beneficial in large-scale development for two reasons.
First, due to time-to-market pressure the language (and also the weaver) needs to be
incrementally delivered. Secondly, rolling out a new version of a language and weaver
is not a trivial task as it affects many ongoing software development activities; hence, a

3These language mechanisms obviously require adequate compiler and/or run-time support.

PROBLEM ANALYSIS 75

large number of development modules maintain dependencies to aspect specifications.
This means that change requests towards the language should result in changes in the
notation asminimalandisolatedas possible.

Comprehensibility We define comprehensibility as the ability to understand the mean-
ing of a program by just looking at its source code. Comprehensibility can be influ-
enced by the programming style and the notation of the abstractions of the adopted
language, such as how the program units are modularized, where the references in the
units are specified, and the style of notation that reflect the underlying computational
paradigm. Although this quality aspect had less significance compared to the previous
ones in our list, we needed to take into account the fact that developers at ASML have a
stronger background on procedural and object-oriented languages (with strong typing)
compared to logic or functional languages.

5.2.3 Expected way of working

In the previous two sections, we discussed the requirements towards an aspect specifi-
cation language used in large-scale software development. However, when introducing
aspect-oriented programming (or any other new technology) into a large organization,
a clear and sound strategy on the expected way of working is also necessary, besides
the required means and artifacts. In this section, we discuss our strategy on how aspects
are intended to be used in the software development process of ASML.

To make sure that developers can benefit from the advantages4 of aspect-oriented
programming, the objective is thateverydeveloper should be able touseaspects easily
with a minimal learning curve. On the other hand, to minimize the possible danger of
the improper use5 of AOP, onlya fewof the developers are allowed towrite andrelease
news aspects. To this aim, our objective is to provide generic aspects with highly and
easily customizable interfaces:

• Developers are expected to use aspects in a standard way (seamlessly, by en-
abling them in the build process).

• Most users will use aspects with their standard functionality.

• Some users will want to deviate from the standard functionality. In other words,
they want to customize the functionality of generic aspects according to their
special needs. For instance, some users will want to ‘switch off’ the tracing of
certain time-critical functions.

• This customization should be minimal and rely on design information added to
the source code, as most users are not allowed to modify aspects or write their
own one.

4 E.g., locality of changes, consistency and clarity of code, et cetera.
5 E.g., undesired side-effects in the control-flow, ‘patching by aspects’, et cetera.

76 AN OVERVIEW OF MIRJAM AND WEAVEC

5.3 Mirjam, an aspect-oriented language extension for C

In this section, we outline the important constructs and characteristic properties of the
realized aspect-oriented language, called Mirjam. Due to a lack of space, we cannot
iterate over the full design space of Mirjam. The interested readers can find a more
detailed introduction and description of the language in [9].

5.3.1 Aspect

The main unit of modularization is the aspect specification file. An aspect specification
may contain two language constructs (see Listing 5.2):context declaration closureand
aspect declaration.

1) context{
2) #include "THXAtrace.h"
3) #define FALSE 0
4)
5) typedef int boolean;
6) }
7)
8) aspect SimpleAspect
9) {

10) advice someAdvice() before (FunctionJP JP)
11) {
12) boolean tracing_flag = FALSE;
13) THXAtrace(JP.module.name, JP.name, tracing_flag, "> ");
14) }
15) ...
16) }

Listing 5.2. Illustration of the context declaration closure and aspect
declaration in an aspect specification file.

The context declaration closure is a placeholder for a standard C declaration. We will
use the declarations in C in the context closure to ensuredeclarative completenessin
the notation of advices. The context closure in the listing above has two preprocessor
directives in Lines 2 and 3, and a typedef declaration in Line 5. To resolve the prepro-
cessor directives, the aspect specification is first preprocessed by a standard C prepro-
cessor. The declarations in the context closure are used later in the specification of the
crosscutting behavior (i.e., advice in term of Mirjam) in Lines 11 and 12. Note that the
function call ‘THXAtrace’ (in Line 13) is declared in the included THXAtrace.h file.

The aspect declaration part is a container type of program element: it works as a
name space. The contained language abstractions (query, advice- and binding-declara-
tions) can be referred to through this name space.

MIRJAM, AN ASPECT-ORIENTED LANGUAGE EXTENSION FOR C 77

5.3.2 Queries as pointcuts

The language concept of pointcut is realized by the language abstractionqueryin Mir-
jam. A query in Mirjam returns a set of join points. A join point is atuplethat contains
an arbitrary number of (but at least one) tuple elements. A tuple element can be of two
types:join point locationandjoin point context. As the names suggest, the type of join
point location describes the place where we want to weave in crosscutting behavior
(e.g., execution of a function), while the type of join point context describes the con-
text of the weaving. We can use the context information for (1) either refining of the
weaving location or (2) customizing the crosscutting behavior to be woven to certain
weave contexts.

1) int a;
2) int f(int b, int c) {
3) ...;
4) }
5) int g(double d) {
6)
7) }

Listing 5.3. An example of base code that we will use in the rest of the
discussion to illustrate how the query language of Mirjam works.

We will use a number of examples of queries to present the characteristic features of
the query language of Mirjam:

1) query Q1() provides (FunctionJP JP)
2) {
3) JP: true;
4) }
5)
6) query Q2() provides (FunctionJP JP)
7) {
8) JP: JP.name =~ "f.*";
9) }
10)
11) query Q3() provides (FunctionJP JP, Variable@JP V)
12} {
13) JP: true;
14) V : true;
15) }
16)
17) query Q4() provides (FunctionJP JP, Variable@JP int V)
18) {
19) JP: tuple(JP) in Q1() && |JP.formalParameters()| >= 1;
20) V : V in JP.formalParameters();
21) }

78 AN OVERVIEW OF MIRJAM AND WEAVEC

22)
23) query Q5() provides (FunctionJP JP, Variable@JP[] V)
24) {
25) JP: tuple(JP) in Q1() && |JP.formalParameters()| >= 1;
26) V : V == JP.formalParameters() ;
27) }

Listing 5.4. Examples of query-declarations in Mirjam.

As an example of a query, consider the query declared between Lines 1 and 4 in Listing
5.4. The query declaration starts with the keywordquery followed by an identifier
(‘Q1’) and a list of possible formal parameters. After the formal parameters we define
a set of tuple variables preceded by the keywordprovides. The list of tuple variables
describes the elements and type of tuples that the given query provides. In Lines 1-4,
the query Q1 provides tuples with one tuple element, the type of this tuple element is
FunctionJP. The type FunctionJP represents the type of the join point location of the
execution of a function. Inside the query, a tuple condition needs to be defined for each
tuple variable. In Line 3, the tuple condition ‘true’ means that every particular function
execution will satisfy this query; i.e., there is no further restriction on the tuple variable
JP. The resulting set of tuples of query Q1 executed on the base code of Listing 5.3
is {(f),(g)} 6. In Lines 6-9, the query Q2 is similar to Q1 except that it has a more
restrictive tuple condition in Line 8: the name of the executing function shall start with
the prefix ‘f’ (defined by the regular expression‘f.*’). Similar to the notation of
object-oriented programs, the dot operator can be used to access instance variables and
execute methods of certain types in Mirjam. The result set of Q2 on the given base
code is (f), as there is only one function that can satisfy this condition.

In Lines 11-15, the query Q3 will provide set of tuples with two tuple elements.
The first tuple variable is of type ‘function execution’. The second, new tuple variable
is of type Variable, which is a type of join point context. More precisely, the type
Variable can represent global variables, formal parameters and local variables of an
executing function. In Line 11, the declaration Variable@JP means that we expect
the variables in the scope of the function execution of JP; that is, there is direct link
between a particular function and variable in the result set of the query. Note that a
second tuple condition ‘true’ has been declared for the second tuple variable in Line
14. When a query is evaluated, the query engine iterates over the possible values of
both tuple variable types. During the iteration, if there is a combination of particular
values of tuple variables that can satisfy both tuple conditions (based on the available
base code), a tuple is created and added to the result set of query. In short, the query
Q3 returns an ordered set of tuples (i.e. the Descartes-product) of all functions and
variables related with those functions: {(f,a), (f,b), (f,c), (g,a),(g,d)} based on the code
of Listing 5.3.

In Lines 17-21, the query Q4 illustrates a bit more complex use of queries. The
tuple variable V in Line 17 is declared with a type restriction: the C type of the variable

6For the sake of simplicity, the letters f and g represent the execution of functions f and g.

MIRJAM, AN ASPECT-ORIENTED LANGUAGE EXTENSION FOR C 79

is restricted to int. In Line 19, we show a possible re-use of a previously declared
query: the tuple variable JP is converted to a tuple by the conversion operator ‘tuple’.
The membership relation ‘in’ specifies that JP (as converted to a tuple of one element)
should be in the result set of the query Q1. The membership relation (‘in’) is not the
only way to re-use queries; the equivalence relations can also be used with query calls.
Queries can be called with formal parameters to perform selection or projection (in
terms of tuple relational calculus [24])7 on previously defined queries. In Line 19, the
second part of the tuple condition specifies that the executing function needs to have at
least one formal parameter. The second tuple condition in Line 20 specifies that V is a
formal parameter of JP. The execution of Q4 on the provided base code of Listing 5.3
results in the following set of tuples: {(f,b), (f,c)}.

In Lines 23-27, the query Q5 is slightly modified version of the query Q4. Q5
differs from Q4 in two places. First, the type of the tuple variable V is an array type
denoted by the symbols ‘[]’ in Line 23. Note that this tuple variable has no C type spec-
ification either. Secondly, the tuple condition uses the equivalence relationship (‘==’)
instead of the membership relationship (‘in’). This means that Q5 will provide tuples
with two elements: a tuple element of a function-execution and a tuple element of an
array of variables. The equivalence relationship indicates that the array of variables
must be the array of formal parameters of the corresponding function. This means the
result set of Q5 is { (f, {b,c}), (g,{d}) } based on the code of Listing 5.3.

5.3.3 Advices

Similar to other AOP languages, the program unit that specifies the crosscutting be-
havior is calledadvice in Mirjam. The crosscutting behavior is defined in terms of
instructions of the C programming language.

1) advice printIntParam(Variable@JP int V) before (FunctionJP JP)
2) {
3) printf("In module %s, function %s executes with argument %s=%d",
4) JP.module.name, JP.name, V.name, V);
5) }

Listing 5.5. An example of advice-declaration.

As an example of an advice, consider the advice declared in Listing 5.5. The declara-
tion starts with the keyword ‘advice’ and is followed by an identifier and a (possibly
empty) list of formal parameters. A formal parameter has to have a type specifier in
Mirjam and may have a type specifier in C. The formal parameters are followed by the
type of the advice that specifies whether the advice is to be executed before or after
the execution of a join point. Finally, the last element in the signature of the advice is
the actual join point variable in the form of a formal parameter (FunctionJP JP). In the

7Defining the formal semantics of queries is beyond the scope of this chapter.

80 AN OVERVIEW OF MIRJAM AND WEAVEC

body of the advice, we refer to the properties of the join point through this variable in
Line 4. In the same line, we also use the parameter V as a formal parameter similar to
the formal parameters used in C.

Note that the correct use of the format specifier (e.g., %d in Line 3) cannot be
checked just like in normal C code. For instance, we could use %f that would have
resulted in an incorrect execution. This piece of advice exemplifies another possible
problem as well: if we coupled it with the query Q4 (of Listing 5.4) the advice would
be woven two times on the functionf, as Q4 returns {(f,b), (f,c)}. This means that the
execution of the program would have two output messages, see Listing 5.6.

6) In module ZZ, function f executes with argument b=5
7) In module ZZ, function f executes with argument c=11

Listing 5.6. Illustration of output messages from advice executions.

This execution is correct because Q4 exposes only formal parameters of type int. How-
ever, if the query is not restrictive enough, formal parameters with other types than int
(e.g. double, pointer-type, et cetera) can be queried too. This would result in incorrect
output messages, since the advice expects a parameter of type int8. In addition, having
the same message two times, with only a small difference at the end, is not considered
a neat solution: a single printf statement could handle a variable number of arguments.
So the question is how to specify the statement printf with variable number of argu-
ments of different types that depend on the weaving context? Note that we discussed
the same problem in Section 5.2.1 at ‘Variation Points in Advices’.

5.3.4 Advice generators

To handle the category of problems described above, we introduced the language con-
structadvice generator. These are special built-in constructions that can be used in the
body of an advice and are recognizable by the form@type<...>@. The first element
of a generator is usually an iterator of the form[iterator: expression]. The it-
erator contains the name of an array variable and the (local) name for each element,
and returns a list of expressions. Theexpression will be evaluated for each element.
Finally, thetype says how the expressions are combined and what the outcome of the
advice generator is9.

8To prevent this sort of errors, we do type checking between the type of the actual tuple values and the
type of the advice-parameter.

9In other (typically, functional) languages one can achieve the same functionality by using the list ma-
nipulator functionsmapandjoin on lists.

MIRJAM, AN ASPECT-ORIENTED LANGUAGE EXTENSION FOR C 81

1) advice printParams(Variable@JP[] Args) before (FunctionJP JP)
2) {
3) printf("Function %s executes with argument(s) "
4) @StringConstant<
5) [arg in Args:
6) strConcat(arg.name, "=",formatString(arg))],
7) "; " //semicolon as separator
8) >@
9) ,JP.name
10) ,@VarargExpression<[arg in Args: formatExpression(arg)]>@
11));
12) }

Listing 5.7. An example application of two advice generators.

For an example application of advice generators, consider Listing 5.7. In Lines 4-8, the
advice generator@StringConstant will generate a format string for an array of vari-
ables passed to the advice (Args)10. In Line 6, the built-in functionstrConcat creates
a piece of string from the name of a variable (cf. formal parameter of a function), from
the equation sign (‘=’) and from the result of the functionformatString returning the
format specifier of the C type of the variable. In Line 5, this concatenation function is
applied on each variable in the array of the variables (‘arg in Args’). This will result in
a list of a piece of format string for each formal parameter. The resulting list of format
strings per parameter will be combined into a final string literal by the StringConstant
generator, using the semicolon as a separator. Similarly, a variable-length argument list
will be created by the advice generator@VarargExpression in Line 10. If we couple
this advice (Listing 5.7) with the query Q5 (in Listing 5.4) the advice is woven once on
the functions f and g, as Q5 returns (f, {b,c}), (g,{d}). This means that the execution
of the program would have two output messages, see Listing 5.8.

1) Function f executes with argument(s) b=5; c=11
2) Function g executes with argument(s) d=3.1415

Listing 5.8. Illustration of output messages from advice executions with
advice generators.

5.3.5 Bindings

The third language construct that can be declared within an aspect is thebinding clo-
sure. The binding closure contains typically one or morebinding definitionsintroduced

10This list of parameters is derived from the context of join point: they are e.g., representing formal
parameters of a function. In the following section, we will show both the query that realizes this derivation
and the binding-definition that couples the advice printParams with that query.

82 AN OVERVIEW OF MIRJAM AND WEAVEC

by the keywordforeach. One binding definition can couple a query with one or more
binding entities. Different types of binding entities exist in Mirjam: for example, the
binding entityapply binds advices to queries, and passes the result of the queries to
the advices using a parameter-passing mechanism. When more than one advices are
to be applied to the same join point, one can specify the order of their application by
the binding entityorder per join point. The binding entityerror andwarn can raise
errors, when certain situations occur in the base code. Finally, the binding closure
and binding entities may also contain variable declarations, called binding variables,
to share states between advices. In the following subsections, we will show the use of
each of these language constructs.

1) aspect VerySimpleTracing
2) {
3) query Q5() provides (FunctionJP JP, Variable@JP[] V)
4) {...}
5)
6) advice printParams(Variable@JP[] Args)before(FunctionJP JP)
7) {...}
8)
9) binding

10) {
11) foreach (thisFunc, vars) in Q5
12) {
13) apply on thisFunc {
14) printParams(vars);
15) }
16) }
17) }
18) }

Listing 5.9. An example of binding and an illustration of passing context
information to advices.

For an example of a binding-declaration, consider Listing 5.9. In Line 3, the query Q5
provides a set of tuples of a join point variable (FunctionJP JP) and a context variable
(Variable@JP V). In Line 11, the binding definition iterates over the result set of Q5:
thisFunc andvars will represent the two variables of each tuple. For each iteration
step, these variables hold the values of the actual tuple elements. In Lines 13 and 14,
the actual values ofthisFunc andvars are passed as parameters to the advice in the
advice-call. Finally, in Line 6, the variables are ‘received’ and they are used in the
body of the advice. This type of parameter passing works in a similar way to the macro
substitution mechanism of the C preprocessor.

MIRJAM, AN ASPECT-ORIENTED LANGUAGE EXTENSION FOR C 83

5.3.6 Bindings variables

As we mentioned in the previous section, the binding closure and binding entities may
also contain variable declarations, calledbinding variables, to share states between the
executions of advices.

1) binding {
2) static int ti_handle;
3)
4) foreach (startup) in startupFunction()
5) {
6) apply on startup {
7) moduleRegistration(ti_handle);
8) }
9) }
10)
11) foreach (f) in timedExecution()
12) {
13) apply on f {
14) int timer;
15)
16) functionTimingStart(ti_handle, timer);
17) functionTimingStop(timer);
18) }
19) }
20) }

Listing 5.10. Illustration of the use of binding variables.

Consider the variablesstatic int ti_handle andint timer in the Lines 2 and 14
of Listing 5.10. One can use binding variablesper aspect(like ti_handle in Line
2) andper join point (like timer in Line 13). ‘Per aspect’ binding variables, e.g.,
ti_handle, are shared between all advices within a binding. This means that if one ad-
vice changesti_handle, the change can be observed in all other advices of the aspect.
‘Per join point’ binding variables, e.g.timer, are shared only among those advices
that are called from the binding entity where the variable is declared. For example,
timer is shared only between the execution of the advicesfunctionTimingStart
andfunctionTimingStop in each function where they are applied together.

5.3.7 Annotations

Annotationsin WeaveC are used to attach semantic meaning to syntactical constructs
in a program written in the programming language C. The annotation mechanism is
designed such that the following objectives are met:

84 AN OVERVIEW OF MIRJAM AND WEAVEC

Easy of useAn application of an annotation to a program should have minimal over-
head, both in terms of the effort spent by a developer and of the impact on the
program listing. The syntax should be unobtrusive (not disturb the natural flow
of the program listing) and similar to the syntax of similar C concepts (type
modifiers like storage class, const et cetera).

Flexible for different usage The application of annotations is only limited by the scope
of tools that can process them, so the mechanism should place few restrictions
and allow for varied use.

Allow checking of the correct application of annotations This means that it must be
detectable by a tool if an annotation is applied at the wrong location (i.e., to a
function while it makes no sense for a function), with the wrong arguments (i.e.,
with a value for a specific field while the annotation has no such field) or multiple
times (when it makes no sense to do so for the annotation). It does not need to be
possible to check for unexpected absence of annotations (i.e., a function has no
annotation while one is always expected) or illegal combinations of annotations
or values of fields of annotations (i.e. a function can not have both annotations
‘a’ and ‘not_a’). These checks, if desired, must be performed by the tools that
make use of the annotations.

Easy to hide from a program This should be the case for instance if the program is
to be read by tools that are unaware of this annotation mechanism. Such hiding
should be possible by a standard-compliant C pre-processor or a standard text
processing facility.

Robust Common typing errors in the declaration or application of an annotation should
not lead to undesirable parsing of the actual program code.

5.3.8 An example of using annotations

In this section, we outline of how the annotation mechanism of WeaveC can be used.

1) // --- an annotation-declaration in .c files ---
2) /*$
3) annotation{
4) boolean value;
5) } trace[module,function,parameter,variable,type] = {
6) value = TRUE
7) };
8) $*/
9)

10) // --- an annotation-application in .c files ---
11) int critical_function()
12) /*$trace(FALSE)$*/
13) {...}

EVALUATION 85

14)
15) // --- a query referring to an annotation-application ---
16) query allTraceableFuncs() provides (FunctionJP JP)
17) {
18) JP: (JP.name != "main") &&
19) (!((JP.$trace?)&&(JP.$trace.value == false)))
20) }

Listing 5.11. Illustration of the declaration, application and use of
annotations.

The declaration and application of annotations are denoted by the tokens/*$ and$*/,
in the style of Splint [40]. In Listing 5.11, the annotationtrace is declared between
Lines 2-8. The annotation declaration has one boolean field calledvalue (in Line 4)
and it can be applied on modules, functions, formal parameters, variable declarations
and type declarations, as indicated in Line 5. In Line 6, we specify that the default
value for the fieldvalue is TRUE11. An application of the annotationtrace is illus-
trated in Line 12: the application is part of the signature of the function declaration
int critical_function(). Finally, the queryallFunctions() shows a use of an-
notations for determining join points in Mirjam, in Lines 18-19. Only those function
executions will be designated that do not have the name "main" and do not have the
application of the annotation ‘trace’ with the value FALSE.

5.4 Evaluation

Dürr et al. [34] carried out an experiment on quantifying the benefits of using aspect-
oriented programming by means of the above defined language and weaver. The setup
of the complete experiment and all statistical data about the results can be found in [34].
In this section, we provide only a summary about the setup and the results of the ex-
periment.

The goal of the experiment was to determine whether using AOP speeds up the
development and maintenance of the ASML codebase. The experiment consisted of
five change scenarios in two sets related to use of the concern Tracing. Twenty software
developers participated in the experiment12; the participants were split into two groups.
The most important reason to do the splitting was to verify that the two sets of change
scenarios were equivalent.

Although it is hard to extract significant results from the experiment due to small
number of participants, the following conclusions can be definitely supported from the
results of the experiment:

• Adding tracing to a function takes considerably less time with AOP than without.

11This is a standard predefined macro. The weaver has a built-in C preprocessor to resolve macro substi-
tutions within annotation declarations and applications.

12The experiment was actually combined with training on the use of aspects and WeaveC.

86 AN OVERVIEW OF MIRJAM AND WEAVEC

• Removing tracing from a function takes more time with AOP than without. This
is probably caused by the (first) usage of annotations.

• Selectively tracing parameters in a function, takes less time with AOP than with-
out.

• Adding tracing to a function manually introduces significantly more errors than
with AOP.

• Changing the signature of a function manually introduces significantly more er-
rors than with AOP.

Besides this experiment, we are continuously working on the evaluation of the language
and weaver by different means. At the moment of writing, software developers and
engineers (approximately 70-80 participants) - who are currently using the language
and weaver - are participating in a survey to evaluate the tool in the view of usability
and other quality concerns. We consider the feedback both from the experiment and
survey crucial in driving our design on the upcoming features of both the language and
the weaver.

5.5 Conclusions

Currently, WeaveC is part of the standard build process of the ASML software. WeaveC
is used in 42 components today; in these components 298 targets are generated based
on 1007 woven source files. Software developers do not need to write tracing and
timing code anymore. The aspect files that realize these crosscutting concerns are
part of the external interface of a standard software component. The weaving of these
aspects is enabled by make-files [95] in the build process. Besides, developers can
add annotations to their base code to customize the standard tracing functionality when
needed.

Mirjam and WeaveC can fulfill the promises of the proof-of-concept weaver. The
quality of the code ensured by Mirjam and WeaveC has positive impacts both on the
maintenance effort and lead-time in the first line software development process. The
increased quality of the code also improves lead-time and reduces errors in terms of
the analysis of problems/machine performance, especially during integration and field
problems. As a result, the forth line software development can also be done faster
and better, which therefore reduces integration time and improves the response to field
problems.

References

[1] Adams E.N. Optimizing Preventive Service of Software Products.IBM Journal
of Research and Development, volume 28(1):pp. 2–14, 1984.

[2] Bekkering T., Glas H., and Klaassen D.Management van processen - Succesvol
realiseren van complexe initiatieven. Het Spectrum, 2004.

[3] Bergmans L. and Akşit M. Principles and Design Rationale of Composition Fil-
ters. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors,Aspect-Oriented
Software Development, pp. 63–95. Addison-Wesley, Boston, 2005.

[4] Bernstein A.J. Program Analysis for Parallel Processing.IEEE Trans. on Elec-
tronic Computers, volume EC-15:pp. 757–762, October 1966.

[5] Boehm B.W.Software Engineering Economics. Prentice-Hall, 1981.

[6] van den Brand M., van Deursen A., Heering J., de Jong H.A., de Jonge M.,
Kuipers T., Klint P., Moonen L., Olivier P.A., Scheerder J., Vinju J.J., Visser
E., and Visser J. The ASF+SDF Meta-Environment: a Component-Based Lan-
guage Development Environment. In R. Wilhelm, editor,Compiler Construc-
tion (CC ’01), volume 2027 ofLecture Notes in Computer Science, pp. 365–370.
Springer, 2001.

[7] Brichau J. and Haupt M. Survey of Aspect-Oriented Languages and Execution
Models.

[8] Brodie M.L. and Stonebraker M.Migrating Legacy Systems: Gateways, Inter-
faces, and the Incremental Approach. Morgan Kaufmann, 1995.

[9] Brouwer S. and Nagy I. Mirjam. Internal document 107731, ASML, 2007.

[10] Bruntink M. Aspect Mining Using Clone Class Metrics. InProceedings of the
2004 Workshop on Aspect Reverse Engineering (co-located with the 11th Work-
ing Conference on Reverse Engineering (WCRE’04)). November 2004. Pub-
lished as CWI technical report SEN-E0502, February 2005.

167

168 REFERENCES

[11] Bruntink M. Linking Analysis and Transformations Tools with Source-based
Mappings. InProceedings of the Sixth IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM), pp. 107–116. IEEE Computer Soci-
ety Press, September 2006.

[12] Bruntink M. Analysis and transformation of idiomatic crosscutting concerns in
legacy software systems. InProceedings of the IEEE International Conference
on Software Maintenance (ICSM), pp. 499–500. IEEE Computer Society Press,
2007.

[13] Bruntink M., van Deursen A., D’Hondt M., and Tourwé T. Simple Crosscutting
Concerns Are Not So Simple – Analysing Variability in Large-scale Idioms-
based Implementations. InProceedings of the Sixth International Conference on
Aspect-Oriented Software Development (AOSD’07), pp. 199–211. ACM Press,
March 2007.

[14] Bruntink M., van Deursen A., van Engelen R., and Tourwé T. An Evaluation
of Clone Detection Techniques for Identifying Crosscutting Concerns. InPro-
ceedings of the IEEE International Conference on Software Maintenance, pp.
200–209. IEEE Computer Society, 2004.

[15] Bruntink M., van Deursen A., van Engelen R., and Tourwé T. On the Use of
Clone Detection for Identifying Cross Cutting Concern Code.IEEE Transac-
tions on Software Engineering, volume 31(10):pp. 804–818, 2005.

[16] Bruntink M., van Deursen A., and Tourwé T. An initial experiment in reverse
engineering aspects from existing applications. InProceedings of the 11th Work-
ing Conference on Reverse Engineering (WCRE2004), pp. 306–307. IEEE Com-
puter Society, 2004.

[17] Bruntink M., van Deursen A., and Tourwé T. Isolating Idiomatic Crosscutting
Concerns. InProceedings of the International Conference on Software Mainte-
nance (ICSM’05), pp. 37–46. IEEE Computer Society, 2005.

[18] Bruntink M., van Deursen A., and Tourwé T. Discovering Faults in Idiom-
Based Exception Handling. InProceedings of the International Conference on
Software Engineering (ICSE’06), pp. 242–251. ACM Press, 2006.

[19] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.Pattern-
Oriented Software Architecture: A System of Patterns. Wiley series in Software
design patterns. John Wiley & Sons, 1996.

[20] Bush M. Improving software quality: the use of formal inspections at the JPL.
In Proceedings of the International Conference on Software Engineering, pp.
196–199. IEEE Computer Society, 1990.

[21] Christian F.Exception handling and tolerance of software faults, chapter 4, pp.
81–107. John Wiley & Sons, 1995.

REFERENCES 169

[22] Clarke E.M., Grumberg O., and a. Peled D.Model Checking. The MIT Press,
1999.

[23] Coady Y., Kiczales G., Feeley M., and Smolyn G. Using AspectC to Improve the
Modularity of Path-Specific Customization in Operating System Code. InPro-
ceedings of the Joint European Software Engineering Conference (ESEC’01)
and 9th ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering (FSE’01), pp. 88–98. ACM Press, June 2001.

[24] Codd E. A Relational Model of Data for Large Shared Data Banks. volume 13,
pp. 377–387. 1970.

[25] Colyer A. and Clement A. Large-scale AOSD for middleware. InProceedings
of the 3rd international conference on Aspect-oriented software development
(AOSD’04), pp. 56–65. ACM Press, New York, NY, USA, 2004. doi:http://doi.
acm.org/10.1145/976270.976279.

[26] Coplien J.Advanced C++: Programming Styles and Idioms. Addison-Wesley,
1991.

[27] Csertán G., Huszerl G., Majzik I., Pap Z., Pataricza A., and Varró D. VIATRA:
Visual Automated Transformations for Formal Verification and Validation of
UML Models. InASE 2002: 17th IEEE International Conference on Automated
Software Engineering, pp. 267–270. IEEE Press, 2002.

[28] Demeyer S., Ducasse S., and Nierstrasz O.Object-Oriented Reengineering Pat-
terns. Morgan Kaufmann, 2003.

[29] Durr P., Bergmans L., and Aksit M. Technical Report: Formal model for SE-
CRET. Technical report, University of Twente, 2005.

[30] Durr P., Bergmans L., and Aksit M. Reasoning about Semantic Conflicts
between Aspects. In R. Chitchyan, J. Fabry, L. Bergmans, A. Nedos, and
A. Rensink, editors,Proceedings of ADI’06 Aspect, Dependencies, and Inter-
actions Workshop, pp. 10–18. Lancaster University, July 2006.

[31] Durr P., Gulesir G., Bergmans L., Aksit M., and van Engelen R. Applying AOP
in an Industrial Context. InWorkshop on Best Practices in Applying Aspect-
Oriented Software Development. March 2006.

[32] Durr P., Staijen T., Bergmans L., and Aksit M. Reasoning about Semantic Con-
flicts between Aspects. InEIWAS ’05: The 2nd European Interactive Workshop
on Aspects in Software. Brussel, Belgium, September 2005.

[33] Durr P.E.A. and Bergmans L.M.J. High-level Design of WeaveC. Internal doc-
ument, ASML, 2006.

170 REFERENCES

[34] Durr P.E.A., Bergmans L.M.J., and Aksit M. Initial Results for Quantifying
AOP. Technical Report TR-CTIT-07-71, Centre for Telematics and Information
Technology, University of Twente, 2007.

[35] Durr P.E.A., Bergmans L.M.J., and Aksit M. Static and Dynamic Detection
of Behavioral Conflicts between Aspects. InProceedings of the 7th Workshop
on Runtime Verification, number 4839 in LNCS, pp. 38–50. Springer Verlag,
Vancouver, Canada, March 2007.

[36] Dyer M. The Cleanroom Approach to Quality Software Development. InPro-
ceedings of the 18th International Computer Measurement Group Conference,
pp. 1201–1212. Computer Measurement Group, 1992.

[37] Elrad T., Filman R.E., and Bader A. Aspect-Oriented Programming.Comm.
ACM, volume 44(10):pp. 29–32, October 2001.

[38] Elrad T., Filman R.E., and Bader A. Aspect-Oriented Programming: Introduc-
tion. Communications of the ACM, volume 44(10):pp. 29–32, October 2001.

[39] Engler D.R., Chelf B., Chou A., and Hallem S. Checking System Rules Using
System-Specific, Programmer-Written Compiler Extensions. In4th Symposium
on Operating System Design and Implementation, pp. 1–16. USENIX Associa-
tion, 2000.

[40] Evans D. and Larochelle D. Improving Security Using Extensible Lightweight
Static Analysis.IEEE Software, Jan/Feb 2002.

[41] Fenton N.E. and Pfleeger S.L.Software Metrics: A rigorous and Practical Ap-
proach. PWS Publishing Company, second edition, 1997.

[42] Fowler M. Language Workbenches: The Killer-App for Domain Specific Lan-
guages? Technical report, June 2005.

[43] Gamma E., Helm R., Johnson R., and Vlissides J.Design Patterns. Addison-
Wesley, 1995.

[44] Ganter B. and Wille R.Formal Concept Analysis: Mathematical Foundations.
Springer, 1999.

[45] Gool L., Punter T., Hamilton M., and Engelen R. Compositional MDA. In
Nierstrasz, O. et al, editor,Proceedings of ACM/IEEE Models 2006, volume
4199 ofLecture Notes in Computer Science, pp. 126–139. Springer, 2006.

[46] Graaf B.Model-Driven Evolution of Software Architectures. Ph.D. thesis, Delft
University of Technology, November 2007.

[47] Graaf B., Lormans M., and Toetenel H. Embedded Software Engineering: The
State of the Practice.IEEE Software, volume 20(6):pp. 61–69, November–
December 2003.

REFERENCES 171

[48] Graaf B., Weber S., and van Deursen A. Migration of supervisory machine
control architectures. In R. Nord, N. Medvidovic, R. Krikhaar, J. Stafford, and
J. Bosch, editors,Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA 2005), pp. 261–262. IEEE CS, November 2005.

[49] Graaf B., Weber S., and van Deursen A. Migrating supervisory control archi-
tectures using model transformations. In G. Visaggio, G. Antonio Di Lucca,
and N. Gold, editors,Proceedings of the 10th European Conference on Software
Maintenance and Reengineering (CSMR 2006), pp. 151–160. IEEE Computer
Society, 2006.

[50] Graaf B., Weber S., and van Deursen A. Model-driven migration of supervisory
machine control architectures.Journal of Systems and Software, 2008. Doi:
10.1016/j.jss.2007.06.007.

[51] Gulesir G., Bergmans L., Durr P., and Nagy I. Separating and managing depen-
dent concerns. LATE 2005 workshop at AOSD 2005.

[52] Gurzhiy T. Model Transformations using QVT - Feasibility Analysis by Imple-
mentation. SAI Technical Report 2006056, Eindhoven University of Technol-
ogy, August 2006.

[53] Hannemann J., Chitchyan R., and Rashid A. Analysis of Aspect-Oriented Soft-
ware, Workshop report. InECOOP 2003 Workshop Reader. Darmstadt, Ger-
many, July 2003.

[54] Hardebolle C., Boulanger F., Marcadet D., and Vidal-Naquet G. A generic ex-
ecution framework for models of computation. InModel-Based Methodologies
for Pervasive and Embedded Software, pp. 45–54. 2007.

[55] Hooman J. and van der Zwaag M.B. A semantics of communicating reactive
objects with timing. International Journal on Software Tools for Technology
Transfer, volume 8(2):pp. 97–112, 2006.

[56] Huang J. and Voeten J. Predictable model-driven design for real-time embedded
systems. InProceedings of Bits & Chips conference.2007.

[57] Huang J., Voeten J., and Corporaal H. Predictable real-time software synthesis.
Real-Time Systems Journal, volume 36(3):pp. 159–198, 2007.

[58] Huang J., Voeten J., Florescu O., van der Putten P., and Corporaal H.Pre-
dictability in Real-Time System Development, chapter 8, pp. 167–183. Kluwer
Academic Publishers, 2005.

[59] Huang J., Voeten J., Groothuis M., Broenink J., and Corporaal H. A model-
driven design approach for mechatronic systems. In IEEE Computer Society,
editor,Proceedings of the 7th International Conference on Application of Con-
currency to System Design – ACSD-07, pp. 127–136. 2007.

172 REFERENCES

[60] IEEE-1471. IEEE Recommended Practice for Architectural Description of Soft-
ware Intensive Systems. IEEE Std 1471–2000, 2000.

[61] Jouault F. and Kurtev I. Transforming Models with ATL. InProceedings of the
Model Transformations in Practice Workshop at MoDELS 2005. 2005.

[62] Kapur D. and Mandayam S. Expressiveness of the operation set of a data ab-
straction. InPOPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pp. 139–153. ACM Press, New
York, NY, USA, 1980. doi:http://doi.acm.org/10.1145/567446.567460.

[63] Kent S. Model Driven Engineering. InIntegrated Formal Methods: Third Inter-
national Conference, LNCS 2335), pp. 286–298. Springer Berlin / Heidelberg,
2002.

[64] Kernighan B.W. and Ritchie D.M.The C Programming Language.Prentice-
Hall, Englewood Cliffs, New Jersey, 1978.

[65] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., and Griswold W.
An Overview of AspectJ. InProceedings of the 15th European Conference on
Object-Oriented Programming, June 18-22, pp. 327–353. June 18-22 2001.

[66] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J.M.,
and Irwin J. Aspect-Oriented Programming. In M. Akşit and S. Matsuoka,
editors,11th Europeen Conf. Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pp. 220–242. Springer, 1997.

[67] Kienhuis B., Deprettere E., Vissers K., and van der Wolf P. Quantitative Analy-
sis of Application-Specific Dataflow Architectures. In1997 International Con-
ference on Application-Specific Systems, Architectures, and Processors (ASAP
’97), pp. 338–349. IEEE Computer Society, 1997.

[68] Kleppe A.G., Warmer J., and Bast W.MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[69] Lang J. and Stewart D.B. A study of the applicability of existing exception-
handling techniques to component-based real-time software technology.ACM
Transactions on Programming Languages and Systems, volume 20(2):pp. 274 –
301, 1998.

[70] Lange C.F.J., Chaudron M.R.V., and Muskens J. In Practice: UML Software
Architecture and Design Description.IEEE Software, volume 23(2):pp. 40–46,
March 2006.

[71] Leavens G.T. and Clifton C. Foundations of Aspect-Oriented Languages Work-
shop. In Foundations of Aspect-Oriented Languages Workshop, volume 3.
AOSD, 2004.

REFERENCES 173

[72] Leavens G.T. and Clifton C. Foundations of Aspect-Oriented Languages Work-
shop. In Foundations of Aspect-Oriented Languages Workshop, volume 4.
AOSD, 2005.

[73] Lewis G. and Wrage L. Approaches to Constructive Interoperability. Technical
Report CMU/SEI-2004-TR-020 ESC-TR-2004-020, Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2005.

[74] Lindig C. and Snelting G. Assessing Modular Structure of Legacy Code Based
on Mathematical Concept Analysis. InProceedings of the 19th International
Conference on Software Engineering, pp. 349–359. ACM Press, 1997.

[75] Lions J.L. ARIANE 5 Flight 501 Failure. Technical report, ESA/CNES, 1996.

[76] Lippert M. and Lopes C.V. A study on exception detection and handling using
aspect-oriented programming. InProceedings of the International Conference
on Software Engineering, pp. 418 – 427. IEEE Computer Society, 2000.

[77] Littlewood B. Dependability assessment of software-based systems: state of the
art. In Proceedings of the International Conference on Software Engineering,
pp. 6–7. ACM Press, 2005. doi:http://doi.acm.org/10.1145/1062455.1062461.

[78] Lynch N.A., Merritt M., Weihl W.E., and Fekete A.Atomic Transactions: In
Concurrent and Distributed Systems. Morgan Kaufmann, 1993.

[79] Nagy I. On the Design of Aspect-Oriented Composition Models for Software
Evolution.Ph.D. thesis, University of Twente, June 2006.

[80] Nagy I., Bergmans L., and Aksit M. Composing aspects at shared join points. In
R. Hirschfeld, R. Kowalczyk, A. Polze, and M. Weske, editors,Proceedings of
International Conference NetObjectDays, NODe2005, volume P-69 ofLecture
Notes in Informatics. Springer-Verlag, Erfurt, Germany, Sep 2005.

[81] van den Nieuwelaar N.Supervisory Machine Control by Predictive-Reactive
Scheduling. Ph.D. thesis, Technische Universiteit Eindhoven, 2004.

[82] Noonan L. and Flanagan C. Utilising evolutionary approaches and object-
oriented techniques for design space exploration. InEuromicro Conference on
Digital System Design, pp. 346–352. IEEE Computer Society Press, 2006.

[83] OMG. OMG. http://www.omg.org/cgi-bin/doc?ad/2002-4-10.

[84] OMG. OMG Unified Modeling Language Specification, Version 1.4. http://
www.omg.org/docs/formal/01-09-67.pdf, June 2007.

[85] Potts C. Software-Engineering Research Revisited.IEEE Software, vol-
ume 10(5):pp. 19–28, September/October 1993.

http://www.omg.org/cgi-bin/doc?ad/2002-4-10
http://www.omg.org/docs/formal/01-09-67.pdf
http://www.omg.org/docs/formal/01-09-67.pdf

174 REFERENCES

[86] Ptolemy. Http://ptolemy.eecs.berkeley.edu/.

[87] Punter T. and Gool L. Experience Report On Maintainability Prediction at De-
sign Level. Ideals technical report, Embedded Systems Institute, October 2005.

[88] Punter T., Voeten J., and Huang J. Quality of Model Driven Engineering. In
Model-Driven Software Development: Integrating Quality Assurance.To ap-
pear.

[89] van der Putten P. and Voeten J.Specification of Reactive Hardware/Software
Systems - The Method Software/Hardware Engineering. Ph.D. thesis, Eindhoven
University of Technology, The Netherlands, 1997.

[90] Ramadge P. and Wonham W. Supervisory control of a class of discrete event
processes.SIAM Journal on Control and Optimization, volume 25(1):pp. 206–
230, 1987.

[91] Robillard M. and Murphy G.C. Regaining Control of Exception Handling. Tech-
nical Report TR-99-14, Department of Computer Science, University of British
Columbia, 1999.

[92] Roo A. Towards More Robust Advice: Message Flow Analysis for Composition
Filters and its Application. Master’s thesis, University of Twente, March 2007.

[93] Sabuncuoglu I. and Bayiz M. Analysis of reactive scheduling problems in a job-
shop environment.European Journal of operational research, volume 126:pp.
567–586, 2000.

[94] Tau generation 2. Http://www.taug2.com/.

[95] The Open Group. IEEE Std 1003.1, The make utility. The Open Group Base
Specifications Issue 6, 2004.

[96] Theelen B., Florescu O., Geilen M., Huang J., van der Putten P., and Voeten J.
Software/Hardware Engineering with the Parallel Object-Oriented Specification
Language. InACM-IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE), pp. 139–148. IEEE Computer Society,
2007.

[97] Toy W.N. Fault-tolerant design of local ESS processors. InProceedings of IEEE,
pp. 1126–1145. IEEE Computer Society, 1982.

[98] Tretmans G.E.Tangram: Model-based integration and testing of complex high-
tech systems. Embedded Systems Institute, 2007.

[99] Viennot G.X. Heaps of Pieces, I: Basic definitions and combinatorial lemmas.
In Proceedings of the Colloque de combinatoire énumérative (UQAM 1985),
Montreal, Canada, volume 1234 ofLecture Notes in Mathematics, pp. 321–350.
Springer, 1986.

REFERENCES 175

[100] Wegner P. and Doyle J. Editorial: strategic directions in computing research.
ACM Computing Surveys, volume 28(4):pp. 565–574, 1996.

[101] Weiser M. Program Slicing.IEEE Transactions on Software Engineering, vol-
ume 10(4):pp. 352–357, Jul 1984.

[102] van Wijk F., Voeten J., and ten Berg A.An Abstract Modeling Approach Towards
System-Level Design-Space Exploration, chapter 22, pp. 167–183. Kluwer Aca-
demic Publishers, 2003.

[103] Zachmann. The Zachmann Institute for Framework Advancement. http://www.
zifa.com.

[104] Zimmermann H. OSI Reference Model - The ISO Model of Architecture for
Open System Communication. In IEEE, editor,IEEE Transactions on Commu-
nication, volume Com-28, Nr. 4, pp. 425–432. April 1980.

http://www.zifa.com
http://www.zifa.com

	An overview of Mirjam and WeaveC István Nagy, Remco van Engelen, Durk van der Ploeg

