
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-028 June 18, 2009

An Overview of MOOS-IvP and a Brief
Users Guide to the IvP Helm Autonomy Software
Michael R. Benjamin, Paul M. Newman, Henrik
Schmidt, and John J. Leonard

An Overview of MOOS-IvP and a Brief Users Guide

to the IvP Helm Autonomy Software

Michael R. Benjamin1,2, Paul Newman3, Henrik Schmidt1, John J. Leonard1

1Department Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge MA

2Center for Advanced System Technologies
NUWC Division Newport, Newport RI

3Department of Engineering Science
University of Oxford, Oxford England

June 1st, 2009 - Release 4.0 beta (SVN Revision 2107)

Abstract

This document describes the IvP Helm - an Open Source behavior-based autonomy applica-
tion for unmanned vehicles. IvP is short for interval programming - a technique for representing
and solving multi-objective optimizations problems. Behaviors in the IvP Helm are reconciled
using multi-objective optimization when in competition with each other for influence of the
vehicle. The IvP Helm is written as a MOOS application where MOOS is a set of Open Source
publish-subscribe autonomy middleware tools. This document describes the configuration and
use of the IvP Helm, provides examples of simple missions and information on how to download
and build the software from the MOOS-IvP server at www.moosivp.org.

Approved for public release; Distribution is unlimited.

This work is the product of a multi-year collaboration between the Center for Advanced System
Technologies (CAST), Code 2501, of the Naval Undersea Warfare Center in Newport Rhode Island
and the Department of Mechanical Engineering and the Computer Science and Artificial Intelligence
Laboratory (CSAIL) at the Massachusetts Institute of Technology in Cambridge Massachusetts,
and the Oxford University Mobile Robotics Group.

Points of contact for collaborators:

Dr. Michael R. Benjamin
Center for Advanced System Technologies
NUWC Division Newport Rhode Island
Michael.R.Benjamin@navy.mil
mikerb@csail.mit.edu

Prof. John J. Leonard
Department of Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Intitute of Technology
jleonard@csail.mit.edu

Prof. Henrik Schmidt
Department of Mechanical Engineering
Massachusetts Intitute of Technology
henrik@mit.edu

Dr. Paul Newman
Department of Engineering Science
University of Oxford
pnewman@robots.ox.ac.uk

Other collaborators have contributed greatly to the development and testing of software and ideas within,
notably - Joseph Curcio, Don Eickstedt, Andrew Patrikilakis, Toby Schneider, Arjuna Balasuriya, David
Battle, Christian Convey, Andrew Shafer, and Kevin Cockrell.

Sponsorship, and public release information:

This work is sponsored by Dr. Behzad Kamgar-Parsi and Dr. Don Wagner of the Office of Naval Research

(ONR), Code 311. Information on Navy public release approval for this document can be obtained from the

Technical Library at the Naval Undersea Warfare Center, Division Newport RI.

2

CONTENTS

Contents

1 Overview 8
1.1 Purpose and Scope of this Document . 8
1.2 Brief Background of MOOS-IvP . 8
1.3 Sponsors of MOOS-IvP . 8
1.4 The Software . 9

1.4.1 Building and Running the Software . 9
1.4.2 Operating Systems Supported by MOOS and IvP 10

1.5 Where to Get Further Information . 10
1.5.1 Websites and Email Lists . 10
1.5.2 Documentation . 10

2 Design Considerations of MOOS-IvP 12
2.1 Public Infrastructure - Layered Capabilities . 12
2.2 Code Re-Use . 13
2.3 The Backseat Driver Design Philosophy . 15
2.4 The Publish-Subscribe Middleware Design Philosophy and MOOS 16
2.5 The Behavior-Based Control Design Philosophy and IvP Helm 16

3 A Very Brief Overview of MOOS 18
3.1 Inter-process communication with Publish/Subscribe 18
3.2 Message Content . 18
3.3 Mail Handling - Publish/Subscribe - in MOOS . 19

3.3.1 Publishing Data . 20
3.3.2 Registering for Notifications . 20
3.3.3 Reading Mail . 20

3.4 Overloaded Functions in MOOS Applications . 20
3.4.1 The Iterate() Method . 21
3.4.2 The OnNewMail() Method . 22
3.4.3 The OnStartup() Method . 22

3.5 MOOS Mission Configuration Files . 22
3.6 Launching Groups of MOOS Applications with Antler 23
3.7 Scoping and Poking the MOOSDB . 23
3.8 A Simple MOOS Application - pXRelay . 24

3.8.1 Finding and Launching the pXRelay Example 25
3.8.2 Scoping the pXRelay Example with uXMS . 25
3.8.3 Seeding the pXRelay Example with the uPokeDB Tool 25
3.8.4 The pXRelay Example MOOS Configuration File 27
3.8.5 Suggestions for Further Things to Try with this Example 28

3.9 MOOS Applications Available to the Public . 29
3.9.1 MOOS Modules from Oxford . 29
3.9.2 MOOS Modules from MIT and NUWC . 30

4 A First Example with MOOS-IvP - the Alpha Mission 31
4.1 Where to Find, and How to Launch the Alpha Example Mission 31

3

CONTENTS

4.2 A Closer Look at the Behavior File used in the Alpha Example Mission 33
4.3 A Closer Look at the set of MOOS Apps In the Alpha Example Mission 35

4.3.1 Antler and the Antler Configuration Block 35
4.3.2 The pMarinePID Application and Configuration Block 36
4.3.3 The iMarineSim Application and Configuration Block 36
4.3.4 The pNodeReporter Application and Configuration Block 36
4.3.5 The pMarineViewer Application and Configuration Block 37

5 The IvP Helm as a MOOS Application 38
5.1 Overview . 38
5.2 Helm Engagement . 39

5.2.1 Helm Engagement Transitions . 39
5.2.2 What Is and Isn’t Happening when the Helm is Disengaged 40
5.2.3 Initializing the Helm Engagment State at Process Launch Time 40
5.2.4 Suggestions for Trying Out the Engagement Settings 40

5.3 Parameters for the pHelmIvP MOOS Configuration Block 41
5.3.1 The COMMUNITY Parameter . 41
5.3.2 The DOMAIN Parameter . 41
5.3.3 The BEHAVIORS Parameter . 41
5.3.4 The VERBOSE Parameter . 42
5.3.5 The START ENGAGED Parameter . 42
5.3.6 The OK SKEW Parameter . 42
5.3.7 An Example pHelmIvP MOOS Configuration Block 42

5.4 Launching the IvP Helm and Output to the Terminal Window 43
5.5 Publications and Subscriptions for IvP Helm . 45

5.5.1 Variables published by the IvP Helm . 45
5.5.2 Variables Subscribed for by the IvP Helm . 47

5.6 Automated Filtering of Successive Duplicate Helm Publications 47
5.6.1 Motivation for the Duplication Filter . 47
5.6.2 Implementation and Usage of the Duplication Filter 48
5.6.3 Clearing the Duplication Filter . 49

6 IvP Helm Autonomy 50
6.1 Overview . 50

6.1.1 The Influence of Brooks, Stallman and Dantzig on the IvP Helm 50
6.1.2 Traditional and Non-traditional Aspects of the IvP Behavior-Based Helm . . 50
6.1.3 Two Layers of Building Autonomy in the IvP Helm 51

6.2 Inside the IvP Helm - A Look at the Helm Iterate Loop 52
6.2.1 Step 1 - Reading Mail and Populating the Info Buffer 52
6.2.2 Step 2 - Evaluation of Mode Declarations . 53
6.2.3 Step 3 - Behavior Participation . 53
6.2.4 Step 4 - Behavior Reconciliation . 53
6.2.5 Step 5 - Publishing the Results to the MOOSDB 53

6.3 Mission Behavior Files . 54
6.3.1 Variable Initialization Syntax . 54

4

CONTENTS

6.3.2 Behavior Configuration Syntax . 54
6.3.3 Hierarchical Mode Declaration Syntax . 55

6.4 Hierarchical Mode Declarations . 55
6.4.1 Background . 55
6.4.2 Behavior Configuration Without Hierarchical Mode Declarations 56
6.4.3 Syntax of Hierarchical Mode Declarations - The Charlie Mission 57
6.4.4 A More Complex Example of Hierarchical Mode Declarations 58
6.4.5 Monitoring the Mission Mode at Run Time 59

6.5 Behavior Participation in the IvP Helm . 60
6.5.1 Behavior Run Conditions . 60
6.5.2 Behavior Run Conditions and Mode Declarations 61
6.5.3 Behavior Run States . 62
6.5.4 Behavior Flags and Behavior Messages . 62
6.5.5 Monitoring Behavior Run States and Messages During Mission Execution . . 64

6.6 Behavior Reconciliation in the IvP Helm - Multi-Objective Optimization 64
6.6.1 IvP Functions . 64
6.6.2 The IvP Build Toolbox . 65
6.6.3 The IvP Solver and Behavior Priority Weights 67
6.6.4 Monitoring the IvP Solver During Mission Execution 68

7 Standard and Overloadable Properties of Helm Behaviors 70
7.1 Brief Overview . 70
7.2 Parameters Common to All IvP Behaviors . 71

7.2.1 A Summary of the Full Set of General Behavior Parameters 71
7.2.2 Altering Behavior Parameters Dynamically with the UPDATES Parameter . . . 73
7.2.3 Limiting Behavior Duration with the DURATION Parameter 74
7.2.4 The PERPETUAL Parameter . 75
7.2.5 Detection of Stale Variables with the NOSTARVE Parameter 75

7.3 Overloading the setParam() Function in New Behaviors 75
7.4 Behavior Functions Invoked by the Helm . 76

7.4.1 Helm-Invoked Immutable Functions . 76
7.4.2 Helm-Invoked Overloaded Functions . 78

7.5 Local Behavior Utility Functions . 78
7.5.1 Summary of Implementor-Invoked Utility Functions 78
7.5.2 The Information Buffer . 80
7.5.3 Requesting the Inclusion of a Variable in the Information Buffer 80
7.5.4 Accessing Variable Information from the Information Buffer 80

7.6 Overloading the onRunState() and onIdleState() Functions 81

8 uHelmScope 83
8.1 Brief Overview . 83
8.2 Console Output of uHelmScope . 83

8.2.1 The General Helm Overview Section of the uHelmScope Output 84
8.2.2 The MOOSDB-Scope Section of the uHelmScope Output 85
8.2.3 The Behavior-Posts Section of the uHelmScope Output 85

5

CONTENTS

8.3 Stepping Forward and Backward Through Saved Scope History 86
8.4 Console Key Mapping and Command Line Usage Summaries 86
8.5 IvPHelm MOOS Variable Output Supporting uHelmScope Reports 87
8.6 Configuration Parameters for uHelmScope . 88
8.7 Publications and Subscriptions for uHelmScope . 89

9 Geometry Utilities 90
9.1 Brief Overview . 90
9.2 Points . 90

9.2.1 String Representations for Points . 90
9.2.2 Optional Point Parameters . 90

9.3 Polygons . 91
9.3.1 String Representations for Polygons . 91
9.3.2 A Polygon String Representation using the Radial Format 91
9.3.3 A Polygon String Representation using the Ellipse Format 92
9.3.4 Optional Polygon Parameters . 93

9.4 SegLists and their String Representations . 93
9.4.1 Methods for Specifying Seglists . 93
9.4.2 A SegList String Representation using the Lawnmower Format 93

10 pMarineViewer 95
10.1 Brief Overview . 95
10.2 Description of the pMarineViewer GUI Interface . 96
10.3 Pull-Down Menu Options . 97

10.3.1 The “BackView” Pull-Down Menu . 97
10.3.2 The “GeoAttributes” Pull-Down Menu . 99
10.3.3 The “Vehicles” Pull-Down Menu . 100
10.3.4 The “MOOS-Scope” Pull-Down Menu . 101
10.3.5 The Optional “Action” Pull-Down Menu . 101
10.3.6 The Optional “Mouse-Context” Pull-Down Menu 102
10.3.7 The Optional “Reference-Point” Pull-Down Menu 104

10.4 Displayable Vehicle Shapes, Markers, Drop Points, and other Geometric Objects . . 104
10.4.1 Displayable Vehicle Shapes . 105
10.4.2 Displayable Marker Shapes . 105
10.4.3 Displayable Drop Points . 106
10.4.4 Displayable Geometric Objects . 107

10.5 Support for Command-and-Control Usage . 108
10.5.1 Poking the MOOSDB with Geo Positions . 108
10.5.2 Configuring GUI Buttons for Command and Control 108

10.6 Configuration Parameters for pMarineViewer . 109
10.7 More about Geo Display Background Images . 114
10.8 Publications and Subscriptions for pMarineViewer 115

10.8.1 Variables published by the pMarineViewer application 115
10.8.2 Variables subscribed for by pMarineViewer application 115

6

CONTENTS

11 Behaviors of the IvP Helm 117
11.1 BHV Waypoint . 117

11.1.1 Overview of the BHV Waypoint Behavior . 117
11.1.2 Brief Summary of the BHV Waypoint Behavior Parameters 118
11.1.3 Specifying Waypoints - the points, order, and repeat Parameters 118
11.1.4 The capture radius and nonmonotonic radius Parameters 119
11.1.5 Track-line Following using the lead Parameter 119
11.1.6 Variables Published by the BHV Waypoint Behavior 120
11.1.7 The Objective Function Produced by the BHV Waypoint Behavior 121

11.2 BHV OpRegion . 122
11.2.1 Overview of the BHV OpRegion Behavior . 122
11.2.2 Brief Summary of the BHV OpRegion Parameters 122
11.2.3 Safety Checking Applied to an Operation Region 122
11.2.4 Safety Checking Applied to a Maximum Mission Operation Time 123
11.2.5 Safety Checking Applied to a Maximum Vehicle Depth 123
11.2.6 Safety Checking Applied to a Minimum Vehicle Altitude 123
11.2.7 Variables Published by the BHV OpRegion Behavior 123

11.3 BHV Loiter . 125
11.4 BHV PeriodicSpeed . 127
11.5 BHV PeriodicSurface . 128
11.6 BHV ConstantDepth . 130
11.7 BHV ConstantHeading . 130
11.8 BHV ConstantSpeed . 130
11.9 BHV GoToDepth . 132
11.10BHV MemoryTurnLimit . 134
11.11BHV StationKeep . 136

11.11.1 Overview of the BHV StationKeep Behavior 136
11.11.2 Brief Summary of the BHV StationKeep Behavior Parameters 136
11.11.3 Setting the Station-Keep Point and Radial-Speed Relationships 137
11.11.4 Passive Low-Energy Station Keeping Mode 138
11.11.5 Station Keeping On Demand . 140

11.12BHV Timer . 141

12 Multi-Vehicle Behaviors of the IvP Helm 142
12.1 Parameters Common All Multi-Vehicle Behaviors . 142
12.2 BHV AvoidCollision . 142
12.3 BHV CutRange . 144
12.4 BHV Shadow . 145
12.5 BHV Trail . 145

13 Appendix - Behavior Summaries 147

14 Appendix - Colors 163

7

1 OVERVIEW

1 Overview

1.1 Purpose and Scope of this Document

The purpose of this document is to provide an overview of the IvP Helm in terms of design consider-
ations, architecture and usage. This document contains references to example missions distributed
with the MOOS-IvP software bundle at www.moos-ivp.org. The example and material herein should
serve as a “getting-started” guide as well as users manual for users looking to go beyond simple
autonomy missions. THIS DOCUMENT REPRESENTS WORK IN PROGRESS. IT IS STILL

CONSIDERED TO BE IN DRAFT FORM AND HAS KNOWN OMISSIONS. THE READER

IS ENCOURAGED TO EMAIL THE AUTHORS FEEDBACK AND LOOK FOR LATER VER-

SIONS.

1.2 Brief Background of MOOS-IvP

MOOS was written by Paul Newman in 2001 to support operations with autonomous marine
vehicles in the MIT Ocean Engineering and the MIT Sea Grant programs. At the time Newman
was a post-doc working with John Leonard and has since joined the faculty of the Mobile Robotics
Group at Oxford University. MOOS continues to be developed and maintained by Newman at
Oxford and the most current version can be found at his website. The MOOS software available in
the MOOS-IvP project includes a snapshot of the MOOS code distributed from Oxford. The IvP
Helm was developed in 2004 for autonomous control on unmanned marine surface craft, and later
underwater platforms. It was written by Mike Benjamin as a post-doc working with John Leonard,
and as a research scientist for the Naval Undersea Warfare Center in Newport Rhode Island. The
IvP Helm is a single MOOS process that uses multi-objective optimization to implement behavior
coordination.

Acronyms

MOOS stands for ”Mission Oriented Operating Suite” and its original use was for the Bluefin
Odyssey III vehicle owned by MIT. IvP stands for ”Interval Programming” which is a mathematical
programming model for multi-objective optimization. In the IvP model each objective function is a
piecewise linear construct where each piece is an interval in N-Space. The IvP model and algorithms
are included in the IvP Helm software as the method for representing and reconciling the output of
helm behaviors. The term interval programming was inspired by the mathematical programming
models of linear programming (LP) and integer programming (IP). The pseudo-acronym IvP was
chosen simply in this spirit and to avoid acronym clashing.

1.3 Sponsors of MOOS-IvP

Original development of MOOS and IvP were more or less infrastructure by-products of other
sponsored research in (mostly marine) robotics. Those sponsors were primarily The Office of Naval
Research (ONR), as well as the National Oceanic and Atmospheric Administration (NOAA). MOOS
and IvP are currently funded by Code 31 at ONR, Dr. Don Wagner and Dr. Behzad Kamgar-
Parsi. MOOS is additionally supported in the U.K. by EPSRC. Early development of IvP benefited
from the support of the In-house Laboratory Independent Research (ILIR) program at the Naval
Undersea Warfare Center in Newport RI. The ILIR program is funded by ONR.

8

1 OVERVIEW

1.4 The Software

The MOOS-IvP autonomy software is available at the following URL:

http://www.moos-ivp.org

Follow the links to Software. Instructions are provided for downloading the software from an SVN
server with anonymous read-only access.

1.4.1 Building and Running the Software

After checking out the tree from the SVN server as prescribed at this link, the top level directory
should have the following structure:

moos-ivp/

MOOS/

MOOS-2208/

README.txt

README-LINUX.txt

README-OS-X.txt

build-moos.sh

build-ivp.sh

ivp/

Note there is a MOOS directory and an IvP sub-directory. The MOOS directory is a symbolic link
to a particular MOOS revision checked out from the Oxford server. In the example above this is
Revision 2208 on the Oxford SVN server. This directory is left completely untouched other than
giving it the local name MOOS-2208. The use of a symbolic link is done to greatly simplify the
process of bringing in a new snapshot from the Oxford server.

The build instructions are maintained in the README files and are probably more up to date
than this document can hope to remain. In short building the software amounts to two steps -
building MOOS and building IvP. Building MOOS is done by executing the build-moos.sh script:

> cd moos-ivp

> ./build-moos.sh

Alternatively one can go directly into the MOOS directory and configure options with ccmake and
build with cmake. The script is included to facilitate configuration of options to suit local use.
Likewise the IvP directory can be built by executing the build-ivp.sh script. The MOOS tree must
be built before building IvP. Once both trees have been built, the user’s shell executable path must
be augmented to include the two directories containing the new executables:

moos-ivp/MOOS/MOOSBin

moos-ivp/ivp/bin

At this point the software should be ready to run and a good way to confirm this is to run the
example simulated mission in the missions directory:

> cd moos-ivp/ivp/missions/alpha/

> pAntler alpha.moos

9

1 OVERVIEW

Running the above should bring up a GUI with a simulated vehicle rendered. Clicking the DEPLOY

button should start the vehicle on its mission. If this is not the case, some help and email contact
links can be found at www.moos-ivp.org/support/.

1.4.2 Operating Systems Supported by MOOS and IvP

The MOOS software distributed by Oxford is well supported on Linux, Windows and Mac OS X.
The software distributed by MIT/NUWC includes additional MOOS utility applications and the
IvP Helm and related behaviors. These modules are support on Linux and Mac OS X. The software
compiles and runs on Windows but Windows support is limited.

1.5 Where to Get Further Information

1.5.1 Websites and Email Lists

There are two websites - the MOOS website maintained by Oxford University, and the MOOS-IvP
website maintained by MIT/NUWC. At the time of this writing they are at the following URLs:

http://www.robots.ox.ac.uk/~pnewman/TheMOOS/

http://www.moos-ivp.org

What is the difference in content between the two websites? As discussed previously, MOOS-IvP,
as a set of software, refers to the software maintained and distributed from Oxford plus additional
MOOS applications including the IvP Helm and library of behaviors. The software bundle released
at moos-ivp.org does include the MOOS software from Oxford - usually a particular released version.
For the absolute latest in the core MOOS software and documentation on Oxford MOOS modules,
the Oxford website is your source. For the latest on the core IvP Helm, behaviors, and MOOS
tools written by MIT/NUWC, the moos-ivp.org website is the source.

There are two mailing lists open to the public. The first list is for MOOS users, and the second
is for MOOS-IvP users. If the topic is related to one of the MOOS modules distributed from the
Oxford website, the proper email list is the ”moosusers” mailing list. You can join the ”moosusers”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosusers,

For topics related to the IvP Helm or modules distributed on the moos-ivp.org website that
are not part of the Oxford MOOS distribution (see the software page on moos-ivp.org for help in
drawing the distinction), the ”moosivp” mailing list is appropriate. You can join the ”moosivp”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosivp,

1.5.2 Documentation

Documentation on MOOS can be found on the Oxford University website:

http://www.robots.ox.ac.uk/~pnewman/MOOSDocumentation/index.htm

10

1 OVERVIEW

This includes documentation on the MOOS architecture, programming new MOOS applications
as well as documentation on several bread-and-butter applications such as pAntler, pLogger, uMS,
pMOOSBridge, iRemote, iMatlab, pScheduler and more. Documentation on the IvP Helm, behaviors
and autonomy related MOOS applications not from Oxford can be found on the www.moosivp.org
website under the Documentation link. Below is a summary of documents:

Documents Released or Pending Approval for Release

• An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software

(this document) - This is the primary document describing the IvP Helm regarding how it
works, the motivation for its design, how it is used and configured, and example configurations
and results from simulation.

• MOOS-IvP Autonomy Tools Users Manual - A Users Manual for seven MOOS applications:
uHelmScope, pMarineViewer, uXMS, uTermCommand, uPokeDB, uProcessWatch, pEchoVar. These
applications are common supplementary tools for running an autonomy system in simulation
and on the water. See [4].

• A Tour of MOOS-IvP Autonomy Software Modules - This document acts as a catalog of
existing modules (Both MOOS applications and IvP Behaviors). For each module, it relates
(a) where it can be downloaded, (b) what the module does, (c) who it was written by, (d)
rough estimate on size and complexity, and (e) what modules it may depend on for its build.

• Extending a MOOS-IvP Autonomy System and Users Guide to the IvPBuild Toolbox - This
document is a users manual for those wishing to write their own IvP Helm behaviors and
MOOS modules. It describes the IvPBehavior and CMOOSApp superclass. It also describes
the IvPBuild Toolbox containing a number of tools for building IvP Functions which is the
primary output of behaviors. It provides an example template directory with example IvP
Behavior and MOOS application with an example CMake build structure for linking against
the standard software MOOS-IvP software bundle.

Documents In-Progress

• Extended MOOS-IvP Autonomy Examples from Simulation and In-water Exercises - This
document describes a set of example scenarios and helm configurations and describes their
performance in simulation and in field exercises where possible.

• The IvP Solver - A Look at Interval Programming as a Mathematical Programming Model

- This document describes both the mathematical structure of IvP functions and problems
as well as the algorithms used for solving an IvP problem. Prior to this document being
available, one can consult [5].

11

2 DESIGN CONSIDERATIONS OF MOOS-IVP

2 Design Considerations of MOOS-IvP

The primary motivation in the design of MOOS-IvP is to build highly capable autonomous systems.
Part of this picture includes doing so at a reduced short and long-term cost and a reduced time
line. By “design” we mean both the choice in architectures and algorithms as well as the choice
to make key modules for infrastructure, basic autonomy and advanced tools available to the public
under an Open Source license. The MOOS-IvP software design is based on three architecture
philosophies, (a) the backseat driver paradigm, (b) publish and subscribe autonomy middleware,
and (c) behavior based autonomy. The common thread is the ability to separate the development
of software for an overall system into distinct modules coordinated by infrastructure software made
available to the public domain.

2.1 Public Infrastructure - Layered Capabilities

The central architecture idea of both MOOS and IvP is the separation of overall capability into
separate and distinct modules. The unique contributions of MOOS and IvP are the methods used
to coordinate those modules. A second central idea is the decision to make algorithms and software
modules for infrastructure, basic autonomy and advanced tools available to the public under an
Open Source license. The idea is pictured in Figure 1. There are three things in this picture - (a)
modules that actually perform a function (the wedges), (b) modules that coordinate other modules
(the center of the wheel), and (c) standard wrapper software use by each module to allow it to be
coordinated (the spokes).

Figure 1: Public Infrastructure - Layered Capabilities: The center of the wheel represents MOOS-IvP Core.
For MOOS this means the MOOSDB and the message passing and scheduling algorithms. For IvP this means the
IvP helm behavior management and the multi-objective optimization solver. The wedges on the wheel represent
individual modules - either MOOS processes or IvP behaviors. The spokes of the wheel represent the idea that each
module inherits from a superclass to grab functionality key to plugging into the core. Each wedge or module contains
a wrapper defined by the superclass that augments the function of the individual module. The darker wedges indicate
publicly available modules and the lighter ones are modules added by users to augment the public set to comprise a
particular fielded autonomy system.

The darker wedges in Figure 1 represent application modules (not infrastructure) that provide
basic functionality and are publicly available. However, they do not hold any special immutable
status. They can be replaced with a better version, or, since the source code is available, the

12

2 DESIGN CONSIDERATIONS OF MOOS-IVP

code of the existing module can be changed or augmented to provide a better or different version
(hopefully with a different name - see the section on branching below). Later sections provide an
overview of about 40 or so particular modules that are currently available. By modules we mean
MOOS applications and IvP behaviors and the above comments hold in either case. The white
wedges in Figure 1 represent the imaginable unimplemented modules or functionality. A particular
fielded MOOS-IvP autonomy system typically is comprised of (a) the MOOS-IvP core modules, (b)
some of the publicly available MOOS applications and IvP behaviors, and (c) additional perhaps
non-public MOOS applications and IvP behaviors provided by one or more 3rd party developers.

The objective of the public-infrastructure/layered-capabilities idea is to strike an important bal-
ance - the balance between effective code re-use and the need for users to retain privacy regarding
how they choose to augment the public codebase with modules of their own to realize a partic-
ular autonomy system. The benefits of code re-use are an important motivation in fundamental
architecture decisions in both MOOS and IvP. The modules that comprise the public MOOS-IvP
codebase described in this document represent over twenty work-years of development effort. Fur-
thermore, certain core components of the codebase have had hundreds if not thousands of hours of
usage on a dozen or so fielded platform types in a variety of situations. The issue of code re-use is
discussed next.

2.2 Code Re-Use

Code re-use is critical, and starts with the ability to have a system comprised of separate but
coordinated modules. They key technical hurdle is to achieve module separation without invoking
a substantial hit on performance. In short, MOOS middleware is a way of coordinating separate
processes running on a single computer or over several networked computers. IvP is a way of
coordinating several autonomy behaviors running within a single MOOS process.

Factors Contributing to Code Re-use:

• Freedom from proprietary issues. Software serving as infrastructure shared by all compo-
nents (MOOS processes and IvP behaviors) are available under an Open Source license. In
addition many mature MOOS and IvP modules providing commonly needed capabilities are
also publicly available. Proprietary or non-publicly released code may certainly co-exist with
non-proprietary public code to comprise a larger autonomy system. Such a system would
retain a strategic edge over competitors if desired, but have a subset of components common
with other users.

• Module independence. Maintaining or augmenting a system comprised of a set of distinct
modules can begin to break down if modules are not independent with simple easy-to-augment
interfaces. Compile dependencies between modules need to be minimized or eliminated. The
maintenance of core software libraries and application code should be decoupled completely
from the issues of 3rd party additional code.

• Simple well-documented interfaces. The effort required to add modules to the code base
should be minimized. Documentation is needed for both (a) using the publicly available
applications and libraries, and (b) guiding users in adding their own modules.

• Freedom to innovate. The infrastructure does not put undue restrictions on how basic prob-
lems can be solved. The infrastructure remains agnostic to techniques and algorithms used

13

2 DESIGN CONSIDERATIONS OF MOOS-IVP

in the modules. No module is sacred and any module may be replaced.

Benefits of Code Re-Use:

• Diversity of contributors. Increasingly, an autonomy system contains many components that
touch many areas of expertise. This would be true even for a vanilla use of a vehicle, but
is compounded when considering the variety of sensors and missions and ways of exploiting
sensors in achieving mission objectives. A system that allows for wide code re-use is also a
system that allows module contributions from a wide set of developers or experts. This has a
substantial impact on the issues mentioned below of lower cost, higher quality and reliability,
and reduced development time line.

• Lower cost. One immediate benefit of code re-use is the avoidance of repeatedly re-inventing
modules. A group can build capabilities incrementally and experts are free to concentrate
on their area and develop only the modules that reflect their skill set and interests. Perhaps
more important, code re-use gives the systems integrator choices in building a complete
system from individual modules. Having choices leads to increased leverage in bargaining for
favorable licensing terms or even non-proprietary terms for a new module. Favorable licensing
terms arranged at the outset can lead to substantially lower long-term costs for future code
maintenance or augmentation of software.

• Higher performance capability. Code re-use enhances performance capability in two ways.
First, since experts are free to be experts without re-inventing the modules outside their
expertise and provided by others, their own work is more likely to be more focused and
efficient. They are likely to achieve a higher capability for a given a finite investment and
given finite performance time. Second, since code re-use gives a systems integrator choices,
this creates a meritocracy based on optimal performance-cost ratio of candidate software
modules. The under-capable, more expensive module is less likely to diminish the overall
autonomy capability if an alternative module is developed to offer a competitive choice.
Survival of the fittest.

• Higher performance reliability. An important part of system reliability is testing. The more
testing time and the greater diversity of testing scenarios the better. And of course the more
time spent testing on physical vehicles versus simulation the better. By making core compo-
nents of a codebase public and permitting re-use by a community of users, that community
provides back an enormous service by simply using the software and complaining when or
if something goes wrong. Certain core components of the MOOS-IvP codebase have had
hundreds if not thousands of hours of usage on a dozen or so platform types in a variety of
situations. And many more hours in simulation. Testing doesn’t replace good coding practice
or formal methods for testing and verifying correctness, but it complements those two aspects
and is enhanced by code re-use.

• Reduced development time line. Code re-use means less code is being re-developed which
leads to quicker overall system development. More subtly, since code re-use can provide a
systems integrator choices and competition on individual modules, development time can be
reduced as a consequent. An integrator may simply accept the module developed the quickest,
or the competition itself may speed up development. If choices and competition result in

14

2 DESIGN CONSIDERATIONS OF MOOS-IVP

more favorable license agreements between the integrator and developer, this in itself may
streamline agreements for code maintenance and augmentation in the long term. Finally, as
discussed above, if code re-use leads to an element of community-driven bug testing, this will
also quicken the pace in the evolution toward a mature and reliable autonomy system.

2.3 The Backseat Driver Design Philosophy

The key idea in the backseat driver paradigm is the separation between vehicle control and vehicle

autonomy. The vehicle control system runs on a platform’s main vehicle computer and the auton-
omy system runs on a separate payload computer. This separation is also referred to as the mission

controller - vehicle controller interface. A primary benefit is the decoupling of the platform au-
tonomy system from the actual vehicle hardware. The vehicle manufacturer provides a navigation
and control system capable of streaming vehicle position and trajectory information to the main
vehicle computer, and accepting a stream of autonomy decisions such as heading, speed and depth
in return. Exactly how the vehicle navigates and implements control is largely unspecified to the
autonomy system running in the payload. The relationship is depicted in Figure 2.

Figure 2: The backseat driver paradigm: The key idea is the separation of vehicle autonomy from vehicle control.
The autonomy system provides heading, speed and depth commands to the vehicle control system. The vehicle control
system executes the control and passes navigation information, e.g., position, heading and speed, to the autonomy
system. The backseat paradigm is agnostic regarding how the autonomy system implemented, but in this figure the
MOOS-IvP autonomy architecture is depicted.

The autonomy system on the payload computer consists of a set of distinct processes commu-
nicating through a publish-subscribe database called the MOOSDB (Mission Oriented Operating
Suite - Database). One such process is an interface to the main vehicle computer, and another key
process is the IvP Helm implementing the behavior-based autonomy system. The MOOS commu-
nity is referred to as the “larger autonomy” system, or the “autonomy system as a whole” since
MOOS itself is middleware, and actual autonomous decision making, sensor processing, contact
management etc., are implemented as individual MOOS processes.

15

2 DESIGN CONSIDERATIONS OF MOOS-IVP

2.4 The Publish-Subscribe Middleware Design Philosophy and MOOS

MOOS provides a middleware capability based on the publish-subscribe architecture and protocol.
Each process communicates with each other through a single database process in a star topology
(Figure 3). The interface of a particular process is described by what messages it produces (publica-
tions) and what messages it consumes (subscriptions). Each message is a simple variable-value pair
where the values are limited to either string or numerical values such as (STATE, ‘‘DEPLOY’’), or
(NAV SPEED, 2.2). Limiting the message type reduces the compile dependencies between modules,
and facilitates debugging since all messages are human readable.

Figure 3: A MOOS community: is a collection of MOOS applications typically running on a single machine each
with a separate process ID. Each process communicates through a single MOOS database process (the MOOSDB)
in a publish-subscribe manner. Each process may be executing its inner-loop at a frequency independent from one
another and set by the user. Processes may be all run on the same computer or distributed across a network.

The key idea with respect to facilitating code re-use is that applications are largely independent,
defined only by their interface, and any application is easily replaceable with an improved version
with a matching interface. Since MOOS Core and many common applications are publicly available
along with source code under an Open Source GPL license, a user may develop an improved module
by altering existing source code and introduce a new version under a different name. The term
MOOS Core refers to (a) the MOOSDB application, and (b) the MOOS Application superclass that
each individual MOOS application inherits from to allow connectivity to a running MOOSDB.
Holding the MOOS Core part of the codebase constant between MOOS developers enables the
plug-and-play nature of applications.

2.5 The Behavior-Based Control Design Philosophy and IvP Helm

The IvP Helm runs as a single MOOS application and uses a behavior-based architecture for
implementing autonomy. Behaviors are distinct software modules that can be described as self-
contained mini expert systems dedicated to a particular aspect of overall vehicle autonomy. The
helm implementation and each behavior implementation exposes an interface for configuration by
the user for a particular set of missions. This configuration often contains particulars such as a

16

2 DESIGN CONSIDERATIONS OF MOOS-IVP

certain set of waypoints, search area, vehicle speed, and so on. It also contains a specification of
state spaces that determine which behaviors are active under what situations, and how states are
transitioned. When multiple behaviors are active and competing for influence of the vehicle, the
IvP solver is used to reconcile the behaviors (Figure 4).

Figure 4: The IvP Helm: The helm is a single MOOS application running as the process pHelmIvP. It is a behavior-
based architecture where the primary output of a behavior on each iteration is an IvP objective function. The IvP
solver performs multi-objective optimization on the set of functions to find the single best vehicle action, which is
then published to the MOOSDB. The functions are built and the set is solved on each iteration of the helm - typically
one to four times per second. Only a subset of behaviors are active at any given time depending on the vehicle
situation, and the state space configuration provided by the user.

The solver performs this coordination by soliciting an objective function, i.e., utility function,
from each behavior defined over the vehicle decision space, e.g., possible settings for heading, speed
and depth. In the IvP Helm, the objective functions are of a certain type - piecewise linearly
defined - and are called IvP Functions. The solver algorithms exploit this construct to find a rapid
solution to the optimization problem comprised of the weighted sum of contributing functions.

The concept of a behavior-based architecture is often attributed to [9]. Since then various solu-
tions to the issue of action selection, i.e., the issue of coordinating competing behaviors, have been
put forth and implemented in physical systems. The simplest approach is to prioritize behaviors
in a way that the highest priority behavior locks out all others as in the Subsumption Architec-
ture in [9]. Another approach is referred to as the potential fields, or vector summation approach
(See [1], [12]) which considers the average action between multiple behaviors to be a reasonable
compromise. These action-selection approaches have been used with reasonable effectiveness on a
variety of platforms, including indoor robots, e.g., [1], [2], [16], [17], land vehicles, e.g., [18], and
marine vehicles, e.g., [8], [10], [13], [19], [20]. However, action-selection via the identification of
a single highest priority behavior and via vector summation have well known shortcomings later
described in [16], [17] and [18] in which the authors advocated for the use of multi-objective opti-
mization as a more suitable, although more computationally expensive, method for action selection.
The IvP model is a method for implementing multi-objective function based action-selection that
is computationally viable in the IvP Helm implementation.

17

3 A VERY BRIEF OVERVIEW OF MOOS

3 A Very Brief Overview of MOOS

MOOS is often described as autonomy “middleware” which can be argued is shorthand for the
glue that connects a collection of applications where the “real” work is going on. MOOS does
indeed connect a collection of applications, of which the IvP Helm is one. However, each appli-
cation inherits a generic MOOS interface whose implementation provides a powerful, easy-to-use
means of communicating with other applications and controlling the relative frequency at which
the application executes its primary set of functions. Due to its combination of ease-of-use, general
extendability and reliability, it has been used in the classroom by students with no prior experience,
as well on many extended field exercises with substantial robotic resources at stake. To frame the
later discussion of the IvP Helm, the basic issues regarding MOOS applications are introduced here.
For further information on MOOS, see [15].

3.1 Inter-process communication with Publish/Subscribe

MOOS has a star-like topology. This is depicted in Figure 3 on page 16. Each application within a
MOOS community (a MOOSApp) has a connection to a single MOOS Database (called MOOSDB)
that lies at the heart of the software suite. All communication happens via this central server
application. The network has the following properties:

• No Peer to Peer communication.

• All communication between the client and server is instigated by the client, i.e., the MOOSDB
never makes a unsolicited attempt to contact a MOOSApp.

• Each client has a unique name.

• A given client need have no knowledge of what other clients exist.

• A client has no way of transmitting data to a given client - it can only be sent to the MOOSDB.

• The network can be distributed over any number of machines running any combination of
supported operating systems.

This centralized topology is obviously vulnerable to bottle-necking at the server regardless of
how well written the server is. However the advantages of such a design are perhaps greater than its
disadvantages. Firstly the network remains simple regardless of the number of participating clients.
The server has complete knowledge of all active connections and can take responsibility for the
allocation of communication resources. The clients operate independently with inter-connections.
This prevents rogue clients (badly written or hung) from directly interfering with other clients.

3.2 Message Content

The communications API in MOOS allows data to be transmitted between the MOOSDB and a
client. The meaning of that data is dependent on the role of the client. However the form of that
data is constrained by MOOS. Somewhat unusually MOOS only allows for data to be sent in string
or double form. Data is packed into messages (CMOOSMsg class) which contains other salient
information shown in Table 1.

18

3 A VERY BRIEF OVERVIEW OF MOOS

Variable Meaning

Name The name of the data
String Value Data in string format
Double Value Numeric double float data
Source Name of client that sent this data to the MOOSDB

Time Time at which the data was written
Data Type Type of data (STRING or DOUBLE)
Message Type Type of Message (usually NOTIFICATION)
Source Community The community to which the source process belongs

Table 1: The contents of MOOS message

The fact that data is commonly sent in string format is often seen as a strange and inefficient
aspect of MOOS. For example the string "Type=EST,Name=AUV,Pos=[3x1]3.4,6.3,-0.23” might de-
scribe the position estimate of a vehicle called “AUV” as a 3x1 column vector. Typically string data
in MOOS is a concatenation of comma separated ”name = value” pairs. It is true that using custom
binary data formats does decrease the number of bytes sent. However binary data is unreadable
to humans and requires structure declarations to decode it and header file dependencies are to be
avoided where possible. The communications efficiency argument is not as compelling as one may
initially think. The CPU cost invoked in sending a TCP/IP packet is largely independent of size up
to about one thousand bytes. So it is as costly to send two bytes as it is one thousand. In this light
there is basically no penalty in using strings. There is however a additional cost incurred in parsing
string data which is far in excess of that incurred when simply casting binary data. Irrespective
of this, experience has shown that the benefits of using strings far outweighs the difficulties. In
particular:

• Strings are human readable.

• All data becomes the same type.

• Logging files are human readable (they can be compressed for storage).

• Replaying a log file is simply a case of reading strings from a file and “throwing” them back
at the MOOSDB in time order.

• The contents and internal order of strings transmitted by an application can be changed
without the need to recompile consumers (subscribers to that data) - users simply would not
understand new data fields but they would not crash.

Of course, scalar data need not be transmitted in string format - for example the depth of a
sub-sea vehicle. In this case the data would be sent while setting the data type to "MOOS DOUBLE"

and writing the numeric value in the double data field of the message.

3.3 Mail Handling - Publish/Subscribe - in MOOS

Each MOOS application is a client having a connection to the MOOSDB. This connection is made
on the client side and the client manages a private thread that coordinates the communication with

19

3 A VERY BRIEF OVERVIEW OF MOOS

the MOOSDB. This thread completely hides the intricacies and timings of the communications
from the rest of the application and provides a small, well dened set of methods to handle data
transfer. By having this thread automatically available to each MOOS application, the application
can:

1. Publish data - issue a notification on named data.

2. Register for notifications on named data.

3. Collect notifications on named data - reading mail.

3.3.1 Publishing Data

Data is published as a pair - a variable and value - that constitute the heart of a MOOS message
describe in Table 1. The client invokes the Notify(VarName, VarValue) command where appropriate
in the client code. The above command is implemented both for string values and double values,
and the rest of the fields described in Table 1 are filled in automatically. Each notification results
in another entry in the client’s “outbox”, which is emptied the next time the MOOSDB accepts an
incoming call from the client.

3.3.2 Registering for Notifications

Assume that a list of names of data published has been provided by the author of a particular
MOOS application. For example, a application that interfaces to a GPS sensor may publish data
called GPS X and GPS Y. A different application may register its interest in this data by subscribing
or registering for it. An application can register for notifications using a single method Register

specifying both the name of the data and the maximum rate at which the client would like to
be informed that the data has been changed. The latter parameter is specified in terms of the
minimum possible time between notifications for a named variable. For example setting it to zero
would result in the client receiving each and every change notification issued on that variable.

3.3.3 Reading Mail

A client can enquire at any time whether it has received any new notifications from the MOOSDB

by invoking the Fetch method. The function fills in a list of notification messages with the fields
given in Table 1. Note that a single call to Fetch may result in being presented with several
notifications corresponding to the same named data. This implies that several changes were made
to the data since the last client-server conversation. However, the time difference between these
similar messages will never be less than that specified in the Register function described above.
In typical applications the Fetch command is called on the client’s behalf just prior to the Iterate

method, and the messages are handled in the user overloaded OnNewMail method. These methods
are described next.

3.4 Overloaded Functions in MOOS Applications

MOOS provides a base class called CMOOSApp which simplifies the writing of a new MOOS application
as a derived subclass. Beneath the hood of the CMOOSApp class is a loop which repetitively calls

20

3 A VERY BRIEF OVERVIEW OF MOOS

a function called Iterate() which by default does nothing. One of the jobs as a writer of a new
MOOS-enabled application is to flesh this function out with the code that makes the application
do what we want. Behind the scenes this uber-loop in CMOOSApp is also checking to see if new data
has been delivered to the application. If it has, another virtual function, OnNewMail(), is called if
this is the spot to write code to process the newly delivered data.

Figure 5: Key virtual functions of the MOOS application base class: The flow of execution once Run() has
been called on a class derived from CMOOSApp . The scrolls indicate where users of the functionality of CMOOSApp
will be writing new code that implements whatever it is that is wanted from the new applications.

The roles of the three virtual functions in Figure 5 are discussed below. The pHelmIvP application
does indeed inherit from CMOOSApp and overload these three functions. The base class contains
other virtual functions (OnConnectToServer() and OnDisconnectFromServer()) not discussed here
but discussed in [15].

3.4.1 The Iterate() Method

By overriding the CMOOSApp::Iterate() function in a new derived class, the author creates a function
from which the work that the application is tasked with doing can be orchestrated. In the pHelmIvP

application, this method will consider the next best vehicle decision, typically in the form of deciding
values for the vehicle heading, speed and depth. The rate at which Iterate() is called by the
SetAppFreq() method or by specifying the AppTick parameter in a mission file (see Section 3.5 for
more on configuring an application from a file). Note that the requested frequency specifies the
maximum frequency at which Iterate() will be called - it does not guarantee that it will be called
at the requested rate. For example if you write code in Iterate() that takes 1 second to complete
there is no way that this method can be called at more than 1Hz. If you want to call Iterate()
as fast as is possible simply request a frequency of zero - but you may want to reconsider why you
need such a greedy application.

21

3 A VERY BRIEF OVERVIEW OF MOOS

3.4.2 The OnNewMail() Method

Just before Iterate() is called, the CMOOSApp base class determines whether new mail is present,
i.e., whether some other process has posted data for which the client has previously registered,
as described above. If new mail is waiting, the varCMOOSApp base class calls the OnNewMail()

virtual function, typically overloaded by the application. The mail arrives in the form of a list of
CMOOSMsg objects (see Table 1). The programmer is free to iterate over this collection examining
who sent the data, what it pertains to, how old it is, whether or not it is string or numerical data
and to act on or process the data accordingly.

3.4.3 The OnStartup() Method

This function is called just before the application enters into its own forever-loop depicted in
Figure 5. This is the application that implements the application’s initialization code, and in
particular reads configuration parameters (including those that modify the default behaviour of
the CMOOSApp base class) from a file. The next section (3.5) addresses the issue of configuring a
MOOS application from a file.

3.5 MOOS Mission Configuration Files

Every MOOS process can read configuration parameters from a mission file which by convention
has a .moos extension. Traditionally MOOS processes share the same mission file to the maximum
extent possible. For example, it is customary for there to be one common mission file for all
MOOS processes running on a given machine. Every MOOS process has information contained in
a configuration block within a *.moos file. The block begins with the statement

ProcessConfig = ProcessName

where ProcessName is the unique name the application will use when connecting to the MOOSDB.
The configuration block is delimited by braces. Within the braces there is a collection of parameter
statements, one per line. Each statement is written as:

ParameterName = Value

where Value can be any string or numeric value. All applications deriving from CMOOSApp inherit
several important configuration options. The most important options for CMOOSApp derived applica-
tions are CommsTick and AppTick. The latter configures how often the communications thread talks
to the MOOSDB and the former how often (approximately) Iterate() will be called. An example
configuration block can be found in Listing 6 on page 42.

Parameters may also be defined at the “global” level, i.e., not in any particular process’ configu-
ration block. Three parameters that are mandatory and typically found at the top of all *.moos files
are: ServerHost naming the IP address associated with the MOOSDB server being launched with
this file, ServerPort naming the port number over which the MOOSDB server is communicating
with clients, and Community naming the community comprising the server and clients. An example
is shown in lines 1-3 in Listing 4-A.

22

3 A VERY BRIEF OVERVIEW OF MOOS

3.6 Launching Groups of MOOS Applications with Antler

Antler provides a simple and compact way to start a MOOS mission comprised of several MOOS
processes, a.k.a., a MOOS “community”. For example if the desired mission file is alpha.moos then
executing the following from a terminal shell:

> pAntler alpha.moos

will launch the required processes for the mission. It reads from its configuration block (which is de-
clared as ProcessConfig=ANTLER) a list of process names that will constitute the MOOS community.
Each process to be launched is specified with a line with the general syntax

Run = procname [@ LaunchConfiguration] [MOOSName]

where LaunchConfiguration is an optional comma-separated list of parameter=value pairs which col-
lectively control how the process procname (for example pHelmIvP, or pLogger or MOOSDB) is launched.
Exactly what parameters can be specified is outside the scope of this discussion. Antler looks
through its entire configuration block and launches one process for every line which begins with
the RUN= left-hand side. When all processes have been launched Antler waits for all of them to exit
and then quits itself.

There are many more aspects of Antler not discussed here but can be found in the Antler
documentation at the Oxford website (see Section 1.5). These include hooks for altering the console
appearance for each launched process, controlling the search path for specifying how executables
are located on the host file system, passing parameters to launched processes, running multiple
instances of a particular process, and using Antler to launch multiple distinct communities on a
network.

3.7 Scoping and Poking the MOOSDB

An important tool for writing and debugging MOOS applications (and IvP Helm behaviors) is
the ability for the user to interact with an active MOOS community and see the current values of
particular MOOS variables (scoping the DB) and to alter one or more variables with a desired value
(poking the DB). Below are listed tools for scoping and poking respectively. More information on
each can be found on the Oxford or MIT websites, or in in some instances, other parts of this
document.

Tools for scoping the MOOSDB:

• uMS - A GUI-based tool written in FLTK and maintained and distributed from the Oxford
website.

• uXMS - A terminal-based tool maintained and distributed from the MIT website

• uHelmScope - A terminal-based tool specialized for displaying information about a running
instance of the helm, but it also contains a general-purpose scoping utility similar to uXMS.
Distributed from the MIT website.

• MOOSDB http - The newer releases of MOOS allow the MOOSDB to be configured to run an
http server on the current MOOSDB variable-value pairs, viewable through a web browser.

23

3 A VERY BRIEF OVERVIEW OF MOOS

Tools for poking the MOOSDB:

• uMS - The GUI-based tool for scoping, listed above, also provides a means for poking. Dis-
tributed from the Oxford website.

• uPokeDB - A light-weight command-line tool for poking one or more variable-value pairs,
with the option of scoping on the before and after values of the poked variable before exiting.
Distributed from the MIT website.

• pMarineViewer - A GUI-based tool primarily used for rendering the paths of vehicles in 2D
space on a Geo display, but also can be configured to poke the DB with variable-value pairs
connected to buttons on the display. Distributed from the MIT website.

• uTermCommand - A terminal-based tool for poking the DB with pre-defined variable-value
pairs. The user can configure the tool to associate aliases (as short as a single character) to
quickly poke the DB. Distributed from the MIT website.

• iRemote - A terminal-based tool for remote control of a robotic platform running MOOS. It
can be configured to associate a pre-defined variable-value poke with any un-mapped key on
the keyboard. Distributed from the Oxford website.

The above list is almost certainly not a complete list for scoping and poking a MOOSDB, but it’s a
decent start.

3.8 A Simple MOOS Application - pXRelay

The bundle of applications distributed from www.moos-ivp.org contains a very simple MOOS ap-
plication called pXRelay. The pXRelay application registers for a single “input” MOOS variable and
publishes a single “output” MOOS variable. It makes a single publication on the output variable
for each mail message received on the input variable. The value published is simply a counter rep-
resenting the number of times the variable has been published. By running two (differently named)
versions of pXRelay with complementary input/output variables, the two processes will perpetuate
some basic publish/subscribe handshaking. This application is distributed primarily as a simple
example of a MOOS application that allows for some illustration of the following topics introduced
up to this point:

• Finding and launching with pAntler example code distributed with the MOOS-IvP software
bundle.

• An example mission configuration file.

• Scoping variables on a running MOOSDB with the uXMS tool.

• Poking the MOOSDB with variable-value pairs using the uPokeDB tool.

• Illustrating the OnStartUp(), OnNewMail(), and Iterate() overloaded functions of the CMOOSApp
base class.

Besides touching on these topics, the collection of files in the pXRelay source code sub-directory is
not a bad template from which to build your own modules.

24

3 A VERY BRIEF OVERVIEW OF MOOS

3.8.1 Finding and Launching the pXRelay Example

The pXRelay example mission should be in the same directory tree containing the source code. See
Section 1.4 on page 9. There is a single mission file, xrelay.moos:

moos-ivp/

MOOS/

ivp/

missions/

xrelay/

xrelay.moos <---- The MOOS file

To run this mission from a terminal window, simply change directories and launch:

> cd moos-ivp/ivp/missions/xrelay

> pAntler xrelay.moos

After pAntler has launched each process, there should be four open terminal windows, one for
each pXRelay process, one for uXMS, and one for the MOOSDB itself.

3.8.2 Scoping the pXRelay Example with uXMS

Among the four windows launched in the example, the window to watch is the uXMS window, which
should have output similar to the following (minus the line numbers):

Listing 1 - Example uXMS output after the pXRelay example is launched.

0 VarName (S)ource (T)ime (C)ommunity VarValue

1 ---------------- ---------- --------- ---------- ----------- (73)

2 APPLES n/a n/a n/a n/a

3 PEARS n/a n/a n/a n/a

4 APPLES_ITER_HZ pXRelay_APPLES 14.93 xrelay 24.93561

5 PEARS_ITER_HZ pXRelay_PEARS 14.94 xrelay 24.93683

6 APPLES_POST_HZ n/a n/a n/a n/a

7 PEARS_POST_HZ n/a n/a n/a n/a

Initially the only thing that is changing in this window is the integer at the end of line 1
representing the number of updates written to the terminal. Here uXMS is configured to scope on
the six variables shown in the VarName column. Column 2 shows which process last posted on the
variable, column 3 shows when the last posting occurred, column 4 shows the community name from
which the post originated, and column 5 shows the current value of the variable. The "n/a" entries
indicate that a process has yet to write to the given variable. For further info on the workings of
uXMS see [4], or type ’h’ to see the help menu.

There are two pXRelay processes running - one under the alias pXRelay APPLES publishing
the variable APPLES as its output variable, APPLES ITER HZ indicating the frequency in which the
Iterate() function is executed, and APPLES POST HZ indicating the frequency at which the output
variable is posted. There is likewise a pXRelay PEARS process and the corresponding output variables.

3.8.3 Seeding the pXRelay Example with the uPokeDB Tool

Upon launching the pXRelay example, the only variables actively changing are the * ITER HZ vari-
ables (lines 4-5 in Listing 1) which confirm that the Iterate() loop in each process is indeed being

25

3 A VERY BRIEF OVERVIEW OF MOOS

executed. The output for the other variables in Listing 1 reflect the fact that the two processes
have not yet begun handshaking. This can be kicked off by poking the APPLES (or PEARS) variable,
which is the input variable for pXRelay PEARS, by typing the following:

> cd moos-ivp/ivp/missions/xrelay

> uPokeDB xrelay.moos APPLES=1

The uPokeDB tool will publish to the MOOSDB the given variable-value pair APPLES=1. It also takes
as an argument the mission file, xrelay.moos, to read information on where the MOOSDB is running
in terms of machine name and port number. The output should look similar to the following:

Listing 2 - Example uPokeDB output after poking the MOOSDB with APPLES=1.

0 PRIOR to Poking the MOOSDB

1 VarName (S)ource (T)ime VarValue

2 ---------------- ---------- ---------- -------------

3 APPLES

4

5

6 AFTER Poking the MOOSDB

7 VarName (S)ource (T)ime VarValue

8 ---------------- ---------- ---------- -------------

9 APPLES uPokeDB 40.19 1.00000"

The output of uPokeDB first shows the value of the variable prior to the poke, and then the value
afterwards. Further information on the uPokeDB tool can be found in [4]. Once the MOOSDB has been
poked as above, the pXRelay PEARS application will receive this mail and, in return, will write to
its output variable PEARS, which in turn will be read by pXRelay APPLES and the two processes will
continue thereafter to write and read their input and output variables. This progression can be
observed in the uXMS terminal, which may look something like that shown in Listing 3:

Listing 3 - Example uXMS output after the pXRelay example is seeded.

0 VarName (S)ource (T)ime (C)ommunity VarValue

1 ---------------- ---------- -------- ---------- ----------- (221)

2 APPLES pXRelay_APPLES 44.78 xrelay 151

3 PEARS pXRelay_PEARS 44.74 xrelay 151

4 APPLES_ITER_HZ pXRelay_APPLES 44.7 xrelay 24.90495

5 PEARS_ITER_HZ pXRelay_PEARS 44.7 xrelay 24.90427

6 APPLES_POST_HZ pXRelay_APPLES 44.79 xrelay 8.36411

7 PEARS_POST_HZ pXRelay_PEARS 44.74 xrelay 8.36406

Upon each write to the MOOSDB the value of the variable is incremented by 1, and the integer
progression can be monitored in the last column on lines 2-3. The APPLES POST HZ and PEARS POST HZ

variables represent the frequency at which the process makes a post to the MOOSDB. This of course
is different than (but bounded above by) the frequency of the Iterate() loop since a post is made
within the Iterate() loop only if mail had been received prior to the outset of the loop. In a
world with no latency, one might expect the “post” frequency to be exactly half of the “iterate”
frequency. We would expect the frequency reported on lines 6-7 to be no greater than 12.5, and in
this case values of about 8.4 are observed instead.

26

3 A VERY BRIEF OVERVIEW OF MOOS

3.8.4 The pXRelay Example MOOS Configuration File

The mission file used for the pXRelay example, xrelay.moos is discussed here. This file is provided
as part of the MOOS-IvP software bundle under the “missions” directory as discussed above in
Section 3.8.1. It is discussed here in three parts in Listings 4-A through 4-C below.

The part of the xrelay.moos file provides three mandatory pieces of information needed by the
MOOSDB process for launching. The MOOSDB is a server and on line 1 is the IP address for the machine,
and line 2 indicates the port number where clients can expect to find the MOOSDB once it has been
launched. Since each MOOSDB and the set of connected clients form a MOOS “community”, the
community name is provided on line 3. Note the xrelay community name in the xrelay.moos file
and the community name in column 4 of the uXMS output in Listing 1 above.

Listing 4-A - The xrelay.moos mission file for the pXRelay example.

1 ServerHost = localhost

2 ServerPort = 9000

3 Community = xrelay

4

5 //--

6 // Antler configuration block

7 ProcessConfig = ANTLER

8 {

9 MSBetweenLaunches = 200

10

11 Run = MOOSDB @ NewConsole = true

12 Run = pXRelay @ NewConsole = true ~ pXRelay_PEARS

13 Run = pXRelay @ NewConsole = true ~ pXRelay_APPLES

14 Run = uXMS @ NewConsole = true

15 }

The configuration block in lines 7-15 of xrelay.moos is read by the pAntler for launching the
processes or clients of the MOOS community. Line 9 specifies how much time, in milliseconds,
between the launching of processes. Lines 11-14 name the four MOOS applications launched in this
example. On these lines, the component "NewConsole = true" determines whether a new console
window will be opened for each process. Try changing them to false - only the uXMS window really
needs to be open. The others merely provide a visual confirmation that a process has been launched.
The ”~ pXRelay_PEARS” component of lines 12 and 13 tell pAntler to launch these applications with
the given alias. This is required here since each MOOS client needs to have a unique name, and in
this example two instances of the pXRelay process are being launched.

In lines 17-39 in Listing 4-B below, the two pXRelay applications are configured. Note that the
argument to ProcessConfig on lines 20 and 32 is the alias for pXRelay specified in the Antler con-
figuration block on lines 12 and 13. Each pXRelay process is configured such that its incoming and
outgoing MOOS variables complement one another on lines 25-26 and 37-38. Note the AppTick pa-
rameter (see Section 3.4.1) is set to 25 in both configuration blocks, and compare with the observed
frequency of the Iterate() function reported in the variables APPLES ITER HZ and PEARS ITER HZ in
Listing 1. MOOS has done a pretty faithful job in this example of honoring the requested frequency
of the Iterate() loop in each application.

Listing 4-B - The xrelay.moos mission file - configuring the pXRelay processes.

17 //--

18 // pXRelay config block

27

3 A VERY BRIEF OVERVIEW OF MOOS

19

20 ProcessConfig = pXRelay_APPLES

21 {

22 AppTick = 25

23 CommsTick = 25

24

25 OUTGOING_VAR = APPLES

26 INCOMING_VAR = PEARS

27 }

28

29 //--

30 // pXRelay config block

31

32 ProcessConfig = pXRelay_PEARS

33 {

34 AppTick = 25

35 CommsTick = 25

36

37 INCOMING_VAR = APPLES

38 OUTGOING_VAR = PEARS

39 }

In the last portion of the xrelay.moos file, shown in Listing 4-C below, the uXMS process is
configured. In this example, uXMS is configured to scope on the six variables specified on lines 54-59
to give the output shown in Listings 1 and 3. By setting the PAUSED parameter on line 49 to false,
the output of uXMS is continuously and automatically updated - in this case four times per second
due to the rate of 4Hz specified in lines 46-47. The DISPLAY * parameters in lines 50-52 ensure that
the output in columns 2-4 of the uXMS output is expanded. See [4] for further ways to configure the
uXMS tool.

Listing 4-C - The xrelay.moos mission file for the pXRelay example - configuring uXMS.

41 //--

42 // uXMS config block

43

44 ProcessConfig = uXMS

45 {

46 AppTick = 4

47 CommsTick = 4

48

49 PAUSED = false

50 DISPLAY_SOURCE = true

51 DISPLAY_TIME = true

52 DISPLAY_COMMUNITY = true

53

54 VAR = APPLES

55 VAR = PEARS

56 VAR = APPLES_ITER_HZ

57 VAR = PEARS_ITER_HZ

58 VAR = APPLES_POST_HZ

59 VAR = PEARS_POST_HZ

60 }

3.8.5 Suggestions for Further Things to Try with this Example

• Take a look at the OnStartUp() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see how the handling of parameters in the xrelay.moos configuration file
are implemented, and the subscription for a MOOS variable.

28

3 A VERY BRIEF OVERVIEW OF MOOS

• Take a look at the OnNewMail() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see how incoming mail is parsed and handled.

• Take a look at the Iterate() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see an example of a MOOS process that acts upon incoming mail and
conditionally posts to the MOOSDB

• Try changing the AppTick parameter in one of pXRelay configuration blocks in the xrelay.moos

file, re-start, and note the resulting change in the iteration and post frequencies in the uXMS

output.

• Try changing the CommsTick parameter in one of pXRelay configuration blocks in the xrelay.moos
file to something much lower than the AppTick parameter, re-start, and note the resulting
change in the iteration and post frequencies in the uXMS output.

3.9 MOOS Applications Available to the Public

Below are very brief descriptions of MOOS applications in the public domain. This is by no means
a complete list. It does not include applications outside MIT, Oxford and NUWC, and it is not
even a complete list of applications from those organizations. For a more in-depth tour of MOOS
applications, see [6].

3.9.1 MOOS Modules from Oxford

• pAntler: A tool for launching a collection of MOOS processes given a mission file. See [15],
[14]. Also, see Section 3.6.

• pMOOSBridge: A tool that allows messages to pass between communities and allows for the
renaming of messages as they are shuffled between communities. See [15], [14].

• pLogger: A logger for recording the activities of a MOOS session. It can be configured to
record a fraction of, or all publications of any number of MOOS variables. See [6], [14].

• pScheduler: A simple tool for generating and responding to messages sent to the MOOSDB
by processes in a MOOS community. See [6], [14].

• uMS: A GUI-Based MOOS scope for monitoring one or more MOOSDBs. See [6], [14].

• uPlayback: An FLTK-based, cross platform GUI application that can load in log files and
replay them into a MOOS community as though the originators of the data were really running
and issuing notifications. See [6], [14].

• iMatlab: An application that allows matlab to join a MOOS community - even if only for
listening in and rendering sensor data. It allows connection to the MOOSDB and access to
local serial ports. See [6], [14].

• iRemote: A terminal-based tool for remote control of a robotic platform running MOOS. It
can be configured to associated a pre-defined variable-value poke with any un-mapped key
on the keyboard. See [6], [14].

29

3 A VERY BRIEF OVERVIEW OF MOOS

• uMVS: A multi-vehicle AUV simulator, capable of simulating any number of vehicles and
acoustic ranging between them and acoustic transponders. The vehicle simulation incor-
porates a full 6 D.O.F vehicle model replete with vehicle dynamics, center of buoyancy /
center of gravity geometry, and velocity dependent drag. The acoustic simulation is also
fairly smart. It simulates acoustic packets propagating as spherical shells through the water
column. See [6], [14].

3.9.2 MOOS Modules from MIT and NUWC

• pHelmIvP: The IvP Helm, and primary focus of this document.

• pTransponderAIS: The pMOOSBridge process is a tool that allows messages to pass between
communities and is able to rename the messages as they are shuffled between communities.

• uHelmScope: A terminal-based tool specialized for displaying information about a running
instance of the helm, but it also contains a general-purpose scoping utility similar to uXMS.
See [4], [7]. Also, see Section 8.

• uPokeDB: A light-weight command-line tool for poking one or more variable-value pairs, with
the option of scoping on the before and after values of the poked variable before exiting.
See [4], [7]. Also, see Sections 3.7 and 3.8.3.

• pMarineViewer: A GUI-based tool primarily used for rending the paths of vehicles in 2D
space on a Geo display, but also can be configured to poke the DB with variable-value pairs
connected to buttons on the display. See [4], [7]. Also, see Section 10.

• uXMS: A terminal based tool for live scoping on a MOOSDB process. See [4], [7]. Also, see
Sections 3.7 and 3.8.2..

• iMarineSim: A very simple single-vehicle simulator that updates vehicle state based on present
actuator values. Runs locally in the MOOS community associated with the simulated vehicle,
so, unlike uMVS, there is one iMarineSim process running per each vehicle.

• pEchoVar: A lightweight process that runs without user interaction for “echoing” specified
variable-value pairs posted with a follow-on post having different variable name.

• pMarinePID: An application providing simple PID control for vehicle speed-thrust, heading-
rudder, and depth-pitch.

• uFunctionVis: A application for live rendering of objective functions produced by the IvP
Helm behaviors. See [7].

• uProcessWatch: An application for monitoring the presence (connection) of a set of MOOS
processes to a running MOOSDB. Status is summarized by a single published variable. See [4], [7].

• uTermCommand: A terminal-based tool for poking the DB with pre-defined variable-value pairs.
The user can configure the tool to associate aliases (as short as a single character) to quickly
poke the DB. See [4], [7].

30

4 A FIRST EXAMPLE WITH MOOS-IVP - THE ALPHA MISSION

4 A First Example with MOOS-IvP - the Alpha Mission

In this section a simple mission is described using the IvP Helm. This example is designed to run
in simulation on a single desktop/laptop machine. The mission configuraiton files for this example
are distributed with the source code. Information on how to find these files and launch this mission
are described below in Section 4.1. In this example the vehicle simply traverses a set of pre-defined
given waypoints and returns back to the launch position. The user may re-call the vehicle pre-
maturely before completing the waypoints, and may subsequently command the vehicle to resume
the waypoints at any time. By this example the objective is to touch the following issues:

• Launching a mission with a given mission (.moos) file and behavior (.bhv) file.

• Configuration of MOOS processes, including the IvP Helm, with a .moos file.

• Configuration of the IvP Helm (mission planning) with a .bhv file.

• Implementation of simple command and control with the IvP Helm.

• Interaction between MOOS processes and the helm during normal mission operation.

4.1 Where to Find, and How to Launch the Alpha Example Mission

The example mission should be in the same directory tree containing the source code (See Section
1.4). There are two files - a MOOS file, also mission file or .moos file, and a behavior file or .bhv

file:

moos-ivp/

MOOS/

ivp/

missions/

alpha/

alpha.moos <---- The MOOS file

alpha.bhv <---- The Behavior file

To run this mission from a terminal window, simply change directories and launch:

> cd moos-ivp/ivp/missions/alpha

> pAntler alpha.moos

After pAntler has launched each process, the pMarineViewer window should be open and look
similar to that shown in Figure 6. After clicking the DEPLOY button in the lower right corner the
vehicle should start to traverse the shown set of waypoints.

31

4 A FIRST EXAMPLE WITH MOOS-IVP - THE ALPHA MISSION

Figure 6: The Alpha Example Mission - In the Surveying Mode’: A single vehicle is dispatched to traverse
a set of waypoints and, upon completion, traverse to the waypoint (0,0) which is the launch point.

This mission will complete on its own with the vehicle returning to the launch point. Alternatively,
by hitting the RETURN button at any time before the points have been traverse, the vehicle will
change course immediately to return to the launch point, as shown in Figure 7. When the vehicle
is returning as in the figure, it can be re-deployed by hitting the DEPLOY button again.

32

4 A FIRST EXAMPLE WITH MOOS-IVP - THE ALPHA MISSION

Figure 7: The Alpha Example Mission - In the Returning Mode’: The vehicle can be commanded to return
prior to the completion of its waypoints by the user clicking the RETURN button on the viewer.

The vehicle in this example is configured with two basic waypoint behaviors. Their configuration
with respect to the points traversed and when each behavior is actively influencing the vehicle, is
discussed next.

4.2 A Closer Look at the Behavior File used in the Alpha Example Mission

The mission configuration of the helm behaviors is provided in a behavior file, and the complete
behavior file for the example mission is shown in Listing 5. Behaviors are configured in blocks
of parameter-value pairs - for example lines 6-17 configure the waypoint behavior with the five
waypoints shown in the previous two figures. This is discussed in more detail in Section 6.3.

Listing 5: The behavior file for the Alpha example.

0 //-------- FILE: alpha.bhv -------------

1

2 initialize DEPLOY = false

3 initialize RETURN = false

4

5 //--

6 Behavior = BHV_Waypoint

7 {

33

4 A FIRST EXAMPLE WITH MOOS-IVP - THE ALPHA MISSION

8 name = bhv_waypt_survey

9 priority = 100

10 condition = DEPLOY = true

11 condition = RETURN = false

12 endflag = RETURN = true

13

14 speed = 2.0

15 radius = 8.0

16 points = 60,-40:60,-160:150,-160:180,-100:150,-40

17 }

18

19 //--

20 Behavior = BHV_Waypoint

21 {

22 name = bhv_waypt_return // IvPBehavior common param

23 priority = 100 // IvPBehavior common param

24 condition = RETURN = true // IvPBehavior common param

25 condition = DEPLOY = true // IvPBehavior common param

26

27 speed = 2.0 // BHV_Waypoint specific param

28 radius = 8.0 // BHV_Waypoint specific param

29 points = 0,0 // BHV_Waypoint specific param

30 }

The parameters for each behavior are separated into two groups. Parameters such as name,
priority, condition and endflag are parameters defined generally for all IvP behaviors. Param-
eters such as speed, radius, and points are defined specifically for the Waypoint behavior. A
convention used in .bhv files is to group the general behavior parameters separately at the top of
the configuration block.

In this mission, the vehicle follows two sets of waypoints in succession by configuring two
instances of a basic waypoint behavior. The second waypoint behavior (lines 20-30) contains only
a single waypoint representing the vehicle launch point (0,0). It’s often convenient to have the
vehicle return home when the mission is completed - in this case when the first waypoint behavior
has reached its last waypoint. Although it’s possible to simply add (0,0) as the last waypoint of the
first waypoint behavior, it is useful to keep it separate to facilitate recalling the vehicle pre-maturely
at any point after deployment.

Behavior conditions (lines 10-11, 24-25), and endflags (line 12) are primary tools for coordinating
separate behaviors into a particular mission. Behaviors will not participate unless each of its
conditions are met. The condtions are based on current values of the MOOS variables involved in
the condition. For example, both behaviors will remain idle unless the variable DEPLOY is set to true.
This variable is set initially to be false by the initialization on line 2, and is toggled by the DEPLOY

button on the pMarineViewer GUI shown in Figures 6 and 7. The pMarineViewer MOOS application
is but one example of a command and control interface to the helm. The MOOS variables in the
behavior conditions in Listing 5 do not care which process was responsible for setting the value.
Endflags are used by behaviors to post a MOOS variable and value when a behavior has reached
a completion. The notion of completion is different for each behavior and some behaviors have no
notion of completion, but in the case of the waypoint behavior, completion is declared when the
last waypoint is reached. In this way, behaviors can be configured to run in a sequence, as in this
example, where the returning waypoint behavior will have a necessary condition (line 24) met when
the surveying behavior posts its endflag on line 12.

34

4 A FIRST EXAMPLE WITH MOOS-IVP - THE ALPHA MISSION

4.3 A Closer Look at the set of MOOS Apps In the Alpha Example Mission

Running the example mission involves five other MOOS applications in addition to the IvP helm.
In this section we take a closer look at what those applications do and how they are configured. The
full MOOS file, alpha.moos, used to run this mission is given in full in the appendix. An overview
of the situation is shown in Figure 8.

Figure 8: The MOOS processes in the example “alpha” mission: In (1) The helm produces a desired
heading and speed. In (2) the PID controller subscribes for the desired heading and speed and publishes actuation
values. In (3) the simulator grabs the actuator values and the current vehicle pose and publishes a set of MOOS
variables representing the new vehicle pose. In (4) all navigation output is wrapped into a single node-report string
to be consumed by the helm, the viewer. In (5) the pMarineViewer grabs the node-report and renders a new vehicle
posision. The user can interact with the viewer to write limited commmand and control variables to the MOOSDB.

4.3.1 Antler and the Antler Configuration Block

The pAntler tool is used to orchestrate the launching of all the MOOS processes participating
in this example. From the command line, pAntler is run with a single argument the .moos file.
As it launches processes, it hands each procoess a pointer to this same MOOS file. The Antler
configuration block in this example looks like

ProcessConfig = ANTLER

{

MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = false

Run = iMarineSim @ NewConsole = false

Run = pNodeReporter @ NewConsole = false

Run = pMarinePID @ NewConsole = false

Run = pMarineViewer @ NewConsole = false

Run = pHelmIvP @ NewConsole = false

}

35

4 A FIRST EXAMPLE WITH MOOS-IVP - THE ALPHA MISSION

The first parameter specifies how much time should be left beteen the launching of each process.
The other lines specify which processes to launch. The MOOSDB is typically launched first. The
NewConsole switch on each line determines whether a new console window should be opened with
each process. You might try switching one or more of these to true as an experiment.

4.3.2 The pMarinePID Application and Configuration Block

The pMarinePID application implements a simple PID controller which produces values suitable for
actuator control based on inputs from the helm. The full configuration for this block can be found
in the appendix. In simulation the output is consumed by the vehicle simulator rather than the
vehicle actuatiors.

In short: The pMarinePID application typically gets its info from pHelmIvP; produces info consumed
by iMarineSim or actuator MOOS processes when not running in simulation.

Subcribes to: DESIRED HEADING, DESIRED SPEED.

Publishes to: DESIRED RUDDER, DESIRED THRUST.

4.3.3 The iMarineSim Application and Configuration Block

The iMarineSim application is a very simple vehicle simulator that considers the current vehicle
pose and actuator commands and produces a new vehicle pose. It can be initialized with a given
pose as shown in the configuration block used in this example:

ProcessConfig = iMarineSim

{

AppTick = 10

CommsTick = 10

START_X = 0

START_Y = 0

START_SPEED = 0

START_HEADING = 180

PREFIX = NAV

}

In short: The iMarineSim application typically gets its info from pMarinePID; produces info con-
sumed by pNodeReporter and itself on the next iteration of iMarineSim.

Subcribes to: DESIRED RUDDER, DESIRED THRUST, NAV X, NAV Y, NAV SPEED, NAV HEADING.

Publishes to: NAV X, NAV Y, NAV HEADING, NAV SPEED.

4.3.4 The pNodeReporter Application and Configuration Block

An Automated Information System (AIS) is commonplace on many larger marine vessels and is
comprised of a transponder and receiver that broadcasts one’s own vehicle ID and pose to other
nearby vessels equiped with an AIS receiver. It periodically collects all latest pose elements, e.g.,

36

4 A FIRST EXAMPLE WITH MOOS-IVP - THE ALPHA MISSION

latitutude and longitude position and latest measured heading and speed, and wraps it up into
a single update to be broadcast. This MOOS process collects pose information by subscribing to
the MOOSDB for NAV X, NAV Y, NAV HEADING, NAV SPEED, and NAV DEPTH and wraps it up into a single
MOOS variable called NODE REPORT LOCAL. This variable in turn can be subscribed to another MOOS
process connected to an actual serial device acting as an AIS transponder. For our purposes, this
variable is also subscribed to by pMarineViewer for rendering a vehicle pose sequence.

In short: The pNodeReporter application typically gets its info from iMarineSim or otherwise on-
board navigation systms such as GPS or compass; produces info consumed by pMarineViewer and
instances of pHelmIvP running in other vehicles or simulated vehicles.

Subcribes to: NAV X, NAV Y, NAV SPEED, NAV HEADING.

Publishes to: NODE REPORT LOCAL

4.3.5 The pMarineViewer Application and Configuration Block

The pMarineViewer is a MOOS process that subscribes to the MOOS variable AIS REPORT LOCAL

which contains a vehicle ID, pose and timestamp. It renders the updated vehicle(s) position. It
is a multi-threaded process to allow both communication with MOOS and let the user pan and
zoom and otherwise interact with the GUI. It is non-essential for vehicle operation, but essential
for visually confirming that all is going as planned.

In short: The pMarineViewer application typically gets its info from pNodeReporter and pHelmIvP;
produces info consumed by pHelmIvP when configured to have command and control hooks (as in
this example).

Subcribes to: NODE REPORT, NODE REPORT LOCAL, VIEW POINT, VIEW SEGLIST, VIEW POLYGON, VIEW MARKER.

Publishes to: Depends on configuration, but in this example: DEPLOY, RETURN.

37

5 THE IVP HELM AS A MOOS APPLICATION

5 The IvP Helm as a MOOS Application

In this section the helm is discussed in terms of its identity as a MOOS application - its MOOS
configuration parameters, its Iterate() loop, its output to the console, and its output in terms of
publications to the larger MOOS community.

5.1 Overview

The IvP Helm is implemented as the MOOS module called pHelmIvP. On the surface it is similar
to any other MOOS application - it runs as a single process that connects to a running MOOSDB
process interfacing solely by a publish-subscribe interface, as depicted in Figure 9. It is configured
from a behavior file, or .bhv file, in addition to the MOOS file used to configure other MOOS
applications. The helm primarily publishes a steady stream of information that drives the platform,
typically regarding the desired heading, speed or depth. It may also publish information conveying
aspects of the autonomy state that may be useful for monitoring, debugging or triggering other
algorithms either within the helm or in other MOOS processes. The helm can be configured to
generate decisions over virtually any user-defined decision space.

Figure 9: The pHelmIvP MOOS application: The IvP Helm is implemented as the MOOS application pHelmIvP.
The helm is configured with two files - the mission file and behavior file. Once launched it connects to the MOOSDB
along with other MOOS applications performing other functions. Information flowing into the helm include both
sensor information and command and control inputs. The helm produces commands for maneuvering the vehicle
along with other status information produced by active behaviors.

The helm subscribes for sensor information or any other information it needs to make deci-
sions. This information includes navigation information regarding the platform’s current position
and trajectory, information regarding the position or state of other vehicles, or environmental in-
formation. The information it subscribes for is prescribed by the behaviors themselves, configured
in the .bhv file. In addition to sensor information, the helm also receives some level of command

38

5 THE IVP HELM AS A MOOS APPLICATION

and control information. For example, in some marine vehicle configurations, one of the “Other
MOOSApp” modules in the figure is a driver for an acoustic modem over which command and
control information may be relayed.

5.2 Helm Engagement

The highest level interface with the helm concerns simply whether it is engaged or disengaged. To
use an automobile analogy, launching the pHelmIvP MOOS process is like turning the car on, and
putting the helm in the engaged mode is like shifting from “Park” to “Drive”. Here we discuss (a)
how the engagement is changed, (b) what it is going on in the helm when it is disengaged, (c) how
the helm engagement state is initialized at start-up.

5.2.1 Helm Engagement Transitions

The helm engagement state can be transitioned by writing to the MOOS variable MOOS MANUAL OVERIDE.
As Figure 10 depicts, a value of false, which is case insensitive, puts the helm in the Engaged state.
A value of true puts it into the Disengaged state. When the helm transitions from Engaged to
Disengaged it makes one more publication to the helm decision variables, each with a value zero.
This can be thought of publishing “All-Stop”.

Figure 10: The Engagement state of the IvP Helm: The helm is either engaged or disengaged, depending on
both how the helm is initialized and mail received by the helm after start-up on the variable MOOS MANUAL OVERIDE.
The value for this variable is case insensitive.

The variable MOOS MANUAL OVERIDE contains the mis-spelling of “override”. However, it is a vari-
able that has some legacy presence in other MOOS applications such as iRemote. To avoid a
situation where there is an attempt to override the helm, but the request is ignored because of
a (proper) spelling, the helm will also respect transition requests on the properly spelled variable
MOOS MANUAL OVERRIDE. This has the drawback however that these two variables could conceivably
have different values in the MOOSDB. This is not a problem but could be confusing for someone
trying to infer the engagement state by opening a scope on the MOOSDB, on either the wrong
variable or the two disagreeing variables. In this case the helm engagement state would be aligned
with the variable with the most recent publication time stamp. In any event, the best way to

39

5 THE IVP HELM AS A MOOS APPLICATION

monitor the helm engagement state is to scope on the MOOS variable HELM ENGAGEMENT, published
by the helm itself, or use the uHelmScope tool.

The helm can also be transitioned interally from the Engaged to the Disengaged state if a
behavior determines that a critical error has occurred, such as not getting critical sensor information
for a critical safety behavior. In this situation, the helm can be re-engaged by another MOOS
client posting MOOS MANUAL OVERIDE=false, but this is no guarantee that the helm may disengage
again immediately if the same condition persists that caused a behavior to declare a critical error
previously.

5.2.2 What Is and Isn’t Happening when the Helm is Disengaged

When the helm is in the Disengaged state, the loop depicted in Figure 5 on page 21 carries on.
The OnNewMail() continues to be called and new mail is read and dealt with exactly as it would
if the helm were in the Engaged state. The Iterate() loop, however, is truncated to virtually a
no-op, with the only action being the output of a heartbeat character to the console if the helm
is configured to do so. No behavior code is called whatsoever. The helm iteration counter, a key
index in the uHelmScope output, is also suspended despite the fact that technically the Iterate()

loop continues to be called.

5.2.3 Initializing the Helm Engagment State at Process Launch Time

The helm, by default, is configured to be initiallly in the Disengaged state upon start-up. By setting
parameter START ENGAGED=true in the mission file configuration block, the helm will indeed be in
the Engaged state upon start-up. This feature was found to have practical use in UUV operations
to allow for rebooting of the autonomy computer to automatically launch the helm, engaged and
ready to accept field commands. This feature should be used with caution, and it may be phased
out in a later software release.

5.2.4 Suggestions for Trying Out the Engagement Settings

• Try running the Alpha mission again from Section 4. Deploy the vehicle, and open a separate
console from which to poke the MOOSDB with the following:

> uPokeDB alpha.moos MOOS_MANUAL_OVERIDE=true

which should pause the vehicle in its track. Then resume the vehicle with another poke, this
time with MOOS MANUAL OVERIDE=false.

• Try running the Alpha mission again, and as above, toggle the value of MOOS MANUAL OVERIDE.
This time however, open a separate console and run uHelmScope by typing:

> uHelmScope alpha.moos MOOS_MANUAL_OVERIDE IVPHELM_ENGAGED "

Note the appearance of "DISENGAGED!!!" in the top line of the output whenever the helm is
in the Disengaged state. Also note the values of MOOS MANUAL OVERIDE and IVPHELM ENGAGED in
the MOOSDB Scope section of the uHelmScope output.

40

5 THE IVP HELM AS A MOOS APPLICATION

5.3 Parameters for the pHelmIvP MOOS Configuration Block

The following configuration parameters are defined for the IvP Helm. The parameter names are
case insensitive.

Parameter Mandatory Description

COMMUNITY YES Global MOOS parameter. Determines ownship name

DOMAIN YES The decision space for the IvP Solver

BEHAVIORS NO The name and location of the behavior configuration file

START ENGAGED NO Determines whether or not the helm is override mode at start-up.

VERBOSE NO Determines verbosity of terminal output - quiet, terse, or verbose

OK SKEW NO Tolerance on the age of incoming mail before rejected as being too old

Table 2: Configuration parameters for the pHelmIvP block in a typical MOOS mission configuration file.

5.3.1 The COMMUNITY Parameter

The COMMUNITY parameter is defined at the “global” level outside of any MOOS process’ configuration
block. See Section 3.5. The helm reads this parameter and uses its value as the name associated
with “ownship”. It is a mandatory parameter.

5.3.2 The DOMAIN Parameter

Mandatory. This parameter prescribes the decision space of the helm. It consists of one line per
decision variable. Each line contains a colon-separated list of four fields. Field one is the domain
variable name, field two is the lower bound value, field three is the higher bound value, and field
four is the number of points in the domain. For example DOMAIN = speed:0:3:16 shown in Listing
6 indicates a domain variable called “speed”, with a lower and upper bound 0 and 3 meters/second
respectively. Since there are 16 points, the speed choices are 0, 0.2, 0.4, ..., 2.8, 3.0. The helm
requires that a decision be made on all listed variables on each iteration of the control loop. If a
variable is used by some behaviors but is not necessarily involved in all decisions, it can be declared
as optional. For example DOMAIN=speed:0:3:16:optional.

5.3.3 The BEHAVIORS Parameter

The parameter names the behavior file, i.e., *.bhv file, on the local file system from which the
helm behaviors are read. More than one file may be specified on separate lines, and the helm will
read in all files almost as if they were one single file. This is an optional parameter because a
file could alternatively be specified on the command line (when not launching with pAntler). If a
behavior file is specified both on the command line, and in the pHelmIvP configuration block with
this parameter, they will all be used to configure the helm behaviors collectively.

41

5 THE IVP HELM AS A MOOS APPLICATION

5.3.4 The VERBOSE Parameter

Optional. This parameter affects how much information is written to the terminal on each iteration
of the helm. The possible values are verbose, terse, or quiet. The verbose setting will write a brief
helm report to the terminal on each iteration. With the terse setting minimal output will be
produced, a ’*’ character when not producing helm commands, and a ’$’ character when active and
healthy. With the quiet setting, no output at all will be written to the terminal. The default value
is terse. This setting can be changed after the helm is started by changing the value of HELM VERBOSE

in the MOOSDB.

5.3.5 The START ENGAGED Parameter

This is an optional parameter. This parameter is set to either true or false. Normally the helm
starts in the Disengaged state and needs to receive MOOS mail on the variable MOOS MANUAL OVERIDE

with the value of this variable set to true. When START ENGAGED is set to true, the helm is in the
Engaged state upon start-up. The issue of helm engagement was discussed in more detail in Section
5.2.

5.3.6 The OK SKEW Parameter

This is an optional parameter. This parameter sets the allowable skew tolerated by the helm for
receiving incoming mail messages. If a clock skew is detected greater than this value, the message
will be ignored. A check for skews can be disabled by setting OK SKEW = ANY. The default value is
60 seconds.

5.3.7 An Example pHelmIvP MOOS Configuration Block

Below is an example configuration block for the IvP Helm.

Listing 6 - An example pHelmIvP configuration block.

0 //-------- pHelmIvP configuration block -------------

1 ProcessConfig = pHelmIvP

2 {

3 AppTick = 4 // Defined for all MOOS processes

4 CommsTick = 4 // Defined for all MOOS processes

5

6 Domain = course:0:359:360

7 Domain = speed:0:3:16

8 Domain = depth:0:500:101

9

10 // IF BELOW COMMENTED OUT, FILE GIVEN ON CMD-LINE

11 Behaviors = foobar.bhv

12

13 // VERSBOSE = terse produces minimal terminal output

14 VERBOSE = terse

15

16 // ACTIVE_START = false is the default

17 START_ENGAGED = true

18

19 // OK_SKEW = 60 (seconds) is the default

20 OK_SKEW = ANY

21 }

42

5 THE IVP HELM AS A MOOS APPLICATION

The APPTICK and COMMSTICK parameters are defined for all MOOS processes (see [15]) and specify
the frequency in which the helm process iterates and communicates with the MOOSDB. The
COMMUNITY parameter is not included in the configuration block because it is specified at the global
level in the mission file.

5.4 Launching the IvP Helm and Output to the Terminal Window

The IvP Helm can be launched either directly from the command line, or from within Antler. On
the command line the usage is as follows:

Usage: pHelmIvP file.moos [file.bhv]...[file.bhv]

[--help|-h] [--version|-v]

[file.moos] Filename to get MOOS config parameters.

[file.bhv] Filename to get IvP Helm config paramters.

[-v] Output version number and exit.

[-h] Output this usage information and exit.

If no behavior file is specified in the .moos file then a behavior file must be given on the command
line. Multiple behavior files may be provided. Order of the arguments do not matter - command
line arguments ending in .bhv will be read as behavior files, and those ending with .moos as MOOS
files. The specification of behavior files may also be split between references in the .moos file and the
command line. The duplicate specification of a single file will simply be ignored. Typical start-up
output to the terminal is shown in Listing 7 below.

Listing 7 - Example start-up output generated by the pHelmIvP process.

0 **

1 * *

2 * This is MOOS Client *

3 * c. P Newman 2001 *

4 * *

5 **

6

7 ---------------MOOS CONNECT-----------------------

8 contacting a MOOS server localhost:9000 - try 00001

9 Contact Made

10 Handshaking as "pHelmIvP"

11 Handshaking Complete

12 Invoking User OnConnect() callback...ok

13 --

14

15 The IvP Helm (pHelmIvP) is starting....

16 Loading behavior dynamic libraries....

17 Loading directory: /Users/mikerb/project-colregs/src/lib_behaviors-colregs

18 Loading behavior dynamic libraries - FINISHED.

19 Number of behavior files: 1

20 Processing Behavior File: bravo.bhv START

21 Successfully found file: bravo.bhv

22 InitializeBehavior: found static behavior BHV_Loiter

23 InitializeBehavior: found static behavior BHV_Loiter

24 InitializeBehavior: found static behavior BHV_Waypoint

25 InitializeBehavior: found static behavior BHV_Timer

26 Processing Behavior File: bravo.bhv END

27 pHelmIvP is Running:

28 AppTick @ 4.0 Hz

29 CommsTick @ 4 Hz

43

5 THE IVP HELM AS A MOOS APPLICATION

30 Time Warp @ 1.0

31 $$

The output in lines 0-13 are standard output generated by a MOOS process launched and
successfully connected to a running MOOSDB. Lines 15-30 are start-up output generated unique
to the IvP Helm and the particular user usage. Behaviors used by the helm are either static or
dynamic. Static behaviors are compiled in to the pHelmIvP executable. Dynamic behaviors are
brought in at run time via shared libraries compiled separately. The helm looks for an environment
variable IVP BEHAVIOR DIRS for a colon-separated list of directories to search for shared libraries. If
this variable is not set, or if one or more of the directories are not legitimate directories, an error
message will indicate so between what is otherwise line 16 and 18 in Listing 7. This kind of error
may not actually be problematic if the behaviors specified in the behavior file can all be otherwise
successfully found.

For each specified behavior file, the information shown in lines 20-26 is generated to the terminal.
For each behavior configuration in a given .bhv file, a single line is output as in lines 22-25 indicating
that the behavior type is recognized and it is configured properly. A single unrecognized behavior
or improper configuration will result in (a) an error message indicating the offending line number
and file name, (b) the output of the actual offending line, and (c) immediate disconnection of the
process from the MOOSDB and exit. (Tip: If the helm is launched with Antler an error during
start-up will result in the closing of the pHelmIvP console window which makes it hard to catch
useful error output for debugging. In this case, the helm should just be launched outside of Antler
in its own terminal window.)

The output on line 31 of Listing 7, a series of dollar-signs, indicates for each character, the
completion of a single helm iteration - a heartbeat output. This is the output when the VERBOSE

parameter is set to the default setting of terse. When set to quiet no output is generated at all.
When set to verbose, a short multi-line report is generated for each iteration. An example is shown
below in Listing 8:

Listing 8 - An example helm iteration report generated by an active helm.

0 Iteration: 161 **

1 Helm Summary ---------------------------

2 loiter_a did NOT produce an obj-function

3 loiter_b produces obj-function - time:0.00 pcs: 9.00000 pwt: 100.00000

4 waypt_return did NOT produce an obj-function

5 loiter_timer did NOT produce an obj-function

6 Number of Objective Functions: 1

7 DESIRED_SPEED: 2.10

8 DESIRED_COURSE: 145.00

9 (End) Iteration: 161 **

On each iteration the Helm Summary indicates which behaviors produced objective functions
(lines 2-5), and for those that did, it indicates the CPU time needed to generate the function,
the number of pieces in the piecewise linear IvP function, and its priority weight. Following this,
the decision rendered for current iteration is output with one line per decision variable (lines 7-8).
This is a very thin summary of what is going on within the helm and it should be noted that the
uHelmScope tool is a much better suited for monitoring helm activity and debugging. This tool is
described later in Section 8.

44

5 THE IVP HELM AS A MOOS APPLICATION

5.5 Publications and Subscriptions for IvP Helm

The IvP Helm, like any MOOS process, can be specified in terms of its interface to the MOOSDB,
i.e., what variables it publishes and what variables it subscribes for. It is impossible to provide
a complete specification here since the helm is comprised of behaviors, and the means to include
any number of third party behaviors. Each behavior is able to post variable-value pairs, published
to the MOOSDB by the helm on behalf of the behavior at the end of the iteration. Likewise, each
behavior may declare to the helm any number of MOOS variables it would like the helm to register
for on its behalf. Barring these variables, published and subscribed for by the helm on behalf of
individual behaviors, this section addresses the remaining portion of the helm’s publish - subscribe
interface.

5.5.1 Variables published by the IvP Helm

Variables published by the IvP Helm are summarized in Table 3 below. The column indicating
frequency is in respect to each helm iteration. A more detailed description of each variable follows
the table.

Variable Freq Description

1 IVPHELM SUMMARY Each Summary of many statistics of the current helm iteration, current mode.

2 IVPHELM POSTINGS Each Recap of all variable-value behavior posting for the current iteration.

3 IVPHELM STATEVARS Rare List of variables involved in behavior preconditions.

4 IVPHELM MODESET Once Description of Helm Hierarchical Mode Declarations.

5 IVPHELM ENGAGED Rare Status of the Helm Engagement State (true or false).

6 HELM IPF COUNT Each IvP Functions involved in the decision of the most recent iteration.

7 CREATE CPU Each Total time needed to create IvP Functions in the most recent iteration.

8 LOOP CPU Each Total time in the Iterate() loop of the most recent iteration.

9 PLOGGER CMD Once A hook to the pLogger to record the behavior file(s).

10 DESIRED * Most The result of the Helm in its configured decision space.

11 BHV IPF Most String form of IvP functions produced by behaviors.

12 BHV WARNING Rare Warning messages generated by helm behaviors.

13 BHV ERROR Rare Error messages generated by helm behaviors.

Table 3: Variables published by the IvP Helm.

• IVPHELM SUMMARY: Produced on each iteration of the helm for consumption by the uHelmScope

application. It contains information on the current helm iteration regarding the number of
IvP functions created, create time, solve time, which behaviors are active, running, idle, and
the decision ultimately produced during the iteration.

• IVPHELM POSTINGS: Produced on each iteration of the helm for consumption by the uHelmScope

application. It provides a recap of all variable-value postings made by all behaviors on the

45

5 THE IVP HELM AS A MOOS APPLICATION

current iteration.

• IVPHELM STATEVARS: Produced periodically by the helm for consumption by the uHelmScope

application. It contains a comma-separated list of MOOS variables involved in preconditions
of any behavior, i.e., variables affecting behavior run states.

• IVPHELM DOMAIN: Produced once by the helm at start-up for consumption by the uHelmScope

application. It contains the specification of the IvP Domain in use by the helm.

• IVPHELM MODESET: Produced once by the helm at start-up for consumption by the uHelmScope

application (see Section 8.) It contains the specification of the Hierarchical Mode Declarations,
if any, in use by the helm.

• IVPHELM ENGAGED: Written by the helm once each time it changes the Engagement State (see
Section 5.2). It is either true or false.

• HELM IPF COUNT: Produced on each iteration of the helm. It contains the number of IvP
functions involved in the solver on the current iteration.

• CREATE CPU: The CPU time in seconds used in total by all behaviors on the current iteration
for constructing IvP functions.

• LOOP CPU: The CPU time in seconds used by the IvP solver in the current helm iteration.

• BHV IPF: The helm will publish this variable for each active behavior in the current iteration.
It contains a string representation of the IvP function produced by the behavior. It is used
for visualization by the uFunctionVis application, and for logging and later playback and
analysis.

• PLOGGER CMD: This variable is published with the below value to ensure that the pLogger

application logs the .bhv file along with the other data log files and the .moos file.

"COPY_FILE_REQUEST = filename.bhv"

• DESIRED *: Each of the decision variables in the IvPDomain provided in the helm configuration
will have a separate posting prefixed by DESIRED as in DESIRED SPEED. One exception is that
the variable course will be converted to heading for legacy reasons.

• BHV WARNING: Although this variable may never be posted, it is the default MOOS variable used
when a behavior posts a warning. A warning may be harmless but deserves consideration.

• BHV ERROR: Although this variable may never be posted, it is the default MOOS variable used
when a behavior posts what it considers a fatal error - one that the helm will interpret as a
request to generate the equivalent of ALL-STOP.

In addition to the above variables, the helm will post any variable-value pair on behalf of a behavior
that makes the request. These include endflags, runflags, idleflag, activeflags and inactiveflags.

46

5 THE IVP HELM AS A MOOS APPLICATION

5.5.2 Variables Subscribed for by the IvP Helm

Variables subscribed for by the IvP Helm are summarized in Table 4 below. A more detailed
description of each variable follows the table.

Variable Description

1 MOOS MANUAL OVERIDE Allows for transition of the helm Engagement State.

2 MOOS MANUAL OVERRIDE Allows for transition of the helm Engagement State.

3 HELM MAP CLEAR Resets the helm map that filters successive duplcate publications.

Table 4: Variables subscribed for by the IvP Helm.

• MOOS MANUAL OVERIDE: When set to true, usually by a third-party application such as iRemote,
of from a command-and-control communication, the helm may relinquish control. If the helm
was configured with ACTIVE START = true, it will not relinquish control (this may be changed).

• HELM VERBOSE: Affects the console output produced by the helm. Legal values are verbose,
terse, or quiet. See Section 5.4.

• HELM MAP CLEAR: When received, the helm clears an internal map that is used to surpress
repeated duplicate postings. See Section 5.6.

In addition to the above variables, the helm will subscribe for any variable-value pair on behalf of
a behavior that makes the request. This includes, but is not limited to, variables involved in the
CONDITION and UPDATES parameters available generally for all behaviors.

5.6 Automated Filtering of Successive Duplicate Helm Publications

The helm implements a “duplication filter” to drastically reduce the amount of mail posted by the
helm on behalf of behaviors. This filter has been noted to reduce the overall log file size seen during
in-water exercises by 60-80%. Reductions at this level noticably facilitate the use of post-mission
alalysis tools and data archiving. For the most part this filter is operating behind the scenes for the
typical helm user. However, knowledge of it is indeed relevant for users wishing to implement their
own behaviors, and we discusss it here to explain a bit what is behind the variable HELM MAP CLEAR

to which the helm subscribes, and listed above in Section 5.5.2.

5.6.1 Motivation for the Duplication Filter

The primary motivation of implementing the duplication filter is to reduce the amount of unneces-
sary mail posted by the helm on behalf behaviors, and thereby greatly reduce the size of log files and
facilitate the post-mission handling of data. By unnecessary we mean successive variable-value pairs
that match exactly in both fields. For sure, there are cases when a behavior developer may not want
this filter, and there are simple ways to bypass the filter for any post. But in most cases, successive
duplicate posts are just redundant and unnecessary. For example, a waypoint behavior named

47

5 THE IVP HELM AS A MOOS APPLICATION

“SURVEY” will post, on each helm iteration, the variables PWT BHV SURVEY and STATE BHV SURVEY in-
dicating the behavior’s priority and run-state. These variable values often remain unchanged for
many successive iterations, and really only need to be posted upon a change.

The uHelmScope tool depends on a number of status variables published by the helm to provide
content for the scope. These variables are the IVPHELM * variables listed in Table 3. This includes the
variable IVPHELM POSTINGS which is a summary of all variable-value postings made by all behaviors
on the current iteration. This provides the content for the Behavior-Posts section of the uHelmScope

output, described in Section 8.2.3 on page 85. This string can be long, and the point here is that
each unnecessary successive duplicate post by a behavior actually shows up in the log file twice!
They can also clutter the output in the uHelmScope window, but main detriment motivating the
filter is the reduction of log file bloat.

5.6.2 Implementation and Usage of the Duplication Filter

The helm keeps two maps (STL maps in C++), one for string data and one for numerical data:

KEY --> StringValue

KEY --> DoubleValue

The two maps correspond to the two types of message types in MOOS (see Section 3.2 on page 18).
The KEY is typically the MOOS variable name. Inside a behavior implementation, the following
four functions are available:

void postMessage(string varname, string value, string key="");

void postMessage(string varname, double value, string key="");

void postBoolMessage(string varname, bool value, string key="");

void postIntMessage(string varname, double value, string key="");

These functions are available in all behavior implementations because they are defined in the
IvPBehavior superclass, of which all behaviors are subclasses. Before the helm posts a message to
the MOOSDB the filter is applied by a simple check to its map to determine if there is a value match on
the given key. If a match is made, the post will not be made to the MOOSDB on the behavior’s behalf.
The postIntMessage() function is merely a convenience version of the postMessage() function that
rounds the variable value to the nearest integer to further reduce posts when combined with the
filter. The postBoolMessage() ultimately posts a string value "true" or "false".

The default value of the key parameter is the empty string, and in most cases this parameter
can be ommitted without disabling the duplication filter. This is because the KEY used by the caller
is only part of the key actually used by the duplication filter. The actual key is the concatenation
of (a) the behavior name, (b) the variable name, and (c) the key passed by the caller. Thus the
default value, the empty string, still results in a decent key being used by the filter. The key is
augmented by the behavior name because often there is more than one behavior posting messages
on same variable. The optional key parameter is used for two reasons. First, it can be used to
further distinguish posts within a behavior on the same variable name. Second, when the key value
has the special value "repeatable", then no key is used and the duplication filter is disabled for
that variable posting.

48

5 THE IVP HELM AS A MOOS APPLICATION

5.6.3 Clearing the Duplication Filter

Occasionally a user, or another MOOS application in the same community as the helm, may want
to “clear” the map used by the helm to implement its duplication filter. This can be done by writing
to variable HELM MAP CLEAR, with any value. This may be necessary for the following reason. Suppose
a GUI application subscribes for the variable VIEW SEGLIST which contains a list of line segments
for rendering. If the viewer application is launched after the variable is published, the application
will only receive the most recent mail on the variable VIEW SEGLIST. There may be publications to
this variable, made prior to the most recent publication, that are relevant to the GUI application
at launch time. Those publications for the variable VIEW SEGLIST may not be the most recent from
the perspective of the MOOSDB, but they may be the most recent from the perspective of a particular
behavior in the helm. By clearing the filter, it gives each behavior the chance to once again have
all of its variable-value posts made to the MOOSDB. In the pMarineViewer application, a publication
to HELM MAP CLEAR is made upon start-up. Clearing the filter will only clear the way for the next
post for a given variable. It will not result in the publishing to the MOOSDB of the contents of
the maps used by the filter.

49

6 IVP HELM AUTONOMY

6 IvP Helm Autonomy

6.1 Overview

An autonomous helm is primarily an engine for decision making. The IvP Helm uses a behavior-
based architecture to organize its decision making and is distinctive in the manner in which it
resolves competition between competing behaviors - it performs multi-objective optimization on
their collective output using a mathematical programming model called interval programming. Here
the IvP Helm architecture is described and the means for configuring it given a set of behaviors
and a set of mission objectives.

6.1.1 The Influence of Brooks, Stallman and Dantzig on the IvP Helm

The notion of a behavior-based architecture for implementing autonomy on a robot or unmanned
vehicle is most often attributed to Rodney Brooks’ Subsumption Architecture, [9]. A key principle
at the heart of Brooks’ architecture and arguably the primary reason its appeal has endured, is
the notion that autonomy systems can be built incrementally. Notably, Brooks’ original publi-
cation pre-dated the arrival of Open Source software and the Free Software Foundation founded
by Richard Stallman. Open Source software is not a pre-requisite for building autonomy systems
incrementally, but it has the capability of greatly accelerating that objective. The development of
complex autonomy systems stands to significantly benefit if the set of developers at the table is
large and diverse. Even more so if they can be from different organizations with perhaps even the
loosest of overlap in interest regarding how to use the collective end product.

As discussed in Section 2.5, a key issue in behavior-based autonomy has been the issue of action
selection, and the IvP Helm is distinct in this regard with the use of multi-objective optimization
and interval programming. The algorithm behind interval programming, as well as the term it-
self, was motivated by the mathematical programming model, linear programming, developed by
George Dantzig, [11]. The key idea in linear programming is the choice of the particular math-
ematical construct that comprises an instance of a linear programming problem - it has enough
expressive flexibility to represent a huge class of practical problems, and the constructs can be ef-
fectively exploited by the simplex method to converge quickly even on very large problem instances.
The constructs used in interval programming to represent behavior output (piecewise linear func-
tions) were likewise chosen to have enough expressive flexibility to handle any current and future
behavior, and due to the opportunity to develop solution algorithms that exploit the piecewise
linear constructs.

6.1.2 Traditional and Non-traditional Aspects of the IvP Behavior-Based Helm

The IvP Helm indeed takes its motivation from early notions of the behavior-based architecture,
but is also quite different in many regards. The notion of behavior independence to temper the
growth of complexity in progressively larger systems is still a principle closely followed in the IvP
Helm. Behaviors may certainly influence one another from one iteration to the next, as we’ll see
in discussions in this section. This was also evident in the Alpha example mission in Section 4
where the completion of the Survey behavior triggered the Return behavior. But within a single
iteration, the output generated by a single behavior is not affected at all by what is generated by
other behaviors in the same iteration. The only inter-behavior “communication” realized within an

50

6 IVP HELM AUTONOMY

iteration comes when the IvP solver reconciles the output of multiple behaviors. The independence
of behaviors not only helps a single developer manage the growth of complexity, but it also limits
the dependency between developers. A behavior author need not worry that a change in the
implementation of another behavior by another author requires subsequent recoding of one’s own
behavior(s).

Certain aspects of behaviors in the IvP Helm may also be a departure from some notions
traditionally associated (fairly or not) with behavior-based architectures:

• Behaviors have state. IvP behaviors are instances of a class with a fairly simple interface to
the helm. Inside they may be arbitrarily complex, keep histories of observed sensor data, and
may contain algorithms that could be considered “reactive” or “plan-based”.

• Behaviors influence each other between iterations. The primary output of behaviors is their
objective function, ranking the utility of candidate actions. IvP behaviors may also generate
variable-value posts to the MOOSDB observable by behaviors on next helm iteration. In this
way they can explicitly influence other behaviors by triggering or suppressing their activation
or even affecting the parameter configuration of other behaviors.

• Behaviors may accept externally generated plans. The input to a behavior can be anything
represented by a MOOS variable, and perhaps generated by other MOOS processes outside the
helm. It is allowable to have one or more planning engines running on the vehicle generating
output consumed by one or more behaviors.

• Several instances of the same behavior. Behaviors generally accept a set of configuration
parameters that allow them to be configured for quite different tasks or roles in the same
helm and mission. Different waypoint behaviors, for example, can be configured for different
components of a transit mission. Or different collision avoidance behaviors can be instantiated
for different contacts.

• Behaviors can be run in a configurable sequence. Due to the condition and endflag parame-
ters defined for all behaviors, a sequence of behaviors can be readily configured into a larger
mission plan.

• Behaviors rate actions over a coupled decision space. IvP functions generated by behaviors
are defined over the Cartesian product of the set of vehicle decision variables. This is distinct
from the de-coupled decision making style proposed in [16] and [18] - early advocates of
multi-objective optimization in behavior-based action selection.

6.1.3 Two Layers of Building Autonomy in the IvP Helm

The autonomy in play on a vehicle during a particular mission is the product of two distinct efforts
- (1) the development of vehicle behaviors and their algorithms, and (2) mission planning via the
configuration of behaviors and mode declarations. The former involves the writing of new source
code, and the latter involves the editing of mission behavior files, such as the simple example for
the Alpha example mission in Listing 5 on page 33.

51

6 IVP HELM AUTONOMY

6.2 Inside the IvP Helm - A Look at the Helm Iterate Loop

Like other MOOS applications, the IvP Helm implements an Iterate() loop within which the basic
function of the helm is executed. Components of the Iterate() loop, with respect to the behavior-
based architecture, are described in this section. The basic flow, in five steps, is depicted in Figure
11. Description of the five components follow.

Figure 11: The pHelmIvP Iterate Loop: (1) Mail is read from the MOOSDB. It is parsed and stored in a local
buffer to be available to the behaviors, (2) If there were any mode declarations in the mission behavior file they are
evaluated at this step. (3) Each behavior is queried for its contribution and may produce an IvP function and a
list of variable-value pairs to be posted to the MOOSDB at the end of the iteration, (4) the objective functions are
resolved to produce an action, expressible as a set of variable-value pairs, (5) all variable-value pairs are published to
the MOOSDB for other MOOS processes to consume.

6.2.1 Step 1 - Reading Mail and Populating the Info Buffer

The first step of a helm iteration occurs outside the Iterate() loop. As depicted in Figure 5 on
page 21, a MOOS application will read its mail by executing its OnNewMail() function just prior to
executing its Iterate() loop if there is any mail in its in-box. The helm parses mail to maintain
its own information buffer which is also a mapping of variables to values. This is done primarily
for simplicity - to ensure that each behavior is acting on the same world state as represented by
the info buffer. Each behavior has a pointer to the buffer and is able to query the current value of
any variable in the buffer, or get a list of variable-value changes since the previous iteration.

52

6 IVP HELM AUTONOMY

6.2.2 Step 2 - Evaluation of Mode Declarations

Once the information buffer is updated with all incoming mail, the helm evaluates any mode
declarations specified in the behavior file. Mode declarations are discussed in Section 6.4. In short,
a mode is represented by a string variable that is reset on each iteration based on the evaluation
of a set of logic expressions involving other variables in the buffer. The variable representing the
mode declaration is then available to the behavior on the current iteration when it, for example,
evaluates its condition parameters. A condition for behavior participating in the current iteration
could therefore read something like condition = (MODE==SURVEYING). The exact value of the variable
MODE is set during this step of the Iterate() loop.

6.2.3 Step 3 - Behavior Participation

In the third step much of the work of the helm is realized by giving each behavior a chance to
participate. Each behavior is queried sequentially - the helm contains no separate threads in this
regard. The order in which behaviors is queried does not affect the output. This step contains
two distinct parts for each behavior - (1) Determination of whether the behavior will participate,
and (2) production of output if it is indeed participating on this iteration. Each behavior may
produce two types of information as the Figure 11 indicates. The first is an objective function (or
“utility” function) in the form of an IvP function. The second kind of behavior output is a list of
variable-value pairs to be posted by the helm to the MOOSDB at the end of the Iterate() loop.
A behavior may produce both kinds of information, neither, or one or the other, on any given
iteration.

6.2.4 Step 4 - Behavior Reconciliation

In the fourth step depicted in Figure 11, the IvP functions are collected by the IvP solver to produce
a single decision over the helm’s decision space. Each function is an IvP function - an objective
function that maps each element of the helm’s decision space to a utility value. In this case the
functions are of a particular form - piecewise linearly defined. That is, each piece is an interval

of the decision space with an associated linear function. Each function also has an associated
weight and the solver performs multi-objective optimization over the weighted sum of functions (in
effect a single objective optimization at that point). The output is a single optimal point in the
decision space. For each decision variable the helm produces another variable-value pair, such as
DESIRED SPEED = 2.4 for publication to the MOOSDB.

6.2.5 Step 5 - Publishing the Results to the MOOSDB

In the last step, the helm simply publishes all variable-value pairs to the MOOSDB, some of which
were produced directly by the behaviors, and some of which were generated as output from the IvP
Solver. The helm employs the duplication filter described in Section 5.6, only on the variable-value
pairs generated directly from the behaviors, and not the variable-value pairs generated by the IvP
solver that represent a decision in the helm’s domain. For example, even if the decision about a
vehicle’s depth, represented by the variable DESIRED DEPTH produced by the helm were unchanged
for 5 minutes of operation, it would be published on each iteration of the helm. To do otherwise
could give the impression to consumers of the variable that the variable is “stale”, which could
trigger an unwanted override of the helm out of concern for safety.

53

6 IVP HELM AUTONOMY

6.3 Mission Behavior Files

The helm is configured for a particular mission primarily through one or more mission behavior
files, typically with a *.bhv suffix. Behavior files have three types of entries, usually but not
necessarily kept in three distinct parts - (1) variable initializations, (2) behavior configurations,
and (3) hierarchical mode declarations. These three parts are discussed below. The example
alpha.bhv file in Listing 5 on page 33 did not contain hierarchical mode declarations, but does
contain examples of variable initializations and behavior configurations.

6.3.1 Variable Initialization Syntax

The syntax for variable initialization is fairly straight-forward:

initialize <variable> = <value>

...

initialize <variable> = <value>

One initialization per line. The keyword initialize is case insensitive. The <variable> is indeed
case sensitive since it will be published to the MOOSDB and MOOS variables are case sensitive when
registered for by a client. The variable <value> may or may not be case sensitive depending on
whether or not a client registering for the variable regards the case. Considering again the helm
Iterate() loop depicted in Figure 11 on page 52, variable initializations are applied to the helm’s
information buffer prior to the very first helm iteration, but are posted to the MOOSDB at the end of
the first helm iteration.

6.3.2 Behavior Configuration Syntax

The bulk of the helm configuration is done with individual behavior parameter blocks which have
the following form:

Behavior = <behavior-type>

{

<parameter> = <value>

...

<parameter> = <value>

}

The first line is a declaration of the behavior type. The keyword Behavior is not case sensitive, but
the <behavior-type> is. This is followed by an open brace on a separate line. Each subsequent line
sets a particular parameter of the behavior to a given value. The behavior configuration concludes
with a close brace on a separate line. The issue of case sensitivity for the <parameter> and <value>

entries is a matter determined by the individual behavior implementation.

As a convention (not enforced in any way) general behavior parameters, defined at the IvP
Behavior superclass level, are grouped together and listed before parameters that apply to a spe-
cific behavior. For example, in the Alpha example in Listing 5 on page 33, the general behavior
parameters are listed on lines 8-12 and 22-25, but the parameters specific to the waypoint behavior,
speed, radius, and points, follow in a separate block. Generally it is not mandatory to provide

54

6 IVP HELM AUTONOMY

a parameter-value pair for each parameter defined for a behavior, given that meaningful defaults
are in place within the behavior implementation. Some parameters are indeed mandatory however.
Documentation for the individual behavior should be consulted. Multiple instances of a behavior
type are allowed, as in the Alpha example where there are two waypoint behaviors - one for travers-
ing a set of points, and one for returning to a vehicle recovery point. Each behavior should have
its own unique value provided in the name parameter.

6.3.3 Hierarchical Mode Declaration Syntax

Hierarchical Mode Declarations are covered in depth in Section 6.4, but the syntax is briefly dis-
cussed here. A behavior file contains a set of declaration blocks of the form:

Set <mode-variable-name> = <mode-value>

{

<mode-variable-name> = <parent-value>

<condition>

. . .

<condition>

} <else-value>

A tree will be formed where each node in the tree is described from the above type of declaration.
The keyword Set is case insensitive. The <mode-variable-name>, <parent-value> and <else-value>

are case sensitive. The <condition> entries are treated exactly as with the CONDITION parameter for
behaviors, see Section 6.5.1.

As indicated in Figure 11, the value of each mode variable is reset at the outset of the Iterate()

loop, after the information buffer is updated with incoming mail. A mode variable is set by
progressing through each declaration block, and determining whether the conditions are met. Thus
the ordering of the declaration blocks is significant - the specification of parent should be made
prior to that of a child. Examples are further discussion can be found below in Section 6.4.

6.4 Hierarchical Mode Declarations

Hierarchical mode declarations (HMDs) are an optional feature of the IvP Helm for organizing the
behavior activations according to declared mission modes. Modes and sub-modes can be declared,
in line with a mission planner’s own concept of mission evolution, and behaviors can be associated
with the declared modes. In more complex missions, it can facilitate mission planning (in terms of
less time and better detection of human errors), and it can facilitate the understanding of exactly
what is happening in the helm - during the mission execution and in post-analysis.

6.4.1 Background

A trend of unmanned vehicle usage can be characterized as being increasingly less of the shorter,
scripted variety to be increasingly more of the longer, adaptive mission variety. A typical mission in
our own lab five years ago would contain a certain set of tasks, typically waypoints and ultimately
a rendezvous point for recovering the vehicle. Data acquired during deployment was off-loaded
and analyzed later in the laboratory. What has changed? The simultaneous maturation of acous-
tic communications, on-board sensor processing, and longer vehicle battery life has dramatically

55

6 IVP HELM AUTONOMY

changed the nature of mission configurations. The vehicle is expected to adapt to both the phenom-
ena it senses and processes on board, as well as adapt its operation given field-control commands
received via acoustic, radio or satellite communications. Multi-vehicle collaborative missions are
also increasingly viable due to lower vehicle costs and mature acomms capabilities. In such cases
a vehicle is not only adapting to sensed phenomena and field commands, but also to information
from collaborating vehicles.

Our missions have evolved from having a finite set of fixed tasks to be composed instead of a
set of modes, an initial mode when launched, an understanding of what brings us from one mode
to another, and what behaviors are in play in each mode. Modes may be entered and exited any
number of times, in exact sequences unknown at launch time, depending on what they sense and
how they are commanded in the field.

6.4.2 Behavior Configuration Without Hierarchical Mode Declarations

Behaviors can be configured for a mission without the use of hierarchical mode declarations -
support for HMDs is a relatively recent addition to the helm. HMDs are a tool for organizing
which behaviors are idle or participating in which circumstances. Consider the alpha example
mission in Section 4, and the behavior file in Listing 5. By examination of the behavior file, and
experimenting a bit with the viewer during simulation, the vehicle apparently is always in one of
three modes - (a) idle, (b) surveying the waypoints, or (c) returning to the launch point. This is
achieved by the condition parameters for the two behaviors. There are only two variables involved
in the behavior conditions, DEPLOY and RETURN. If restricted to Boolean values, the below table
confirms the observation that there are only three possible modes.

DEPLOY RETURN Mode

true true Returning

true false Surveying

false true Idle

false false Idle

Table 5: Possible modes implied by the condition parameters in the alpha mission in Listing 5.

There are a couple drawbacks with this however. First, the modes are to be inferred from
the behavior conditions and this is not trivial in missions with larger behavior files. Mapping the
behavior conditions to a mode is useful both in mission planning and mission monitoring. In the
alpha mission, in order to understand at any given moment what mode the vehicle is in, the two
variables need to be monitored, and the above table internalized. The second drawback is the
increased likelihood of error, in the form of unintentionally being in two modes at the same time, or
being in an undefined mode. For example, line 11 in Listing 5 really should read RETURN != true,
and not RETURN = false. Since there is no Boolean type for MOOS variables, this variable could be
set to "False" and the condition as it reads on line 11 in Listing 5 would not be satisfied, and the
vehicle would be in the idle state, despite the fact that DEPLOY may be set to true. These problems
are alleviated by the use of hierarchical mode declarations.

56

6 IVP HELM AUTONOMY

6.4.3 Syntax of Hierarchical Mode Declarations - The Charlie Mission

We provide an example of the use of hierarchical mode declarations by extending the Alpha mission
described in Section 4. This example mission is dubbed the “Charlie” mission. The charlie.bhv

file can be found alongside the alpha mission in the MOOS-IvP distribution (Section 4.1). It is also
given fully in Listing 9 on the next page. The implicit modes of the Alpha mission, described in
Table 5, are explicitly declared in the Charlie behavior file to form the following hierarchy:

Figure 12: Hierarchical modes for the Charlie mission: The vehicle will always be in one of the modes
represented by a leaf node. A behavior may be associated with any node in the tree. If a behavior is associated with
an internal node, it is also associated with all its children.

The hierarchy in Figure 12 is formed by the mode declaration constructs on the left-hand side,
taken as an excerpt from the charlie.bhv file. After the mode declarations are read when the helm
is initially launched, the hierarchy remains static thereafter. The hierarchy is associated with a
particular MOOS variable, in this case the variable MODE. Although the hierarchy remains static,
the mode is re-evaluated at the outset of each helm iteration based on the conditions associated
with nodes in the hierarchy. The mode evaluation is represented as a string in the variable MODE.
As shown in Figure 12 the variable is the concatenation of the names of all the nodes. The mode
evaluation begins sequentially through each of the blocks. At the outset the value of the variable
MODE is reset to the empty string. After the first block in Figure 12 MODE will be set to either "Active"
or "Inactive". When the second block is evaluated, the condition "MODE=Active" is evaluate base
on how MODE was set in the first block. For this reason, mode declarations of children need to be
listed after the declarations of parents in the behavior file.

Once the mode is evaluated, at the outset of the helm iteration, it is available for use in the
conditions of the behaviors, as in lines 20 and 23 in Listing 9. Note the "==" relation in lines 20 and
23. This is a string-matching relation that matches when one side matches exactly one of the com-
ponents in the other side’s colon-separated list of strings. Thus "Active" == "Active:Returning",
and "Returning" == "Active:Returning". This is to allow a behavior to be easily associated with
an internal node regardless of its children. For example if a collision-avoidance behavior were to be
added to this mission, it could be associated with the "Active" mode rather than explicitly naming
all the sub-modes of the "Active" mode.

57

6 IVP HELM AUTONOMY

Listing 9: The Charlie Mission - Use of Hierarchical Mode Declarations.

0 //-------- FILE: charlie.bhv -------------

1

2 initialize DEPLOY = false

3 initialize RETURN = false

4

5 //------------------- Declaration of Hierarchical Modes

6 set MODE = ACTIVE {

7 DEPLOY = true

8 } INACTIVE

9

10 set MODE = SURVEYING {

11 MODE = ACTIVE

12 RETURN != true

13 } RETURNING

14

15 //--

16 Behavior = BHV_Waypoint

17 {

18 name = waypt_survey

29 pwt = 100

20 condition = MODE == SURVEYING

21 endflag = RETURN = true

22

23 speed = 2.0 // meters per second

24 radius = 8.0

25 points = 60,-40:60,-160:150,-160:180,-100:150,-40

26 }

27

28 //--

39 Behavior = BHV_Waypoint

30

31 name = waypt_return

32 pwt = 100

33 condition = MODE == RETURNING

34 updates = UPDATES_RETURN

35

36 speed = 2.0

37 radius = 8.0

38 points = 0,0

39 }

6.4.4 A More Complex Example of Hierarchical Mode Declarations

The Charlie example given above, while having the benefit of being a working example distributed
with the codebase, is not complex. In this section a modestly complex, although fictional, hierarchy
is provided to highlight some issues with the syntax. The hierarchy with the corresponding mode
declarations are shown in Figure 13. The declarations are given in the order of layers of the tree
ensuring that parents are declared prior to children. As with the Charlie example in Figure 12, the
nodes that represent realizable modes are depicted in the darker (green) color.

58

6 IVP HELM AUTONOMY

Figure 13: Example Hierarchical Mode Declaration: The hierarchy on the right is constructed from the set
of mode declarations on the the left (with fictional conditions). Darker nodes represent modes that are realizable
through some combination of conditions.

The "Alpha" mode for example is not realizable since it has the children "Delta" and "Echo", with
the latter being set as the <else-value> if the conditions of the former at not met. The "Bravo"

mode is realizable since it has no children. The "Echo" mode is realizable despite having children
because the "Tango" mode is not the <else-value> of the "Sierra" mode declaration. For example,
if the following three conditions hold, (a) "MISSION=SURVEYING", (b) "SITE!=Archipelagos", and (c)
"WATER DEPTH=Medium", then the value of the variable MODE would be set to "Alpha:Echo". Finally,
note that the condition in the "Sierra" declaration, "MODE=Alpha:Echo", is specified fully, i.e.,
"MODE=Echo" would not achieve the desired result.

6.4.5 Monitoring the Mission Mode at Run Time

The mission mode can be monitored at run time in a couple ways. First, since the mode variable
is posted as a MOOS variable, any MOOS scope tool will work, e.g., uXMS, uMS, uHelmScope Using
uHelmScope, the mission variable can be monitored as part of the basic MOOSDB scoping capability
(see Section 8.2.2), but it is also displayed on it’s own, in the fourth line of the main output. For
example, see line 4 in Listing 14 on page 83. Unlike the other general MOOS scope tools, the
uHelmScope allows for stepping backwards through helm iterations to see when the mission mode
changed and perhaps what precipitated the change. See the section on stepping through saved
scope history in Section 8.3.

The uHelmScope tool also has a mode in which the entire mode hierarchy may be rendered -
solely to provide a visual confirmation that the hierarchy specified with the mode declarations in
the behavior file does in fact correspond to what the user intended. Currently there are no tools
to automatically render the mode hierarchy in a manner like the right hand side of Figure 13. The

59

6 IVP HELM AUTONOMY

uHelmScope output for the example in Figure 13 is shown in listing 10 below.

Listing 10: The mode hierarchy output from uHelmScope for the example in Figure 13.

0 ModeSet Hierarchy:

1 --

2 Alpha

3 Delta

4 Echo

5 Sierra

6 Tango

7 Bravo

8 Charlie

9 Foxtrot

10 Golf

11 --

12 CURENT MODE(S): Charlie:Foxtrot

13

14 Hit ’r’ to resume outputs, or SPACEBAR for a single update

More on this feature of the uHelmScope can be found in Section 8. It’s worth noting that poking
the value of a mode variable will have no effect on the helm operation. The mission mode cannot
be commanded directly. The mode variable is reset at the outset of the helm iteration, and the
helm doesn’t even register for mail on mode variables.

6.5 Behavior Participation in the IvP Helm

The primary work of the helm comes when the behaviors participate and do their thing, at each
round of the helm Iterate() loop. As depicted in Figure 11 on page 52, once the mode has been
re-evaluated taking into consideration newly received mail, it is time for the behaviors (well, some
at least) to step up and do their thing.

6.5.1 Behavior Run Conditions

On any single iteration a behavior may participate by generating an objective function to influence
the helm’s output over its decision space. Not all behaviors participate in this regard, and the
primary criteria for participation is whether or not it has met each of its “run conditions”. These
are the conditions laid out in the behavior file of the form:

condition = <logic-expression>

Each logic expression is comprised of either Boolean operators (and, or, not) or relation operators
(≤, <,≥, >,=, ! =). All expressions have at least one relational expression, where the left-hand
side of the expression is treated as a variable, and the right-hand side is a literal (either a string or
numerical value). The literals are treated as a string value if quoted, or if the value is non-numerical.
Some examples:

DEPLOY = true // Example 1

QUALITY >= 75 // Example 2

Variable names are case sensitive since MOOS variables in general are case sensitive. In matching
string values of MOOS variables in Boolean conditions, the matching is case insensitive. If for

60

6 IVP HELM AUTONOMY

example the MOOS variable DEPLOY had the value "TRUE", this would satisfy the condition in
Example 1 above. But if the MOOS variable deploy had the value "true", this would not satisfy
Example 1. Individual relational expressions can be combined with Boolean connectors into more
complex expressions. Each component of a Boolean expression must be surrounded by a pair of
parentheses. Some examples:

(DEPLOY = true) or (QUALITY >= 75) // Example 3

(MSG != error) and !((K <= 10) or (w != 0)) // Example 4

A relational expression such as (w != 0) above is false if the variable w is undefined. In MOOS,
this occurs if variable has yet to be published with a value by any MOOS client connected to the
MOOSDB. A relational expression is also false if the variable in the expression is the wrong type,
compared to the literal. For example (w != 0) in Example 3 would evaluate to false even if the
variable w had the string value "alpha" which is clearly not equal to zero.

A relational expression generally involves a variable and a literal, and the form is simplified by
insisting the variable is on the left and the literal on the right. A relational expression can also
involve the comparison of two variables by surrounding the right-hand side with $(). For example:

REQUESTED_STATE != $(RUN_STATE) // Example 5

The variable types need to match or the expression will evaluate to false regardless of the relation.
The expression in Example 5 will evaluate to false if, for example, REQUESTED STATE="run" and
RUN STATE=7, simply because they are of different type, and regardless of the relation being the
inequality relation.

6.5.2 Behavior Run Conditions and Mode Declarations

The use of hierarchical mode declarations potentially simplify the expressions used as run condi-
tions. The conditions in practice could be limited to:

condition = <mode-variable> = <mode-value>, or

condition = <mode-variable> == <mode-value>.

Conditions were used in this way with the Charlie mission in Listing 9 on page 58, as an alternative
to their usage in the Alpha mission example in Listing 5 on page 33.

Note the use of the double-equals relation above. This relation is used for matching against the
strings used to represent the hierarchical mode. The two strings match if the ordered components
of one side are a subset of the ordered components of the other. Components are colon-separated.
For example, using the illustrative hierarchy from Figure 13:

"Alpha:Echo:Sierra" == "Sierra"

"Alpha:Echo:Sierra" == "Echo:Sierra"

"Alpha:Echo:Sierra" == "Alpha"

"Sierra" == "Alpha:Echo:Sierra"

"Charlie:Foxtrot" == "Charlie:Foxtrot"

"Alpha:Echo:Sierra" != "Alpha:Sierra"

61

6 IVP HELM AUTONOMY

6.5.3 Behavior Run States

On any given helm iteration a behavior may be in one of four states depicted in Figure 14:

Figure 14: Behavior States: A behavior may be in one of these four states at any given iteration of helm Iterate()

loop. The state is determined by examination of MOOS variables stored locally in the helm’s information buffer.

• Idle: A behavior is idle if it is not complete and it has not met its run conditions as described
above in Section 6.5.1. The helm will invoke an idle behavior’s onIdleState() function.

• Running: A behavior is running if it has met its run conditions and it is not complete. The
helm will invoke a running behavior’s onRunState() function thereby giving the behavior an
opportunity to contribute an objective function.

• Active: A behavior is active if it is running and it did indeed produce an objective function
when prompted. There are a number of reasons why a running behavior may not be active.
For example, a collision avoidance behavior where the object of the behavior is sufficiently
far away.

• Complete: A behavior is complete when the behavior itself determines it to be complete. It is
up to the behavior author to implement this, and some behaviors may never complete. The
function setComplete() is defined generally at the behavior superclass level, for calling by a
behavior author. This provides some some standard steps to be taken upon completion, such
as posting of endflags, described below in Section 6.5.4. Once a behavior is in the complete

state, it remains in that state permanently. All behaviors have a DURATION parameter defined
to allow it to be configured to time-out if desired. When a time-out occurs the behavior state
will be set to complete.

6.5.4 Behavior Flags and Behavior Messages

Behaviors may post some number of messages, i.e., variable-value pairs, on any given iteration (see
Figure 11, p. 52). These message can be critical for coordinating behaviors with each other and
to other MOOS processes. The can also be invaluable for monitoring and debugging behaviors
configured for particular missions. To be more accurate, behaviors don’t post messages to the
MOOSDB, they request the helm to post messages on its behalf. The helm collects these requests and
publishes them to the MOOSDB at the end of the Iterate() loop. It also filters them for successive
duplicates as discussed in Section 5.6.

There is a standard method, configurable in the behavior file, for posting messages based on
the run state of the behavior. These are referred to as behavior flags, and there are five types,
(1) endflag, (2) idleflag, (3) runflag, (4) activeflag, (5) inactiveflag. The variable-value pairs

62

6 IVP HELM AUTONOMY

representing each flag are set in the behavior file for the corresponding behavior. See line 12 in 5
on page 33 for example.

• endflag: An endflag is posted once when or if the behavior enters the complete state. The
variable-value pair representing the endflag is given in the endflag parameter in the behavior
file. Multiple endflags may be configured for a behavior.

• idleflag: An idleflag is posted on each iteration of the helm when the behavior is determined
to be in the idle state. The variable-value pair representing the idleflag is given in the
idleflag parameter in the behavior file. Multiple idleflags may be configured for a behavior.

• runflag: An runflag is posted on each iteration of the helm when the behavior is determined
to be in the running state, regardless of whether it is further determined to be active or not.
A runflag is posted exactly when an idleflag is not. The variable-value pair representing
the runflag is given in the runflag parameter in the behavior file. Multiple runflags may be
configured for a behavior.

• activeflag: An activeflag is posted on each iteration of the helm when the behavior is
determined to be in the active state. The variable-value pair representing the activeflag is
given in the activeflag parameter in the behavior file. Multiple activeflags may be configured
for a behavior.

• inactiveflag: An inactiveflag is posted on each iteration of the helm when the behavior is
determined to be not in the active state. The variable-value pair representing the inactiveflag
is given in the inactiveflag parameter in the behavior file. Multiple inactiveflags may be
configured for a behavior.

A runflag is meant to “complement” an idleflag, by posting exactly when the other one does not.
Similarly with the inactiveflag and activeflag. The situation is shown in Figure 15:

Figure 15: Behavior Flags: The four behavior flags idleflag, runflag, activeflag, and inactiveflag are posted
depending on the behavior state and can be considered complementary in the manner indicated.

Behavior authors may implement their behaviors to post other messages as they see fit. For example
the waypoint behavior used in the Alpha example in Section 4 also published the variable WPT STAT

with a status message similar to "vname=alpha,index=0,dist=124,eta=62" indicating the name of
the vehicle, the index of the next point in the list of waypoints, the distance to that waypoint, and

63

6 IVP HELM AUTONOMY

the estimated time of arrival, in seconds. (You might want to re-run the Alpha mission with uXMS

scoping on this variable to watch it change as the mission unfolds.)

6.5.5 Monitoring Behavior Run States and Messages During Mission Execution

The run states for each behavior, are wrapped up on each iteration by the helm into a single string
and published in the variable IVPHELM SUMMARY. This variable is subscribed for by the uHelmScope

tool and behavior states are parsed from this variable and summarized in the main output, as in
lines 12-17 in Listing 14 on page 83. These lines are provided in the below excerpt:

12 Behaviors Active: ---------- (1)

13 waypt_survey (13.0) (pwt=100.00) (pcs=1227) (cpu=0.01) (upd=0/0)

14 Behaviors Running: --------- (0)

15 Behaviors Idle: ------------ (1)

16 waypt_return (22.8)

17 Behaviors Completed: ------- (0)

Behaviors are grouped into the four possible states, with a summary line for each state, e.g., lines
12, 14, 15, 17, containing the number of behaviors in that state in parentheses at the end of the
line. Each behavior configured for the helm shows up on a dedicated line in the appropriate group,
e.g., lines 13 16. In these lines immediately following the behavior name, the number of seconds is
displayed in parentheses indicating how long the behavior has been in that state.

The uHelmScope tool can also be used to monitor the messages generated by each behavior on
each iteration. The helm, in addition to posting all the variable-value pairs to the MOOSDB at the
end of the Iterate() loop, also builds a summary of all such posts into a single string and publishes
it as IVPHELM POSTINGS. This variable is subscribed for and parsed by uHelmScope to generate the
“Behavior-Posts” section of the uHelmScope output. An example can be seen in lines 28-39 in Listing
14, and this part of the uHelmScope output is described in Section 8.2.3.

6.6 Behavior Reconciliation in the IvP Helm - Multi-Objective Optimization

6.6.1 IvP Functions

IvP functions are produced by behaviors to influence the decision produced by the helm on the
current iteration (see Figure 11, p. 52). The decision is typically comprised of the desired heading,
speed, and depth but the helm decision space could be comprised of any arbitrary configuration
(see section 5.3.2, p. 41). Some points about IvP functions:

• IvP functions are piecewise linearly defined. Each piece is defined by an interval over some
subset of the decision space, and there is a linear function associated with each piece (see
Figure 17).

• IvP functions are an approximation of an underlying function. The linear function for a single
piece is the best linear approximation of the underlying function for the portion of the domain
covered by that piece.

64

6 IVP HELM AUTONOMY

• IvP domains are discrete with an upper and lower bound for each variable, so an IvP function
may achieve zero-error in approximating an underlying function by associating a piece with
each point in the domain. Behaviors seldom need to do so in practice however.

• The Ivp function construct and IvP solver are generalizable to N dimensions.

• The pieces in IvP functions need not be uniform size or shape. More pieces can be dedicated
to parts of the domain that are harder to approximate with linear functions.

• IvP functions need only be defined over a subset of the domain. Behaviors are not affected if
the helm is configured for additional variables that a behavior may not care about. Behaviors
that produce functions solely over vehicle depth are perfectly ok.

How are IvP functions built? The IvP Build Toolbox is a set of tools for creating IvP functions
based on any underlying function defined over an IvP Domain. Many, if not all of the behaviors in
this document make use of this toolbox, and authors of new behaviors have this at their disposal. A
primary component of writing a new behavior is the development of the “underlying function”, the
function approximated by an IvP function with the help of the toolbox. The underlying function
represents the relationship between a candidate helm decision and the expected utility with respect
to the behavior’s objectives. The IvP Toolbox is not covered in detail in this document, but an
overview is given below.

6.6.2 The IvP Build Toolbox

The IvP Toolbox is a set of tools (a C++ library) for building IvP functions. It is typically utilized
by behavior authors in a sequence of library calls within a behavior’s (C++) implementation. There
are two sets of tools - the Reflector tools for building IvP functions in N dimensions, and the ZAIC

tools for building IvP functions in one dimension as a special case. The Reflector tools work by
making available a function to be approximated by an IvP function. The tools simply need this
function for sampling. Consider the Gaussian function rendered below in Figure 16:

65

6 IVP HELM AUTONOMY

ycent = −150

sigma = 32.4

range = 150

x

−250 −250

250

250

y

0

xcent = 50

150

Figure 16: A rendering of the function f(x, y) = Ae
−(

(x=x0)2+(y=y0)2

2σ2)
where A = range = 150, σ = sigma = 32.4,

x0 = xcent = 50, y0 = ycent = −150. The domain here for x and y ranges from −250 to 250.

The ’x’ and ’y’ variables, each with a range of [−250, 250], are discrete, taking on integer values.
The domain therefore contains 5012 = 251, 001 points, or possible decisions. The IvP Build Toolbox
can generate an IvP function approximating this function over this domain by using a uniform piece
size, as rendered in Figure 17(a) and 17(b). The difference in these two figures is only the size of
the piece. More pieces (Figure 17(a)) results in a more accurate approximation of the underlying
function, but takes longer to generate and creates further work for the IvP solver when the functions
are combined. IvP functions need not use uniformly sized pieces.

By using the directed refinement option in the IvP Build Toolbox, an initially uniform IvP function
can be further refined with more pieces over a sub-domain directed by the caller, with smaller
uniform pieces of the caller’s choosing. This is rendered in Figure 17(c). Using this tool requires
the caller to have some idea where, in the sub-domain, further refinement is needed or desired.
Often a behavior author indeed has this insight. For example, if one of the domain variables is
vehicle heading, it may be good to have a fine refinement in the neighborhood of heading values
close to the vehicle’s current heading.

In other situations, insight into where further refinement is needed may not be available to the
caller. In these cases, using the smart refinement option of the IvP Build Toolbox, an initially
uniform IvP function may be further refined by asking the toolbox to automatically “grade” the
pieces as they are being created. The grading is in terms of how accurate the linear fit is between the
piece’s linear function and the underlying function over the sub-domain for that piece. A priority
queue is maintained based on the grades, and pieces where poor fits are noted, are automatically
refined further, up to a maximum piece limit chosen by the caller. This is rendered in Figure 17(d).

The Reflector tools work similarly in N dimensions and on multi-modal functions. The only
requirement for using the Reflector tool is to provide it with access to the underlying function.
Since the tool repetitively samples this function, a central challenge to the user of the toolbox is

66

6 IVP HELM AUTONOMY

(a) 7056 (101x101) uniform pieces (b) 289 (17x17) uniform pieces

(c) Directed Refinement - 732 pieces (d) Smart Refinement - 225 pieces

Figure 17: A rendering of four different IvP functions approximating the same underlying function:
The function in (a) uses a uniform distribution of 7056 pieces. The function in (b) uses a uniform distribution of
1024 pieces. The function in (c) was created by first building a uniform distribution of 49 pieces and then focusing
the refinement on a sub-domain of the function. This is called directed-refinement in the IvP Build toolbox. The
function in (d) was created by first building a uniform function of 25 pieces and repeatedly refining the function
based on which pieces were noted to have a poor fit to the underlying function. This is termed smart-refinement in
the IvP Build toolbox.

to develop a fast implementation of the function. In terms of the time consumed in generating IvP
functions with the Reflector tool, the sampling of the underlying function is typically the long pole
in the tent.

6.6.3 The IvP Solver and Behavior Priority Weights

The IvP Solver collects a set of weighted IvP functions produced by each of the behaviors and
finds a point in the decision space that optimizes the weighted combination. If each IvP objective
function is represented by fi(

−→x), and the weight of each function is given by wi, the solution to a
problem with k functions is given by:
The algorithm is described in detail in [3], but is summarized in the following few points.

• The search tree: The structure of the search algorithm is branch-and-bound. The search tree
is comprised of an IvP function at each layer, and the nodes at each layer are comprised of the

67

6 IVP HELM AUTONOMY

individual pieces from the function at that layer. A leaf node represents a single piece from
each function. A node in the tree is realizable if the piece from that node and its ancestors
intersect, i.e., share common points in the decision space.

• Global optimality: Each point in the decision space is in exactly one piece in each IvP func-
tion and is thus in exactly one leaf node of the search tree. If the search tree is expanded
fully, or pruned properly (only when the pruned out sub-tree does not contain the optimal
solution), then the search is guaranteed to produce the globally optimal solution. The search
algorithm employed by the IvP solver does indeed start with fully expanded tree, and utilizes
proper pruning to guarantee global optimality. The algorithm does allow for a parameter for
guaranteed limited back-off from global optimality - a quicker solution with a guarantee of
being within a fixed percent of global optima. This option is not exposed to the IvP Helm
which always finds the global optimum.

• Initial solution: A key factor of an effective branch-and-bound algorithm is seeding the search
with a decent initial solution. In the IvP Helm, the initial solution used is the solution
(typically heading, speed, depth) generated on the previous helm iteration. Upon casual
observation this appears to provide a speed-up by about a factor of two.

In cases where there is a “tie” between optimal decisions, the solution generated by the solver is
non-deterministic. This is mitigated somewhat by the fact that the solution is seeded with the
output of the previous iteration as discussed above.

6.6.4 Monitoring the IvP Solver During Mission Execution

The performance of the solver can be monitored with the uHelmScope tool described in Section 8.
The output shown below in Listing 11 is an excerpt of the full output shown in Listing 14 on page
83. On line 5, the total time needed to solve the multi-objective optimization problem is given in
seconds, and the max time need for all recorded loops is given in parentheses. It is zero here since
there is only one objective function in this example. On line 6 is the total time for creating the
IvP functions in all behaviors, with the max across all iterations in parentheses. On line 7 is the
total loop time - the sum of the previous two lines. Active behaviors display useful information
regarding the IvP solver. For example, on line 13, the Survey waypoint behavior had a priority
weight of 100 and generated 1,227 pieces, taking 0.01 seconds of CPU time to create.

Listing 11 - Example uHelmScope output containing information about the IvP solver.

1 ============== uHelmScope Report ============== ENGAGED (17)

2 Helm Iteration: 66 (hz=0.38)(5) (hz=0.35)(66) (hz=0.56)(max)

3 IvP functions: 1

4 Mode(s): Surveying

5 SolveTime: 0.00 (max=0.00)

6 CreateTime: 0.02 (max=0.02)

7 LoopTime: 0.02 (max=0.02)

68

6 IVP HELM AUTONOMY

8 Halted: false (0 warnings)

9 Helm Decision: [speed,0,4,21] [course,0,359,360]

10 speed = 3.00

11 course = 177.00

12 Behaviors Active: ---------- (1)

13 waypt_survey (13.0) (pwt=100.00) (pcs=1227) (cpu=0.01) (upd=0/0)

14 Behaviors Running: --------- (0)

15 Behaviors Idle: ------------ (1)

16 waypt_return (22.8)

17 Behaviors Completed: ------- (0)

18

The solver can be additionally monitored and analyzed through the two MOOS variables LOOP CPU

and CREATE CPU published on each helm iteration. The former indicates the system wall time for
building each IvP function and solving the multi-objective optimization problem, and the latter
indicates just the time to create the IvP functions.

69

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

7 Standard and Overloadable Properties of Helm Behaviors

The objective of this section is to describe properties common to all IvP Helm behaviors, describe
how to overload standard functions for 3rd party behaviors, and to provide a detailed simple
example of a behavior. It builds on the discussion from Chapter 6. The focus in this section is an
expansion of detail of Step 3 in Figure 11 on page 52.

7.1 Brief Overview

Behaviors are implemented as C++ classes with the helm having one or more instances at runtime,
each with a unique descriptor. The properties and implemented functions of a particular behavior
are partly derived from the IvPBehavior superclass, shown in Figure 18. The is-a relationship of a
derived class provides a form of code re-use as well as a common interface for constructing mission
files with behaviors.

Figure 18: Behavior inheritance: Behaviors are derived from the IvPBehavior superclass. The native behaviors
are the behaviors distributed with the helm. New behaviors also need to be subclass of the IvPBehavior class to work
with the helm. Certain virtual functions invoked by the helm may be optionally but typically overloaded in all new
behaviors. Other private functions may be invoked within a behavior function as a way of facilitating common tasks
involved in implementing a behavior.

The IvPBehavior class provides three virtual functions which are typically overloaded in a particular
behavior implementation:

• The setParam() function: parameter-value pairs are handled to configure a behavior’s unique
properties distinct from its superclass.

• The onRunState() function: the meat of a behavior implementation, performed when the
behavior has met its conditions for running, with the output being an objective function and
a possibly empty set of variable-value pairs for posting to the MOOSDB.

• The onIdleState() function: what the behavior does when it has not met its run conditions.
It may involve updating internal state history, generation of variable-value pairs for posting
to the MOOSDB, or absolutely nothing at all.

70

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

This section discusses the properties of the IvPBehavior superclass that an author of a third-
party behavior needs to be aware of in implementing new behaviors. It is also relevant material for
users of the native behaviors as it details general properties.

7.2 Parameters Common to All IvP Behaviors

A behavior has a standard set of parameters defined at the IvPBehavior level as well as unique
parameters defined at the subclass level. By configuring a behavior during mission planning, the
setting of parameters is the primary venue for affecting the overall autonomy behavior in a vehicle.
Parameters are set in the behavior file, but can also be dynamically altered once the mission has
commenced. A parameter is set with a single line of the form:

parameter = value

The left-hand side, the parameter component, is case insensitive, while the value component is
typically case sensitive. This was discussed in depth in Section 6.3. In this section, the parameters
defined at the superclass level and available to all behaviors are exhaustively listed and discussed.
Each behavior typically augments these parameters with new ones unique to the behavior, and in
the next section the issue of implementing new parameters by overloading the setParam() function
is addressed.

7.2.1 A Summary of the Full Set of General Behavior Parameters

The following parameters are defined for all behaviors at the superclass level. They are listed here
for reference - certain related aspects are discussed in further detail in other sections.

NAME: The name of the behavior - should be unique between all behaviors. Duplicates may be
confusing, but should not cause helm errors. Logging and output sent to the helm console during
operation will organize information by the behavior name.

PRIORITY: The priority weight of the produced objective function. The default value is 100. A
behavior may also be implemented to determine its own priority weight depending on information
about the world.

DURATION: The time in seconds that the behavior will remain running before declaring completion.
If no duration value is provided, the behavior will never time-out. The clock starts ticking once
the behavior satisfies its run conditions (becoming non-idle) the first time. Should the behavior

switch between running and idle states, the clock keeps ticking even during the idle periods. See
Section 7.2.3 for more detail.

DURATION STATUS: If the DURATION parameter is set, the remaining duration time, in seconds, can
be posted by naming a DURATION STATUS variable. This variable will be update/posted only when
the behavior is in the running state. See Section 7.2.3 for more detail.

71

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

DURATION RESET: This parameter takes a variable-pair such as MY RESET=true. If the DURATION

parameter is set, the duration clock is reset when the variable is posted to the MOOSDB with
the specified value. Each time such a post is noted, the duration clock is reset. See Section 7.2.3
for more detail.

DURATION IDLE DECAY: If this parameter is false the duration clock is paused when the vehicle is
in the “idle” state. The default value is true. See Section 7.2.3 for more detail.

CONDITION: This parameter specifies a condition that must be met for the behavior to be active.
Conditions are checked for each behavior at the beginning of each control loop iteration. Con-
ditions are based on current MOOS variables, such as STATE = normal or ((K ≤ 4). More than
one condition may be provided, as a convenience, treated collectively as a single conjunctive
condition. The helm automatically subscribes for any condition variables. See Section 6.5.1 for
more detail on run conditions.

RUNFLAG: This parameter specifies a variable and a value to be posted when the behavior has met all
its conditions for being in the running state. It is a equal-separated pair such as TRANSITING=true.
More then one flag may be provided. These can be used to satisfy or block the conditions of
other behaviors. See Section 6.5.4 on page 62 for more detail on posting flags to the MOOSDB
from the helm.

IDLEFLAG: This parameter specifies a variable and a value to be posted when the behavior is in
the idle state. See the Section 6.5.3 for more on run states. It is an equal-separated pair such
as WAITING=true. More then one flag may be provided. These can be used to satisfy or block
the conditions of other behaviors. See Section 6.5.4 on page 62 for more detail on posting flags
to the MOOSDB from the helm.

ACTIVEFlAG: This parameter specifies a variable and a value to be posted when the behavior is in
the active state. See the Section 6.5.3 for more on run states. It is an equal-separated pair such
as TRANSITING=true. More then one flag may be provided. These can be used to satisfy or block
the conditions of other behaviors. See Section 6.5.4 on page 62 for more detail on posting flags
to the MOOSDB from the helm.

INACTIVEFlAG: This parameter specifies a variable and a value to be posted when the behavior is
not in the active state. See the Section 6.5.3 for more on run states. It is a equal-separated
pair such as OUT OF RANGE=true. More then one flag may be provided. These can be used to
satisfy or block the conditions of other behaviors. See Section 6.5.4 on page 62 for more detail
on posting flags to the MOOSDB from the helm.

72

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

ENDFLAG: This parameter specifies a variable and a value to be posted when the behavior has set
the completed state variable to be true. The circumstances causing completion are unique to
the individual behavior. However, if the behavior has a DURATION specified, the completed flag
is set to true when the duration is exceeded. The value of this parameter is a equal-separated
pair such as ARRIVED HOME=true. Once the completed flag is set to true for a behavior, it remains
inactive thereafter, regardless of future events, barring a complete helm restart. See Section
6.5.4 on page 62 for more detail on posting flags to the MOOSDB from the helm.

UPDATES: This parameter specifies a variable from which updates to behavior configuration pa-
rameters are read from after the behavior has been initially instantiated and configured at the
helm startup time. Any parameter and value pair that would have been legal at startup time
is legal at runtime. The syntax for this string is a #-separated list of parameter-value pairs:
"param=value # param=value # ... # param=value". This is one of the primary hooks to the
helm for mission control - the other being the behavior conditions described above. See Section
7.2.2 for more detail.

NOSTARVE: The NOSTARVE parameter allows a behavior to assert a maximum staleness for one or
more MOOS variables, i.e., the time since the variable was last updated. The syntax for this
parameter is a comma-separated pair "variable, ..., variable, value", where last component
in the list is the time value given in seconds. See Section 7.2.5 on page 75 for more detail.

PERPETUAL: Setting the perpetual parameter to true allows the behavior to continue to run even
after it has completed and posted its end flags. The parameter value is not case sensitive and
the only two legal values are true and false. See Section 7.2.4 for more detail.

7.2.2 Altering Behavior Parameters Dynamically with the UPDATES Parameter

The parameters of a behavior can be made to allow dynamic modifications - after the helm has been
launched and executing the initial mission in the behavior file. The modifications come in a single
MOOS variable specified by the parameter UPDATES. For example, consider the simple waypoint
behavior configuration below in Listing 12. The return point is the (0,0) point in local coordinates,
and return speed is 2.0 meters/second. When the conditions are met, this is what will be executed.

Listing 12 - An example behavior configuration using the UPDATES parameter.

0 Behavior = BHV_Waypoint

1 {

2 name = WAYPT_RETURN

3 priority = 100

4 speed = 2.0

5 radius = 8.0

6 points = 0,0

7 UPDATES = RETURN_UPDATES

8 condition = RETURN = true

9 condition = DEPLOY = true

10 }

If, during the course of events, a different return point or speed is desired, this behavior can be
altered dynamically by writing to the variable specified by the UPDATES parameter, in this case the
variable RETURN UPDATES (line 7 in Listing 12). The syntax for this variable is of the form:

73

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

parameter = value # parameter = value # ... # parameter = value

White space is ignored. The ’#’ character is treated as special for parsing the line into separate
parameter-value pairs. It cannot be part of a parameter component or value component. For
example, the return point and speed for this behavior could be altered by any other MOOS process
that writes to the MOOS variable:

RETURN_UPDATES = ‘‘points = (50,50) # speed = 1.5’’

Each parameter-value pair is passed to the same parameter setting routines used by the behavior
on initialization. The only difference is that an erroneous parameter-value pair will simply be
ignored as opposed to halting the helm as done on startup. If a faulty parameter-value pair is
encountered, a warning will be written to the variable BHV WARNING. For example:

BHV_WARNING = "Faulty update for behavior: WAYPT_RETURN. Bad parameter(s): speed."

Note that a check for parameter updates is made at the outset of helm iteration loop for a behavior
with the call checkUpdates(). Any updates received by the helm on the current iteration will be
applied prior to behavior execution and in effect for the current iteration.

7.2.3 Limiting Behavior Duration with the DURATION Parameter

The duration parameter specifies a time period in seconds before a behavior times out and perma-
nently enters the completed state. If left unspecified, there is no time limit to the behavior. By
default, the duration clock begins ticking as soon as the helm engages. The duration clock remains
ticking when or if the behavior subsequently enters the idle state. It even remains ticking if the
helm temporarily disengages. When a timeout occurs, end flags are posted. The behavior can be
configured to post the time remaining before a timeout with the duration status parameter. The
forms for each are:

duration = value (positive numerical)

duration_status = value (variable name)

Note that the duration status variable will only be published/updated when the behavior is in the
running state. The duration status is rounded to the nearest integer until less than ten seconds
remain, after which the time is posted out to two decimal places. The behavior can be configured
to have the duration clock pause when it is in the idle state with the following:

duration_idle_decay = false // The default is true

Configured in the above manner, a behavior’s duration clock will remain paused until it’s condtions
are met. The behavior may also be configured to allow for the duration clock to be reset upon the
writing of a MOOS variable with a particular value. For example:

duration_reset = BRAVO_TIMER_RESET=true

The behavior checks for and notes that the variable-value pair holds true and the duration clock is
then reset to the original duration value. The behavior also marks the time at which the variable-
value pair was noted to have held true. Thus there is no need to “un-set” the variable-value pair,
e.g., setting BRAVO TIMER RESET=false, to allow the duration clock to resume its count-down.

74

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

7.2.4 The PERPETUAL Parameter

When a behavior enters the completed state, it by default remains in that state with no chance to
change. When the perpetual parameter is set to true, a behavior that is declared to be complete
does not actually enter the complete state but performs all the other activity normally associated
with completion, such as the posting of end flags. See Section 6.5.4 for more detail on posting
flags to the MOOSDB from the helm. The default value for perpetual is false. The form for this
parameter is:

perpetual = value

The value component is case insensitive, and the only legal values are either true or false. A
behavior using the duration parameter with perpetual set to true will post its end flags upon time
out, but will reset its clock and begin the count-down once more the next time its run conditions
are met, i.e., enters the running state. Typically when a behavior is used in this way, it also posts
an endflag that would put itself in the idle state, waiting for an external event.

7.2.5 Detection of Stale Variables with the NOSTARVE Parameter

A behavior utilizing a variable generated by a MOOS process outside the helm, may require the
variable to be sufficiently up-to-date. The staleness of a variable is the time since it was last written
to by any process. The NOSTARVE parameter allows the mission writer to set a staleness threshold.
The form for this parameters is:

nostarve = variable_1, ..., variable_n, duration

The value of this parameter is a comma-separated list such as "NAV X, NAV Y, 5.0". The variable
components name MOOS variables and the duration component, the last entry in the list, represents
the tolerated staleness in seconds. If staleness is detected, a behavior failure condition is triggered
which will trigger the helm to post all-stop values and relinquish to manual control.

7.3 Overloading the setParam() Function in New Behaviors

The setParam() function is a virtual function defined in the IvPBehavior class, with parameters
implemented in the superclass (Section 7.2) handled in the superclass version of this function:

bool IvPBehavior::setParam(string parameter, string value);

The setParam() function should return true if the parameter is recognized and the value is in an
acceptable form. In the rare case that a new behavior has no additional parameters, leaving this
function undefined in the subclass is appropriate. An implementation of the setParam() function
for a new behavior should attempt to first handle a parameter-value pair at the IvPBehavior level,
and only handle it locally if it is not recognized at the superclass level. The example below in
Listing 13 gives an example for a fictional behavior BHV YourBehavior having a single parameter
period.

Listing 13 - An example setParam() implementation for fictional BHV YourBehavior.

75

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

0 bool BHV_YourBehavior::setParam(string param, string value)

1 {

2 if(param == "period") {

3 double time_value = atof(value.c_str());

4 if((time_value < 0) || (!isNumber(value)))

5 return(false);

6 m_period = time_value;

7 return(true);

8 }

9 return(false);

10 }

Since the period parameter refers to a time period, a check is made on line 4 that the value
component indeed is a positive number. (The atof() function on line 6, which converts an ASCII
string to a floating point value, returns zero when passed a non-numerical string, therefore the
isNumber() function is also used to ensure the string represented by value represents a numerical
value.) A behavior implementation of this function without sufficient syntax or semantic checking
simply runs the risk that faulty parameters are not detected at the time of helm launch, or during
dynamic updates. Solid checking in this function will reduce debugging headaches down the road.

7.4 Behavior Functions Invoked by the Helm

The IvPBehavior superclass implements a number of functions invoked by the helm on each it-
eration. Two of these functions are overloadable as described previously - the onRunState() and
onIdleState() functions. The basic flow of calls to a behavior from the helm are shown in Fig-
ure 19. These are discussed in more detail later in the section, but the idea is to execute certain
behavior functions based on the activity state, which may be one of the four states depicted. An
idle behavior is one that has not mets its conditions for running. A completed behavior is one that
has reached its objectives or exceeded its duration. A running behavior is one that has not yet
completed, has met its run conditions, but may still opt not to produce any output. An active

behavior is one that is running and is producing output in the form of an objective function.
The types of functions defined at the superclass level fall into one of the three categories below,

only the first two of which are shown in Figure 19:

• Helm-invoked immutable functions - functions invoked by the helm on each iteration that the
author of a new behavior may not re-implement.

• Helm-invoked overloadable functions - functions invoked by the helm that an author of a new
behavior typically re-implements of overloads.

• User-invoked functions - functions invoked within a behavior implementation.

The user-invoked functions are utilities for common operations typically invoked within the
implementation of the onRunState() and onIdleState() functions written by the behavior author.

7.4.1 Helm-Invoked Immutable Functions

These functions, implemented in the IvPBehavior superclass, are called by the helm but are not

defined as virtual functions which means that attempts to overload them in a new behavior imple-
mentation will be ignored. See Figure 19 regarding the sequence of these function calls.

76

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

Figure 19: Behavior function-calls by the helm: The helm invokes a sequence of functions on each behavior
on each iteration of the helm. The sequence of calls is dependent on what the behavior returns, and reflects the
behaviors activity state. Certain functions are immutable and can not be overloaded by a behavior author. Two
key functions, onRunState() and onIdleState() can be indeed overloaded as the usual hook for an author to
provide the implementation of a behavior. The postFlags function is also immutable, but the parameters (flags)
are provided in the helm configuration (*.bhv) file.

void checkUpdates(): This function is called first on each iteration to handle requested dynamic
changes in the behavior configuration. This needs to be the very first function applied to a
behavior on the helm iteration so any requested changes to the behavior parameters may be
applied on the present iteration. See Section 7.2.2 for more on dynamic behavior configuration
with the UPDATES parameter.

bool isComplete(): This function simply returns a Boolean indicating whether the behavior was
put into the complete state during a prior iteration.

bool isRunnable(): Determines if a behavior is in the running state or not. Within this function
call four things are checked: (a) if the duration is set, the duration time remaining is checked for
timeout, (b) variables that are monitored for staleness are checked against (Section 7.2.5). (c)
the run conditions must be met. (d) the behavior’s decision domain (IvP domain) is a proper
subset of the helm’s configured IvP domain. See Section 6.5.1 for more detail on run conditions.

77

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

void postFlags(string flag type): This function will post flags depending on whether the value
of flag type is set to "idleflags", "runflags", "activeflags", "inactiveflags", or "endflags".
Although this function is immutable, not overloadable by subclass implementations, its effect is
indeed mutable since the flags are specified in the mission configuration *.bhv file. See Section
6.5.4 for more detail on posting flags to the MOOSDB from the helm.

7.4.2 Helm-Invoked Overloaded Functions

These are functions called by the helm. They are defined as virtual functions so that a behavior
author may overload them. Typically the bulk of writing a new behavior resides in implementing
these three functions.

IvPFunction* onRunState(): The onRunState() function is called by the helm when deemed to be
in the running state (Figure 19). The bulk of the work in implementing a new behavior is in
this function implementation, and is the subject of Section 7.6.

void onIdleState(): This function is called by the helm when deemed to be in the idle state
(Figure 19). Many behaviors are implemented with this function left undefined, but it is a
useful hook to have in many cases.

bool setParam(string, string): This function is called by the helm when the behavior is first in-
stantiated with the set of parameter and parameter values provided in the behavior file. It is also
called by the helm within the checkUpdates() function to apply parameter updates dynamically.

7.5 Local Behavior Utility Functions

The bulk of the work done in implementing a new behavior is in the implemenation of the
onIdleState() and onRunState() functions. The utility functions described below are designed
to aid in that implementation and are generally “protected” functions, that is callable only from
within the code of another function in the behavior, such as the onRunState() and onIdleState()

functions, and not invoked by the helm.

7.5.1 Summary of Implementor-Invoked Utility Functions

The following is summary of utility functions implemented at the IvPBehavior superclass level.

void setComplete(): The notion of what it means for a behavior to be “complete” is largely an
issue specific to an individual behavior. When or if this state is reached, a call to setComplete()

can be made and end flags will be posted, and the behavior will be permanently put into the
completed state unless the perpetual parameter is set to true.

void addInfoVars(string var names): The helm will register for variables from the MOOSDB on a
need-only basis, and a behavior is obligated to inform the helm that certain variables are needed
on its behalf. A call to the addInfoVars() function can be made from anywhere with a behavior
implementation to declare needed variables. This can be one call per variable, or the string
argument can be a comma-separated list of variables. The most common point of invoking this
function is within a behavior’s constructor since needed variables are typically known at the
point of instantiation. More on this issue in Section 7.5.3.

78

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

double getBufferDoubleVal(string varname, bool& result): Query the info buffer for the latest
(double) value for a given variable named by the string argument. The bool argument indicates
whether the queried variable was found in the buffer. More on this in Section 7.5.2.

double getBufferStringVal(string varname, bool& result): Query the info buffer for the latest
(string) value for a given variable named by the string argument. The bool argument indicates
whether the queried variable was found in the buffer. More on this in Section 7.5.2.

double getBufferCurrTime(): Query the info buffer for the current buffer local time, equivalent
to the duration in seconds since the helm was launched. More on this in Section 7.5.2.

vector<double> getBufferDoubleVector(string var, bool& result): Query the info buffer for
all changes to the variable (of type double) named by the string argument, since the last iteration.
The bool argument indicates whether the queried variable was found in the buffer. More on this
in Section 7.5.2.

vector<string> getBufferStringVector(string var, bool& result): Query the info buffer for
all changes to the variable (of type string) named by the string argument, since the last iteration.
The bool argument indicates whether the queried variable was found in the buffer. More on this
in Section 7.5.2.

void postMessage(string varname, string value, string key): The helm can post messages (variable-
value pairs) to the MOOSDB at the end of the helm iteration. Behaviors can request such
postings via a call to the postMessage() function where the first argument is the variable name,
and the second is the variable value. The optional key parameter is used in conjunction with the
duplication filter and by default is the empty string. See Section 5.6 for more on the duplication
filter.

void postMessage(string varname, double value, string key): Same as above except used when
the posted variable is of type double rather than string. The optional key parameter is used in
conjunction with the duplication filter and by default is the empty string. See Section 5.6 for
more on the duplication filter.

void postBoolMessage(string varname, bool value, string key): Same as above, except used
when the posted variable is a bool rather than string. The optional key parameter is used
in conjunction with the duplication filter and by default is the empty string. See Section 5.6 for
more on the duplication filter.

void postIntMessage(string varname, double value, string key): Same as postMessage(string,
double) above except the numerical output is rounded to the nearest integer. This, combined
with the helm’s use of the duplication filter, can reduce the number of posts to the MOOSDB.
The optional key parameter is used in conjunction with the duplication filter and by default is
the empty string. See Section 5.6 for more on the duplication filter.

void postWMessage(string warning msg): Identical to the postMessage() function except the vari-
able name is automatically set to BHV WARNING. Provided as a matter of convenience to the caller
and for uniformity in monitoring warnings.

void postEMessage(string error msg): Similar to the postWMessage() function except the variable
name is BHV ERROR. This call is for more serious problems noted by the behavior. It also results
in an internal state ok bit being flipped which results in the helm posting all-stop values to the
actuators.

79

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

7.5.2 The Information Buffer

Behaviors do not have direct access to the MOOSDB - they don’t read mail, and they don’t post
changes directly, but rather through the helm as an intermediary. The information buffer, or
info buffer, is a data structure maintained by the helm to reflect a subset of the information in
the MOOSDB and made available to each behavior. This topic is hidden from a user configuring
existing behaviors and can be safely skipped, but is an important issue for a behavior author
implementing a new behavior. The info buffer is a data structure shared by all behaviors, each
behavior having an pointer to a single instance of the InfoBuffer class. This data structure is
maintained by the helm, primarily by reading mail from the MOOSDB and reflecting the change
onto the buffer on each helm iteration, before the helm requests input from each behavior. Each
behavior therefore has the exact same snapshot of a subset of the MOOSDB. A behavior author
needs to know two things - how to ensure that certain variables show up in the buffer, and how to
access that information from within the behavior. These two issues are discussed next.

7.5.3 Requesting the Inclusion of a Variable in the Information Buffer

A variable can be specifically requested for inclusion in the info buffer by invoking the following
function:

void IvPBehavior::addInfoVars(string varnames)

The string argument is either a single MOOS variable or a comma-separated list of variables.
Duplicate requests are simply ignored. Typically such calls are invoked in a behavior’s constructor,
but may be done dynamically at any point after the helm is running. The helm will simply
register with the MOOSDB for the requested variable at the end of the current iteration. Certain
variables are registered for automatically on behalf of the behavior. All variables referenced in
run conditions will be registered and accessible in the buffer. Variables named in the updates and
nostarve parameters will also be automatically registered.

7.5.4 Accessing Variable Information from the Information Buffer

A variable value can be queried from the buffer with one of the following two function calls,
depending on whether the variable is of type double or string.

string IvPBehavior::getBufferStringVal(string varname, bool& result)

double IvPBehavior::getBufferDoubleVal(string varname, bool& result)

The first string argument is the variable name, and the second argument is a reference to a Boolean
variable which, upon the function return, will indicate whether the queried variable was found in
the buffer. A timestamp indicating the last time the variable was changed in the buffer can be
obtained from the following function call:

double IvPBehavior::getBufferTimeVal(string varname);

The string argument is the variable name, and the return value is cumulative time in seconds since
the helm was launched. If the variable name is not found in the buffer, the return value is -1. The
“current” buffer time, equivalent to the cumulative time in seconds since the helm was launched,
can be retrieved with the following function call:

80

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

string IvPBehavior::getBufferCurrTime()

The buffer time is a local variable of the info buffer data structure. It is updated once at the be-
ginning of the helm Iterate() loop prior to processing all new updates to the buffer from the MOOS
mail stack. Thus the timestamp returned by the above call should be exactly the same for successive
calls by all behaviors within a helm iteration, and the timestamps returned by getBufferTimeVal()

and getBufferCurrTime() should be exactly the same if the variable was updated by new mail
received by the helm at the beginning of the current iteration.

The values returned by getBufferStringVal() and getBufferDoubleVal() represent the latest
value of the variable in the MOOSDB at the point in time when the helm began its iteration and
processed its mail stack. The value may have changed several times in the MOOSDB between
iterations, and this information may be of use to a behavior. This is particularly true when a
variable is being posted in pieces, or a sequence of delta changes to a data structure. In any event,
this information can be recovered with the following two function calls:

vector<string> IvPBehavior::getBufferStringVector(string varname, bool& result)

vector<double> IvPBehavior::getBufferDoubleVector(string varname, bool& result)

They return all values updated to the buffer for a given variable since the last iteration in a vector
of strings or doubles respectively. The latest change is located at the highest index of the vector.
An empty vector is returned if no changes were received at the outset of the current iteration.

7.6 Overloading the onRunState() and onIdleState() Functions

The onRunState() function is declared as a virtual function in the IvPBehavior superclass intended
to be overloaded by the behavior author to accomplish the primary work of the behavior. The
primary behavior output is the objective function. This is what drives the vehicle. The objective
function is an instance of the class IvPFunction, and a behavior generates an instance and returns
a pointer to the object in the following function:

IvPFunction* onRunState()

This function is called automatically by the helm on the current iteration if the behavior is deemed
to be in the running state, as depicted in Figure 19 on page 77. The invocation of onRunState()

does not necessarily mean an objective function is returned. The behavior may opt not to for
whatever reason, in which case it returns a null pointer. However, if it does generate a function,
the behavior is said to be in the active state. The steps comprising the typical implementation of
the onRunState() implementation can be summarized as follows:

• Get information from the info buffer, and update any internal behavior state.

• Generate any messages to be posted to the MOOSDB.

• Produce an objective function if warranted.

• Return.

81

7 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

The same steps hold for the onIdleState() function except for producing an objective function.
The first two steps have been discussed in detail. Accessing the info buffer was described in
Sections 7.5.2 - 7.5.4. The functions for posting messages to the MOOSDB from within a behavior
were discussed in Section 7.5.1. Further issues regarding the posting of messages were covered in
Section 6.5.4 The remaining issue to discuss is how objective functions are generated. This is
covered in the IvPBuild Toolbox in a separate document.

82

8 UHELMSCOPE

8 uHelmScope

8.1 Brief Overview

The uHelmScope application is a console based tool for monitoring output of the IvP helm, i.e., the
pHelmIvP process. The helm produces a few key MOOS variables on each iteration that pack in a
substantial amount of information about what happened during a particular iteration. The helm
scope subscribes for and parses this information, and writes it to standard output in a console
window for the user to monitor. The user can dynamically pause or alter the output format to suit
one’s needs, and multiple scopes can be run simultaneously. The helm scope in no way influences
the performance of the helm - it is strictly a passive observer.

8.2 Console Output of uHelmScope

The example console output shown in Listing 14 is used for explaining the uHelmScope fields.

Listing 14 - Example uHelmScope output.

1 ============== uHelmScope Report ============== ENGAGED (17)

2 Helm Iteration: 66 (hz=0.38)(5) (hz=0.35)(66) (hz=0.56)(max)

3 IvP functions: 1

4 Mode(s): Surveying

5 SolveTime: 0.00 (max=0.00)

6 CreateTime: 0.02 (max=0.02)

7 LoopTime: 0.02 (max=0.02)

8 Halted: false (0 warnings)

9 Helm Decision: [speed,0,4,21] [course,0,359,360]

10 speed = 3.00

11 course = 177.00

12 Behaviors Active: ---------- (1)

13 waypt_survey (13.0) (pwt=100.00) (pcs=1227) (cpu=0.01) (upd=0/0)

14 Behaviors Running: --------- (0)

15 Behaviors Idle: ------------ (1)

16 waypt_return (22.8)

17 Behaviors Completed: ------- (0)

18

19 # MOOSDB-SCOPE ------------------------------------ (Hit ’#’ to en/disable)

20 #

21 # VarName Source Time Community VarValue

22 # ---------------- ----------- ------- --------- -----------

23 # BHV_WARNING n/a n/a n/a n/a

24 # AIS_REPORT_LOCAL pTrans..rAIS 24.32 alpha "NAME=alpha,TYPE=KAYAK,MOOSDB"+

25 # DEPLOY* iRemote 11.25 alpha "true"

26 # RETURN* pHelmIvP 5.21 alpha "false"

27

28 @ BEHAVIOR-POSTS TO MOOSDB ----------------------- (Hit ’@’ to en/disable)

29 @

30 @ MOOS Variable Value

31 @ ------------- ------- (BEHAVIOR=waypt_survey)

32 @ PC_waypt_survey -- ok --

33 @ WPT_STAT_LOCAL vname=alpha,index=1,dist=80.47698,eta=26.83870

34 @ WPT_INDEX 1

35 @ VIEW_SEGLIST label,alpha_waypt_survey : 30,-20:30,-100:90,-100: +

36 @ ------------- ------- (BEHAVIOR=waypt_return)

37 @ PC_waypt_return RETURN = true

38 @ VIEW_SEGLIST label,alpha_waypt_return : 0,0

39 @ VIEW_POINT 0,0,0,waypt_return

There are three groups of information in the uHelmScope output on each report to the console -
the general helm overview (lines 1-17), a MOOSDB scope for a select subset of MOOS variables (lines

83

8 UHELMSCOPE

19-26), and a report on the MOOS variables published by the helm on the current iteration (lines
28-39). The output of each group is explained in the next three subsections.

8.2.1 The General Helm Overview Section of the uHelmScope Output

The first block of output produced by uHelmScope provides an overview of the helm. This is lines
1-17 in Listing 14, but the number of lines may vary with the mission and state of mission execution.
The integer value at the end of line 1 indicates the number of uHelmScope reports written to the
console. This can confirm to the user that an action that should result in a new report generation
has indeed worked properly. The integer on line 2 is the counter kept by the helm, incremented
on each helm iteration. The three sets of numbers that follow indicate the observed time between
helm iterations. These numbers are reported by the helm and are not inferred by the scope. The
first number is the average over the most recent five iterations. The second is the average over the
most recent 58 iterations. The last is the maximum helm-reported interval observed by the scope.
The number of iterations used to generate the first two numbers can be set by the user in the
uHelmScope configuration block. The default is 5 and 100 respectively. The number 58 is shown in
the second group simply because 100 iterations hadn’t been observed yet. The helm is apparently
only on iteration 66 in this example and uHelmScope apparently didn’t start and connect to the
MOOSDB until the helm was on iteration 8.

The value on Line 3 represents the the number of IvP functions produced by the active helm
behaviors, one per active behavior. The solve-time on line 5 represents the time, in seconds, needed
to solve the IvP problem comprised the n IvP functions. The number that follows in parentheses is
the maximum solve-time observed by the scope. The create-time on line 6 is the total time needed
by all active behaviors to produce their IvP function output. The loop time on line 7 is simply the
sum of lines 5 and 6. The Boolean on line 8 is true only if the helm is halted on an emergency
or critical error condition. Also on line 8 is the number of warnings generated by the helm. This
number is reported by the helm and not simply the number of warnings observed by the scope.
This number coincides with the number of times the helm writes a new message to the variable
BHV WARNING.

The helm decision space (i.e., IvP domain) is displayed on line 9, with the following lines used to
display the actual helm decision. Following this is a list of all the active, running, idle and completed
behaviors. At any point in time, each instantiated IvP behavior is in one of these four states and
each behavior specified in the behavior file should appear in one of these groups. Technically all
active behaviors are also running behaviors but not vice versa. So only the running behaviors
that are not active (i.e., the behaviors that could have, but chose not to produce an objective
function), are listed in the “Behaviors Running:” group. Immediately following each behavior the
time, in seconds, that the behavior has been in the current state is shown in parentheses. For the
active behaviors (see line 13) this information is followed by the priority weight of the behavior, the
number of pieces in the produced IvP function, and the amount of CPU time required to build the
function. If the behavior also is accepting dynamic parameter updates the last piece of information
on line 13 shows how many successful updates where made against how many attempts. A failed
update attempt also generates a helm warning, counted on line 8. The idle and completed behaviors
are listed by default one per line. This can be changed to list them on one long line by hitting the
’b’ key interactively. Insight into why an idle behavior is not in the running state can be found in
the another part of the report (e.g., line 37) described below in Section 8.2.3.

84

8 UHELMSCOPE

8.2.2 The MOOSDB-Scope Section of the uHelmScope Output

Part of understanding what is happening in the helm involves the monitoring of variables in the
MOOSDB that can either affect the helm or reveal what is being produced by the helm. Although
there are other MOOS scope tools available (e.g., uXMS or uMS), this feature does two things the
other scopes do not. First, it is simply a convenience for the user to monitor a few key variables in
the same screen space. Second, uHelmScope automatically registers for the variables that the helm
reasons over to determine the behavior activity states. It will register for all variables appearing in
behavior conditions, runflags, activeflags, inactiveflags, endflags and idleflags. Variables that are
registered for by this criteria are indicated by an asterisk at the end of the variable name. If the
output resulting from these automatic registrations becomes unwanted, it can be toggled off by
typing ’s’.

The lines comprising the MOOSDB-Scope section of the uHelmScope output are all preceded
by the ’#’ character. This is to help discern this block from the others, and as a reminder that
the whole block can be toggled off and on by typing the ’#’ character. The columns in Listing 14
are truncated to a set maximum width for readability. The default is to have truncation turned
off. The mode can be toggled by the console user with the ’t’ character, or set in the MOOS
configuration block or with a command line switch. A truncated entry in the VarValue column has
a ’+’ at the end of the line. Truncated entries in other columns will have “..” embedded in the
entry. Line 24 shows an example of both kinds of truncation.

The variables included in the scope list can be specified in the uHelmScope configuration block
of a MOOS file. In the MOOS file, the lines have the form:

VAR = VARIABLE_1, VARIABLE_2, VARIABLE_3, ...

An example configuration is given in Listing 17. Variables can also be given on the command line.
Duplicates requests, should they occur, are simply ignored. Occasionally a console user may want
to suppress the scoping of variables listed in the MOOS file and instead only scope on a couple
variables given on the command line. The command line switch -c will suppress the variables listed
in the MOOS file - unless a variable is also given on the command line. In line 23 of Listing 14, the
variable BHV WARNING is a virgin variable, i.e., it has yet to be written to by any MOOS process and
shows n/a in the four output columns. By default, virgin variables are displayed, but their display
can be toggled by the console user by typing ’-v’.

8.2.3 The Behavior-Posts Section of the uHelmScope Output

The Behavior-Posts section is the third group of output in uHelmScope lists MOOS variables and
values posted by the helm on the current iteration. Each variable was posted by a particular helm
behavior and the grouping in the output is accordingly by behavior. Unlike the variables in the
MOOSDB-Scope section, entries in this section only appear if they were written to on the current
iteration. The lines comprising the Behavior-Posts section of the uHelmScope output are all preceded
by the ’@’ character. This is to help discern this block from the others, and as a reminder that
the whole block can be toggled off and on by typing the ’@’ character. As with the output in the
MOOSDB-Scope output section, the output may be truncated. A trailing ’+’ at the end of the line
indicates the variable value has been truncated.

85

8 UHELMSCOPE

There are a few switches for keeping the output in this section concise. A behavior posts a few
standard MOOS variables on every iteration that may be essentially clutter for users in most cases.
A behavior FOO for example produces the variables PWT FOO, STATE FOO, and UH FOO which indicate
the priority weight, run-state, and tally of successful updates respectively. Since this information
is present in other parts of the uHelmScope output, these variables are by default suppressed in the
Behavior-Posts output. Two other standard variables are PC FOO and VIEW * which indicate the
precondition keeping a behavior in an idle state, and standard viewing hints to a rendering engine.
Since this information is not present elsewhere in the uHelmScope output, it is not masked out by
default. A console user can mask out the PWT, STATE * and UH * variables by typing ’m’. The PC *

and VIEW * variables can be masked out by typing ’M’. All masked variables can be unmasked by
typing ’u’.

8.3 Stepping Forward and Backward Through Saved Scope History

The user has the option of pausing and stepping forward or backward through helm iterations to
analyse how a set of events may have unfolded. Stepping one event forward or backward can be done
with the ’[’ and ’]’ keys respectively. Stepping 10 or 100 events can be done with the ’{’ and ’}, and ’(’
and ’)’ keys respectively. The current helm iteration being displayed is always shown on the second
line of the output. For each helm iteration, the uHelmScope process stores the information published
by the helm (Section 8.5), and thus the memory usage of uHelmScope would grow unbounded if left
unchecked. Therefore information is kept for a maximum of 2000 helm iterations. This number
is not a configuration parameter - to preclude a user from inadvertently setting this too high
and inducing the system maladies of a single process with runaway memory usage. To change
this number, a user must change the source code (in particular the variable m history size max

in the file HelmScope.cpp). The uHelmScope history is therefore a moving window of fixed size
that continues to shift right as new helm information is received. Stepping forward or backwards
therefore is subject to the constraints of this window. Any steps backward or forward will in effect
generate a new requested helm index for viewing. The requested index, if older than the oldest
stored index, will be set exactly to the oldest stored index. Similarly in the other direction. It’s
quite possible then to hit the ’[’ key to step left by one index, and have the result be a report that
is not one index older, but rather some number of indexes newer. Hitting the space bar or ’r’ key
always generates a report for the very latest helm information, with the ’r’ putting the scope into
streaming, i.e., continuous update, mode.

8.4 Console Key Mapping and Command Line Usage Summaries

The uHelmScope has a separate thread to accept user input from the console to adjust the content
and format of the console output. It operates in either the streaming mode, where new helm
summaries are displayed as soon as they are received, or the paused mode where no further output
is generated until the user requests it. The key mappings can be summarized in the console output
by typing the ’h’ key, which also sets the mode to paused. The key mappings shown to the user are
shown in Listing 15.

Listing 15 - Key mapping summary shown after hitting ’h’ in a console.

1 KeyStroke Function

2 --------- ---------------------------

86

8 UHELMSCOPE

3 Spc Pause and Update latest information once - now

4 r/R Resume information refresh

5 h/H Show this Help msg - ’r’ to resume

6 b/B Toggle Show Idle/Completed Behavior Details

7 t/T Toggle truncation of column output

8 m/M Toggle display of Hiearchical Mode Declarations

9 f Filter PWT_* UH_* STATE_* in Behavior-Posts Report

10 F Filter PC_* VIEW_* in Behavior-Posts Report

11 s/S Toggle Behavior State Vars in MOOSDB-Scope Report

12 u/U Unmask all variables in Behavior-Posts Report

13 v/V Toggle display of virgins in MOOSDB-Scope output

14 [/] Display Iteration 1 step prev/forward

15 {/} Display Iteration 10 steps prev/forward

16 (/) Display Iteration 100 steps prev/forward

17 # Toggle Show the MOOSDB-Scope Report

18 @ Toggle Show the Behavior-Posts Report

19

20 Hit ’r’ to resume outputs, or SPACEBAR for a single update

Several of the same preferences for adjusting the content and format of the uHelmScope output
can be expressed on the command line, with a command line switch. The switches available are
shown to the user by typing uHelmScope -h. The output shown to the user is shown in Listing 16.

Listing 16 - Command line usage of the uHelmScope application.

1 > uHelmScope -h

2 Usage: uHelmScope moosfile.moos [switches] [MOOSVARS]

3 -t: Column truncation is on (off by default)

4 -c: Exclude MOOS Vars in MOOS file from MOOSDB-Scope

5 -x: Suppress MOOSDB-Scope output block

6 -p: Suppress Behavior-Posts output block

7 -v: Suppress display of virgins in MOOSDB-Scope block

8 -r: Streaming (unpaused) output of helm iterations

9 MOOSVAR_1 MOOSVAR_2 MOOSVAR_N

The command line invocation also accepts any number of MOOS variables to be included in the
MOOSDB-Scope portion of the uHelmScope output. Any argument on the command line that does
not end in .moos, and is not one of the switches listed above, is interpreted to be a requested
MOOS variable for inclusion in the scope list. Thus the order of the switches and MOOS variables
do not matter. These variables are added to the list of variables that may have been specified in
the uHelmScope configuration block of the MOOS file. Scoping on only the variables given on the
command line can be accomplished using the -c switch. To support the simultaneous running of
more than one uHelmScope connected to the same MOOSDB, uHelmScope generates a random number
N between 0 and 10,000 and registers with the MOOSDB as uHelmScope N.

8.5 IvPHelm MOOS Variable Output Supporting uHelmScope Reports

There are six variables published by the pHelmIvP MOOS process, and registered for by the
uHelmScope process, that provide critical information for generating uHelmScope reports. They
are: IVPHELM SUMMARY, IVPHELM POSTINGS, IVPHELM ENGAGED, IVPHELM STATEVARS, IVPHELM DOMAIN, and
IVPHELM MODESET. The first three are produced on each iteration of the helm, and the last three are
typically only produced once when the helm is launched.

87

8 UHELMSCOPE

IVPHELM_SUMMARY = "iter=66,ofnum=1,warnings=0,utc_time=1209755370.74,solve_time=0.00,

create_time=0.02,loop_time=0.02,var=speed:3.0,var=course:108.0,halted=false,

running_bhvs=none,active_bhvs=waypt_survey$6.8$100.00$1236$0.01$0/0,

modes=MODE@ACTIVE:SURVEYING,idle_bhvs=waypt_return55.3n/a,completed_bhvs=none"

IVPHELM_POSTINGS = "waypt_return$@!$66$@!$PC_waypt_return=RETURN = true$@!$VIEW_SEGLIST=label,

alpha_waypt_return : 0,0$@!$VIEW_POINT=0,0,0,waypt_return$@!$PWT_BHV_WAYPT_RETURN=0

$@!$STATE_BHV_WAYPT_RETURN=0"

IVPHELM_POSTINGS = waypt_survey$@!$66$@!$PC_waypt_survey=-- ok --$@!$WPT_STAT_LOCAL=vname=alpha,

index=1,dist=80.47698,eta=26.83870$@!$WPT_INDEX=1$@!$VIEW_SEGLIST=label,

alpha_waypt_survey:30,-20:30,-100:90,-100:110,-60:90,-20$@!$PWT_BHV_WAYPT_SURVEY=100$@!$

STATE_BHV_WAYPT_SURVEY=2

IVPHELM_DOMAIN = "speed,0,4,21:course,0,359,360"

IVPHELM_STATEVARS = "RETURN,DEPLOY"

IVPHELM_MODESET = "---,ACTIVE#---,INACTIVE#ACTIVE,SURVEYING#ACTIVE,RETURNING"

IVPHELM_ENGAGED = "ENGAGED"

The IVPHELM SUMMARY variable contains all the dynamic information included in the general helm
overview (top) section of the uHelmScope output. It is a comma-separated list of var=val pairs.
The IVP DOMAIN variable also contributes to this section of output by providing the IvP domain used
by the helm. The IVPHELM POSTINGS variable includes a list of MOOS variables and values posted
by the helm for a given behavior. The helm writes to this variable once per iteration for each

behavior. The IVPHELM STATEVARS variable affects the MOOSDB-Scope section of the uHelmScope

output by identifying which MOOS variables are used by behaviors in conditions, runflags, endflags
and idleflags.

8.6 Configuration Parameters for uHelmScope

Configuration for uHelmScope amounts to specifying a set of parameters affecting the terminal
output format. An example configuration is shown in Listing 17, with all values set to the defaults.
Launching uHelmScope with a MOOS file that does not contain a uHelmScope configuration block is
perfectly reasonable.

Listing 17 - An example uHelmScope configuration block.

1 //--

2 // uHelmScope configuration block

4

5 ProcessConfig = uHelmScope

6 {

7 AppTick = 1

8 CommsTick = 1

9

10 PAUSED = true // All Parameters and Parameter-Values

11 HZ_MEMORY = 5, 100 // are __NOT__ Case Sensitive

12 DISPLAY_MOOS_SCOPE = true

13 DISPLAY_BHV_POSTS = true

14 DISPLAY_VIRGINS = true

88

8 UHELMSCOPE

15 DISPLAY_STATEVARS = true

16 TRUNCATED_OUTPUT = false

17 BEHAVIORS_CONCISE = false

18

19 VAR = BHV_WARNING, AIS_REPORT_LOCAL // MOOS Variable names

20 } // __ARE__ Case Sensitive

Each of the parameters, with the exception of HZ MEMORY can also be set on the command line, or
interactively at the console, with one of the switches or keyboard mappings listed in Section 8.4.
A parameter setting in the MOOS configuration block will take precedence over a command line
switch. The HZ MEMORY parameter takes two integer values, the second of which must be larger than
the first. This is the number of samples used to form the average time between helm intervals,
displayed on line 2 of the uHelmScope output.

8.7 Publications and Subscriptions for uHelmScope

Variables published by the uHelmScope application

• NONE

Variables subscribed for by the uHelmScope application

• <USER-DEFINED>: Variables identified for scoping by the user in the uHelmScope will be sub-
scribed for. See Section 8.2.2.

• <HELM-DEFINED>: As described in Section 8.2.2, the variables scoped by uHelmScope include
any variables involved in the preconditions, runflags, idleflags, activeflags, inactiveflags, and
endflags for any of the behaviors involved in the current helm configuration.

• IVPHELM SUMMARY: See Section 8.5.

• IVPHELM POSTINGS: See Section 8.5.

• IVPHELM STATEVARS: See Section 8.5.

• IVPHELM IVP DOMAIN: See Section 8.5.

• IVPHELM IVP MODESET: See Section 8.5.

• IVPHELM IVP ENGAGED: See Section 8.5.

89

9 GEOMETRY UTILITIES

9 Geometry Utilities

9.1 Brief Overview

This section discusses a few geometry data structures often used by the helm and the pMarineViewer
application - convex polygons, lists of line segments, and points. These data structures are im-
plemented by the classes XYPolygon, XYSegList, XYPoint respectively in the lib geometry module
distributed with the MOOS-IvP software bundle. The implementation of these class definitions is
somewhat shielded from the helm user’s perspective, but they are often involved in parameter set-
tings of for behaviors. So the issue of how to specify a given geometric structure with a formatted
string is discussed here.

Furthermore, the pMarineViewer application accepts these data structures for rendering by
subscribing to three MOOS variables VIEW POLYGON, VIEW SEGLIST, and VIEW POINT. These variables
contain a string format representation of the structure, often with further visual hints on the color
or size of the edges and vertices for rendering. These variables may originate from any MOOS
application, but are also often posted by helm behaviors to provide visual clues about what is
going on in the vehicle. In the Alpha mission described in Section 4 for example, the waypoint
behavior posted a seglist representing the set of waypoints for which it was configured, as well as
posting a point indicating the next point on the behavior’s list to traverse.

9.2 Points

Points are implemented in the XYPoint class, and minimally represent a point in the x-y plane.
These objects are used internally for applications and behaviors, and may also be involved in
rendering in a GUI and therefore may have additional fields to support this.

9.2.1 String Representations for Points

The only required information for a point specification is its position in the x-y plane. A third value
may optionally be specified in the z-plane. All four of the below string representations correspond
to the very same data structure:

point = 60,-40

point = 60, -40, 0

point = x=60, y=-40

point = x=60, y=-40, z=0

9.2.2 Optional Point Parameters

Points also may have several optional fields associated with them. The label field is string that is of-
ten rendered with a point in MOOS GUI applications such as the pMarineViewer. The label color

field represents a color preference for the label rendering. The type and source fields are additional
string fields for further distinguishing a point in applications that handle them. The active field is
a Boolean that is used in the pMarineViewer application to indicate whether the the point should
be rendered. The time field is a double that may optionally be set to indicate when the point was
generated, or how long it should exist before “expiring”, or however an application may wish to

90

9 GEOMETRY UTILITIES

interpret it. The vertex color and vertex size field represent further rendering preferences. The
following are two equivalent further string representations:

point = x=60, y=-40, label=home, label_color=red, source=henry, type=waypoint,

time=30, active=true, vertex_color=white, vertex_size=5

point = 60,-40:label,home:label_color,red:source,henry:type,waypoint

time,30:active,true:vertex_color,white:vertex_size,5

The former is a more user-friendly format for specifying a point, perhaps found in a configuration
file for example. The latter is the string representation passed around internally when XYPoint

objects are automatically converted to strings and back again in the code. This format is more
likely to be found in log files or seen when scoping on variables with one of the MOOS scoping
tools.

9.3 Polygons

Polygons are implemented in the XYPolygon class. This implementation accepts as a valid con-
struction only specifications that build a convex polygon. Common operations used internally by
behaviors and other applications, such as intersection tests, distance calculations etc, are greatly
simplified and more efficient when dealing with convex polygons.

9.3.1 String Representations for Polygons

Polygons are defined by a set of vertices and the simplest way to specify the points is with a line
comprised of a sequence of colon-separated pairs of comma-separated x-y points in local coordinates
such as:

polygon = 60,-40:60,-160:150,-160:180,-100:150,-40:label,foxtrot

If one of the pairs, such as the last one above, contains the keyword label on the left, then the
value on the right, e.g., foxtrot as above, is the label associated with the polygon. An alternative
notation for the same polygon is given by the following:

polygon = label=foxtrot, pts="60,-40:60,-160:150,-160:180,-100:150,-40"

This is an comma-separated list of equals-separated pairs. The ordering of the comma-separated
components is insignificant. The points describing the polygon are provided in quotes to signify to
the parser that everything in quotes is the right-hand side of the pts= component. Both formats
are acceptable specifications of a polygon in a behavior for which there is a polygon parameter.

9.3.2 A Polygon String Representation using the Radial Format

Polygons may also be specified by their shape and the shape parameters. For example, a commonly
used polygon is formed by points of an equal radial distance around a center point. The following
is an example:

polygon = format=radial, label=foxtrot, x=0, y=40, radius=60, pts=6, snap=1

91

9 GEOMETRY UTILITIES

The snap component in the above example signifies that the vertices should be rounded to the near-
est 1-meter value. The x, y parameters specify the middle of the polygon, and radius parameters
specify the distance from the center for each vertex. The pts parameters specifies the number of
vertices used, as shown in Figure 20.

Figure 20: Polygons built with the radial format: Radial polygons are specified by (a) the location of their
center, (b) the number of vertices, and (c) the radial distance from the center to each vertex. The lighter vertex in
each polygon indicates the first vertex if traversing in sequence, proceeding clockwise.

9.3.3 A Polygon String Representation using the Ellipse Format

Polygons may also be built using the ellipse format. The following is an example:

polygon = label=golf, format=ellipse, x=0, y=40, degs=45, pts=14, snap=1,

major=100, minor=70

The x, y parameters specify the middle of the polygon, the major and minor parameters specify
the radial distance of the major and minor axes. The pts parameters specifies the number of
vertices used, as shown in Figure 21.

Figure 21: Polygons built with the ellipse format: Ellipse polygons are specified by (a) the location of their
center, (b) the number of vertices, (c) the length of their major axis, (d) the length of their minor axis, and (e) the
rotation of the ellipse.The lighter vertex in each polygon indicates the first vertex if traversing in sequence, proceeding
clockwise.

92

9 GEOMETRY UTILITIES

The rotation of the ellipse can optionally be specified in radians. For example, degs=45 is
equivalent to rads=0.785398. If, for some reason, both are specified, the polygon will be built using
the rads parameter. When using the ellipse format, a minimum pts=4 must be specified.

9.3.4 Optional Polygon Parameters

Polygons also may have several optional fields associated with them. The label field is string
that is often rendered with a polygon in MOOS GUI applications such as the pMarineViewer. The
label color field represents a color preference for the label rendering. The type and source fields are
additional string fields for further distinguishing a polygon in applications that handle them. The
active field is a Boolean that is used in the pMarineViewer application to indicate whether the the
polygon should be rendered. The time field is a double that may optionally be set to indicate when
the polygon was generated, or how long it should exist before “expiring”, or however an application
may wish to interpret it. The vertex color, edge color, and vertex size fields represent further
rendering preferences. The following are two equivalent further string representations:

polygon = format=radial, x=60, y=-40, radius=60, pts=8, snap=1, label=home,

label_color=red, source=henry, type=survey, time=30, active=true,

vertex_color=white, vertex_size=5, edge_size=2

polygon = format,radial:60,-40:radius,60:pts,8:snap,1:label,home:

label_color,red:source,henry:type,survey:time,30:active,true:

vertex_color,white:vertex_size,5:edge_size,2

The former is a more user-friendly format for specifying a polygon, perhaps found in a configuration
file for example. The latter is the string representation passed around internally when XYPolygon

objects are automatically converted to strings and back again in the code. This format is more
likely to be found in log files or seen when scoping on variables with one of the MOOS scoping
tools.

9.4 SegLists and their String Representations

9.4.1 Methods for Specifying Seglists

A seglist is a sequence of line segments given by a list of points. Seglists are specified with the
points parameter, and the simplest way to specify the points is with a line comprised of a sequence
of colon-separated pairs of comma-separated x-y points in local coordinates such as:

points = 60,-40:60,-160:150,-160:180,-100:150,-40:label,foxtrot

If one of the pairs, such as the last one above, contains the keyword label on the left, then the
value on the right, e.g., foxtrot as above, is the label associated with the seglist.

9.4.2 A SegList String Representation using the Lawnmower Format

SegLists may also be built using the lawnmower format. The following is an example:

points = format=lawnmower, label=foxtrot, x=0, y=40, height=60, width=180,

lane_width=15, rows=north-south, degs=45

93

9 GEOMETRY UTILITIES

The rotation of the pattern can optionally be specified in radians. For example, degs=45 is
equivalent to rads=0.785398. If, for some reason, both are specified, the seglist will be built using
the rads parameter.

Figure 22: SegLists built with the lawnmower format: The pattern is specified by (a) the location of the center
of the pattern, (b) the height and width of the pattern, (c) the lane width which determines the number of rows, (d)
whether the pattern rows proceed north-south or east-west, and (e) an optional rotation of the pattern.

94

10 PMARINEVIEWER

10 pMarineViewer

10.1 Brief Overview

The pMarineViewer application is a MOOS application written with FLTK and OpenGL for ren-
dering vehicles and associated information and history during operation or simulation. The typical
layout shown in Figure 23 is that pMarineViewer is running in its own dedicated local MOOS com-
munity while simulated or real vehicles on the water transmit information in the form of a stream
of node reports to the local community.

Figure 23: A common usage of the pMarineViewer is to have it running in a local MOOSDB community while receiving
node reports on vehicle poise from other MOOS communities running on either real or simulated vehicles. The vehicles
can also send messages with certain geometric information such as polygons and points that the view will accept and
render.

The user is able manipulate a geo display to see multiple vehicle tracks and monitor key infor-
mation about individual vehicles. In the primary interface mode the user is a passive observer, only
able to manipulate what it sees and not able to initiate communications to the vehicles. However
there are hooks available and described later in this section to allow the interface to accept field
control commands.

A key variable subscribed to by pMarineViewer is the variable NODE REPORT, which has the fol-
lowing structure given by an example:

NODE_REPORT = "NAME=nyak201,TYPE=kayak,MOOSDB_TIME=53.049,UTC_TIME=1195844687.236,X=37.49,

Y=-47.36, SPD=2.40,HDG=11.17,DEPTH=0"

Reports from different vehicles are sorted by their vehicle name and stored in histories locally
in the pMarineViewer application. The NODE REPORT is generated by the vehicles based on either
sensor information, e.g., GPS or compass, or based on a local vehicle simulator.

95

10 PMARINEVIEWER

10.2 Description of the pMarineViewer GUI Interface

The viewable area of the GUI has two parts - a geo display area where vehicles and perhaps other
objects are rendered, and a lower area with certain data fields associated with an active vehicle
are updated. A typical screen shot is shown in Figure 24 with two vehicles rendered - one AUV
and one kayak. Vehicle labels and history are rendered. Properties of the vehicle rendering such
as the trail length, size, and color, and vehicle size and color, and pan and zoom can be adjusted
dynamically in the GUI. They can also be set in the pMarineViewer MOOS configuration block.
Both methods of tuning the rendering parameters are described later in this section.

Figure 24: A screen shot of the pMarineViewer application running with two vehicles - one kayak platform, and
one AUV platform. The charlie kayak platform is the active platform meaning the data fields on the bottom reflect
the data for this platform.

The lower part of the display is dedicated to displaying detailed position information on a
single active vehicle. Changing the designation of which vehicle is active can be accomplished by
repeatedly hitting the ’v’ key. The active vehicle is always rendered as red, while the non-active
vehicles have a default color of yellow. Individual vehicle colors can be given different default values
(even red, which could be confusing) by the user. The individual fields are described below:

• VName: The name of the active vehicle associated with the data in the other GUI data fields. The
active vehicle is typically indicated also by changing to the color red on the geo display.

• VType: The platform type, e.g., AUV, Glider, Kayak, Ship or Unknown.

• X(m): The x (horizontal) position of the active vehicle given in meters in the local coordinate system.

• Y(m): The y (vertical) position of the active vehicle given in meters in the local coordinate system.

96

10 PMARINEVIEWER

• Lat: The latitude (vertical) position of the active vehicle given in decimal latitude coordinates.

• Lon: The longitude (horizontal) position of the active vehicle given in decimal longitude coordinates.

• Speed: The speed of the active vehicle given in meters per second.

• Heading: The heading of the active vehicle given in degrees (0 − 359.99).

• Depth: The depth of the active vehicle given in meters.

• Report-AGE: The elapsed time in seconds since the last received node report for the active vehicle.

• Time: Time in seconds since the pMarineViewer process launched.

• Warp: The MOOS Time-Warp value. Simulations may run faster than real-time by this warp factor.
MOOSTimeWarp is set as a global configuration parameter in the .moos file.

• Range: The range (in meters) of the active vehicle to a reference point. By default, this point is
the datum, or the (0,0) point in local coordinates. The reference point may also be set to another
particular vehicle. See Section 10.3.7 on the ReferencePoint pull-down menu.

• Bearing: The bearing (in degrees) of the active vehicle to a reference point. By default, this point
is the datum, or the (0,0) point in local coordinates. The reference point may also be set to another
particular vehicle. See Section 10.3.7 on the ReferencePoint pull-down menu.

In simulation, the age of the node report is likely to remain zero as shown in the figure, but
when operating on the water, monitoring the node report age field can be the first indicator when
a vehicle has failed or lost communications. Or it can act as an indicator of comms quality.

The lower three fields of the window are used for scoping on a single MOOS variable. See
Section 10.3.4 for information on how to configure the pMarineViewer to scope on any number of
MOOS variables and select a single variable via an optional pull-down menu. The scope fields are:

• Variable: The variable name of the MOOS variable currently being scoped, or "n/a" if no scope
variables are configured.

• Time: The variable name of the MOOS variable currently being scoped, or "n/a" if no scope variables
are configured.

10.3 Pull-Down Menu Options

Properties of the geo display rendering can be tuned to better suit a user or circumstance or for
situations where screen shots are intended for use in other media such as papers or PowerPoint.
There are two pull-down menus - the first deals with background properties, and the second deals
with properties of the objects rendered on the foreground. Many of the adjustable properties can be
adjusted by two other means besides the pull-down menus - by the hot keys defined for a particular
pull-down menu item, or by configuring the parameter in the MOOS file configuration block.

10.3.1 The “BackView” Pull-Down Menu

Most pull-down menu items have hot keys defined (on the right in the menu). For certain actions
like pan and zoom, in practice the typical user quickly adopts the hot-key interface. But the
pull-down menu is one way to have a form of hot-key documentation always handy. The zooming
commands affect the viewable area and apparent size of the objects. Zoom in with the ’i’ or ’I’ key,
and zoom out with the ’o’ or ’O’ key. Return to the original zoom with ctrl+’z’.

97

10 PMARINEVIEWER

Figure 25: The BackView menu: This pull-down menu lists the options, with hot-keys, for affecting rendering
aspects of the geo-display background.

Panning is done with the keyboard arrow keys. Three rates of panning are supported. To pan
in 20 meter increments, just use the arrow keys. To pan “slowly” in one meter increments, use the
Alt + arrow keys. And to pan “very slowly”, in increments of a tenth of a meter, use the Ctrl +
arrow keys. The viewer supports two types of “convenience” panning. It will pan put the active
vehicle in the center of the screen with the ’C’ key, and will pan to put the average of all vehicle
positions at the center of the screen with the ’c’ key. These are part of the ’Vehicles’ pull-down
menu discussed in Section 10.3.3.

The background can be in one of two modes; either displaying a gray-scale background, or
displaying a geo image read in as a texture into OpenGL from an image file. The default is the geo
display mode if provided on start up, or the grey-scale mode if no image is provided. The mode
can be toggled by typing the ’b’ or ’B’ key. The geo-display mode can have two sub-modes if two
image files are provided on start-up. More on this in Section 10.7. This is useful if the user has
access to a satellite image and a map image for the same operation area. The two can be toggled
by hitting the back tick key. When in the grey-scale mode, the background can be made lighter by
hitting the ctrl+’b’ key, and darker by hitting the alt+’b’ key.

Hash marks can be overlaid onto the background. By default this mode is off, but can be toggled
with the ’h’ or ’H’ key. The hash marks are drawn in a grey-scale which can be made lighter by
typing the ctrl+’h’ key, and darker by typing the alt+’h’ key. Certain hash parameters can also
be set in the pMarineViewer configuration block of the MOOS file. The hash view parameter can

98

10 PMARINEVIEWER

be set to either true or false. The default is false. The hash delta parameter can be set to any
integer in the range [10, 1000]. The default is 100.

10.3.2 The “GeoAttributes” Pull-Down Menu

The GeoAttributes pull-down menu allows the user to edit the properties of geometric objects
capable of being rendered by the pMarineViewer. In general the Polygon, SegList, Point, and
XYGrid objects are received by the viewer at run time to reflect artifacts generated by the IvP
Helm indicating aspects of progress during their mission. The polygons in Figure 26 for example
represents the set of waypoints being used by the vehicles shown.

Figure 26: The GeoAttributes menu: This pull-down menu lists the options and hot keys for affecting the
rendering of geometric objects.

The Datum, Marker and OpArea objects are typically read in once at start-up and reflect
persistent info about the operation area. The datum is a single point that represents (0,0) in local
coordinates. Marker objects typically represent physical objects in the environment such as a buoy,
or a fixed sensor. The OpArea objects are typically a combination of points and lines that reflect a
region of earth where a set of vehicles are being operated. Each category has a hot key that toggles
the rendering of all objects of the same type, and a secondary drop-down menu as shown in the
figure that allows the adjustment of certain rendering properties of objects. Many of the items in
the menu have form parameter = value, and these settings can also be achieved by including this
line in the pMarineViewer configuration block in the MOOS file.

99

10 PMARINEVIEWER

10.3.3 The “Vehicles” Pull-Down Menu

The Vehicles pull-down menu deals with properties of the objects displayed in the geo display
foreground. The Vehicles-Toggle menu item will toggle the rendering of all vehicles and all trails.
The Cycle Focus menu item will set the index of the active vehicle, i.e., the vehicle who’s attributes
are being displayed in the lower output boxes. The assignment of an index to a vehicle depends
on the arrival of node reports. If an node report arrives for a previously unknown vehicle, it is
assigned a new index.

Figure 27: The ForeView menu: this pull-down menu of the pMarineViewer lists the options, with hot-keys, for
affecting rendering aspects of the objects on the geo-display foreground, such as vehicles and vehicle track history.

The center view menu items alters the center of the view screen to be panned to either the
position of the active vehicle, or the position representing the average of all vehicle positions. Once
the user has selected this, this mode remains sticky, that is the viewer will automatically pan as
new vehicle information arrives such that the view center remains with the active vehicle or the
vehicle average position. As soon as the user pans manually (with the arrow keys), the viewer
breaks from trying to update the view position in relation to received vehicle position information.
The rendering of the vehicles can made larger with the ’+’ key, and smaller with the ’-’ key, as part
of the VehicleSize pull-down menu as shown. The size change is applied to all vehicles equally as
a scalar multiplier. Currently there is no capability to set the vehicle size individually, or to set
the size automatically to scale.

100

10 PMARINEVIEWER

Vehicle trail (track history) rendering can be toggled off and on with the ’t’ or ’T’ key. The
default is on. A set of predefined trail colors can be toggled through with the CTRL+’t’ key. The
individual trail points can be rendered with a line connecting each point, or by just showing the
points. When the node report stream is flowing quickly, typically the user doesn’t need or want
to connect the points. When the viewer is accepting input from an AUV with perhaps a minute
or longer delay in between reports, the connecting of points is helpful. This setting can be toggled
with the ’y’ or ’Y’ key, with the default being off. The size of each individual trail point rendering
can be made smaller with the ’[’ key, and larger with the ’]’ key.

The color of the active vehicle is by default red and can be altered to a handful of other colors
in the ActiveColor sub-menu of the Vehicles pull-down menu. Likewise the inactive color, which is
by default yellow, can be altered in the InactiveColor sub-menu. These colors can also be altered
by setting the active vcolor and inactive vcolor parameters in the pMarineViewer configuration
block of the MOOS file. They can be set to any color as described in the Colors Appendix.

10.3.4 The “MOOS-Scope” Pull-Down Menu

The “MOOS-Scope” pull-down menu allows the user to configure the pMarineViewer to scope on
one or more variables in the MOOSDB. The viewer allows visual scoping on only a single variable
at a time, but the user can select different variables via the pull-down menu, or toggle between the
current and previous variable with the ’/’ key, or cycle between all registered variables with the
CTRL+’/’ key. The scope fields are on the bottom of the viewer as shown in Figures 24 - 27. The
three fields show (a) the variable name, (b) the last time is was updated, and (c) the current value
of the variable. Configuration of the menu is done in the MOOS configuration block with entries
of the following form:

SCOPE = <variable>, <variable>, ...

The keyword SCOPE is not case sensitive, but the MOOS variables are. If no entries are provided
in the MOOS configuration block, the pull-down menu contains a single item, the "Add Variable"

item. By selecting this, the user will be prompted to add a new MOOS variable to the scope
list. This variable will then immediately become the actively scoped variable, and is added to the
pull-down menu.

10.3.5 The Optional “Action” Pull-Down Menu

The “Action” pull-down menu allows the user to invoke pre-define pokes to the MOOSDB (the
MOOSDB to which the pMarineViewer is connected). While hooks for a limited number of pokes
are available by configuring on-screen buttons (Section 10.5.2), the number of buttons is limited
to four. The “Action” pull-down menu allows for as many entries as will reasonably be shown on
the screen. Each action, or poke, is given by a variable-value pair, and an optional grouping key.
Configuration is done in the MOOS configuration block with entries of the following form:

ACTION = MENU_KEY=<key> # <variable>=<value> # <variable>=<value> # ...

If no such entries are provided, this pull-down menu will not appear. The fields to the right of the
ACTION= are separated by the ’#’ character for convenience to allow several entries on one line. If
one wants to use the ’#’ character in one of the variable values, putting double-quotes around the

101

10 PMARINEVIEWER

value will suffice to treat the ’#’ character as part of the value and not the separator. If the pair has
the key word MENU KEY on the left, the value on the right is a key associated with all variable-value
pairs on the line. When a menu selection is chosen that contains a key, then all variable-value pairs
with that key are posted to the MOOSDB. If the ACTION key word has a trailing ’+’ character as below,
the pull-down menu will render a line separator after the menu item. The following configuration
will result in the pull-down menu depicted in Figure 28.

ACTION = MENU_KEY=deploy # DEPLOY = true # RETURN = false

ACTION+ = MENU_KEY=deploy # MOOS_MANUAL_OVERIDE=false

ACTION = RETURN=true

Figure 28: The Action menu: The variable value pairs on each menu item may be selected for poking or writing
the MOOSDB. The three variable-value pairs above the menu divider will be poked in unison when any of the three
are chosen, because they were configured with the same key, <deploy>, shown to the right on each item.

The variable-value pair being poked on an action selection will determine the variable type by the
following rule of thumb. If the value is non-numerical, e.g., true, one, it is poked as a string. If
it is numerical it is poked as a double value. If one really wants to poke a string of a numerical
nature, the addition of quotes around the value will suffice to ensure it will be poked as a string.
For example:

ACTION = Vehicle=Nomar # ID="7"

As with any other write to the MOOSDB, if a variable has been previously posted with one type,
subsequent posts of a different type will be ignored.

10.3.6 The Optional “Mouse-Context” Pull-Down Menu

When the user clicks the left or right mouse in the geo portion of the pMarineViewer window, the
variables MVIEWER LCLICK and MVIEWER RCLICK are published respectively with the geo location of
the mouse click, and the name of the active vehicle. This is described in more detail in Section
10.5.1. In short a publication of the following is typical:

102

10 PMARINEVIEWER

MVIEWER_LCLICK = "x=958.0,y=113.0,vname=Unicorn"

What happens after this is largely an issue for MOOS processes separate from the pMarineViewer
application. It is impossible to determine how a user may make use of this. However, the user
can configure pMarineViewer to augment this published string with additional context that may
enable other processes to make better use of this publication. Configuration is done in the MOOS
configuration block with entries of the following form:

left_context = <context-string>

right_context = <context-string>

The left context and right context keywords are case insensitive. If no such entries are provided,
this pull-down menu will not appear. The following configuration will result in the pull-down menu
depicted in Figure 29.

left_context = surface_point

left_context = station_point

left_context = return_point

right_context = loiter_point

By selecting station point, for example, the string published to the variable MVIEWER LCLICK would
be augmented to look like:

MVIEWER_LCLICK = "x=958.0,y=113.0,vname=alpha,context=station_point"

Other MOOS applications could subscribe to this variable and use the information to both alter
the state of the helm running on the named vehicle, but also provide the vehicle with a position at
which to station-keep.

Figure 29: The Mouse-Context menu: A string selected from this menu will be appended to the string associated
with any mouse click, giving the user a chance to change the context of the click.

103

10 PMARINEVIEWER

10.3.7 The Optional “Reference-Point” Pull-Down Menu

The “Reference-Point” pull-down menu allows the user to select a reference point other than the
datum, the (0,0) point in local coordinates. The reference point will affect the data displayed in
the Range and Bearing fields in the viewer window. This feature was originally designed for field
experiments when vehicles are being operated from a ship. An operator on the ship running the
pMarineViewer would receive position reports from the unmanned vehicles as well as the present
position of the ship. In these cases, the ship is the most useful point of reference. Prior versions of
this code would allow for a single declaration of the ship name, but the the current version allows
for any number of ship names as a possible reference point. This allows the viewer to be used to
display the bearing and range between two deployed unmanned vehicles for example. Configuration
is done in the MOOS configuration block with entries of the following form:

reference_vehicle = vehicle

If no such entries are provided, this pull-down menu will not appear. When the menu is present, it
looks like that shown in Figure 30. When the reference point is a vehicle with a known heading, the
user is able to alter the Bearing field from reporting either the relative bearing or absolute bearing.
Hot keys are defined for each.

Figure 30: The Reference-Point menu: This pull-down menu of the pMarineViewer lists the options for selecting
a reference point. The reference point determines the values for the Range and Bearing fields in the viewer for the
active vehicle. When the reference point is a vehicle with known heading, the user also may select whether the
Bearing is the relative bearing or absolute bearing.

10.4 Displayable Vehicle Shapes, Markers, Drop Points, and other Geometric
Objects

The pMarineViewer window displays objects in three general categories, (1) the vehicles based on
their position reports, (2) markers, which are generally static and things like triangles and squares

104

10 PMARINEVIEWER

with labels, and (3) geometric objects such as polygons or lists of line segments that may indicate
a vehicle’s intended path or other such artifact of it’s autonomy situation.

10.4.1 Displayable Vehicle Shapes

The shape rendered for a particular vehicle depends on the type of vehicle indicated in the node
report received in pMarineViewer. There are four types that are currently handled, an AUV shape,
a glider shape, a kayak shape, and a ship shape, shown in Figure 31.

KayakAUV ShipGlider

Figure 31: Vehicles: Types of vehicle shapes known to the pMarineViewer.

The default shape for an unknown vehicle type is currently set to be the shape “ship”. The
default color for a vehicle is set to be yellow, but can be individually set within the pMarineViewer

MOOS configuration block with entries like the following:

vehicolor = alpha, turquoise

vehicolor = charlie, navy,

vehicolor = philly, 0.5, 0.9, 1.0

The parameter vehicolor is case insensitive, as is the color name. The vehicle name however is
case sensitive. All colors of the form described in the Colors Appendix are acceptable.

10.4.2 Displayable Marker Shapes

A set of simple static markers can be placed on the geo display for rendering characteristics of an
operation area such as buoys, fixed sensors, hazards, or other things meaningful to a user. The six
types of markers are shown in Figure 32. They are configured in the pMarineViewer configuration
block of the MOOS file with the following format:

// Example marker entries in a pMarineViewer config block of a .moos file

// Parameters are case insensitive. Parameter values (except type and color)

// are case sensitive.

marker = type=efield,x=100,y=20,label=alpha,COLOR=red,width=4.5

marker = type=square,lat=42.358,lon=-71.0874,color=blue,width=8

Each entry is a string of comma-separated pairs. The order is not significant. The only manda-
tory fields are for the marker type and position. The position can be given in local x-y coordinates
or in earth coordinates. If both are given for some reason, the earth coordinates will take precedent.
The width parameter is given in meters drawn to scale on the geo display. Shapes are roughly 10x10

105

10 PMARINEVIEWER

meters by default. The GUI provides a hook to scale all markers globally with the ’ALT-M’ and
’CTRL-M’ hot keys and in the GeoAttributes pull-down menu.

Figure 32: Markers: Types of markers known to the pMarineViewer.

The color parameter is optional and markers have the default colors shown in Figure 32. Any
of the colors described in the Colors Appendix are fair game. The black part of the Gateway and
Efield markers is immutable. The label field is optional and is by default the empty string. Note
that if two markers of the same type have the same non-empty label, only the first marker will be
acknowledged and rendered. Two markers of different types can have the same label.

In addition to declaring markers in the pMarineViewer configuration block, markers can be
received dynamically by pMarineViewer through the VIEW MARKER MOOS variable, and thus can
originate from any other process connected to the MOOSDB. The syntax is exactly the same, thus the
above two markers could be dynamically received as:

VIEW_MARKER = "type=efield,x=100,y=20,SCALE=4.3,label=alpha,COLOR=red,width=4.5"

VIEW_MARKER = "type=square,lat=42.358,lon=-71.0874,scale=2,color=blue,width=8"

The effect of a “moving” marker, or a marker that changes color, can be achieved by repeatedly
publishing to the VIEW MARKER variable with only the position or color changing while leaving the
label and type the same.

10.4.3 Displayable Drop Points

A user may be interested in determining the coordinates of a point in the geo portion of the
pMarineViewer window. The mouse may be moved over the window and when holding the SHIFT

key, the point under the mouse will indicate the coordinates in the local grid. When holding the
CTRL key, the point under the coordinates are shown in lat/lon coordinates. The coordinates are
updated as the mouse moves and disappear thereafter or when the SHIFT or CTRL keys are release.
Drop points may be left on the screen by hitting the left mouse button at any time. The point
with coordinates will remain rendered until cleared or toggled off. Each click leaves a new point,
as shown in Figure 33.

106

10 PMARINEVIEWER

Figure 33: Drop points: A user may leave drop points with coordinates on the geo portion of the pMarineViewer
window. The points may be rendered in local coordinates or in lat/lon coordinates. The points are added by clicking
the left mouse button while holding the SHIFT key or CTRL key. The rendering of points may be toggled on/off,
cleared in their entirety, or reduced by popping the last dropped point.

Parameters regarding drop points are accessible from the GeoAttr pull-down menu. The rendering
of drop points may be toggled on/off by hitting the ’r’ key. The set of drop points may be cleared
in its entirety. Or the most recently dropped point may be removed by typing the CTRL-r key. The
pull-down menu may also be used to change the rendering of coordinates from "as-dropped" where
some points are in local coordinates and others in lat/lon coordinates, to "local-grid" where all
coordinates are rendered in the local grid, or "lat-lon" where all coordinates are rendered in the
lat/lon format.

10.4.4 Displayable Geometric Objects

Some additional objects can be rendered in the viewer such as convex polygons, points, and a set
of line segments. In Figures 24 and 25, each vehicle has traversed to and is proceeding around a
hexagon pattern. This is apparent from both the rendered hexagon, and confirmed by the trail
points. Displaying certain markers in the display can be invaluable in practice to debugging and
confirming the autonomy results of vehicles in operation. The intention is to allow for only a few
key additional objects to be drawable to avoid letting the viewer become overly specialized and
bloated.

In addition to the NODE REPORT variable indicating vehicle pose, pMarineViewer registers for the
following additional MOOS variables - VIEW POLYGON, VIEW SEGLIST, VIEW POINT. Example values of
these variables:

VIEW_POLYGON = "label,nyak201-LOITER:85,-9:100,-35:85,-61:55,-61:40,-35:55,-9"

VIEW_POINT = 10.00,-80.00,5,nyak200

VIEW_SEGLIST = "label,nyak201-WAYPOINT:0,100:50,-35:25,-63"

107

10 PMARINEVIEWER

Each variable describes a data structure implemented in the geometry library linked to by
pMarineViewer. Instances of these objects are initialized directly by the strings shown above. A key
member variable of each geometric object is the label since pMarineViewer maintains a (C++, STL)
map for each object type, keyed on the label. Thus a newly received polygon replaces an existing
polygon with the same label. This allows one source to post its own geometric cues without clashing
with another source. By posting empty objects, i.e., a polygon or seglist with zero points, or a point
with zero radius, the object is effectively erased from the geo display. The typical intended use is
to let a behavior within the helm to post its own cues by setting the label to something unique to
the behavior. The VIEW POLYGON listed above for example was produced by a loiter behavior and
describes a hexagon with the six points that follow.

10.5 Support for Command-and-Control Usage

For the most part pMarineViewer is intended to be only a receiver of information from the vehicles
and the environment. Adding command and control capability, e.g., widgets to re-deploy or ma-
nipulate vehicle missions, can be readily done, but make the tool more specialized, bloated and less
relevant to a general set of users. A certain degree of command and control can be accomplished
by poking key variables and values into the local MOOSDB, and this section describes three methods
supported by pMarineViewer for doing just that.

10.5.1 Poking the MOOSDB with Geo Positions

The graphic interface of pMarineViewer provides an opportunity to poke information to the MOOSDB

based on visual feedback of the operation area shown in the geo display. To exploit this, two
command and control hooks were implemented with a small footprint. When the user clicks on
the geo display, the location in local coordinates is noted and written out to one of two variables -
MVIEWER LCLICK for left mouse clicks, and MVIEWER RCLICK for right mouse clicks, with the following
syntax:

MVIEWER_LCLICK = "x=958.0,y=113.0,vname=nyak200",

and

MVIEWER_RCLICK = "x=740.0,y=-643.0,vname=nyak200".

One can then write another specialized process, e.g., pViewerRelay, that subscribes to these two
variables and takes whatever command and control actions desired for the user’s needs. One such
incarnation of pViewerRelay was written (but not distributed or addressed here) that interpreted
the left mouse click to have the vehicle station-keep at the clicked location.

10.5.2 Configuring GUI Buttons for Command and Control

The pMarineViewer GUI can be optionally configured to allow for four push-buttons to be enabled
and rendered in the lower-right corner. Each button can be associated with a button label, and a
list of variable-value pairs that will be poked to the MOOSDB to which the pMarineViewer process is
connected. The basic syntax is as follows:

108

10 PMARINEVIEWER

BUTTON_ONE = <label> # <variable>=VALUE # <variable>=<value> ...

BUTTON_TWO = <label> # <variable>=VALUE # <variable>=<value> ...

BUTTON_THREE = <label> # <variable>=VALUE # <variable>=<value> ...

BUTTON_FOUR = <label> # <variable>=VALUE # <variable>=<value> ...

The left-hand side contains one of the four button keywords, e.g., BUTTON ONE. The right-hand
side consists of a ’#’-separated list. Each component in this list is either a ’=’-separated variable-
value pair, or otherwise it is interpreted as the button’s label. The ordering does not matter and
the ’#’-separated list can be continued over multiple lines as in lines 59-60 in Listing 18 on page
111.

The variable-value pair being poked on a button call will determine the variable type by the
following rule of thumb. If the value is non-numerical, e.g., true, one, it is poked as a string. If
it is numerical it is poked as a double value. If one really wants to poke a string of a numerical
nature, the addition of quotes around the value will suffice to ensure it will be poked as a string.
For example:

BUTTON_ONE = Start # Vehicle=Nomar # ID="7"

In this case, clicking the button labeled "Start" will result in two pokes, the second of which will
have a string value of "7", not a numerical value. As with any poke to the MOOSDB of a given
variable-value pair, if the value is of a type inconsistent with the first write to the DB under that
variable name, it will simply by ignored.

As described in Section 10.3.5, additional variable-value pairs for poking the MOOSDB can be
configured in the “Action” pull-down menu. Unlike the use of buttons, which is limited to four,
the number of actions in the pull-down menu is limited only by what can reasonably be rendered
on the user’s screen.

10.6 Configuration Parameters for pMarineViewer

Many of the display settings available in the pull-down menus described in Sections 10.3 can also
be set in the pMarineViewer block of the MOOS configuration file. Mostly this redundancy is for
convenience for a user to have the desired settings without further keystrokes after start-up. An
example configuration block is shown in Listing 18.

Parameter Description Allowed Values Default

hash view Turning off or on the hash marks. true, false true

hash delta Distance between hash marks [10, 1000] 50

hash shade Shade of hash marks - 0 is black to 1 is white [0, 1.0] 0.65

back shade Shade of hash marks - 0 is black to 1 is white [0, 1.0] 0.55

tiff view Background image used if set to true true, false true

tiff type Uses the first (A) image if set to true true, false true

tiff file Filename of a tiff file background image any tiff file Default.tif

tiff file b Filename of a tiff file background image any tiff file DefaultB.tif

view center The center of the viewing image (the zoom-to point) (x, y) (0, 0)

Table 6: Background parameters: Parameters affecting the rendering of the pMarineViewer background.

109

10 PMARINEVIEWER

Parameter Description Allowed Values Default

trails color Color of points rendered in a trail history any color white

trails connect viewable Render lines between dots if true true, false false

trails history size Number of points stored in a trail history [0, 10,000] 1,000

trails length Number of points rendered in a trail history [0, 10,000] 100

trails point size Size of dots rendered in a trail history [0, 100] 1

trails viewable Trail histories note rendered if false true, false true

vehicles active color Color of the one active vehicle any color red

vehicles inactive color Color of other inactive vehicles any color yellow

vehicles name active Active vehicle set to the named vehicle known name 1st

vehicles name center Center vehicle set to the named vehicle known name n/a

vehicles name color Color of the font for all vehicle labels any color white

vehicles name viewable Vehicle labels not rendered if set to off off, names,

names+mode,

names+depth

names

vehicles shape scale Change size rendering - 1.0 is actual size [0.1, 100] 1

vehicles viewable Vehicles not rendered is set to false true, false false

vehicolor Override inactive vehicle color individually See p.x n/a

Table 7: Vehicle parameters: Parameters affecting how vehicles are rendered in pMarineViewer.

110

10 PMARINEVIEWER

Parameter Description Allowed Values Default

circle edge color Color rendered circle lines any color yellow

circle edge width Line width of rendered circle lines [0, 10] 2

grid edge color Color of rendered grid lines any color white

grid edge width Line width of rendered grid lines [0, 10] 2

grid viewable all If true grids will be rendered true, false true

grid viewable labels If true grid labels will be rendered true, false true

point viewable all If true points will be rendered true, false true

point viewable labels If true point labels will be rendered true, false true

point vertex color Color of rendered points any color yellow

point vertex size Size of rendered points [0, 10] 4

polygon edge color Color of rendered polygon lines any color yellow

polygon edge width Line width of rendered polygon edges [0, 10] 1

polygon label color Color rendered polygon labels any color khaki

polygon viewable all If true all polygons are rendered true, false true

polygon viewable labels If true polygon labels are rendered true, false true

polygon vertex color Color of rendered polygon vertices any color red

polygon vertex size Size of rendered polygon vertices [0, 10] 3

seglist edge color Color or rendered seglist lines any color white

seglist edge width Line width of rendered seglist edges [0,10 1

seglist label color Color of rendered seglist labels any color orange

seglist viewable all If true all seglists are rendered true, false true

seglist viewable labels If true seglist labels are rendered true, false true

seglist vertex color Color of rendered seglist vertices any color blue

seglist vertex size Size of rendered seglist vertices [0, 10] 3

Table 8: Geometric parameters: Parameters affecting the rendering of the pMarineViewer geometric objects.

Parameter Description Allowed Values Default

marker Add and newly defined marker See p. 105 n/a

markers viewable If true all markers are rendered true, false true

markers labels viewable If true marker labels are rendered true, false true

markers scale global Marker widths are multiplied by this factor [0.1, 100 1

markers label color Color of rendered marker labels any color white

Table 9: Marker parameters: Parameters affecting the rendering of the pMarineViewer markers.

Listing 18 - An example pMarineViewer configuration block.

1 LatOrigin = 47.7319

2 LongOrigin = -122.8500

3

4 //--

5 // pMarineViewer configuration block

6

7 ProcessConfig = pMarineViewer

8 {

9 // Standard MOOS parameters affecting comms and execution

111

10 PMARINEVIEWER

10 AppTick = 4

11 CommsTick = 4

12

13 // Set the background images

14 TIFF_FILE = long_beach_sat.tif

14 TIFF_FILE_B = long_beach_map.tif

15

16

17 // Parameters and their default values

18 hash_view = false

19 hash_delta = 50

20 hash_shade = 0.65

21 back_shade = 0.70

22 trail_view = true

23 trail_size = 0.1

24 tiff_view = true

25 tiff_type = true

26 zoom = 1.0

27 vehicles_name_viewable = false

28

29 // Setting the vehicle colors - default is yellow

30 vehicolor = henry,dark_blue

31 vehicolor = ike,0.0,0.0,0.545

32 vehicolor = jane,hex:00,00,8b

33

34 // All polygon parameters are optional - defaults are shown

35 // They can also be set dynamically in the GUI in the GeoAttrs pull-down menu

36 polygon_edge_color = yellow

37 polygon_vertex_color = red

38 polygon_label_color = khaki

39 polygon_edge_width = 1.0

40 polygon_vertex_size = 3.0

41 polygon_viewable_all = true;

42 polygon_viewable_labels = true;

43

44 // All seglist parameters are optional - defaults are shown

45 // They can also be set dynamically in the GUI in the GeoAttrs pull-down menu

46 seglist_edge_color = white

47 seglist_vertex_color = dark_blue

48 seglist_label_color = orange

49 seglist_edge_width = 1.0

50 seglist_vertex_size = 3.0

51 seglist_viewable_all = true;

52 seglist_viewable_labels = true;

53

54 // All point parameters are optional - defaults are shown

55 // They can also be set dynamically in the GUI in the GeoAttrs pull-down menu

56 point_vertex_size = 4.0;

57 point_vertex_color = yellow

58 point_viewable_all = true;

59 point_viewable_labels = true;

60

61 // Define two on-screen buttons with poke values

62 button_one = DEPLOY # DEPLOY=true

63 button_two = MOOS_MANUAL_OVERIDE=false # RETURN=false

112

10 PMARINEVIEWER

64 button_two = RETURN # RETURN=true

65 button_three = DEPTH-10 # OPERATION_DEPTH=10

66 button_four = DEPTH-30 # OPERATION_DEPTH=30

67

68 // Declare variable for scoping. Variable names case sensitive

69 scope = PROC_WATCH_SUMMARY

70 scope = BHV_WARNING

71 scope = BHV_ERROR

72

73 // Declare Variable-Value pairs for convenient poking of the MOOSDB

74 action = OPERATION_DEPTH=50

75 action = OPERATION_DEPTH=0 # STATUS="Coming To the Surface"

76 }

Color references as in lines 27-29 can be made by name or by hexadecimal or decimal notation.
(All three colors in lines 27-29 are the same but just specified differently.) See the Colors Appendix
for a list of available color names and their hexadecimal equivalent.

The VERBOSE parameter on line 24 controls the output to the console. The console output
lists the types of mail received on each iteration of pMarineViewer. In the non-verbose mode, a
single character is output for each received mail message, with a ’*’ for NODE REPORT, a ’P’ for a
VIEW POLYGON, a ’.’ for a VIEW POINT, and a ’S’ for a VIEW SEGLIST. In the verbose mode, each received
piece of mail is listed on a separate line and the source of the mail is also indicated. An example
of both modes is shown in Listing 19.

Listing 19 - An example pMarineViewer console output.

1 // Example pMarineViewer console output NOT in verbose mode

2

3 13.56 > ****..

4 13.82 > **..

5 14.08 > **..

6 14.35 > **..

7 14.61 > ****.P.P

8 14.88 > **..

9 15.14 > **..

10

11 // Example pMarineViewer console output in verbose mode

12

13 15.42 >

14 NODE-REPORT(nyak201)

15 NODE-REPORT(nyak200)

16 Point(nyak201_wpt)

17 Point(nyak200_wpt)

18

19 15.59 >

20 Point(nyak201)

21 Poly(nyak201-LOITER)

22 NODE-REPORT(nyak201)

23 NODE-REPORT(nyak200)

24 Point(nyak200)

25 Poly(nyak200-LOITER)

113

10 PMARINEVIEWER

10.7 More about Geo Display Background Images

The geo display portion of the viewer can operate in one of two modes, a grey-scale background, or
an image background. Section 10.3.1 addressed how to switch between modes in the GUI interface.
To use an image in the geo display, the input to pMarineViewer comes in two files, an image file in
TIFF format, and an information text file correlating the image to the local coordinate system. The
file names should be identical except for the suffix. For example dabob bay.tif and dabob bay.info.
Only the .tif file is specified in the pMarineViewer configuration block of the MOOS file, and the
application then looks for the corresponding .info file. The info file contains six lines - an example
is given in Listing 20.

Listing 20 - An example .info file for the pMarineViewer

1 // Lines may be in any order, blank lines are ok

2 // Comments begin with double slashes

3

4 datum_lat = 47.731900

5 datum_lon = -122.85000

6 lat_north = 47.768868

7 lat_south = 47.709761

8 lon_west = -122.882080

9 lon_east = -122.794189

All six parameters are mandatory. The two datum lines indicate where (0, 0) in local coordinates
is in earth coordinates. The lat north parameters correlates the upper edge of the image with its
latitude position. Likewise for the other three parameters and boundaries. Two image files may be
specified in the pMarineViewer configuration block. This allows a map-like image and a satellite-
like image to be used interchangeably during use. (Recall the ToggleBackGroundType entry in
the BackView pull-down menu discussed earlier.) An example of this is shown in Figure 34 with
two images of Dabob Bay in Washington State. Both image files where created from resources at
www.maps.google.com.

Figure 34: Dual background geo images: Two images loaded for use in the geo display mode of pMarineViewer.
The user can toggle between both as desired during operation.

114

10 PMARINEVIEWER

In the configuration block, the images can be specified by:

TIFF_FILE = dabob_bay_map.tif

TIFF_FILE_B = dabob_bay_sat.tif

By default pMarineViewer will look for the files Default.tif and DefaultB.tif in the local directory
unless alternatives are provided in the configuration block.

10.8 Publications and Subscriptions for pMarineViewer

10.8.1 Variables published by the pMarineViewer application

Variables published by pMarineViewer are summarized in Table 10 below. A more detail description
of each variable follows the table.

Variable Description

1 MVIEWER LCLICK The position in local coordinates of a user left mouse button click

2 MVIEWER RCLICK The position in local coordinates of a user right mouse button click

3 HELM MAP CLEAR .

Table 10: Variables published by the pMarineViewer application.

• MVIEWER LCLICK: When the user clicks the left mouse button, the position in local coordinates,
along with the name of the active vehicle is reported. This can be used as a command and
control hook as described in Section 10.5. As an example:

MVIEWER_LCLICK = ‘‘x=-56.0,y=-110.0,vname=alpha’’

• MVIEWER RCLICK: This variable is published when the user clicks with the right mouse button.
The same information is published as with the left click.

• HELM MAP CLEAR: This variable is published once when the viewer connects to the MOOSDB. It is
used in the pHelmIvP application to clear a local buffer used to prevent successive identical
publications to its variables.

10.8.2 Variables subscribed for by pMarineViewer application

• NODE REPORT: This is the primary variable consumed by pMarineViewer for collecting vehicle
position information. An example:

NODE_REPORT = "NAME=nyak201,TYPE=kayak,MOOSDB_TIME=53.049,UTC_TIME=1195844687.236,X=37.49,

Y=-47.36, SPD=2.40,HDG=11.17,DEPTH=0"

• NODE REPORT LOCAL: This serves the same purpose as the above variable. In some simulation
cases this variable is used.

115

10 PMARINEVIEWER

• VIEW POLYGON: A string representation of a polygon.

• VIEW POINT: A string representation of a point.

• VIEW SEGLIST: A string representation of a segment list.

• TRAIL RESET: When the viewer receives this variable it will clear the history of trail points
associated with each vehicle. This is used when the viewer is run with a simulator and the
vehicle position is reset and the trails become discontinuous.

• GRID CONFIG: A string representation of a grid. This initializes and registers a new grid with
the viewer.

• GRID DELTA: A string representation of a change in values for a given grid and specific grid
cells with new value for each given cell.

116

11 BEHAVIORS OF THE IVP HELM

11 Behaviors of the IvP Helm

The following is a description of some single-vehicle behaviors currently written for the IvP Helm.
The division of single-vehicle behaviors and multi-vehicle behaviors (next section) is somewhat
arbitrary. Other behavior modules exist that may be either in a testing state or too specific to
a project for discussion here. The below description is for the person who wants to use current
behaviors in the toolbox. The topic of how to add a new behavior is not covered here.

A behavior has a standard parameters defined at the IvPBehavior level as well as unique param-
eters defined at the subclass level. Parameters are set in the behavior file. For a behavior user, the
setting of parameters is the primary venue for affecting the overall autonomy behavior in a vehicle.
Parameters may also be dynamically altered once the mission has commenced. A parameter is set
with a single line of the form:

parameter = value

The left-hand side, the parameter component, is case insensitive, while the value component is
typically case sensitive. When the helm is launched, each behavior is created and the parameters
are set. If a parameter setting in the behavior file references an unknown parameter, or if the value
component fails a syntactic or semantic test, the line is noted and the helm ceases to launch.

11.1 BHV Waypoint

11.1.1 Overview of the BHV Waypoint Behavior

The BHV Waypoint behavior is used for transiting to a set of specified waypoint in the x-y plane. The
primary parameter is the set of waypoints. Other key parameters are the inner and outer radius
around each waypoint that determine what it means to have met the conditions for moving on to
the next waypoint. The basic idea is shown in Figure 35.

Figure 35: The BHV Waypoint behavior: The waypoint behavior basic purpose is to traverse a set of waypoints.
A capture radius is specified to define what it means to have achieved a waypoint, and a non-monotonic radius is
specified to define what it means to be ”close enough” should progress toward the waypoint be noted to degrade.

The behavior may also be configured to perform a degree of track-line following, that is, steering the
vehicle not necessarily toward the next waypoint, but to a point on the line between the previous

117

11 BEHAVIORS OF THE IVP HELM

and next waypoint. This is to ensure the vehicle stays closer to this line in the face of external
forces such as wind or current. The behavior may also be set to “repeat” the set of waypoints
indefinitely, or a fixed number of times. The waypoints may be specified either directly at start-
up, or supplied dynamically during operation of the vehicle. There are also a number of accepted
geometry patterns that may be given in lieu of specific waypoints, such as polygons, lawnmower
pattern and so on.

11.1.2 Brief Summary of the BHV Waypoint Behavior Parameters

The following parameters are defined for this behavior. A more detailed description is provided
other parts of this section, and in Table 11 on page 147.

POINTS: A colon separated list of x,y pairs given as points in 2D space, in meters.

POLYGON: An alias for POINTS.

SPEED: The desired speed (m/s) at which the vehicle travels through the points.

CAPTURE RADIUS: The radius tolerance, in meters, for satisfying the arrival at a waypoint.

RADIUS: An alias for CAPTURE RADIUS.

NM RADIUS: An “outer” capture radius. Arrival declared when the vehicle is in this
range and the distance to the next waypoint begins to increase.

ORDER: The order in which waypoints are traversed - "normal", or "reverse".

LEAD: If this parameter is set, track-line following between waypoints is enabled.

LEAD DAMPER: Distance from trackline within which the lead distance is stretched out.

REPEAT: The number of extra times traversed through the waypoints.

WPT STATUS VAR: The MOOS variable posting a status report. The default is WPT STAT.

WPT INDEX VAR: The MOOS variable posting the index of the behavior’s next waypoint.

CYCLE FLAGS: MOOS variable-value pairs posted at end of each cycle through waypoints.

CYCLE INDEX VAR: The MOOS variable posting # of times cycled through the waypoints.

POST SUFFIX: A suffix tagged onto the WPT STATUS, WPT INDEX and CYCLE INDEX variables.

11.1.3 Specifying Waypoints - the points, order, and repeat Parameters

The waypoints may be specified explicitly as a colon-separated list of comma-separate pairs, or
implicitly using a geometric description. The order of the parameters may also be reversed with
the order parameter. An example specification:

points = 60,-40:60,-160:150,-160:180,-100:150,-40

order = reverse // default is "normal"

repeat = 3 // default is 0

A waypoint behavior with this specification will traverse the five points in reverse order (150, −40
first) four times (one initial cycle and then repeated three times) before completing. If there is
a syntactic error in this specification at helm start-up, an output error will be generated and the
helm will not continue to launch. If the syntactic error is passed as part of a dynamic update (see

118

11 BEHAVIORS OF THE IVP HELM

Section 7.2.2), the change in waypoints will be ignored and the a warning posted to the BHV WARNING

variable. See Section 9 for more methods for specifying sets of waypoints.

11.1.4 The capture radius and nonmonotonic radius Parameters

The capture radius parameter specifies the distance to a given waypoint the vehicle must be before
it is considered to have arrived at or achieved that waypoint. It is the inner radius around the
points in Figure 35. The non-monotonic radius or nm radius parameter specifies an alternative
criteria for achieving a waypoint.

Figure 36: The capture radius and non-monotonic radius: (a) a successful waypoint arrival by achieving
proximity less than the capture radius. (b) a missed waypoint likely resulting in the vehicle looping back to try again.
(c) a missed waypoint but arrival declared anyway when the distance to the waypoint begins to increase and the
vehicle is within the non-monotonic radius.

As the vehicle progresses toward a waypoint, the sequence of measured distances to the waypoint
decreases monotonically. The sequence becomes non-monotonic when it hits its waypoint or when
there is a near-miss of the waypoint capture radius. The nm radius, is a capture radius distance
within which a detection of increasing distances to the waypoint is interpreted as a waypoint
arrival. This distance would have to be larger than the capture radius to have any effect. As a rule
of thumb, a distance of twice the capture radius is practical. The idea is shown in Figure 36. The
behavior keeps a running tally of hits achieved with the capture radius and those achieved with the
non-monotonic radius. These tallies are reported in a status message described in Section 11.1.6
below.

11.1.5 Track-line Following using the lead Parameter

By default the waypoint behavior will output a preference for the heading that is directly toward
the next waypoint. By setting the lead parameter, the behavior will instead output a preference
for the heading that keeps the vehicle closer to the track-line, or the line between the previous
waypoint and the waypoint currently being driven to.

The distance specified by the lead parameter is based on the perpendicular intersection point on
the track-line. This is the point that would make a perpendicular line to the track-line if the other
point determining the perpendicular line were the current position of the vehicle. The distance
specified by the lead parameter is the distance from the perpendicular intersection point toward

119

11 BEHAVIORS OF THE IVP HELM

Figure 37: The track-line mode: When in track line mode, the vehicle steers toward a point o the track line rather
than simply toward the next waypoint. The steering-point is determined by the lead parameter. This is the distance
from the perpendicular intersection point toward the next waypoint.

the next waypoint, and defines an imaginary point on the track-line. The behavior outputs a
heading preference based on this imaginary steering point. If the lead distance is greater than the
distance to the next waypoint along the track-line, the imaginary steering point is simply the next
waypoint.

If the lead parameter is enabled, it may be optionally used in conjuction with the lead damper

parameter. This parameter expresses a distance from the trackline in meters. When the vehicle is
within this distance, the value of the lead parameter is stretched out toward the next waypoint to
soften, or dampen, the approach to the trackline and reduce overshooting the trackline.

11.1.6 Variables Published by the BHV Waypoint Behavior

The waypoint behavior publishes five variables for monitoring the performance of the behavior as it
progresses: WPT STATUS, WPT INDEX, CYCLE INDEX, VIEW POINT, VIEW SEGLIST. The WPT STATUS contains
information identifying the vehicle, the index of the current waypoint, the distance to the current
waypoint, and the estimated time of arrival to the current waypoint. Example output:

WPT_STAT = "vname=alpha,behavior=traverse1,index=0,dist=43,eta=23"

The WPT INDEX variable simply publishes the index of the current waypoint. This is a bit redundant,
but this variable is logged as a numerical variable, not a string, and facilitates the plotting of the
index value as a step function in post mission analysis tools. The CYCLE INDEX variable publishes
the number of times the behavior has traversed the entire set of waypoints. The behavior may be
configured to post the information in these three variables using alternative variables of the user’s
liking, or suppress it completely:

wpt_status_var = MY_WPT_STATUS_VAR // The default is "WPT_STAT"

wpt_index_var = MY_WPT_INDEX_VAR // The default is "WPT_INDEX"

cycle_index_var = MY_CYCLE_INDEX_VAR // The default is "CYCLE_INDEX"

or, to suppress the reports:

120

11 BEHAVIORS OF THE IVP HELM

wpt_status_var = silent // both case insensitive

wpt_index_var = silent

cycle_index_var = silent

Further posts to the MOOSDB can be configured to be made at the end of each cycle, that is, after
reaching the last waypoint. Normally, if the repeat parameter remains at its default value of zero,
then the end of a cycle and completing are identical and endflags can be used to post the desired
information. However, when the behavior is configured to repeat the set of waypoints one or more
times before completed, the cycleflags parameter may be used to post one or more variable-value
pairs at the end of each cycle. Likewise, if the repeat parameter is zero, but the behavior is set
with perpetual=true, the cycle flags will posted each new time that the behavior completes.

The VIEW POINT and VIEW SEGLIST variables provide information consumable by a GUI ap-
plication such as pMarineViewer for rendering the set of waypoints traversed by the behavior
(VIEW SEGLIST) and the behavior’s next waypoint (VIEW POINT). These two variables are respon-
sible for the visual output in the Alpha Example Mission in Section 4 in Figure 6 on page 32.

11.1.7 The Objective Function Produced by the BHV Waypoint Behavior

The waypoint behavior produces a new objective function, at each iteration, over the variables
speed and course/heading. The behavior can be configured to generate this objective function in
one of two forms, either by coupling two independent one-variable functions, or by generating a
single coupled function directly.

270

270 90

0

180

0

90

180

Figure 38: A waypoint objective function: The objective function produced by the waypoint behavior is defined
over possible heading and speed values. Depicted here is an objective function favoring maneuvers to a waypoint
270 degrees from the current vehicle position and favoring speeds closer to the mid-range of capable vehicle speeds.
Higher speeds are represented farther radially out from the center.

121

11 BEHAVIORS OF THE IVP HELM

11.2 BHV OpRegion

11.2.1 Overview of the BHV OpRegion Behavior

This behavior provides four different types of safety functionality, (a) a boundary box given by a
convex polygon in the x-y or lat-lon plane, (b) an overall timeout, (c) a depth limit, (d) an altitude
limit.

11.2.2 Brief Summary of the BHV OpRegion Parameters

The following parameters are defined for this behavior. A more detailed description is provided
other parts of this section, and in Table 12 on page 148.

POLYGON: The lat-lon area the vehicle is restricted to stay within. Section 11.2.3.

TRIGGER ENTRY TIME: The time required for the vehicle to have been within the polygon region
before triggering the polygon requirement. Section 11.2.3.

TRIGGER EXIT TIME: The time required to have been outside the polygon before declaring a
polygon containment failure. Section 11.2.3.

MAX TIME: The max allowable time in seconds. Section 11.2.4.

MAX DEPTH: The max allowable depth in meters. Section 11.2.5.

MIN ALTITUDE: The min allowable altitude in meters. Section 11.2.6.

11.2.3 Safety Checking Applied to an Operation Region

One safety check performed by the OpRegion behavior is to ensure that the vehicle remains in an
operation region defined by a convex polygon in the x-y plane.

POLYGON: A colon separated list of x,y pairs given as points in space, typically meters. A pair
given by “label,string” can associate an optional label with the point list. The collection of

points must be a convex polygon. A check for convexity is done upon helm/behavior start-up.
Behavior initialization will fail if it is not convex. If no polygon is provided, no X,Y checks are
made.

TRIGGER ENTRY TIME: The amount of time required for the vehicle to have been within the polygon
containment region before triggering the polygon containment requirement. This is useful when
launching vehicles from a dock structure such as the MIT Sailing Pavilion. The default setting
is zero meaning the polygon containment requirement is active immediately.

TRIGGER EXIT TIME: The amount of time required to have been outside the polygon containment
region before declaring a polygon containment failure. This is useful if the vehicle NAV X and
NAV Y position is based on a sensor without outlier detection. The kayaks, for example, are often
relying solely on GPS which occasionally emits an outlier well out of the containment region. By
setting this value high enough, outliers are ignored. Each time a recorded position is contained
within the polygon region, the clock is set to zero. The default setting is zero, meaning the very
first detection outside the polygon will result in a polygon containment error.

122

11 BEHAVIORS OF THE IVP HELM

11.2.4 Safety Checking Applied to a Maximum Mission Operation Time

MAX TIME: The maximum allowable time (in seconds) that the helm is allowed run. The clock
starts when the pHelmIvP process first takes control.

11.2.5 Safety Checking Applied to a Maximum Vehicle Depth

MAX DEPTH: The maximum allowable depth of the vehicle (in meters). If no depth is provided, no
depth checks are made.

11.2.6 Safety Checking Applied to a Minimum Vehicle Altitude

MIN ALTITUDE: The minimum allowable altitude of the vehicle (in meters). If no depth is provided,
no depth checks are made.

11.2.7 Variables Published by the BHV OpRegion Behavior

The behavior also produces a set of status variables regarding the vehicle position with respect
to the containment region. Since a violation of this constraint results in a vehicle full-stop and
the helm relinquishing control, other behaviors or MOOS processes may want to take measures to
avoid it. These status variables provide information on the position and estimated time between
the vehicle and the perimeter, based both on the absolute position as well as the current vehicle
trajectory. See Figure 39.

Figure 39: The OpRegion polygon and status variables: The OpRegion behavior publishes information regard-
ing its estimated distance and time of arrival (ETA) to the perimeter of the polygon containment region. It publishes
two sets of information; one based on the current trajectory and the other based on the absolute distance to the
perimeter at top vehicle speed.

The four variables produced by the behavior (and posted to the MOOSDB by the Helm) are:

OPREG TRAJECTORY PERIM DIST: The distance (in meters) between the current vehicle position to

123

11 BEHAVIORS OF THE IVP HELM

the perimeter of the polygon containment region (given by the POLYGON parameter), based on
the vehicle remaining on the current trajectory.

OPREG TRAJECTORY PERIM ETA: The amount of time (in seconds) needed for the vehicle to reach the
perimeter of the polygon containment region (given by the POLYGON parameter), based on the
vehicle remaining on the current trajectory.

OPREG ABSOLUTE PERIM DIST: The distance (in meters) between the current vehicle position to the
perimeter of the polygon containment region (given by the POLYGON parameter), regardless of
the current vehicle trajectory.

OPREG ABSOLUTE PERIM ETA: The amount of time (in seconds) needed for the vehicle to reach the
perimeter of the polygon containment region (given by the POLYGON parameter), regardless of
the current vehicle trajectory. Calculated on the maximum vehicle speed.

124

11 BEHAVIORS OF THE IVP HELM

11.3 BHV Loiter

A behavior for transiting to and repeatedly traversing a set of waypoints. A similar effect can be
achieved with the BHV Waypoint behavior but this behavior assumes a set of waypoints forming a
convex polygon to exploit certain useful algorithms discussed below. This behavior is comparable
to the “Obit Task” of the older helm but is more general in that general convex polygons, not
just those approximating circles, are allowed. It also utilizes the non-monotonic arrival criteria use
in the BHV Waypoint behavior to avoid loop-backs upon waypoint near-misses. It also robustly
handles dynamic exit and re-entry modes when or if the vehicle diverges from the loiter region
due to external events. And it is dynamically reconfigurable to allow a mission control module to
repeatedly reassign the vehicle to different loiter regions by using a single persistent instance of the
behavior. The following parameters are defined for this behavior:

POLYGON: A colon separated list of comma-separated x,y pairs indicating points in 2D space. Units
are in in meters. Unlike the waypoint behavior, these points must describe a convex polygon;
if the convexity condition fails the behavior will not instantiate. As an alternative to listing a
sequence of points, a orbit-style polygon can be given by four values (1),(2) the x and y position,
(3) the radius in meters, and (4) the number of points on the circle. This specification is denoted
with the “radial” tag as follows “radial:50,50,200,16”.

SPEED: The desired speed, in meters/second, at which the vehicle travels through the points.

RADIUS: The radius tolerance, in meters, for satisfying the arrival at a waypoint. As soon as
the vehicle is within this distance to the waypoint the waypoint behavior begins operating on
the next waypoint in the sequence, or completes and posts its endflags if there are no more
waypoints.

NM RADIUS: As the vehicle progresses toward a waypoint, the sequence of measured distances to
the waypoint decreases monotonically. The sequence becomes non-monotonic when it hits its
waypoint or when there is a near-miss of the waypoint arrival radius. The NM RADIUS, short
for non-monotonic radius is an arrival radius distance within which a detection of increasing
distances to the waypoint is interpreted as a waypoint arrival. This distance would have to be
larger than the arrival radius to have any effect (see Figure 36). As a rule of thumb, a distance
of twice the arrival radius is practical.

CLOCKWISE: If “true”, the behavior will influence the vehicle in a clockwise direction around the
polygon. Values are case insensitive, but must spell either true or false. The default is true.

ACQUIRE DIST: The distance in meters between the vehicle and the polygon that will trigger the
vehicle to return to acquire mode. This notion applies to the case where the vehicle is both
inside and outside the polygon. (The re-acquire algorithms are different however.)

POST SUFFIX: This string will be added as a suffix to each of the status variables posted by the
behavior (LOITER REPORT, LOITER INDEX, LOITER ACQUIRE, LOITER DIST2POLY). By default, the suffix
is the empty string and the variables will be posted as above. When multiple Loiter behaviors are
configured in the helm it may help to distinguish the posted variabes by a suffix. A given suffix
of "FOO" would result in the posting of LOITER INDEX FOO for example. The extra ’ ’ character
is inserted automatically.

125

11 BEHAVIORS OF THE IVP HELM

When the behavior is active, it is in either one of two modes; the acquire mode or normal

mode. In the normal mode it is merely proceeding to the next waypoint on the polygon. In the
acquire mode, each iteration begins by first determining the next polygon point to treat as the next
waypoint. This is useful for ensuring the entry waypoint isn’t followed by a need for a sharp vehicle
turn. The acquire point depends on the chosen direction of polygon traversal, as shown in Figure
40.

CLOCKWISE = TRUE

CLOCKWISE = FALSE

Figure 40: In the acquire mode, the polygon points are evaluated for suitability in terms of a smooth entry trajectory.
Only the “viewable” points, those viewable if the polygon were an opaque object and the viewer were at the current
vehicle location, are contenders. The contenders are rated on the follow-on angle given the desired clockwise or
counter-clockwise loiter direction. Larger follow-on angles are preferred as shown.

When the behavior is in the acquire mode and outside the polygon, the chosen vertex is the one
most tangential in either the clockwise or counter-clockwise direction as shown in the figure. When
the vehicle is inside the polygon, the chosen vertex is the one which forms the most obtuse angle
between the current vehicle position, the vertex, and the follow-on vertex. Unlike the case when
outside the polygon, the chosen vertex changes as the vehicle makes progress back to the polygon
perimeter. The effect is for the vehicle to “spiral” out to the perimeter for the smoothest re-entry
in to a normal loitering path.

The circumstance most common for triggering the acquire mode is the initial assignment to
the vehicle to loiter at a new given region in the X,Y plane. This assignment could occur while
the vehicle happens to already be within the polygon for a number of reasons. Furthermore, the
vehicle could be driven off the polygon loiter trajectory due to environmental (wind or current)
forces or the temporary dominance of other vehicle behaviors such as collision avoidance or tracking
of another vehicle.

Once the behavior enters the acquire mode, it remains in this mode until arriving at the first
waypoint (defined by the arrival and non-monotonic radii settings), after which it switches to
normal mode until the acquire mode is re-triggered or the behavior run conditions are no longer
met. There is currently no “complete” condition for this behavior other than a time-out which is
defined for all behaviors.

126

11 BEHAVIORS OF THE IVP HELM

11.4 BHV PeriodicSpeed

This behavior will periodically influence the speed of the vehicle while remaining neutral at other
times. The timing is specified by a given period length in which the influence is on, and a gap
length specifying the time between periods. It was conceived for use on an AUV equipped with
an acoustic modem to periodically slow the vehicle to reduce self-noise and reduce communication
difficulty. One can also specify a flag (a MOOS variable and value) to be posted at the start of the
period to prompt an outside action such as the start of communication attempts. The following
parameters are defined for this behavior:

PERIOD LENGTH: The duration of the period, in seconds, during which the behavior will produce an
objective function over the desired speed.

PERIOD GAP: The duration of time in seconds between periods.

PERIOD FLAG: A flag (MOOS variable) to be posted at the beginning of each active period. The
argument is of the form VAR=VAL. If if no value is specified, the value will be the period index,
incremented on each new period commencement.

seconds

PERIOD_LENGTH

seconds

ActiveNot−Active

PERIOD_GAP

Figure 41: In active mode the behavior will produce an objective function defined over speed that will potentially
influence the speed of the vehicle. In the inactive mode, it simply will not produce an objective function.

STAT PENDING ACTIVE: The number of seconds remaining until the behavior reaches the active state.
By default this is empty and no status is posted by the behavior. To reduce posting volume, the
value posted will be rounded to the nearest second until less than one second remains in which
case fractions are posted.

STAT PENDING INACTIVE: The number of seconds remaining until the behavior reaches the inactive

state. By default this is empty and no status is posted by the behavior. To reduce posting
volume, the value posted will be rounded to the nearest second until less than one second
remains in which case fractions are posted.

PERIOD SPEED: The desired speed in meters per second.

PERIOD PEAKWIDTH: The width of the peak in meters per second in the speed objective function.

PERIOD BASEWIDTH: The width of the base, in meters per second in the speed objective function.

127

11 BEHAVIORS OF THE IVP HELM

seconds

PERIOD_LENGTH

seconds

ActiveNot−Active

PERIOD_GAP

Figure 42: In (a) the preference is a for a particular speed and a slight tolerance in either direction. In (b) the
preference is for a particular range of speeds with a slight tolerance either way. In (c) the preference is for anything
less than a given speed with some tolerance for higher speeds. In (d) the preference is for anything greater than a
given speed with a no tolerance for lower speeds.

11.5 BHV PeriodicSurface

This behavior will periodically influence the depth and speed of the vehicle while remaining neutral
at other times. The purpose is to bring the vehicle to the surface periodically to achieve some
specified event specified by the user, typically the receipt of a GPS fix. Once this event is achieved,
the behavior resets its internal clock to a given period length and will remain idle until a clock
time-out occurs. The behavior can be in one of four states as described in Figure 43 below.

Conditions

Failed

Surface

Reached

Mark

Received

Timed−out

Timed−out

IDLE

WAITING

SURFACE

AT
ASCENDING

IDLE

BLOCKED

Max−time−at−surface

Conditions

Exceeded

Failed

Conditions

Passed

Figure 43: Possible modes of the PeriodicSurface behavior.

In the IDLE WAITING state the behavior is simply waiting for its clock to wind down to zero.
The duration is given by the PERIOD parameter listed below. The clock is active despite any other
run conditions that may apply to the behavior. It is started when the behavior is first instantiated
and also when the desired event occurs at the surface. The IDLE BLOCKED state indicates that the
behavior timer has reached zero, but another run condition has not been met. This is to prevent
the behavior from trying to surface the vehicle when other circumstances override the need to
surface. In the ASCENDING state, the behavior will produce an objective function over depth and
speed to bring the vehicle to the surface. A couple parameters described below can determine
the trajectory of the vehicle during ascent. This state can transition back to the IDLE BLOCKED

state if run conditions become no longer satisfied prior to the vehicle reaching the surface. In the
AT SURFACE state the vehicle is at the surface waiting for a specified event.

128

11 BEHAVIORS OF THE IVP HELM

PERIOD: The duration of the period, in seconds, during which the behavior will remain in the
IDLE WAITING state.

MARK VARIABLE: The name of a variable used for indicating when the behavior witnesses the
event that would reset the period clock. On each iteration, the variable is checked against
its last known value and if different, the clock is reset. The default value for this parameter is
GPS UPDATE RECEIVED. If this variable is populated by another process with a value indicating the
time a GPS fix is obtained, then the mark will occur on each GPS fix. Since the value of this
argument names a MOOS variable, it is case sensitive.

PENDING STATUS VAR: This variable will be written to with the value of the remaining time on the
idle clock, rounded to integer seconds. The default value is PENDING SURFACE. Since the value of
this argument names a MOOS variable, it is case sensitive.

ATSURFACE STATUS VAR: This variable will be written to with the number of seconds that the vehicle
has been waiting at the surface (for the event indicated by the MARK VARIABLE). The number of
seconds is rounded to the nearest integer and will be zero when the vehicle is not at the surface.
The default value is TIME AT SURFACE. Since the value of this argument names a MOOS variable,
it is case sensitive.

ASCENT SPEED: This parameter indicates the desired speed (m/s) of the vehicle during the ascent
state. If left unspecified, the ascent speed will be equal to the current noted speed at moment
it transitions into the ascent state.

ASCENT GRADE: This parameter indicates the manner in which the ascent speed approaches zero
as the vehicle progresses toward the ZERO SPEED DEPTH. It has four legal values: fullspeed, lin-

ear, quadratic, and quasi. In all four cases, the initial speed is determined by the parameter
ASCENT SPEED, and the desired speed will be zero once the ZERO SPEED DEPTH has been achieved.
The four settings determine the manner of slowing to zero speed during the ascent. The fullspeed

setting indicates that desired speed should remain constant through the ascent right up to the
instant the vehicle achieves ZERO SPEED DEPTH. For the other three settings the speed reduction
is relative to the starting depth (the depth noted at the outset of the ascent state) and the
ZERO SPEED DEPTH. With the linear setting, the speed reduction is linear. With the quadratic set-
ting, the speed reduction is quadratic (quicker initial speed reduction). With the quasi setting
the speed reduction is between linear and quadratic. The value passed to this parameter is not
case sensitive.

ZERO SPEED DEPTH: The depth (in meters) during the ascent state at which the desired speed
becomes zero, and presumably further ascent is achieved through positive buoyancy.

MAX TIME AT SURFACE: The maximum time (in seconds) spent in the AT SURFACE state, waiting for
the event indicated by the MARK VARIABLE, before the behavior transitions into the IDLE state.

129

11 BEHAVIORS OF THE IVP HELM

11.6 BHV ConstantDepth

This behavior will drive the vehicle at a specified depth. Analogous to the ConstantDepthTask in
the pHelm task library, but somewhat different. This behavior merely expresses a preference for
a particular depth. If other behaviors also have a depth preference, coordination/compromise will
take place through the multi-objective optimization process. The following parameters are defined
for this behavior:

DEPTH: The desired depth in meters.

PEAKWIDTH: The width of the peak in meters in the produced objective function.

BASEWIDTH: The width of the base, in meters in the produced objective function.

DURATION: This is a parameter defined for all general behaviors, but for this behavior, specification
is mandatory for safety reasons. The default if not specified is 0 seconds which will result in the
behavior completing immediately. If no duration limit is desired, e.g., if the behavior is tied to
another behavior or event via condition variables, then setting “duration = no-time-limit” will
result in no time duration checks for this behavior.

11.7 BHV ConstantHeading

This behavior will drive the vehicle at a specified depth. Analogous to the ConstantHeadingTask
in the pHelm task library, but somewhat different. This behavior merely expresses a preference for
a particular heading. If other behaviors also have a heading preference, coordination/compromise
will take place through the multi-objective optimization process. The following parameters are
defined for this behavior:

HEADING: The desired heading in degrees (-180, +180].

PEAKWIDTH: The width of the peak in degrees in the produced objective function.

BASEWIDTH: The width of the base, in degrees in the produced objective function.

DURATION: This is a parameter defined for all general behaviors, but for this behavior, specification
is mandatory for safety reasons. The default if not specified is 0 seconds which will result in the
behavior completing immediately. If no duration limit is desired, e.g., if the behavior is tied to
another behavior or event via condition variables, then setting “duration = no-time-limit” will
result in no time duration checks for this behavior.

11.8 BHV ConstantSpeed

This behavior will drive the vehicle at a specified speed. Analogous to the ConstantSpeedTask in
the pHelm task library, but somewhat different. This behavior merely expresses a preference for
a particular speed. If other behaviors also have a speed preference, coordination/compromise will
take place through the multi-objective optimization process. The following parameters are defined
for this behavior:

130

11 BEHAVIORS OF THE IVP HELM

SPEED: The desired speed in meters/second.

PEAKWIDTH: The width of the peak in meters/second in the produced objective function.

BASEWIDTH: The width of the base, in meters/second in the produced objective function.

DURATION: This is a parameter defined for all general behaviors, but for this behavior, specification
is mandatory for safety reasons. The default if not specified is 0 seconds which will result in the
behavior completing immediately. If no duration limit is desired, e.g., if the behavior is tied to
another behavior or event via condition variables, then setting “duration = no-time-limit” will
result in no time duration checks for this behavior.

131

11 BEHAVIORS OF THE IVP HELM

11.9 BHV GoToDepth

This behavior will drive the vehicle to a sequence of specified depths and duration at each depth.
The duration is specified in seconds and reflects the time at depth after the vehicle has first achieved
that depth, where achieving depth is defined by the CAPTURE DELTA parameter. The behavior sub-
scribes for NAV DEPTH to examine the current vehicle depth against the target depth. If the current
depth is within the delta given by CAPTURE DELTA, that depth is considered to have been achieved.
The behavior also stores the previous depth from the prior behavior iteration, and if the target
depth is between the prior depth and current depth, the depth is considered to be achieved re-
gardless of whether the prior or current depth is actually within the CAPTURE DELTA. This behavior
merely expresses a preference for a particular depth. If other behaviors also have a depth prefer-
ence, coordination/compromise will take place through the multi-objective optimization process.
The following parameters are defined for this behavior:

D
ep

th
 (

m
et

er
s)

Time (secs)

45

30

15

0

5 705323 247217 266179119100

Figure 44: Depth log from simulation with the depth parameters shown in Listing 8. The lighter, step-like line
indicates the values of DESIRED DEPTH generated by the helm, and the darker line indicates the recorded depth
value of the vehicle. The depth plateaus start from the moment the vehicle achieves depth. For example, the vehicle
achieved a depth of 45 meters at 119 seconds and retained that desired depth for another 60 seconds as requested in
the configuration shown in Listing 8.

DEPTH: A colon-separated list of comma-separated pairs. Each pair contains a desired depth and
a duration at that depth. The duration applies from the point in time that the depth is first
achieved. If a time duration is not provided for any pair, it defaults to zero. Thus “depth = 20”
is a valid parameter setting.

REPEAT: The number of times the vehicle will traverse through the evolution of depths, proceeding
to the 1st depth after the nth depth has been hit. The default value is zero.

PERPETUAL: If equal to true, when the vehicle completes its evolution of depths (perhaps several
evolutions if REPEAT is non-zero), the endflags will be posted. But rather than setting the
complete variable to true and thus never receiving any further run consideration, the behavior is
reset to its initial state. Presumably the user sets endflags that will cause the condition flags to
be not immediately satisfied, thus putting the behavior in a state waiting again for an external
event flag to be posted. The default value of this parameter is false.

CAPTURE DELTA: The delta depth, in meters, between the current observed depth and the current
target depth, below which the behavior will declare the depth to have been achieved.

CAPTURE FLAG: The name of a MOOS variable incremented each time a target depth level has
been achieved. Useful for logfile debugging/analyzing and also allows other behaviors to be

132

11 BEHAVIORS OF THE IVP HELM

conditioned on a depth event. If this behavior is completed in perpetual mode, the counter is
reset to zero. If the behavior is repeating a set of depths by setting REPEAT greater than zero,
the counter will continue to increment through evolutions.

133

11 BEHAVIORS OF THE IVP HELM

11.10 BHV MemoryTurnLimit

The objective of the Memory-Turn-Limit behavior is to avoid vehicle turns that may cross back
on its own path and risk damage to the towed equipment. Its configuration is determined by the
two parameters described below which combine to set a vehicle turn radius limit. However, it is
not strictly described by a limited turn radius; it stores a time-stamped history of recent recorded
headings and maintains a heading average, and forms its objective function on a range deviation
from that average. This behavior merely expresses a preference for a particular heading. If other
behaviors also have a heading preference, coordination/compromise will take place through the
multi-objective optimization process. The following parameters are defined for this behavior:

MEMORY TIME: The duration of time for which the heading history is maintained and heading average
calculated.

TURN RANGE: The range of heading values deviating from the current heading average outside of
which the behavior reflects sharp penalty in its objective function.

The heading history is maintained locally in the behavior by storing the currently observed
heading and keeping a queue of n recent headings within the MEMORY TIME threshold. The heading
average calculation below handles the issue of angle wrap in a set of n headings h0 . . . hn−1 where
each heading is in the range [0, 359].

heading avg = atan2(s, c) · 180/π,

where s and c are given by:

s =
n−1∑

k=0

sin (hkπ/180)), c =
n−1∑

k=0

cos (hkπ/180)).

The vehicle turn radius r is not explicitly a parameter of the behavior, but is given by:

r = v/((u/180)π),

where v is the vehicle speed and u is the turn rate given by:

u = TURN RANGE/MEMORY TIME.

The same turn radius is possible with different pairs of values for TURN RANGE and MEMORY TIME.
However,m larger values of TURN RANGE allow sharper initial turns but temper the turn rate after
the initial sharper turn has been achieved.

134

11 BEHAVIORS OF THE IVP HELM

A Rendering of the MemoryTurnLimit Objective Function

270
27090

180

90

180

0

0

Figure 45: The MemoryTurnLimit objective function: The objective function produced by the MemoryTurn-
Limit behavior is defined over possible heading values. Depicted here is an objective function formed when the recent
heading history is 225 degrees and the turn range parameter is set to 30 degrees. The resulting objective function
highly favors headings in the range of 190-240 degrees. One the right is a “birds-eye” view of the function, and on the
right the function is viewed at an angle to appreciate the 3D quality of the function. Higher (red) values correspond
to higher utility.

135

11 BEHAVIORS OF THE IVP HELM

11.11 BHV StationKeep

11.11.1 Overview of the BHV StationKeep Behavior

This behavior is designed to keep the vehicle at a given lat/lon or x,y station-keep position by
varying the speed to the station point as a linear function of its distance to the point. The
parameters allow one to choose the two distances between which the speed varies linearly, the
range of linear speeds, and a default transit speed if the vehicle is outside the outer radius.

Figure 46: The station-keep behavior parameters: The station-keep behavior can be configured to approach the
outer station circle with a given transit speed, and will decrease its preference for speed linearly between the outer
radius and inner radius. The preferred speed is zero when the vehicle is at or inside the inner radius.

An alternative to this station keeping behavior is an active loiter around a very tight polygon
with the BHV LOITER behavior. This station keeping behavior conserves energy and aims to minimize
propulsor use. The behavior can be configured to station-keep at a pre-set point, or wherever the
vehicle happens to be when the behavior transitions into an active state.

The station-keep behavior was initially developed for use on an autonomous kayak. It’s worth
pointing out that a vehicle’s control system, i.e., the front-seat driver described in Section 2.3, may
have a native station-keeping mode, in which case the activation of this behavior would be replaced
by a message from the backseat autonomy system to invoke the station-keeping mode. It’s also
worth pointing out that most UUVs are positively buoyant and will simply come to the surface if
commanded with a zero-speed.

11.11.2 Brief Summary of the BHV StationKeep Behavior Parameters

The following parameters are defined for this behavior. A more detailed description is provided
other parts of this section, and in Table 21 on page 157.

136

11 BEHAVIORS OF THE IVP HELM

STATION PT: An x,y pair given as a point in local coordinates.

POINT: A supported alias for STATION POINT.

CENTER ACTIVE: If true, station-keep at position upon activation.

INNER RADIUS: Distance to station-point within which the preferred speed is zero.

OUTER RADIUS: Distance within which the preferred speed begins to decrease.

OUTER SPEED: Preferred speed at outer radius, decreasing toward inner radius.

SWING TIME: Duration of drift of station circle with vehicle upon activation.

TRANSIT SPEED: Preferred speed beyond the outer radius.

EXTRA SPEED: A deprecated alias for TRANSIT SPEED.

PASSIVE STATION RADIUS: A radius used for low-power, passive station-keeping.

PASSIVE STATION VARIABLE: Name of MOOS variable used for conveying passive-station mode.

11.11.3 Setting the Station-Keep Point and Radial-Speed Relationships

The station-keep point is set in one of two ways: either with a pre-specified fixed position, or with
the vehicle’s current position when the vehicle transitions into the running state. To set a fixed
station-keep position:

station_pt = 100,250

To configure the behavior to station-keep at the vehicle’s current position when it enters the running
state:

center_active = true // "true" is case insensitive

At the outset of station-keeping via center activate, the vehicle typically is moving at some speed.
Despite the fact that station-keeping is immediately active and typically results in a desired speed
of zero if no other behaviors are active, the vehicle will continue some distance before coming to
a near or complete stop in the water, thus “over-shooting” the station-keep point. This often
means that the station-keep behavior will immediately turn the vehicle around to come back to the
station-keep point. This can be countered by setting the behavior’s “swing time” parameter, the
amount of time after initial center-activation that the station-keep point is allowed to drift with
the current position of the vehicle before becoming fixed. The format is:

swing_time = <time-duration> // default is 0

The <time-duration> is given in seconds and the duration is clipped by the range [0, 60].

If the behavior enters the running state, but center-activation is not set to true, and no pre-
specified fixed position is given, the behavior will not produce an objective function. It will remain
in the running state, but not the active state. (See Section 6.5.3 for more detail on behavior run
states.) In this situation, a warning will be posted: BHV WARNING="STATION POINT NOT SET".

The INNER RADIUS and OUTER RADIUS parameters affect the preferred speed of the behavior as
it relates to the vehicle’s current range to the station point. The preferred speed at the outer
radius is given by the parameter OUTER SPEED. The preferred speed decreases linearly to zero as the

137

11 BEHAVIORS OF THE IVP HELM

vehicle approaches the inner radius. The default values for the inner and outer radii are 4 and 15
respectively. If configured with values such that the inner is greater then the outer, this will not
trigger an error, but the two radii parameters will be collapsed to the value of the inner radius on
the first iteration of the behavior.

11.11.4 Passive Low-Energy Station Keeping Mode

The station-keep behavior can be configured to operate in a “passive” mode. This mode differs
from the default mode primarily in the way it acts after it reaches the inner-radius, i.e., the point
at which the behavior regards the vehicle to be on-station and outputs a preferred speed of zero.
In the normal mode, the behavior will begin to output a preferred heading and non-zero speed
as soon as the vehicle slips beyond the inner-radius. In the passive mode, the behavior will let
the vehicle drift or otherwise move to a distance specified by the PASSIVE STATION RADIUS before it
resumes outputting a preferred heading and non-zero speed. The idea is shown in Figure 47.

Figure 47: Passive station-keeping: The station-keep behavior can be configured in the “passive” mode. The
vehicle will move toward the station point until it reaches the inner radius or until progress ceases. It will then drift
until its distance to the station point is beyond the passive station radius. At this point it will re-engage to reach
the station-point and may trigger another behavior to dive.

This mode was built with UUVs in mind. Most UUVs are deployed having a positive buoyancy
(battery dies - vehicle floats to the surface). They need to be moving at some speed to maintain
a depth. Furthermore, it may not be safe to assume that a UUV can effectively execute a desired
heading when it is operating on the surface. For these reasons, when operating in the passive mode,
this behavior will publish a variable indicating whether it is in the mode of drifting or attempting

138

11 BEHAVIORS OF THE IVP HELM

to make progress toward the station point. The status is published in the variable PSKEEP MODE,
short for “passive station-keeping mode”. This variable will be set to "SEEKING STATION" when
outputting a non-zero speed preference, and presumably moving toward the station-point. The
variable will be set to "HIBERNATING" otherwise. This opens the option of configuring the helm with
the ConstantDepth behavior to work in conjunction with the StationKeep behavior by conditioning
the ConstantDepth behavior to be running only when PSKEEP MODE="SEEKING STATION". The idea is
shown in Figure 48.

Figure 48: Passive station-keeping with depth coordination: The passive mode can be coordinated with the
ConstantDepth behavior to dive each time the StationKeep behavior enters the "SEEKING STATION" mode. This
ensures that a UUV needing to be at depth to have reliable heading control will indeed be at depth when it needs to
be.

This behavior mode is regarded as ”low-power” due to the presumably long periods of drifting
before resuming actively seeking the station point. A couple of safeguards are designed to ensure
that when the behavior is in the "STATION SEEKING" mode, that it does not get hung or stuck in
this mode for much longer than intended or needed. How could one become stuck in this mode?
Two ways - by either reaching an equilibrium at-speed, (and perhaps at-depth) state where the
vehicle is neither progressing toward or way from the inner radius, or by repeatedly “missing” the
inner radius by heading right past it.

Both cases can be guarded against and detected by monitoring the history of vehicle speed in
the direction of the station-point. If this speed becomes zero, an equilibrium state is assumed, and
if it becomes negative, it is assumed that the vehicle missed the inner radius circle entirely. In short,
the StationKeep behavior exits the "STATION SEEKING" mode and enters the "HIBERNATING" mode
when it detects the vehicle speed toward the station-point reach zero. To calculate this vehicle
speed, a ten-second history of range to the station-point is kept by the behavior. A zero speed,
or “stale-progress” criteria is declared simply if the range to the station-point for the most recent
measure in the history is not less than the range of ten seconds ago in the history list. The behavior
will transition into the "HIBERNATING" mode if either the inner-radius or stale-progress criteria are
met.

It is also possible that when the StationKeep behavior enters the "SEEKING STATION" mode from
the "HIBERNATING" mode, that the vehicle initially begins to open its range to the station-point
before it begins to close range. This would be expected, for example, if the vehicle were pointed
away from the station-point when the behavior first entered the "SEEKING STATION" mode. In this
case it’s quite possible that the behavior would correctly, but unwantingly, infer that the stale-

139

11 BEHAVIORS OF THE IVP HELM

progress criteria has been met. For this reason, the stale-progress criteria is not applied until an
“initial-progress” criteria is met after entering the "SEEKING STATION" mode. The same ten second
history is used to detect when the vehicle begins to make initial progress, i.e., closing range, toward
the station-point.

11.11.5 Station Keeping On Demand

A common, and perhaps recommended configuration, is to have one station-keep behavior defined
for a given helm configuration and have it set to be usable in one of three ways: (a) station-keep
at a default pre-specified position, (b) station-keep at a specified position dynamically provided, or
(c) station-keep at the vehicle’s present position when activated. The behavior would be configured
as follows:

STATION_PT = 100,200 // The default station-keep point

CENTER_ACTIVE = false

UPDATES = STATION_UPDATES

CONDITION = STATION_REQUEST = true

Then, to use the station-keep behavior in the above three ways, the following three pairs of postings,
i.e., pokes, to the MOOSDB would be used. See Section 7.2.2 for more on the UPDATES parameter
defined for all behaviors - by utilizing this dynamic configuration hook, the one behavior configu-
ration above can be used in these different manners. The first pair would result in the behavior
keeping station at its pre-arranged point of 100,200:

STATION_REQUEST = true

STATION_UPDATES = CENTER_ACTIVATE=false"

The second line above dynamically configures the behavior parameter CENTER ACTIVATE to be false

to ensure that the point given by the original STATION PT parameter is used. Even though the
CENTER ACTIVATE parameter is initially set to false, the above usage sets it to false anyway, to be
safe, and in case it has been dynamically set to true in a prior usage.

In the second case below, again the CENTER ACTIVATE parameter is dynamically set to false for
the same reasons. In this case the STATION POINT parameter is also dynamically configured with a
given point:

STATION_REQUEST = true

STATION_UPDATES = "STATION_PT=45,-150 # CENTER_ACTIVATE=false"

In the last case, below, the behavior is activated and configured to station-keep at the vehicle’s
present position when activated. There is no need to tinker with the STATION PT parameter since
this parameter is ignored when CENTER ACTIVATE is true:

STATION_REQUEST = true

STATION_UPDATES = "CENTER_ACTIVATE=true"

It’s worth noting that above variable-value pairs that trigger the station-keep behavior could have
come from a variety of sources. They could be endflags from another behavior. They could have
come from a poke using uPokeDB, uTermCommand, pMarineViewer or any third party command and
control interface.

140

11 BEHAVIORS OF THE IVP HELM

11.12 BHV Timer

This behavior can nearly be considered a no-op behavior; it has no functionality beyond what is
derived from the parent IvPBehavior class. It can be used to set a timer between the observation
of one or more events (with condition flags) and the posting of one or more events (with end
flags). The DURATION, DURATION STATUS, CONDITION, RUNFLAG and ENDFLAG parameters are all defined
generally for behaviors. There are no additional parameters defined for this behavior.

141

12 MULTI-VEHICLE BEHAVIORS OF THE IVP HELM

12 Multi-Vehicle Behaviors of the IvP Helm

The following is a description of some behaviors currently written for the IvP Helm that reason
about relative position to another vehicle. Each such behavior needs to know about the position of
a given contact. Currently we simply assume that a contact’s ID or vehicle name is known a priori
and its position information arrives in the MOOSDB in the form of an AIS report (discussed earlier,
and again in the section on example scenarios). Currently work is addressing the development of a
separate MOOS process acting as a contact manager and perhaps spawning behaviors dynamically.
At this point however, behaviors relating to the relative position of another vehicle are configured
statically.

12.1 Parameters Common All Multi-Vehicle Behaviors

The following set of parameters are common to all the multi-vehicle behaviors described in later
sections.

CONTACT: The name of the contact.

ON NO CONTACT OK: The name of the contact.

EXTRAPOLATE: Boolean controlling whether the contact position is extrapolated from the last known
position using the associated speed and heading. This feature is particularly important when
position updates are sparse, e.g. for underwater vehicles using acoustic communication. The
time delays for which extrapolation will be applied are controlled by the DECAY parameters.

DECAY: This parameter takes two arguments separated by a comma. The first argument is the
decay start time (in seconds), and the second is the decay end time (also in seconds). The
behavior extrapolates the contact position based on the last known position, heading and speed.
The speed of the contact begins to decay based on the time since the last contact update. This
is a safeguard against perpetually trailing a vehicle the ceases to provide a contact report. The
default is 5 and 10 seconds respectively.

12.2 BHV AvoidCollision

This behavior will drive the vehicle to avoid collisions with another specified vehicle. It reasons over
the “closest point of approach” (CPA) of candidate ownship actions. The following parameters are
defined for this behavior:

ACTIVE OUTER DISTANCE: The distance (meters) to the specified other vehicle, below which the
behavior will begin to be relevant (have a non-zero priority weight). At higher distances, the
behavior will not contribute an objective function.

ACTIVE INNER DISTANCE: The distance (meters) to the specified other vehicle, at which the behavior
will apply 100% of its assigned priority weight. Ranges smaller than this distance will also have
full priority weight.

142

12 MULTI-VEHICLE BEHAVIORS OF THE IVP HELM

0%

active_outer_distance

100%

active_inner_distance

active_outer_distance

range (meters)

Priority

range (meters)

ownship

active_inner_distance

Figure 49: Parameters for the BHV AvoidCollision behavior: The ownship vehicle is the platform running the
helm. The range between the two vehicles affects whether the behavior is active and with what priority weight. Beyond
the active outer distance, the behavior is not active. Within the active inner distance, the behavior is
active with 100% of its priority weight.

COLLISION DISTANCE: The distance (in meters) between ownship and the contact at the closest point
of approach (CPA) for a candidate maneuver, below which the behavior treats the distance as
it would an actual collision between the two vehicles.

ALL CLEAR DISTANCE: The distance (in meters) between ownship and the contact at the closest point
of approach (CPA) for a candidate maneuver, above which the behavior treats the distance as
having the maximum utility.

Utility

100

0

collision_distance all_clear_distance

collision_distance

ownship

all_clear_distance

Ownship position at

Closest Point of Approach

CPA (meters)

contact

CPA range (meters)

Figure 50: Parameters for the BHV AvoidCollision behavior. The ownship vehicle is the platform running the helm.
The collision distance is used when applying a utility metric to a calculated closest point of approach (CPA)
for a candidate maneuver. A CPA less than or equal to the collision distance is treated as an actual collision
with the lowest utility rating.

143

12 MULTI-VEHICLE BEHAVIORS OF THE IVP HELM

180

0

90

180

270

270 90

0

Figure 51: The objective function produced by the collision avoidance behavior is defined over possible heading and
speed values. Higher speeds are represented farther radially out from the center.

A Rendering of the Collision Avoidance Function

12.3 BHV CutRange

This behavior will drive the vehicle to reduce the range between itself and another specified vehicle
(nearly the opposite of the BHV AvoidCollision behavior). The following parameters are defined
for this behavior:

DIST PRIORITY INTERVAL: Two distance values given by a comma-separated pair min,max where the
min value is the range at or below which the behavior will have a zero priority. The min value is
the range at or above which the behavior will have 100% of its statically assigned priority. The
percentage between the two values scales linearly.

TIME ON LEG: The behavior uses a closest-point-of-approach (CPA) calculation to evaluate can-
didate heading-speed maneuvers. The CPA calculation is based on a 60 second maneuver by
default, but this time duration can be altered with this parameter.

GIVE UP RANGE: The range between ownship and the contact at or above which the behavior will
cease to provide output (the objective function) to influence the vehicle heading and speed. By
default this value is zero which is interpreted as infinity - it will never give up.

PATIENCE: The PATIENCE parameter ranges between 0 and 100 and is clipped automatically if out
of range. A value of 0 will result in the behavior attempting to steer the vehicle directly toward
the current position of the contact. A value of 100 will result in an attempt to steer toward the
closest point of approach given the current linear track of the contact, and the prevailing setting
of the TIME ON LEG parameter.

144

12 MULTI-VEHICLE BEHAVIORS OF THE IVP HELM

12.4 BHV Shadow

This behavior will drive the vehicle to match the trajectory of another specified vehicle. This be-
havior in conjunction with the BHV CutRange behavior can produce a “track and trail” capability.
The following parameters are defined for this behavior:

MAX RANGE: The distance (in meters) that the contact must be within for the behavior to be active
and produce an objective function. The default is max range value is zero meaning it will be
active regardless of the distance to the contact.

HEADING PEAKWIDTH: This behavior uses the ZAIC PEAK tool from the IvP Toolbox for generating an
objective function over heading and speed. This parameter sets the peakwidth parameter of the
heading component.

HEADING BASEWIDTH: This behavior uses the ZAIC PEAK tool from the IvP Toolbox for generating an
objective function over heading and speed. This parameter sets the basewidth parameter of the
heading component.

SPEED PEAKWIDTH: This behavior uses the ZAIC PEAK tool from the IvP Toolbox for generating an
objective function over heading and speed. This parameter sets the peakwidth parameter of the
speed component.

SPEED BASEWIDTH: This behavior uses the ZAIC PEAK tool from the IvP Toolbox for generating an
objective function over heading and speed. This parameter sets the basewidth parameter of the
speed component.

12.5 BHV Trail

This behavior will drive the vehicle to trail or follow another specified vehicle at a given relative
position. A tool for “formation flying”. The following parameters are defined for this behavior:

TRAIL RANGE: The range component of the relative position to the contact to trail.

TRAIL ANGLE: The relative angle of the relative position to the contact to trail. (180 is directly
behind, 90 is a parallel track to the contacts starboard side, -90 is on the port side of the
contact.)

TRAIL ANGLE TYPE: The trail angle may be set to either relative (the default), or absolute.

RADIUS: The distance (in meters) from the trail position that will result in the behavior “cutting
range” to the trail position, and inside of which will result in the behavior “shadowing” the
contact. The default is 5 meters.

145

12 MULTI-VEHICLE BEHAVIORS OF THE IVP HELM

trail_angle (relative)

ownship

trail_angle (absolute)

trail−point

radius

nm_radius

trail_range

contact

Figure 52: Interpolation of vehicle speed inside the radius set by NM RADIUS relative to the extrapolated trail position.

.

NM RADIUS: The distance in meters from the trail point within which the speed will be gradually
change from the outer chase speed (max speed) and the speed of the contact, as illustrated in
Fig. 52. This parameter should typically be set to several times the value of RADIUS to achieve
smooth formation flying. Default is 20 meters.

MAX RANGE: The distance (in meters) that the contact must be within for the behavior to be active
and produce an objective function. The default is max range value is zero meaning it will be
active regardless of the distance to the contact.

146

13 APPENDIX - BEHAVIOR SUMMARIES

13 Appendix - Behavior Summaries

Parameter Summary for BHV Waypoint

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

points, polygon string 0,0:45,0:45,80:0,0 yes - 118
capture radius double 7 - 0 119
lead double 10 no -1 119
nm radius double 18 no 0 119
order string reverse no normal 118
post suffix string IKE yes "" 118
repeat int 3 no 0 118
speed double 1.2 - 0 118
wpt status var MOOSVAR WPT REPORT yes WPT STAT 121
wpt index var MOOSVAR WPT IX yes WPT INDEX 121
cycle index var MOOSVAR CYCLE IX yes CYCLE INDEX 121
cycleflag MOOSVAR=value CYCLED=true yes - 121

Table 11: Parameters for the BHV Waypoint behavior.

Example Behavior File Configuration for BHV Waypoint

Listing 13.1 - An example BHV Waypoint configuration.

0 Behavior = BHV_Waypoint

1 {

2 name = waypt_survey

3 priority = 100

4 updates = WPT_SURVEY_UPDATES

5 condition = (DEPLOY == true) or (SURVEY == on))

6 endflag = SURVEY = COMPLETE

7

8 points = label,survey_points:-57,-60:-70,-109:-77,-144:-51

9

10 speed = 3.0 // meters per second

11 capture_radius = 8.0 // meters

12 nm_radius = 16.5 // meters

13 repeat = 0 // number of iterations

14 lead = 10 // meters

15 }

147

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV OpRegion

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

polygon string 0,0:45,0:45,80:0,80:0,0 - - 122
max depth double 200 - 0 123
min altitude double 25 - 0 123
max time double 3600 - 0 123
trigger entry time double 1.5 - 0 122
trigger exit time double 2.4 - 0 122

Table 12: Parameters for the BHV OpRegion behavior.

Example Behavior File Configuration for BHV OpRegion

Listing 13.2 - An example BHV OpRegion configuration.

0 Behavior = BHV_OpRegion

1 {

2 name = bhv_opregion

3 polygon = label,opregion : -57,-60 : -70,-109 : -77,-144

4

5 max_depth = 50 // meters

6 min_altitude = 10 // meters

7 max_time = 3600 // seconds

8 trigger_entry_time = 0.5 // seconds

9 trigger_exit_time = 1.0 // seconds

10 }

148

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV Loiter

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

polygon string 0,0:45,0:45,80:0,80:0,0 yes - 125
speed double 1.5 - 0 125
radius double 10 - 0 125
nm radius double 25 - 0 125
clockwise string FALSE no true 125
acquire dist double 15 - 10 125
post suffix string REGION-1 yes "" 125

Table 13: Parameters for the BHV Loiter behavior.

Example Behavior File Configuration for BHV Loiter

Listing 13.3 - An example BHV Loiter configuration.

0 Behavior = BHV_Loiter

1 {

2 name = loiter_alpha

3 pwt = 100

4 duration = 3600 // One hour

5 updates = LOITER_ALPHA_UPDATES

7

8 polygon = radial:100,-100,80,12

9 speed = 3.0

10 radius = 8.0

11 nm_radius = 16.0

12 clockwise = true

13 aquire_dist = 25

14 }

149

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV PeriodicSpeed

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

period length double 60 - 0 127
period gap double 600 - 0 127
period speed double 0.8 - 0 127
period peakwidth double 0.2 - 0 127
period basewidth double 0.5 - 0 127
stat pending inactive MOOSVAR PS PENDING INACTIVE yes - 127
stat pending active MOOSVAR PS PENDING ACTIVE yes - 127

Table 14: Parameters for the BHV PeriodicSpeed behavior.

Example Behavior File Configuration for BHV PeriodicSpeed

Listing 13.3 - An example BHV PeriodicSpeed configuration.

0 Behavior = BHV_PeriodicSpeed

1 {

2 name = periodic_speed

3 priority = 500

4

5 period_length = 30 // seconds

6 period_gap = 120 // seconds

7 period_speed = 0.5 // meters/sec

8 period_peakwidth = 0.1

9 period_basewidth = 0.5

10 stat_pending_active = PS_PENDING_ACTIVE

11 stat_pending_inactive = PS_PENDING_INACTIVE

12 }

150

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV PeriodicSurface

Parameter Argument Type Example Case-Sense Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

period double 60 - 300 128
mark variable MOOSVAR GPS RECEIVED yes GPS UPDATE RECEIVED 129
atsurface status variable MOOSVAR TIME AT SURFACE yes TIME AT SURFACE 129
pending status variable MOOSVAR PENDING SURFACE yes PENDING SURFACE 129
ascent speed double 1.0 - * 129
ascent grade string quasi no linear 129
zero speed depth double 2.5 - 0 129
max time at surface MOOSVAR 60 yes 300 129

Table 15: Parameters for the BHV PeriodicSurface behavior.

Example Behavior File Configuration for BHV PeriodicSurface

Listing 13.4 - An example BHV PeriodicSurface configuration.

0 Behavior = BHV_PeriodicSurface

1 {

2 name = bhv_periodic_surface

3 priority = 500

4 active_flag = SURFACING, IN_PROGRESS

5 inactive_flag = SURFACING, NO

6

7 period = 3600 // seconds

8 ascent_speed = 1.0 // meters per second

9 zero_speed_depth = 2.5 // meters

10 max_time_at_surface = 120 // seconds

11 ascent_grade = linear

12 mark_variable = GPS_UPDATE_RECEIVED

13 status_variable = PERIODIC_PENDING_SURFACE

14 }

151

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV ConstantDepth

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

depth double 35 - 0 130
peakwidth double 5 - 0 130
basewidth double 15 - 2 130

Table 16: Parameters for the BHV ConstantDepth behavior.

Example Behavior File Configuration for BHV ConstantDepth

Listing 13.5 - An example BHV ConstantDepth configuration.

0 Behavior = BHV_ConstantDepth

1 {

2 // General Behavior Parameters

3 name = constant_depth_survey

4 priority = 100

5 condition = AUTONOMY_MODE = SURVEY

6 duration = no-time-limit

7 updates = NEW_SURVEY_DEPTH

8 nostarve = NAV_DEPTH, 3.0

9

10 // BHV_ConstantDepth Behavior Parameters

11 depth = 50 // meters

12 peakwidth = 5

13 basewidth = 10

14 }

152

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV ConstantHeading

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

heading double 35 - 0 130
peakwidth double 5 - 10 130
basewidth double 175 - 170 130

Table 17: Parameters for the BHV ConstantHeading behavior.

Example Behavior File Configuration for BHV ConstantHeading

Listing 13.6 - An example BHV ConstantHeading configuration.

0 Behavior = BHV_ConstantHeading

1 {

2 name = bhv_constant_heading

3 priority = 100

4 duration = 60

5 condition = AUTONOMY_MODE = PID_TEST

6 updates = NEW_TEST_HEADING

7 nostarve = NAV_HEADING, 3.0

8

9 heading = 45 // degrees

10 peakwidth = 0

11 basewidth = 5

12 }

153

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV ConstantSpeed

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

speed double 1.2 - 0.0 131
peakwidth double 0.1 - 0.0 131
basewidth double 0.6 - 2.0 131

Table 18: Parameters for the BHV ConstantSpeed behavior.

Example Behavior File Configuration for BHV ConstantSpeed

Listing 13.7 - An example BHV ConstantSpeed configuration.

0 Behavior = BHV_ConstantSpeed

1 {

2 name = const_speed_bravo

3 priority = 100

4 duration = 60

5 active_flag = BRAVO_SPEED_TEST = in-progress

6 nostarve = NAV_SPEED, 2.0

7

8 speed = 1.8 // meters per second

9 peakwidth = 0.3

10 basewidth = 1.0

11 }

154

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV GoToDepth

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

depth, depths string 50,10:40,60 yes - 132
repeat int 5 - 0 132
capture delta double 2 - 2.5 132
capture flag MOOSVAR DEPTH HIT yes - 132

Table 19: Parameters for the BHV GoToDepth behavior.

Example Behavior File Configuration for BHV GoToDepth

Listing 13.8 - An example BHV GoToDepth configuration.

0 Behavior = BHV_GoToDepth

1 {

2 name = goto_depth_set_alpha

3 priority = 100

4 condition = DEPLOY == true

9 endflag = GOTO_DEPTH_ALPHA = DONE

5

6 depths = 15,30: 30,30: 45,60: 15,30

7 capture_delta = 1 // meters

8 capture_flag = DEPTH_LEVELS_ACHIEVED

10 }

155

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV MemoryTurnLimit

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

memory time double 60 - -1 134
turn range double 45 - -1 134

Table 20: Parameters for the BHV MemoryTurnLimit behavior.

Example Behavior File Configuration for BHV MemoryTurnLimit

Listing 13.9 - An example BHV MemoryTurnLimit configuration.

zv

0 Behavior = BHV_MemoryTurnLimit

1 {

2 name = memturnlimit

3 priority = 1000

4

5 memory_time = 60 // seconds

6 turn_range = 35 // degrees

7 }

156

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV StationKeep

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

station pt, point string 50,75 yes 0,0 137
center activate string TRUE no false 137
inner radius double 10 - 4 137
outer radius double 25 - 15 137
outer speed double 1.8 - 1.2 137
transit speed double 1.9 - 2.5 137
passive station radius double 200 - 0 138
passive station variable MOOSVAR PSK MODE CHARLIE - PSKEEP MODE 138

Table 21: Parameters for the BHV StationKeep behavior.

Example Behavior File Configuration for BHV StationKeep

Listing 13.10 - An example BHV StationKeep configuration.

0 Behavior = BHV_StationKeep

1 {

2 name = bhv_station_keep

3 priority = 100

4 condition = (ON_STATION=true) and (RETURN=false)

5 updates = STATION_UPDATES

6

7 station_pt = 200,-150

8 center_activate = true

9 inner_radius = 10

10 outer_radius = 40

11 outer_speed = 0.8

12 transit_speed = 1.8

13 passive_station_radius = 400 // meters

14 passive_station_variable = PSKEEP_MODE // the default

15 }

157

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV Timer

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

No additional parameters for this behavior

Table 22: Parameters for the BHV Timer behavior.

Example Behavior File Configuration for BHV Timer

Listing 13.11 - An example BHV Timer configuration.

0 Behavior = BHV_Timer

1 {

2 name = bhv_timer_a

3 duration = 60 // seconds

4 condition = loiter = alpha

5 end_flag = loiter = beta

6 }

158

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV AvoidCollision

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

contact string Alliance yes - 142
on no contact ok boolean true no true 142
extrapolate boolean true no false 142
decay double,double 10, 30 - 0,0 142

active inner distance double 50 - 50 142
active outer distance double 200 - 200 142
all clear distance double 100 - 75 143
collision distance double 10 - 10 143

Table 23: Parameters for the BHV AvoidCollision behavior.

Example Behavior File Configuration for BHV AvoidCollision

Listing 13.12 - An example BHV AvoidCollision configuration.

0 Behavior = BHV_AvoidCollision

1 {

2 name = avoid_collision_alpha

3 pwt = 100

4 condition = AVOIDANCE_MODE != INACTIVE

4

5 contact = alpha

6 active_outer_distance = 150

7 active_inner_distance = 75

8 collision_distance = 15

9 all_clear_distance = 80

10 active_grade = linear

11 on_no_contact_ok = true

12 extrapolate = true

13 decay = 30,60

14 }

159

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV CutRange

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

contact string Alliance yes - 142
on no contact ok boolean true no true 142
extrapolate boolean true no false 142
decay double,double 10, 30 - 0,0 142

dist priority interval double,double 40,100 - 0,0 144
time on leg double 60 - 15 144
give up range double 500 - 0 144
patience double 50 - 0 144

Table 24: Parameters for the BHV CutRange behavior.

Example Behavior File Configuration for BHV CutRange

Listing 13.13 - An example BHV CutRange configuration.

0 Behavior = BHV_CutRange

1 {

2 name = bhv_cutrange

3 pwt = 100

4 contact = zulu

5

5 dist_priority_interval = 25,100

6 time_on_leg = 60

7 give_up_range = 400

8 patience = 75

9 }

160

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV Shadow

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

contact string Alliance yes - 142
on no contact ok boolean true no true 142
extrapolate boolean true no false 142
decay double,double 10, 30 - 0,0 142

max range double 100 - 0 144
heading peakwidth double 10 - 20 144
heading basewidth double 170 - 160 144
speed peakwidth double 0.3 - 0.1 144
speed basewidth double 0.5 - 2.0 144

Table 25: Parameters for the BHV Shadow behavior.

Example Behavior File Configuration for BHV Shadow

Listing 13.14 - An example BHV Shadow configuration.

0 Behavior = BHV_Shadow

1 {

2 name = bhv_shadow

3 pwt = 100

4 contact = delta

5

6 max_range = 200

7 heading_peakwidth = 10

8 heading_basewidth = 170

9 speed_peakwidth = 10

10 speed_basewidth = 170

11 }

161

13 APPENDIX - BEHAVIOR SUMMARIES

Parameter Summary for BHV Trail

Parameter Argument Type Example Case-Sensitive Default Page

name string loiter-west-zone yes mandatory 71
duration double 600 - -1 74
duration status MOOSVAR loiter remaining yes - 74
priority, pwt double 100 - 100 71
runflag MOOSVAR=value LOITERING = maybe yes - 62
endflag MOOSVAR=value LOITERING = done yes - 62
activeflag MOOSVAR=value LOITERING = yes yes - 62
inactiveflag MOOSVAR=value LOITERING = off yes - 62
idleflag MOOSVAR=value LOITERING = no yes - 62
nostarve MOOSVAR,double INFO,60 yes - 75
perpetual string false no false 75
updates MOOSVAR LOITER INFO yes - 73
condition Logic Expression QUALITY <= 7 yes - 61

contact string Alliance yes - 142
on no contact ok boolean true no true 142
extrapolate boolean true no false 142
decay double,double 10, 30 - 0,0 142

trail range double 20 - 50 144
trail angle double 270 - 180 144
trail angle type string absolute no relative 144
radius double 8 - 5 144
nm radius double 20 - 20 144
max range double 50 - 0 144

Table 26: Parameters for the BHV Trail behavior.

Example Behavior File Configuration for BHV Trail

Listing 13.15 - An example BHV Trail configuration.

0 Behavior = BHV_Trail

1 {

2 name = bhv_trail

3 priority = 100

5

5 contact = delta

6 extrapolate = true

7 on_no_contact_ok = true

8 decay = 20,60 // seconds

9

10 trail_range = 50 // meters

11 trail_angle = 185 // degrees

12 trail_angle_type = relative

13 radius = 10 // meters

14 nm_radius = 30 // meters

15 max_range = 300 // meters

16 }

162

13 APPENDIX - BEHAVIOR SUMMARIES

14 Appendix - Colors

Below are the colors used by IvP utilities that use colors. Colors are case insensitive. A color may
be specified by the string as shown, or with the ’ ’ character as a separator. Or the color may be
specified with its hexadecimal or floating point form. For example the following are equivalent:
“darkblue”, “DarkBlue”, “dark blue”, “hex:00,00,8b”, and “0,0,0.545”.

antiquewhite, (fa,eb,d7)
aqua (00,ff,ff)
aquamarine (7f,ff,d4)
azure (f0,ff,ff)
beige (f5,f5,dc)
bisque (ff,e4,c4)
black (00,00,00)
blanchedalmond(ff,eb,cd)
blue (00,00,ff)
blueviolet (8a,2b,e2)
brown (a5,2a,2a)
burlywood (de,b8,87)
cadetblue (5f,9e,a0)
chartreuse (7f,ff,00)
chocolate (d2,69,1e)
coral (ff,7f,50)
cornsilk (ff,f8,dc)
cornflowerblue(64,95,ed)
crimson (de,14,3c)
cyan (00,ff,ff)
darkblue (00,00,8b)
darkcyan (00,8b,8b)
darkgoldenrod (b8,86,0b)
darkgray (a9,a9,a9)
darkgreen (00,64,00)
darkkhaki (bd,b7,6b)
darkmagenta (8b,00,8b)
darkolivegreen(55,6b,2f)
darkorange (ff,8c,00)
darkorchid (99,32,cc)
darkred (8b,00,00)
darksalmon (e9,96,7a)
darkseagreen (8f,bc,8f)
darkslateblue (48,3d,8b)
darkslategray (2f,4f,4f)
darkturquoise (00,ce,d1)
darkviolet (94,00,d3)

deeppink (ff,14,93)
deepskyblue (00,bf,ff)
dimgray (69,69,69)
dodgerblue (1e,90,ff)
firenrick (b2,22,22)
floralwhite (ff,fa,f0)
forestgreen (22,8b,22)
fuchsia (ff,00,ff)
gainsboro (dc,dc,dc)
ghostwhite (f8,f8,ff)
gold (ff,d7,00)
goldenrod (da,a5,20)
gray (80,80,80)
green (00,80,00)
greenyellow (ad,ff,2f)
honeydew (f0,ff,f0)
hotpink (ff,69,b4)
indianred (cd,5c,5c)
indigo (4b,00,82)
ivory (ff,ff,f0)
khaki (f0,e6,8c)
lavender (e6,e6,fa)
lavenderblush (ff,f0,f5)
lawngreen (7c,fc,00)
lemonchiffon (ff,fa,cd)
lightblue (ad,d8,e6)
lightcoral (f0,80,80)
lightcyan (e0,ff,ff)
lightgoldenrod(fa,fa,d2)
lightgray (d3,d3,d3)
lightgreen (90,ee,90)
lightpink (ff,b6,c1)
lightsalmon (ff,a0,7a)
lightseagreen (20,b2,aa)
lightskyblue (87,ce,fa)
lightslategray(77,88,99)
lightsteelblue(b0,c4,de)

163

13 APPENDIX - BEHAVIOR SUMMARIES

lightyellow (ff,ff,e0)
lime (00,ff,00)
limegreen (32,cd,32)
linen (fa,f0,e6)
magenta (ff,00,ff)
maroon (80,00,00)
mediumblue (00,00,cd)
mediumorchid (ba,55,d3)
mediumseagreen(3c,b3,71)
mediumslateblue(7b,68,ee)
mediumspringgreen(00,fa,9a)
mediumturquoise(48,d1,cc)
mediumvioletred(c7,15,85)
midnightblue (19,19,70)
mintcream (f5,ff,fa)
mistyrose (ff,e4,e1)
moccasin (ff,e4,b5)
navajowhite (ff,de,ad)
navy (00,00,80)
oldlace (fd,f5,e6)
olive (80,80,00)
olivedrab (6b,8e,23)
orange (ff,a5,00)
orangered (ff,45,00)
orchid (da,70,d6)
palegreen (98,fb,98)
paleturquoise (af,ee,ee)
palevioletred (db,70,93)
papayawhip (ff,ef,d5)
peachpuff (ff,da,b9)
pelegoldenrod (ee,e8,aa)
peru (cd,85,3f)
pink (ff,c0,cb)
plum (dd,a0,dd)
powderblue (b0,e0,e6)
purple (80,00,80)
red (ff,00,00)
rosybrown (bc,8f,8f)
royalblue (41,69,e1)
saddlebrowm (8b,45,13)
salmon (fa,80,72)
sandybrown (f4,a4,60)
seagreen (2e,8b,57)
seashell (ff,f5,ee)
sienna (a0,52,2d)

silver (c0,c0,c0)
skyblue (87,ce,eb)
slateblue (6a,5a,cd)
slategray (70,80,90)
snow (ff,fa,fa)
springgreen (00,ff,7f)
steelblue (46,82,b4)
tan (d2,b4,8c)
teal (00,80,80)
thistle (d8,bf,d8)
tomatao (ff,63,47)
turquoise (40,e0,d0)
violet (ee,82,ee)
wheat (f5,de,b3)
white (ff,ff,ff)
whitesmoke (f5,f5,f5)
yellow (ff,ff,00)
yellowgreen (9a,cd,32)

164

REFERENCES

References

[1] Ronald C. Arkin. Motor Schema Based Navigation for a Mobile Robot: An Approach to Programming by
Behavior. In Proceedings of the IEEE Conference on Robotics and Automation, pages 264–271, Raleigh, NC,
1987.

[2] Ronald C. Arkin, William M. Carter, and Douglas C. Mackenzie. Active Avoidance: Escape and Dodging
Behaviors for Reactive Control. International Journal of Pattern Recognition and Artificial Intelligence, 5(1):175–
192, 1993.

[3] Michael R. Benjamin. The Interval Programming Model for Multi-Objective Decision Making. Technical Report
AIM-2004-021, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, September 2004.

[4] Michael R. Benjamin. MOOS-IvP Autonomy Tools Users Manual. Technical Report MIT-CSAIL-TR-2008-065,
MIT Computer Science and Artificial Intelligence Lab, November 2008.

[5] Michael R. Benjamin and Joe Curcio. COLREGS-Based Navigation in Unmanned Marine Vehicles. In AUV-

2004, Sebasco Harbor, Maine, June 2004.

[6] Michael R. Benjamin, Paul M. Newman, Henrik Schmidt, and John J. Leonard. A Tour of MOOS-IvP Au-
tonomy Software Modules. Technical Report MIT-CSAIL-TR-2009-006, MIT Computer Science and Artificial
Intelligence Lab, January 2009.

[7] Mike Benjamin, Henrik Schmidt, and John J. Leonard. http://www.moos-ivp.org.

[8] Andrew A. Bennet and John J. Leonard. A Behavior-Based Approach to Adaptive Feature Detection and
Following with Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering, 25(2):213–226, April
2000.

[9] Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and

Automation, RA-2(1):14–23, April 1986.

[10] Marc Carreras, J. Batlle, and Pere Ridao. Reactive Control of an AUV Using Motor Schemas. In International

Conference on Quality Control, Automation and Robotics, Cluj Napoca, Rumania, May 2000.

[11] George B. Dantzig. Programming in a Linear Structure. Comptroller, United States Air Force, February 1948.

[12] Oussama Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 500–505, St. Louis, MO, 1985.

[13] Ratnesh Kumar and James A. Stover. A Behavior-Based Intelligent Control Architecture with Application to
Coordination of Multiple Underwater Vehicles. IEEE Transactions on Systems, Man, and Cybernetics - Part

A: Cybernetics, 30(6):767–784, November 2001.

[14] Paul Newman. http://www.robots.ox.ac.uk/~pnewman/TheMOOS/.

[15] Paul M. Newman. MOOS - A Mission Oriented Operating Suite. Technical Report OE2003-07, MIT Department
of Ocean Engineering, 2003.

[16] Paolo Pirjanian. Multiple Objective Action Selection and Behavior Fusion. PhD thesis, Aalborg University, 1998.

[17] Jukka Riekki. Reactive Task Execution of a Mobile Robot. PhD thesis, Oulu University, 1999.

[18] Julio K. Rosenblatt. DAMN: A Distributed Architecture for Mobile Navigation. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 1997.

[19] Julio K. Rosenblatt, Stefan B. Williams, and Hugh Durrant-Whyte. Behavior-Based Control for Autonomous
Underwater Exploration. International Journal of Information Sciences, 145(1-2):69–87, 2002.

[20] Stefan B. Williams, Paul Newman, Gamini Dissanayake, Julio K. Rosenblatt, and Hugh Durrant-Whyte. A
decoupled, distributed AUV control architecture. In Proceedings of 31st International Symposium on Robotics,
pages 246–251, Montreal, Canada, 2000.

165

Index

Action Selection, 51

Backseat Driver, 15
Behavior Files, 54

Loading, 41
Syntax checking, 44
Variable Initialization, 54

Behavior-Posts, 48, 85

Command and Control
pMarineViewer, 108

Configuration Parameters
pMarineViewer, 109
uHelmScope, 88

Duplication Filter, 47, 53

Engagement State, 39
START ENGAGED, 40, 42
On Helm Start-Up, 40
Transitions, 39

Geometry Utilities, 90
Points, 90

Hierarchical Mode Declarations, 55, 61
Example Mission, 57
Realizable Modes, 59
Run Time Monitoring, 59
Syntax, 58

IvP Behavior Functions
Helm-Invoked Functions, 76
Helm-Invoked Immutable Functions, 76
Helm-Invoked Overloadable Functions, 78
Implementor-Invoked Functions, 78
The addInfoVars() Function, 78, 80
The checkUpdates() Function, 76
The getBuffer*() Functions, 79, 80
The getBufferCurrTime() Function, 79
The isComplete() Function, 77
The isRunnable() Function, 77
The onIdleState() Function, 70, 78, 81
The onRunState() Function, 70, 78, 81

The post*Message() Functions, 79
The postFlags() Function, 78
The setComplete() Function, 78
The setParam() Function, 70, 75, 78

IvP Behavior Parameters, 71
activeflag, 63, 72
condition, 33, 51, 72
duration idle decay, 72
duration reset, 71
duration status, 71
duration, 62, 71, 74
endflag, 33, 51, 63, 72
idleflag, 63, 72
inactiveflag, 63
name, 33, 71
nostarve, 73, 75
perpetual, 73, 75
priority, 33, 71
runflag, 63, 72
updates, 73, 84, 118

IvP Behaviors, 53, 60
Conditions, see Run Conditions
Duration, 62
Dynamic Configuration, 73, 84, 118
Flags, 62
Independence, 50
Messages, 62
Priority Weights, 67
Run Conditions, 60, 61
Run States, 62, 64
Sequences, 51
State, 51
The Information Buffer, 80

IvP Behaviors Implemented
BHV AvoidCollision, 142
BHV ConstantDepth, 130
BHV ConstantHeading, 130
BHV ConstantSpeed, 130
BHV CutRange, 144
BHV GoToDepth, 132, 134
BHV Loiter, 125
BHV OpRegion, 122

166

INDEX

BHV PeriodicSpeed, 127
BHV PeriodicSurface, 128
BHV Shadow, 145
BHV StationKeep, 136
BHV Timer, 141
BHV Trail, 145
BHV Waypoint, 117

IvP Build Toolbox, 65
IvP Domain, 39, 41, 51
IvP Function, 50, 51, 53, 64, 65
IvP Helm

Iterate() Loop, 52
Behavior Files, 54
Behaviors, 50
Console Output, 42, 43
Decision Space, 53
Design Philosophy, 16
Duplication Filter, 47, 53
Engagement State, 39
Hierarchical Mode Declarations, 55
Initial Engagement State, 40
Publications, 45
Solver, 64
Subscriptions, 47

IvP Helm Parameters, 41
IvP Solver, 67

Key MOOS Variables
HELM ENGAGEMENT, 40
HELM MAP CLEAR, 47, 49
IVPHELM DOMAIN, 87
IVPHELM ENGAGED, 87
IVPHELM MODESET, 87
IVPHELM POSTINGS, 87
IVPHELM STATEVARS, 87
IVPHELM SUMMARY, 87
MOOS MANUAL OVERIDE, 39, 40, 47
MOOS MANUAL OVERRIDE, 39, 47
MVIEWER LCLICK, 102, 108
MVIEWER RCLICK, 102, 108
VIEW SEGLIST, 49

Mission Behavior Files, see Behavior Files
MOOS, 18

Acronymn, 8
Architecture, 16, 18

Background, 8
Code Re-use, 13
Community, 18, 22, 23, 25, 27, 41
Design Philosophy, 12
Documentation, 10
Messages, 18
Operating Systems, 10
Publish and Subscribe, 18
Source Code, 9
Sponsors, 8

MOOS Messages, 18
Skew, 42

MOOSDB
Community, 22
ServerHost, 22
ServerPort, 22

pMarineViewer, 95
Actions, 101
Command and Control, 108
Configuration Parameters, 109
Drop Points, 106
Geometric Objects, 107
GUI Buttons, 108
Markers, 105
Poking the MOOSDB, 101, 108
Pull-Down Menu (Action), 101
Pull-Down Menu (BackView), 97
Pull-Down Menu (GeoAttributes), 99
Pull-Down Menu (MouseContext), 102
Pull-Down Menu (ReferencePoint), 104
Pull-Down Menu (Scope), 101
Pull-Down Menu (Vehicles), 100
Vehicle Shapes, 105

Points, 90
Priority Weights, see IvP Behaviors, Priority Weights
Publications and Subscriptions

pHelmIvP, 45
uHelmScope, 89

ServerHost, see MOOSDB, ServerHost
ServerPort, see MOOSDB, ServerPort
Skew, see MOOS Messages, Skew
Source Code

Building, 9
Example Missions, 31

167

INDEX

Obtaining, 9
Running, 25, 31

uHelmScope, 59, 64, 83
Configuration Parameters, 88
Console output, 83
Engagement State, 40
Mission Modes, 59
Publications and Subscriptions, 89
Scoping the MOOSDB, 85
Stepping through time, 86
User Input, 86

uXMS, 85

Virgin Variables, 85

168

